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ABSTRACT
In the old days, even before MVS and SAS , complex
record structures ruled tape libraries.  When large disk
and memory buffers came on the scene, wide "flat file"
structures put all of the data related to a single key value
in fields of one record, and variable names replaced
pointers to physical locations in a file.  Big disks and E.F.
Codd later inspired a relational database revolution that
replaced physical files with basic logical relations and, in
the programming environment, pointers to fields with
relation.column references. Database systems have
evolved steadily toward more abstract but simpler
structures.  What next?  Object-oriented database systems
and "data where?houses" regress in the direction of
complex structures and file systems. In contrast, a reduced
structure database begins with the current standard, a true
relational database, and restructures it into a simpler and
more abstract form.  A structure of dependencies among
two or more tables reduces to a single table in which a
multidimensional primary key identifies each value.  This
presentation explores when and why this makes sense,
what it takes to create a thin 2-D design, and examples of
reduced structure databases in action.

INTRODUCTION
Estimates of the annual sales of database systems
currently fall in the $8 billion dollar range.  The fact that
organizations are paying that kind of money to license and
use DB2 , Oracle , SQLServer , and other database
products suggests that database technology occupies a key
role in private and public information systems.  Most
system experts agree that databases have two critical
functions in financial, manufacturing, and administrative
organizations:
� as servers for validated transactions entered

concurrently by multiple users  (including indexing,
record-locking, internal security, and data integrity);

� as data storage systems that control access to
information and provide an audit trail (automated
compression, back-up, transaction roll-back, and
external security).

The spectacular successes of some RDBMS's in the
marketplace go well beyond the primary niche of database
systems.  Some information systems have little use for
transaction updates or on-line storage.  In these situations,
the reasons for building an application system around a
database product become far less compelling. This, of
course, has not slowed the relentless campaigns of
certified MS Office  and commercial RDBMS specialists
to stamp all information resources with their labels.  (It

would not surprise me to hear that the Oracle Division of
Megacorp has begun a hostile takeover of Megacorp’s
SQLServer Division.)

In their efforts to impress their colleagues in accounting
and market with how easy it is to tap into a data
warehouse through a spreadsheet, certified experts have
built up transparent structures that add dramatically to the
complexity and cost of application system development.
In particular, programming by visual interface adds new
structures to the existing system architecture.

In the database realm, RDBMS vendors are pushing the
idea of an "enterprise database" that wraps their products
around many of the data sources available to network
clients.

RDBMS product specialists now envision database
superstructures, data warehouses, built on multiple
RDBMS's and extending across intranets and the Internet.
These superstructures link data from different sources
within an organization and possibly outside it, to present
an integrated and continuous view of operations and
progress toward goals.  The following quick summary of
the advantages and disadvantages of data warehouses
actually says more about mindset and scope of product
specialists:

DATA WAREHOUSE1

View: Enterprisewide
Building time: Years
Cost: Millions of dollars
Pros:
+      Presents a single version of the truth across the
        corporation
+      Compares apples-to-apples across the entire business
+      Supports indepth decision support analysis.
+      Integrates intellectual islands of knowledge

Cons:
- Project large, cumbersome and difficult to manage
- Must coordinate multiple vendors and products
- Never complete

THE EVOLUTION OF DATA STORAGE AND
RETRIEVAL SYSTEMS
A very simple view of the descent of data systems over the
past few decades  (Table 1) shows successful basic
structures (files, tables, databases) and their less
successful elaboration (in italics).



Table 1.
DATA STRUCTURE ABSTRACTION
files field offsets records
indexed
files

subset offsets hierarchies and
networks

2-D tables column, row
cells

relations

n-D tables indexed cells MDDB
database data-linked

tables
schema

object
database

pointer-linked
objects

container objects

data
warehouse

linked
databases

metaschema

Simple files of records on tape and disk remain important
in current information systems.  Two-dimensional (2-D)
tables also survive in mathematical/statistical
programming environments (such as SAS  System
datasets).

Databases impose key constraints on 2-D tables.  In each
table a primary key composed of one or more columns
represents a set of (distinct) data elements; the primary
key and other elements in a row of a table represent an
instance of a relation among observed values.  Columns of
one table relate to columns in other tables.  To link rows
in different tables, the data elements in the columns in one
table bind to data elements in columns of the other table.
This makes the relations among data elements a logical
scheme as opposed to a feature of the implementation of a
system.  A typical feature of an implementation would be
a network of memory addresses that contain other memory
addresses (pointers).  A good logical scheme works across
implementations.  Pointer schemes don't.

Programmers understand the concepts if not all of the
reasoning behind them.  For example, tables implemented
as SAS  datasets can link on pointer values or link on
values in columns named A1.ID and A2.PID.

/* Create table. */
data test;
input A1ID A1x A1y A1z A2PID A2x A2y A2z

  A3PID A3x A3y A3z
;
cards;
3 4 3 2 2 1 1 3 3 2 2 4;
run;
/********************************/
/* Program One (below) uses a system pointer
(variable name) to select an instance of
patient ID (PID)and an outcome y.
*********************************/
data test1 (keep=PID y);
  set test;
   select (A1ID);

when (2) do;
   PID=A2PID;
   y=A2y;

  end;
when (3) do;

   PID=A3PID;
   y=A3x;
  end;

otherwise put "error";

           end;
    run;

title 'datastep';
proc print;
run;
/*********************************/
/* Restructure views to A(ID,x,y,x)
   and P(PID,x,y,z)
*********************************/
proc sql;
 create view Avw as
 select A1ID as ID,A1x as x,A1y as y,A1z as z
 from test
 ;
 create view Pvw as
 select *
 from  (select A2PID as PID,A2x as x,
               A2y as y,A2z as z
        from test)

    union corr
  (select A3PID as PID,A3x as x,

   A3y as y,A3z as z
        from test)
  ;
/*********************************/
/* Program Two (below)joins the
restructured tables based on data
values to select a PID and outcome
*********************************/
  create table test2 as
  select t2.PID,t2.y
  from Avw as t1 left join Pvw as t2
    on t1.ID=t2.PID
  ;
quit;
title 'sql';
proc print;
run;
title;

Both programs produce the same result, but the second
achieves a significantly higher degree of logical
independence.  For instance, adding new instances of
PID's does not require new column names and consequent
restructuring of tables to add them.  Also, interchanging
rows in the table P (as seen in the virtual table Pvw) never
changes the result, while interchanging data in
A2PID,A2x,A2y,A2z and A3PID,A3x,A3y,A3z may.
Moreover, the SQL join solution simplifies programming
by linking data values directly and avoiding a link through
a specific column name.  Adding new instances of PID's
requires adding more lines to Program One, but does not
require changes to Program Two.  Though contrived, this
example shows some of the advantages of designing data
systems around logical relations among data elements
instead of around features of the implementation.

Just how a given system on a given platform actually
implements the table restructuring and Program Two does
not really matter so long as the SQL compiler conforms to
ANSI standards.  In this sense the program and data



transport cleanly from a SQL compiler on one platform to
another SQL compiler on another platform.

THIN 2-D "REDUCED STRUCTURE” DATABASES
If restructuring one table allows us to achieve a higher
degree of data independence and simplify programming,
could further restructuring buy us something more?  We
have seen one instance in which data kept in user
programs, in this case variable names, shift to the system
environment. Can we embed even more of a database
structure in data?

In a commercial RDBMS, table names, column names,
and key relations, main elements of the structure of a
database, appear in tables that programs can view as just
another form of data.  The RDBMS uses these "metadata"
to keep track of the tables and columns in a database.  By
changing the contents of the metadata tables, a system
administrator restructures a database.  Programmers
generally do not have rights to update a database, but do
have rights to create views of the database that amount to
a virtual restructure.  Either by database redesign or within
construction of a database view, a database programmer
has many options for setting up new keys and shifting
columns from one table to another.

Production databases in RDBMS's tend to have many
tables and many keys defined to link data from multiple
tables in one query.   The question of which of many
distinct relational database schemes might work best for a
specific database has no accepted answer.  In fact, experts
disagree on just about every facet of the question.  Much
of the debate involves the issue of many tables, fewer
column names, and a more robust structure of key links
("normalized") vs. larger tables, more column names, and
higher risk of errors creeping into the database
("denormalized").

Rather than add yet another opinion to the archives of an
old debate, let us consider what might constitute a generic
database scheme of minimum structure.  The scheme has
to have key dimensions that identify data elements.  These
may include standard dimensions such as location and
time, but may also include other classifiers, such as a
person ID, or an attribute. As a generic scheme, it must
have at least one relation for each key dimension that has
attributes related only to it.  If not, combining data for any
two key dimensions into one relation would force them to
be either redundant or completely independent, since a
partial relation between two key dimensions imposes a
side condition on column values related to the pair.  For
example, relating the birth date, gender, and other
demographic attributes of a person to both a person ID
and a place name would imply that one person could have
different birth dates and genders at different locations!
Further, a generic scheme needs at least one other relation
to classify values related to more than one key dimension.

Loss of information due to restructuring would, of course,
offset any benefits that restructuring might yield.  To
assure us that the reduced scheme does not distort or lose
information in the original scheme, some form of
restructuring of the reduced database has to restore the
original database.

A realistic example shows how a more complex database
scheme reduces to a simpler scheme.  A standard
codebook describes the results of optical-mark recognition
(OMR) scanning of a questionnaire form.  In this example
we include only the first part of a long questionnaire:

QUEX Column Name Domain
ID preassigned (unique)
rec 1-2
subrec 1-99

(rec=1, subrec=1)
Age 18-99,M,E
Sex 1-2,M,E

                (rec=2, subrec=1-99)
Site 1-5,M,E
Day1 0-3,M,E
Day2 0-9,M,E
Month 01-12,MM,EE
Year1 8-9,M,E (1980-1999)
Year2 0-9,M,E
Q1 Y,N,M,E
Q2 minor,moderate,severe,M,E
Q3 good,OK,bad,M,E

Coders complete the ID/rec/subrec header.  The
respondent responds to the range of questions between
Age and Q3.  The Day1 question presents a grid of three
bubbles; Day2 a grid of 10.  If a respondent fails to mark
any of the choices in a grid or the scanner fails to pick up
a mark, the scanner writes "M" for missing to the output
file.  If the scanner detects more than one mark in a grid,
possibly due to an incomplete erasure, it outputs an "E"
for error.  Each respondent responds once to the questions
under rec=1 and one or more times to the questions under
rec=2; each response has a different subrec number.  Q2
and Q3 response codes translate to the levels shown.  One
file holds data in this scheme.  It has the form of an table
with one rec=1 header block followed by subrec=n repeats
of the rec=2 block.

 This scheme decomposes cleanly into a relational
scheme:
Persons
 ID*

Age
Sex



Events
ID*
Date*
Site*
Q1
Q2
Q3

The asterisks identify primary keys.  Events occur no
more frequently than once a day per Site, so the Date and
Site columns distinguish repeating events for the same
person.  This new scheme has close to minimal structure.
It leaves a relation for the Persons dimension and a
relation of persons to Date and Site.  The decomposition
into two tables eliminates the rec and subrec columns (and
the extra coding required to break a single table into
repeating blocks).

The motive for reducing further the structural complexity
of the database becomes compelling when Q1-Q3
becomes Q1-Q200 and the structure includes skip patterns
of the form, "If you are male, skip to question 30; else,
please respond to questions 25-30".  Programming data
cleansing rules becomes a chore, and dependencies among
questions become pervasive and more difficult to control.
Say that responses to Q19, Q28, Q111, Q151, and Q176
have the same domain:  % of total five-year dose of drug x
taken during a year.  The questions ask for annual %’s for
the first through the fifth year.  A range and sum check
program has to contain references to the five variables.  If
for some reason the names change, the program has to
change as well.

Restructuring by shifting column names to data elements
helps reduce the system-dependent structure of the
database.  SAS  programmers recognize the automated
procedure that remaps column names related to columns
and rows of data to parallel columns of label and data
values: PROC TRANSPOSE.  In its simplest form, it
functions as a transpose operator in a matrix language
(such as APL or SAS /IML).  Consider parallel row
vectors name[i,1] and value[i,1].  The database catalog
contains name; a data table contains value.  Transpose
operations, name[i,1]` = name[1,i] and value[i,1]` =
value[1,i], exchange the values of the [row,column]
indexes to change the row vectors to column vectors.
Since the index i still links the same elements in the two
vectors, it does not change information that the parallel
vectors contain.

A relatively simple extension of a transpose of vectors
"pivots" each row of column names and values in a table
and replicates one or more identifiers in each row across
the columns created from the values in a row.

This structure,

ID* Date* Site*  Q1 Q2 Q3 …. Q200,

courtesy of  a general purpose SAS /BASE procedure,

proc transpose data=events out=reduced
   (where=(compress(Response)
             not in ("",".")
and Qn ne "ID" and Qn ne "Date"
and Qn ne "Site")
    rename=(_name_=Qn col1=Response)
    keep=ID Date Site _name_ col1);
by ID Date Site;
  var _char_ _numeric_ ;
run; ,

becomes

ID* Date* Site* Qn Response,

where Qn has the domain Q1-Q200 and TRANSPOSE
converts numeric responses to questions to character
values.

[CAVEATS: sort or index data on BY variables prior to
TRANSPOSE; KEEP= executes before RENAME=
executes before WHERE= options; automatic conversion
of numeric to character values in TRANSPOSE leaves
numbers and missing values right-justified in field.  Use
(COMPRESS() to remove leading blanks; not valid in
States where prohibited.]

With this thin 2-D structure in place, it becomes possible
to write a data cleansing program that contains no
references to the variable names/labels Q1-Q200.  Say
that a table or dataset Edits has this structure and content:

      Edits
Type     label
pctX100      Q19
pctX100      Q28
pctX100      Q111
pctX100      Q151
pctX100      Q176

By referencing Edits, this cleansing program subsets
Events (as defined above) and filters out instances in
which Reponses to specific questions add up to less or
more than 100%:

proc sql;
  create table Errors as
  select ID,Date,Site,sum(input(
  compress(Response),3.)) as pctsum,
  'pctX100' as Error
  from reduced
  where Qn in (select label from Edits)
  group by ID,Date,Site
  having calculated pctsum ne 100
  ; quit;



 [CAVEAT: conversion of right-justified number will not
work as expected unless leading blanks removed; $500.
fine for removing tag from upholstery.]

This demonstration gives only a hint of the extent to
which a thin 2-D database facilitates integration of
distributed and heterogeneous data.  Other virtues of
“reduced structure” databases include
� the option to systematically delete rows containing

“dead space” such as missing or null values or default
values;

� ease of further restructuring by pivoting thin 2-D
structure and summarizing into cross-tabs;

� minimal programming required to subset or
summarize values;

� improved normalization of database scheme.

DATA WHERE?HOUSING AND BEYOND  
Requirements for data systems vary substantially in details
across organizations, but all should include
� a sound, logical scheme or model for linking

corresponding data elements;
� independence of data and methods of implementing a

system that will give the target users access to the
data that they need.

Once teams of RDBMS product specialists acquire special
data modelling tools and invest time and resources in
logical database schema, we might expect to see them
work together to integrate database catalogs into a grand
data warehouse “metaschema” or catalog of catalogs.
That does not seem to be the pattern.  Enterprise data
warehousing projects more typically draw on the expertise
of outside consultants and begin as scavenger hunts for
sources of information.  This “data where?house” phase
typically occupies much of the time dedicated to data
warehouse development.

Data Warehouse (DW) developers extract data from
multiple sources (centralized DW) or obtain data by
request from different owners (federated DW).   A “star
schema” model for enterprise data warehousing, as close
to a standard as currently exits, restructures transaction
records into a common structure and stacks huge
quantities of records into one “fact” table2.  The
composite primary key to the fact table has one column in
it for each of the dimensions of the database.  A minimal
fact table contains little more than dimension values (ID’s,
classifiers, place, time, etc.) and a numeric value (counts,
$’s, amounts, or summary rates, means, etc.).  Links from
the dimension keys in the fact table radiate in all
directions to the dimension tables (thus the star analogy).

A star schema structure of a data warehouse closely
resembles a thin 2-D “reduced structure” database.  Both
achieve high degrees of normalization.  Both suffer from
massive redundancies in keys.  Minimal structure implies
n-dimensional key values related to a single atomic value.

Both deviate from pure relational database designs, in that
the type of data in a column determined by a set of
dimensions may depend on the values of those same
dimensions, but for good reason.  If it makes sense to
reduce structure at the level of a data warehouse, it would
make even better sense to apply the same system
architecture principle to database design.  It would make
life far easier data warehouse developers.

If RDBMS products and complex database structures
work best, then why do organizations that have invested
financially and strategically in RDBMS technology
continue to pay license fees for the SAS  System?  A few
reasons seem obvious and ubiquitous. SAS  has the tools
that basic tools that programmers need to
� extract data from multiple systems on different

platforms;
� restructure data into common and useful structures;
� clean and standardize “dirty data”;
� deliver information in meaningful forms.

Expect to continue to see informats and type conversion
functions, input from records and parsing of text lines, and
frequencies and transposes for a number of years more.
Visual interfaces and RDBMS’s need clean and consistent
data, and, as we know too well, you don’t buy them off the
shelf.

CONCLUSION
Packaged solutions and product labels have hefty price
tags.  A thin 2-D “reduced structure” database embeds
more information in the data themselves.  A logical and
pragmatic data model neither depends on nor constrains a
database system. Data system architects who focus on
achieving close correspondence of data model to reality
and independence of data and implementation have found
a good formula for success.

ACKNOWLEDGMENTS
Special thanks go to Richard Gadol, Lillie Stephenson, Robin
McEntire, and Yiling Xu.

CONTACT INFORMATION
Your comments and questions are valued and encouraged.
Contact the author at:

Sigurd W. Hermansen
Westat: An Employee-Owned Research Company
1650 Research Blvd
Rockville, MD 20850
(301) 251-4268
hermans1@westat.com

 www.westat.com
                                                          
1 http://www.healthcare--formatics.com/issues/1998/09_9bullet.htm
2http://www.informix.com/informix/solutions/dw/redbrick/wpapers/star
.html


