
DATA CLEANING: Preemptive Techniques

Malachy J. Foley

University of North Carolina at Chapel Hill, NC

ABSTRACT

 Data cleaning is a necessary evil... Or is it? Many
techniques exist that prevent data errors at data gathering
and/or at data input. The use of these techniques
eliminates or minimizes the errors that actually get into
your computer files. One such technique is check digits.
Check digits can eliminate up to 99% of all transcription
and keying errors. They even catch errors missed by
double keying.

 Other techniques include proper form design, data
monitoring, shipping logs, and hash totals. This tutorial
examines these error-prevention techniques through
examples and where applicable, it includes SAS code.

INTRODUCTION

 Since “to err is human”, some people think that to have
errors in data files is inevitable. Yet, in some applications
clean data is critical. For example, in banking, it is not
acceptable to debit a wrong account, or credit an account
with an incorrect amount of money. In applications such
as statistical surveys, having clean data is less critical, but
still very important. In fact, dirty survey data generally
weakens and biases statistical results.

 This paper is based on the philosophy that erroneous,
missing and duplicate data needs never to get into a
computer file. Furthermore, it is easier, faster, and less
expensive to avoid errors at the outset than to try to get rid
of them once they are in a computer file.

 Programmers have a vested interest in data quality
control for two reasons. First, they are often called upon
to program quality checks into data entry systems or into
computer file checking systems. Second, many of them
spend an inordinate amount of their time (some estimates
are as high as 70%-80%) correcting or working around
dirty computer files.

 Often, there are many processing steps in getting data
from the point of data capture to a computer file. For
example, there is form completion, data monitoring, data
shipping, data reception, coding, and data entry. Each of
these steps provides at once an opportunity to make an
error and an opportunity to embed error-avoidance
methods into the procedure.

 The trick to quality data is to overwhelm the errors with
error-avoidance techniques.

 As an example of errors, consider what happens at
data-entry time. The data collection form can have faulty
skip patterns or scan patterns (see the glossary) which can
confuse the person keying the information into the
computer (the keyer). The information written on the
form is often illegible or ambiguous. Furthermore, the
keyer can read a character incorrectly or press the wrong
key. Frequently, keyers transpose two adjacent characters
or repeat the wrong adjacent repeated characters (ex: key
526691 instead of 526991).

 Fortunately, there are a variety of techniques used to
counter such sources of errors. Some of these techniques
are proper form design, pre-printed labels, checking
allowable ranges of values for a field, checking for
inconsistencies between fields, double keying, hash totals
(see glossary), and check digits.

 This paper reviews many such error-avoidance or
quality-insurance methods. Special emphasis is given two
techniques: form design and check digits.

 There is a glossary at the end of this article that defines
terminology and provides additional information about
data checking.

FORM DESIGN

 Perhaps the most important component in collecting
clean data is good form design. Too often poor form
design interferes with or prohibits the proper capturing of
data.

 How can a form cause errors? Take a name field for
instance. Assume that a person’s name is requested on
the form. The area for the response can be designed in
different ways. One way that is frequently seen on forms
is to follow the word “Name:” by a line. Such a design is
bad news for data entry and data processing. The
respondent can and will fill out the line however they
please. You will literally get every possible combination
of names imaginable. You will get nicknames, formal
names, initials or no initials, Jr., III, pre-titles like Dr.,
post-titles like Ph.D., script writing, printing, and so on.
If the response is written in script (cursive), it will be

difficult to read. This in turn will lead to errors, extra
time in reading the name, and extra cost. Once the names
are in a computer file, putting them in alphabetical order
would be a tedious, costly, error-prone programming task.

 A better way to design a name field for computing is to
use squares or rectangles, one for each letter. Human
factors (see glossary) dictate that the minimum size of a
square should be 0.25 by 0.25 inches. A smaller square
(and you see them all the time) will force people to write
too small to be legible, causing errors in the data
transmission. Squares cue people to print. Nonetheless, it
is advisable to request that the name be printed in capital
letters and perhaps even provide them with an example of
such print. Each field should be separated: Last name,
first name, middle initial, title, and so on. Separate fields
make it easy and inexpensive to manipulate the names
once they are in a computer file.

 Enough squares need to be provided for each field, so
valuable data does not get truncated. For example, the
author suggests at least 15 squares for a last name. In
Latin America where longer names are used, more space
must be provided. In fact, rectangles that are at least 0.25
inches wide and somewhat taller (say 0.3 inches) are even
better than squares for collecting data.

 Finally, as another example of form design, what color
should the form be? Well, white paper is fine. White
paper is readily available. White contrasts with almost
any other color. Black print (on white paper) is another
matter. Black will conceal almost any color pen’s stroke.
Thus, whatever is written with a pen on the form that
happens to run over a square or other print on the form
will be concealed to the person trying to read the
information. This happens all the time. A better choice
in print color is a light green. Green is a cool color.
Furthermore, it will not hide pen strokes written in black
or blue (the usual color of pens and pencils).

 These are just a few issues regarding form design.
There are many other issues such as how to handle
decimal points, units of measure, instructions, scan
patterns (see glossary), skip patterns, reading levels
required to understand questions, etc. It is beyond the
scope of this paper to cover all these issues. In fact,
books have been written on this subject.

 The point of this section was twofold. First, poor form
design can and does cause error in data. (In the
conference presentation, the author will give actual
examples of how insufficient form design causes error.)
Second, a small investment in good form design will save
you large quantities of time and money in detecting and
correcting data errors later on in the data processing trail.
The truth be told, no amount of follow-ups, data
massaging etc. will fully correct the damage done by poor
form design.

INTERMEDIATE PROCESSING

 For the purposes of this paper, intermediate processing
is defined as all the data processing steps that occur from
the time the form is filled out until it is actually entered
into a computer file.

 With the advent of inexpensive and portable computers,
some times no intermediate processing occurs and data is
scanned or keyed directly into the computer. This
happens all the time at the ATM or when a credit card
purchase is made.

 On the other end of the spectrum, much intermediate
processing can occur. A paper form can be filled out,
visually checked, coded, transported to another location
for keying, counted, stamped, logged in, acknowledged,
etc until it is finally keyed or scanned into a computer.
The following paragraphs review some of these steps and
how they relate to data quality control.

 The first step in intermediate processing is to record
data on the form (paper or electronic). If someone is
hired for this purpose, they should be meticulous and
patient, and have the ability to follow instructions. In the
case of paper forms, they should also be able to print
clearly. For forms that require keying, they should be
able to key with very little error. This paragraph may
seem intuitive. However, it is surprising how often haste,
poor penmanship, etc. cause errors or missing data.

 While speaking of haste, it is good to mention that
quality processing in any step along the data trail requires
time. When managers and supervisors demand results too
quickly, corners will be cut and data quality will suffer.
Probably the number one reason for poor design and mis-
keyings is haste.

 In some incidents, the person filling out the form must
also interview the subject (the person having the
information). When this happens, the interviewer will
need to have social skills. Also special training is usually
called for, since all interviewers should ask questions in a
uniform and unbiased manner.

DATA MONITORING

 Once the data is recorded on the form, the entries can
be visually checked for completeness and accuracy. In
clinical trials, such checking is customary and the person
doing the checking is called the data monitor. In other
data collecting situations, to have such a person may be
advisable.

 The need for a data monitor depends on what other
steps exists in the data processing trail and when they
occur.

 Like data monitors, computers can check for data for
completeness and check the that specific data values fall
into acceptable ranges. However, in some areas humans
are better at checking data. This is because humans,
unlike computers can have experience with the data being
collected, can detect unexpected situations, and can
provide judgement.

DATA SHIPPING & RECEPTION

 Many times forms are physically or electronically
shipped from the data capture point to one or more data
processing sites. When data is shipped several techniques
can be used to assure that the transmission is completed
and that data is not lost.

 The most important technique is to copy or backup
your data at the point of capture before shipping. Some
IT professionals contend that the first law of computing is
to “always backup”.

 Another shipping technique is to maintain a log with a
count of how many records were shipped, date sent,
tracking numbers, etc. A heads-up message is customarily
sent to the receiving site so that they know that the data is
coming and what is contained in the shipment.

 When the data arrives, several actions can be taken to
insure data quality. To name a few, the forms can be
counted, date stamped, sequence number stamped, and
logged into a book. What was received can be checked
against what the shipper said was sent. Also a reception
notice can be sent to the sender of the forms to assure
them that the forms arrived as expected.

 The next section details one of these techniques and
how it contributes to data quality.

SIMPLE COUNTS

 One way to know that everyone or everything is
included in a file is to use a simple count. This technique
is applicable to both paper and electronic forms.

 For example, assume that each week you are supposed
to receive a report from each of 20 regional offices.
Further assume that there is one observation or record per
report. Before processing the reports, you want to verify
that each office has sent in their report. One way to

perform this verification is to simply check that you have
20 observations in your file.
 While the simple count is a good way to check if a file
or report is complete, it can miss some problems. For
example, if you have 20 offices, and one office sent in a
duplicate report and another forgot their report, you
would still have 20 observations. Thus, the compensating
errors of a duplicate and a missing report would get past a
simple count.

HASH TOTALS

 Another way to check that files are complete is to use
hash totals. A hash total will detect the compensating
errors just described. A hash total is a sum of values on
paper forms, or in an electronic file, where the total itself
is meaningless (hash) yet useful for checking that a
process is correct.

 To see how hash totals work, we continue the example
of 20 regional offices started in the previous section.
Assume that each regional office has an office
identification number. In effect, the 20 offices are
numbered from 101 to 120. Again, before processing the
reports, you want to verify that each office has sent in
their report and that those reports are in your file.

 This time in addition to doing a simple count you do a
hash total. Namely, you add the value of all the office
IDs in your file. They should add up to 2210
(101+102+...+120). If they don't add up you could be
missing an office's report and/or have a duplicate report or
have a wrong office ID in a report. Notice how the hash
total actually checks several aspects of the data at once.

 Normally, it is important to do a simple count in
addition to a hash total. The simple count confirms that
all the expected components are present in the hash total.

 In last example, a hash total was used to confirm that
all the input data was available. In a similar fashion, one
can verify that all the output is present in a report. For
instance, hash totals can be used in payrolls or billings. In
payrolls, a hash total of all employee social security
numbers can confirm that every employee has a
paycheck.

 In billings, the use of hash totals is a bit trickier. First,
when creating the invoice records, make a null invoice
when a client has a zero balance. Then a hash total of all
client account numbers on the invoices will confirm that
everyone has an invoice. Null invoices need not be
printed.

 Finally, the values of hash totals often change each
time they are used. In the payroll example, it is likely that
some employees have left the company and new ones

have been hired since the last payroll. In this case, the
hash total needs to be derived before each payroll is
processed. However, inasmuch as the payroll is taken
from a master file, it would be self-defeating to calculate
the hash total directly from the same master file. Rather,
the hash needs an independent calculation.

DATA ENTRY SYSTEMS

 Another way to eliminate errors before they get into
computer files is to have a very smart data entry system
(DES). Such a DES usually runs on computers and
makes a variety of checks on the data while it is keyed.
Typically a good data entry system checks each field for
valid values. Furthermore, it would check for duplicate
ID’s, inconsistencies in data across fields, hash totals,
skip patterns, check digits, etc.

 A good DES, just like a good form would be designed
to be self-explanatory and easy to use. There would be no
awkward keying sequences. Like all software, the DES
should be robust and have technical support.

 A good DES would stop virtually every machine-
detectable error in its tracks. The author has worked in
many environments where these kinds of DES’s were in
use. In most of these environments, the rule was NOT to
let any form into a computer file that did not pass the DES
checking. Rather the form was sent back to the source for
correction. When this rule is implemented, it is amazing
to see how quickly the data quality improves on the
forms.

KEY FIELDS

 Most data processing applications involve assigning
one or more key variables to a person or thing. Key
variable(s) are sometimes called key field(s) or just
key(s). A key is one or more variables used to uniquely
identify a data item. To illustrate, a person has a social
security number, and an automobile has a vehicle
identification number (VIN). Parts have part numbers
and accounts have account numbers. These 'numbers' can
involve letters as well. For example, a patient’s ID could
be A073.

 While it is important that all data be entered correctly
into the computer, it is critical that key variables be
correct. In fact, an error in your account number may
mean that your deposit is placed in someone else's bank
account. A mistake in your patient ID at a hospital may
mean you get the wrong medicine.

 An error in an ordinary field means that one field is
incorrect. An error in a key field means that the whole

record will be displaced leading to duplicate and missing
records (groups of fields).
 One way to avoid key field duplications is to pre-make
just one label for each key field ID. For example, the
VIN numbers are stamped on metal plates that are
attached to your car. Only one plate is made for each
number. Thus, it is impossible to have duplicate VIN
numbers coming from the factor.

 In a similar fashion, ID numbers in other computing
situations can be pre-printed on a self-adhesive labels,
one number per label. If these labels are used on a form,
they guarantee that there will be no duplicate ID’s.
Moreover, since they are computer generated, they will be
legible.

KEYING THE DATA

 Often it is said, “anyone can key data”. While virtually
anyone can key data, not everyone can key data quickly
and accurately. A qualified keyer must have the right
temperament, an eye for detail, knowledge of all the usual
keying traps and how to avoid these traps in practice.
Once again haste can also make keying unreliable.

 The worst case of keying the author ever saw was
where a full 8% of all fields keyed were in error. That
was one or more errors in every other record. In other
words, 50% of all records had an error. In the shop where
this took place, the keyers were basically untrained and
were paid by the number of records keyed. Thus, the
keyers had every incentive to key quickly and no
incentive to key correctly.

DOUBLE KEYING

 One commonly used method to avoid the data entry
problems is double keying. Double keying is also known
as verifying. It is the process of having the data entered
into the computer twice: once by the keyer and once by
the verifier. The keyed data is then compared with the
verified data, and differences between the two keyings are
resolved. This process works best when the keyer and
verifier are different people.

 Sometimes verifying is a curse more than a blessing.
There are people who think that verifying guarantees that
there are no keying errors. But it certainly does not. In
the worst case mentioned in the previous section, a full
25% of all records had one or more error in them after
verifying!

 The best case of double keying the author ever has seen
is where 0.01% of all records were correct after verifying.
This was where many error-avoiding techniques were

used throughout all the data processing steps. The form
was well designed, people were well trained and
motivated, keyers were paid by the hour, etc.

 Unfortunately, double keying is not a magic bullet.
Verifying can only detect and correct some keying errors.
There are transcription and keying errors that can get by
double keying. For instance, if the first keyer mistakenly
interprets a poorly written 8 as a 3, the second keyer (or
verifier) may also mistakenly take the 8 for a 3. In this
manner, the poorly written "8" slips past the double
keying as a "3".

 Such slips on critical key fields, like patient ID’s are
unacceptable. For this reason, other data-checking
techniques are frequently used along with double keying.
The most popular of these techniques is the check digit.

CHECK DIGITS

 A check digit is one or more digits created for a
particular data value that is then attached to the data
value. Once attached, the check digit accompanies the
data value throughout various stages of processing so that
at any of these stages the legitimacy of the value can be
checked or validated. Typically one check digit (0-9) is
attached to the end of a data value and accompanies the
data value throughout every stage of data processing. The
check digit is usually calculated based on the number it is
checking.

 For instance, let's say you have a patient ID of 5682.
5682 identifies a specific person in a hospital, and it is the
ID you would usually use. Perhaps it is a sequential
number assigned to the patient based on when he or she
entered the hospital. Since this patient ID does not
contain a check digit, the variable is named SHRT_ID to
indicate that it is a short ID that does not contain a check
digit.

 One way to calculate a check digit is to get the
remainder after dividing the number by 7. In this case,
you divide 5682 by 7 to get a result of 811 with a
remainder of 5. You can calculate the remainder in SAS
with the MOD function as follows:

 REMAIN=MOD(SHRT_ID,7).

 Thus, 5=MOD(5682,7). The check digit is then attached
to the end of the original ID. So, the full ID becomes
5682-5, or if you prefer, 56825. 5682-5, or 56825, is the
actual patient ID used by everybody in the hospital. It is
written on the forms and it is keyed into the computer.

 Here is an example of a Data Step that creates check
digits for several ID's (SHRT_ID) with values from 5680
to 5689. This Data Step also attaches the check digit to
the short ID to create a complete ID called LONG_ID.

 Exhibit 1a: Creating Mod-7 Check Digits

 DATA _NULL_;
 DO SHRT_ID=5680 TO 5689;
 CAL_CD=MOD(SHRT_ID,7);
 LONG_ID=SHRT_ID*10+CAL_CD;
 PUT SHRT_ID= LONG_ID=;
 END;
 RUN;

 Exhibit 1b: Creating Mod-7 Check Digits
 (Output from Exhibit 1a)

 SHRT_ID=5680 LONG_ID=56803
 SHRT_ID=5681 LONG_ID=56814
 SHRT_ID=5682 LONG_ID=56825
 SHRT_ID=5683 LONG_ID=56836
 SHRT_ID=5684 LONG_ID=56840
 SHRT_ID=5685 LONG_ID=56851
 SHRT_ID=5686 LONG_ID=56862
 SHRT_ID=5687 LONG_ID=56873
 SHRT_ID=5688 LONG_ID=56884
 SHRT_ID=5689 LONG_ID=56895

HOW TO PUBLISH FULL ID’s

 Once you create your list of ID's with check digits, the
list of full ID's needs to be published so everyone can use
them. Typically, the list of complete ID's is sent to the
person who will initially assign ID's to actual patients.
Exhibit 2 demonstrates such a list.

 Exhibit 2: List of Full ID’s
 --
 56803
 56814
 56825
 56836
 56840
 56851
 56862
 56873
 56884
 56895
 --

 The list should contain many more ID's than the
expected number of patients. The extra ID's are needed to
cover mistakes and possible extra patients.

 A letter or memo often accompanies the list. The letter
explains how each new patient is to be assigned an ID
from the list and would provide other relevant
information.

 The receptionist that collects data on new patients at
the hospital would then use the full ID’s from the list
when filling out admission forms.

HOW CHECK DIGITS VALIDATE KEY FIELDS

 Once a full ID with a check digit is on the form, the
check digit can be used to check the validity of the ID
entered into the computer. In the section entitled double
keying, we saw how both the keyer and verifier mistook a
poorly written 8 as a 3 in a ID. In this example, an
incorrect ID was inadvertently entered into the computer.

 Now consider the ID of 5682-5. Assume that the 8 in
the ID is poorly written and mistaken for a 3 by both the
keyer and verifier. In this case, they would key in the
value of 5632-5 or 56325. When the computer reads this
ID, it breaks it up and checks it. First, it separates the full
ID into its 2 parts (the core ID and the check digit). The
computer would get 5632 for the core ID and 5 for the
check digit. Then, it would calculate the value of the
check digit based on the core ID that was actually keyed.
It would find that MOD(5632,7) is a 4. Finally the
computer compares the calculated check digit (4) with the
keyed check digit (5) and finds that they are not the same.
So something is wrong with the ID. Thus, while the
poorly written 8 slipped past both the keyer and verifier,
the computer catches it.

 In SAS, this process can be accomplished with the
following code when the ID is a numeric variable.

 Exhibit 3: SAS to Validate Check Digits.

 DATA _NULL_;
 LONG_ID=56325;
 SHRT_ID=INT(LONG_ID/10);
 KEY_CD= LONG_ID-(10*SHRT_ID);
 CAL_CD= MOD(SHRT_ID,7);
 IF KEY_CD ne CAL_CD THEN
 PUT "*** Err in ID " KEY_CD= CAL_CD=;
 RUN;

 *** Err in ID KEY_CD=5 CAL_CD=4

 When the ID consists of digits (0-9) but is stored in a
SAS character variable, the character variable can be
changed to a numeric variable using the INPUT function.
Then the above algorithm could be applied to the numeric
variable.

 Of course, check digits can be more sophisticated. For
example, if you have a key variable with an alphanumeric
value (like A073), you can convert the letter to its
position in the alphabet and then calculate the check digit.
Thus, A073 becomes 01073 and L397 becomes 12397
before the check digit is calculated.

 The following code converts a letter to a number
representing its place in the alphabet (1-26). This code is
written so that it is case insensitive and can be
implemented on both ASCII and EBCDIC-based
computers.

 Exhibit 4: Converting a letter to a digit

 DATA _NULL_;
 ARRAY LETR(5) $1 _TEMPORARY_
 ("A","B","c","d","Z");
 DO i=1 TO 5;
 ALPHA=LETR(i);
 PLACE=RANK(UPCASE(ALPHA))
 -RANK("A")+1;
 PUT "*** " ALPHA= PLACE=;
 END;
 RUN;

 *** ALPHA=A PLACE=1
 *** ALPHA=B PLACE=2
 *** ALPHA=c PLACE=3
 *** ALPHA=d PLACE=4
 *** ALPHA=Z PLACE=26

OTHER CHECK DIGITS

 So far, we looked at one specific check digit, namely
the Mod-7 (or Modulo-7) check digit. This check digit is
so named because it is created using the modulo 7 (see
glossary) arithmetic operation. In other words, the Mod-7
check digit is calculated based on the remainder after
division by 7.

 Aside from the Mod-7, there are many other ways to
generate check digits. In fact, the Mod-7 check digit is
just one in a class of the modulo-n check digits.

 Another popular check digit is the Mod-11 check digit.
This check digit was even implemented in card punch and
verifying machines in the early 1970’s. One drawback of
the Mod-11 check digit is that it creates 11 possible
values (0-10) and then there is the question of how to
represent the 11 values. Traditionally, values 0-9 are
represented by themselves (0-9), and the number 10 is
represented by an "X" or an "A". Another way to
represent these values would be by using 2 check digits,
namely 00-10.

 Still another possible modulo-n check digit is the
modulo-23 which would generate numbers from 0 to 22.
These 23 numbers could then be appended to the original
number as is or converted to the letters A-W. (When
letters such as A-W are used for checking, the term
"check digit" is still often used. However, it is more
appropriate to call them check letters or "check
symbols".)

 The modulo-n class of check digits are just one class of
check digits. There are many others types of check digits
from the simple to the sophisticated. An example of a
simple check digit algorithm is to sum the digits of the
original number and take the last digit of the sum as the
check digit. Block (see References), on the other hand, is
an example of a sophisticated check digit.
POWER OF CHECK DIGITS

 There are so many methods for creating check digits

that one wonders which one to use. The short answer is to
choose the check digit that has the checking power you
need and can fit into the resources you can afford.

 On the surface the checking power of a particular kind
of check digit seems fairly obvious. If a specific type of
algorithm yields 10 possible check digits, the possibility
of an error getting past your check digit is 1 in 10 or 10%.
If you have 100 possible check digits (e.g. 00-99) the
check digits would detect 99% of all errors and lets 1%
through. This is true if the check digits were assigned at
random.

 However, it is not quite that simple. One of the main
reasons to use a check digit is to detect keying errors.
There are two common keying errors. They are
transpositions between adjoining digits (keying 56935
instead of 56395) and repetition of the wrong repeating
character (keying 2699341 instead of 2693341). These
two errors are so prevalent that they will often pass
verifying. A third error, the single digit substitution will
sometimes get by verifying, especially when the
substituted digit is one next to actual digit on the
keyboard.

 A good check digit catches these kinds of frequent
errors at a better percentage rate than would a random
check digit. For example, the modulo-7 and modulo-10
check digits will let transposition errors slip by, but a
modulo-11 will not.

 It is beyond the scope of this paper to explain why
some check digits work better than others are. However,
the following table describes the power of several
modulo-n type check digits.

 Exhibit 5: Power of modulo-n check digits
 --
 CHECK Ä---------DETECTS--------Å
 DIGIT TRANS- RE- SINGLE % ERR
 MOD RANGE POSE PEATS SUBST DETECT
 --
 7 0- 6 Some Some Some 86%
 10 0- 9 Few Few Few 90%
 11 0-10 All All All 91%
 23 0-22 All All All 96%
 97 0-96 All All All 99%
 --

 The next section gives the pros and cons of various
check digits and some recommendations.

CHECK DIGIT RECOMMENDATIONS

 When choosing a check digit, the author generally
recommends the modulo-23 check digit converted to a
letter. It detects all transposition, repetition, and single
digit substitution errors. It is easy to program and more
powerful than modulo-11. Since the check symbol is a
letter, it is distinguishable from the core number. Mod-23
uses little computer overhead and requires only one

keystroke during data entry. SAS code to create the
modulo-23 check digit is contained in the appendix. The
only drawback to the modulo-23 check symbol is that it
requires a letter to be keyed instead of a digit. This can
slow the keying process somewhat.

 The modulo-97 is also a good choice if you are willing
to pay for the 2 keystrokes that this check digit requires. It
has all the benefits of the modulo-23 check digit and
catches 99% of random errors.

 The method suggested by Block (see References) is
also good. It renders one check digit and therefore one
keystroke. However, it requires a lot of programming
time, and a little more computer overhead. Block’s
method is said to detect all single digit substitutions and
all transposition errors. It catches 90% of all random
errors.

 The modulo-7 check digit was employed in this paper
to illustrate the use of check digits. While it has many
good characteristics for illustration, it is not a good check
digit for the real world. It has low power and does not
detect all transposition, repetition, and single digit
substitutions.

 Here are a few more recommendations.

 Sometimes you have more than one key field in your
file. For example, you have both a patient ID and a
hospital ID. When this happens, use some trick so that
all the ID’s are distinguishable. One easy trick is to have
core ID numbers that are in different ranges. Another
trick would be to add a digit to the ID to identify the type
of ID it is. For example, if the first digit of the ID is 1,
then it is a hospital ID, and if the first digit is 2, then it is a
ID. The reason to make this distinction is so that you can
check that the right ID was placed in the right field.

 Finally, the author recommends a simple technique to
increase the power of any check digit, namely use a range
check on the original number. For example, if the raw ID
runs from 1 to 3800, then your ID list would include ID
numbers from 1 to 3,800 along with their corresponding
check digits. When you check the check digit add a range
check on the raw ID to see if it is in the 1 to 3,800 range.
This simple range check will eliminate 6,200 or 62% of
all possible erroneous keyings.

CONCLUSION

 Clean (or nearly error-free) data is possible. The
banking industry proves this everyday.

 The way to obtain clean data is to properly plan and
design the data collection system. Typical data collections
systems consist of many steps from the point of data

capture to the point where data becomes part of a
computer file. Every step can either facilitate data errors
or facilitate data accuracy.

 Most data processing steps can have built-in data
checks.

 In addition to good data processing design and
checking, the human factor is important. Data quality
depends on hiring practices, management style, and
corporate culture.

 This paper showed, through several dozen examples,
that erroneous, missing and duplicate data needs never to
get into a computer file.

 To preempt or avoid errors at every data processing
step is easier, faster, and less expensive than to try to get
rid of them once they are in a computer file. To quote Ben
Franklin, “an ounce of prevention is worth a pound of
cure”.

GLOSSARY

Check digits – also known as check numbers. A check digit is a
check symbol, where the symbol is one or more digits.
Sometimes a check symbol other than a digit (ex: letter) is
inaccurately called a check digit.

Check symbol – one or more characters, including letters and
digits, created for a specific data value and then attached to
it. Once attached, the check symbol accompanies the data
value through various stages of processing so that at any of
those stages the legitimacy of the value can be checked or
validated. A check

Data monitor – the person who reviews the responses on a
paper or electronic form for completeness and accuracy.

Digit – the integer values of 0 to 9.

Double keying – also known as verifying. The process of
entering data into the computer twice: once by the keyer and
once by the verifier. The purpose of this process is to detect
and correct keying errors. The keyer and verifier should be
different people.

Hash totals – the addition or summing of values in a file where
the total itself is meaningless but is useful for checking that
a process is correct. For example, adding all the staff
personnel numbers in a file to check that all the staff is
included in the file.

Human engineering – an approach to designing things so that
the user is more efficient and less likely to make mistakes.
This includes making the articles more convenient, more
comfortable, less confusing, less exasperating, and less
fatiguing to the user. (See References)

Human factors (HR) – the physical and psychological

requirements of human beings that must be considered when
designing computer systems and programs in order to make
them workable, less error-prone, efficient and easy to use.
A field within Human Engineering (see definition).

Key – a slightly ambiguous word. A key can refer to: (1) A key
variable; (2) The act of transmitting data via a keyboard; or,
(3) A button on a keyboard.

Key field – see key variable.

Key information – see key variable.

Key operator – synonym for keyer. See keyer.

Key variable – one or more variables used to locate and/or
identify a record or observation. Also known as a key field,
key information or just a key.

Keyer – also know as a key operator or a data entry person. A
person who reads information from a paper form and
transcribes it into another medium via a keyboard.

Modulo – an arithmetic operation in which the result is the
reminder after the first operand is divided by the second
operand, e.g. "29 modulo 7" is 1. In SAS the modulo
operation is implemented via the MOD function.

Scan pattern – the layout of data entry values on the page of a
form. Specifically, the way the eye must pass over the form
to find the data that needs keying. A straight-line scan
simplifies and speeds data entry, as well as makes missing a
field less likely.

Skip pattern – the way data entry values are passed over based
on another data entry value. For example, If the participant
answers NO to the question “do you smoke” then a series of
smoking related questions are passed over or skipped and
usually do no need to be keyed.

Verifying – see double keying.

REFERENCES

Block, Hans. (1977) “A New Check Digit Computation
Method”, Statistick Tidscript, Vol 5, 413-428.

Woodson, Wesley E. and Conover, Donald W. (1964)
Human Engineering Guide, University of California
Press, California.

APPENDIX

 The following code creates a modulo-23 check symbol.
Since modulo-23 creates 23 numbers (00-22) these
numbers are converted to letters so that there is only one
character to key. Furthermore in the following routine the
letters I and O are converted to X and Y. This conversion
guarantees that the letters I and O are not confused with

the digits 1 and 0 during keying. See the
Recommendations section for more information.

 Exhibit 6: Mod-23 Check Digit Algorithm
 --
 DATA _NULL_;
 LENGTH LETR $1 LONG_ID $5;
 NUM_A=RANK("A");
 DO SHRT_ID=5680 TO 5689;
 CAL_CD=MOD(SHRT_ID,23);
 LETR=BYTE(CAL_CD+NUM_A);
 IF LETR="I" THEN LETR="X";
 IF LETR="O" THEN LETR="Y";
 LONG_ID=TRIM(PUT(SHRT_ID,4.))||LETR;
 PUT "*** " SHRT_ID= LONG_ID=;
 END;
 RUN;
 --

 SHRT_ID=5680 LONG_ID=5680W
 SHRT_ID=5681 LONG_ID=5681A
 SHRT_ID=5682 LONG_ID=5682B
 SHRT_ID=5683 LONG_ID=5683C
 SHRT_ID=5684 LONG_ID=5684D
 SHRT_ID=5685 LONG_ID=5685E
 SHRT_ID=5686 LONG_ID=5686F
 SHRT_ID=5687 LONG_ID=5687G
 SHRT_ID=5688 LONG_ID=5688H
 SHRT_ID=5689 LONG_ID=5689X
 --

TRADEMARKS

 SAS is a registered trademark or trademark of SAS
Institute Inc. in the USA and other countries.  indicates
USA registration.

 Other brand and product names are registered
trademarks or trademarks of their respective companies.

AUTHOR CONTACT

 The author welcomes comments, questions, corrections
and suggestions.

 Malachy J. Foley
 2502 Foxwood Dr.
 Chapel Hill, NC 27514

 Email: FOLEY@unc.edu

