
You CAN Get There from Here (and Back Again):
Adding Hot-link Drill-down Capabilities to ODS HTML Output

Ray Pass
Ray Pass Consulting

ABSTRACT
The SAS Output Delivery System (ODS) can be used to
create HTML pages for publishing on the Internet or an
Intranet. Right out of the box (and the box is FREE too! –
with Base SAS), ODS can be used to create either one
page per procedure output, or a collection of HTML pages
per procedure. ODS does provide within-procedure
HTML navigability, but there is no wholesale provision
provided for inter-procedure output linking By using
simple SAS MACRO processing combined with the
manipulation of TITLE statements, basic data set variable
values and values of variables used as CLASS variables in
TABULATE procedures, you can create whole systems of
hot-linked pages with almost full drill-down capabilities.
The technique is to simply substitute HTML-navigational-
tag enriched data values for those displayed values that
you want to act as hot links, and let ODS do the rest!
Techniques and examples are shown in this paper, along
with data-driven techniques for renaming ODS-HTML
generated sequential body file names into more
meaningful content-oriented names.

INTRODUCTION
The SAS Output Delivery System (ODS to its friends) has
given us a method of preparing HTML formatted versions
of output from all SAS procedures that produce output.
When used with the new TEMPLATE procedure and the
new STYLES feature, all aspects of procedure output,
including row, column and cell elements as well as titles
for the accompanying output, can be fully formatted.

ODS takes the content results from SAS procedures, or
the contents of SAS data sets, and combines these data
with a display definition to create an output object. This
output object is then routed to an ODS destination. The
destinations in production as of V8.1 include HTML,
LISTING (standard SAS output), RTF, PRINTER and
OUTPUT (standard SAS DATA set). Output objects that
are sent to the HTML destination are rendered as HTML
formatted documents which can then be read via an
HTML browser. The documents consist of titles and
HTML tables, and can be afforded the full range of
HTML formatting enhancements, including Cascading
Style Sheets.

Although the transformation from standard SAS output to
HTML formatted output is a major step forward in terms
of creating high information content reports which can be
made available via the internet or any size intranet to

large groups of information consumers, it is still
rudimentary in nature because each output is static. One
of the seminal definitional features of web information
presentation is the ability to connect related informational
displays via hot links (hypertext), or drill-down
techniques. The hot link capability is accomplished by
enriching an element so it can serve as a clickable
launching point to a related collection of information.
The main enrichment is in the form of the location, or
address, of the target display. This paper presents the
basis of a methodology for creating these enriched data
elements, as well as for the automatic data-driven
generation of all the static outputs necessary for a
complete system of related informational displays (static
report outputs). It also discusses techniques for
amplifying (renaming) the sequentially labeled body files
created by default by ODS HTML. This technique is
totally data-driven and yields meaningful content-specific
names for the files.

This paper assumes that the reader is already familiar with
the basic concepts of ODS. It is not an introduction to
these techniques, but is rather an explication of an
addition to them. ODS documentation can be found in
the SAS publication entitled The Complete Guide to the
SAS Output Delivery System, Version 8, although this
document is only current up to V8.0. There are also
numerous SUGI and Regional SUG papers available on
ODS.

SAMPLE DATA
The data to be used throughout his paper consists of
periodic sales reports of the fictitious RPC Entertainment
Enterprises Corporation. There are six geographical
regions in the company (NorthEast, NorthCentral,
NorthWest, SouthEast. SouthCentral, SouthWest), and
each region is further broken down into the states making
up the region. There are two divisions in the company
(Games, Toys) and each division is broken down into
various items produced by the division.

NON-HTML REPORTS
A series of PROC TABULATEs (and accompanying
TITLE statements) can be used without HTML
enhancement to produce the needed daily sales reports.
Although all of the Region by State by Division by Item
data could be presented in their most granular form in one
TABULATE output, the end goal here is a hypertext
system of related reports. A representative sample of

non-HTML modular reports is presented here. Only one
of the six (one for each Region) possible State by Division
reports, one of the two (one for each Division) possible
Region by Item reports, and one of the 12 (one for each
Region-Division combination) possible State by Item
reports are shown. These are found in Figs 1-4.

Fig 1. Non-HTML Report
Region by Division

Fig 2. Non-HTML Report
State by Division (Region: NorthEast)

Fig 3. Non-HTML Report
Region by Item (Division: Toys)

Fig 4. Non-HTML Report
State by Item (Region: NorthEast,

Division: Toys)

SIMPLE ODS HTML OUTPUT
To use ODS to produce HTML output instead of the
standard output listings seen above, we would issue an
ODS HTML statement before running the various
TABULATE procedures. As this paper assumes the basic
mechanics and syntax of ODS are known to the reader, it
will not go into great detail about the ODS code used
herein.

Outputs of the rudimentary use of ODS code as viewed
via an HTML browser are shown in Figs 5-8. Full HTML
table formatting, including font and color choices, etc. is
available via the TEMPLATE procedure. The output
presented here uses default formatting values.

The results of using the ODS HTML statement are a series
of independent HTML documents containing the output
from the TABULATE procedure translated into HTML
tagged code. The names of these output file are contained
as parameters in the ODS code. As an example, the
actual names of the HTML files as displayed via browser
in Figs 5-8 could be respectively:

simple 2000-06-01-regxdiv.htm
simple 2000-06-01-stxdiv-NE.htm
simple 2000-06-01-regxitm-Toys.htm
simple 2000-06-01-stxitm-NE-Toys.htm.

Fig 5. Simple HTML Report
Region by Division

Fig 6. Simple HTML Report
State by Divison (Region: NorthEast)

ENHANCED ODS HTML OUTPUT
Now that we have the individual reports rendered as
HTML documents, the next step is to create the
navigational tools to be able to go from one report to
another by clicking on a hot link. This part is the crux of
the whole method presented here, and is actually really
very simple. All that needs to be done is to create a set of
alternate variables from which the tables are constructed.
The change that is necessary is to enhance each data item
(that is to be displayed as a hot link) with additional
location information contained in HTML tags,
specifically HREF tags. As an example, each region is

Fig 7. Simple HTML Report
Region by Item (Division: Toys)

actually coded as a two-byte character variable called REG
with values of: NC, NE, NW, SE, SC, or SW. The non-
HTML output uses a user-defined format, $REGFMT., to
display expanded names via a FORMAT statement in the
TABULATE code. If a separate State by Division HTML
table was created for each region, they could have file
names of:

enhanced 2000-06-01-stxdiv-NC.htm
enhanced 2000-06-01-stxdiv-NE.htm
enhanced 2000-06-01-stxdiv-NW.htm
enhanced 2000-06-01-stxdiv-SC.htm
enhanced 2000-06-01-stxdiv-SE.htm
enhanced 2000-06-01-stxdiv-SW.htm

If we create an alternate variable REG2 by surrounding
the old values of REG with the above path names along
with the appropriate HTML code, we could then produce
HTML clickable links in our TABULATE output by
using REG2 in the TABULATE code instead of REG. We
would also create a variable REGEXT as a FORMAT

expanded version of REG. The code to create these
variables would look something like:

Fig 8. Simple HTML Report
State by Item (Region: NE

Division: Toys)

regext = put(reg, $regfmt.);

reg2 = "<A HREF='enhanced "
|| "2000-06-01-stxdiv-"
|| trim(reg)
|| ".htm’>”
|| regext
|| '';

This would produce a converted value for NE of:

NorthEast .

Actually, there would have to be two alternate versions of
REG, a REG2 and a REG3, because clicking on a region
name in the Region by Division table would have to link
to a State by Division table for the clicked region, whereas
clicking on the same region name in a Region by Item
table would link to a State by Item table for the clicked
region. Since the names of the two target files would be
different, the values of REG2 and REG3, both based on
REG, would be different. Two alternate versions of DIV
would be needed as well.

If the new versions of REG and DIV were used in the same
TABULATE code that was used to produce the tables
shown in Figs 5-8, ODS would cause the region and
division names to be displayed as clickable HTML hot
links. The resulting HTML output files as seen via an
HTML browser are shown in Figs. 9-12.

Fig 9. Enhanced HTML Report
Region by Division

That’s basically all there is to it. Just substitute enhanced
data values for those values that you want to act as hot
links and let ODS do the rest. There is more to the overall
method to deal with, but that is the basic technique.

When this method is actually used on a periodic basis to
create the reports, the TODAY() function is used for the
dates, although its output format is modified with the
following statement:

%let today1=%sysfunc(today(),yymmdd10.);

Fig 10. Enhanced HTML Report
State by Division (Region: NE)

This creates date values of the form 2000-06-01. The
actual code for the REG2 assignment statement is then:

reg2 = "<A HREF='enhanced "
|| "&today1.-stxdiv-"
|| trim(reg)
|| ".htm’>”
|| regext
|| '';

Another date transformation is used to get the formatted
date in the titles (each TITLE statement has &TODAY2 in
it):

%let today2=%sysfunc(today(),worddate12.);

Fig 11. Enhanced HTML Report
Region by Item (Division: Toys)

ADDITIONAL ODS HTML OUTPUT
OK, now we know how to create hot links in the row and
column headers in the ODS HTML output tables. But,
there’s more to it than that. We can also create a stand-
alone HTML Table of Contents by passing PROC
PRINT, PROC REPORT, or even PROC TABULATE
output through ODS HTML processing. This notion of
creating separate stand-alone ODS HTML Tables of
Contents is covered more fully in another paper by the
current author entitled I’ll Have the Tabulates a la ODS
Please, With a Table of Contents on the Side (found in the
Proceedings of the NESUG 2000 and SESUG 2000
conferences). The following macro code creates the
output Table of Contents page as shown in Fig. 13 (as
viewed through an HTML browser.) The string values for
REP and the TITLE statement are broken here to fit into
the column requirements of this paper; in actual code they
are each one continuous string.

%macro repstoc;
data reps;

length rep $ 77;
label rep="Reports for &today2";
rep="
Region by Division Sales Report";
output;
rep="<U>Report 2 (<I>non-operational
</I>)</U>";
output;
rep="<U>Report 3 (<I>non-operational
</I>)</U>";
output;

run;

Fig 12. Enhanced HTML Report
State by Item (Region: NE

Division: Toys)

*---;
ods html path = repout

body = "&today1._reps_toc.htm";
*---;
title1 "<H4>Calendar

</H4>";
run;
*---;
proc print data=reps noobs label;
run;
*---;
ods html close;

%mend;

Fig 13. Report Table of Contents

We can also use ODS HTML processing to create a
Calendar page (as viewed via an HTML browser in Fig
14). New reports are created every two weeks in this
example with the creation date used as part of the file
name for each table (HTML file). The code used to create
the calendar is presented below. The method also
includes a start date for the first month to be displayed.

%macro calendar;
data day;

length date $ 38;
date=""

||put(today(),day2.)||"";
datex = today(); run;

*---;
proc datasets;

append base=hot._days new=day; run;
*---;
proc sort data=hot._days nodupkey; by datex; run;
*---;
proc format;

value $miss (default=38) ' '=' ';
*---;
data alldays(drop=start d);

length date $ 34;
start = '01jun2000'd;
d = 0;
do until (datex=intnx('month',today(),1)-1);

datex = start + d;
date = put(datex,day2.);
year = year(datex);
month = month(datex);
output;
d + 1;

end; run;
*---;
proc sort data=alldays; by datex; run;
*---;
data alldays;

update alldays hot._days; by datex; run;
*---;
proc sort data=alldays; by year month datex; run;
*---;
data cal(keep=mon_yr sun mon tue wed thu fri sat);

set alldays end=lastrec;
by year month;
length sun mon tue wed thu fri sat $ 34;
array days{7} $ sun mon tue wed thu fri sat;
array daysx{7} sunx monx tuex wedx thux frix satx;
format sun mon tue wed thu fri sat $miss.;
retain days;
mon_yr = intnx('month',datex, 0);

if weekday(datex)=1 then do;
sunx=datex; sun=date; end;

else if weekday(datex)=2 then do;
monx=datex; mon=date; end;

else if weekday(datex)=3 then do;
tuex=datex; tue=date; end;

else if weekday(datex)=4 then do;
wedx=datex; wed=date; end;

else if weekday(datex)=5 then do;
thux=datex; thu=date; end;

else if weekday(datex)=6 then do;
frix=datex; fri=date; end;

else if weekday(datex)=7 then do;
satx=datex; sat=date; end;

if last.month or lastrec then
do i=(weekday(datex)+1) to 7;

if daysx[i] lt datex then days[i] = ' ';
end;

if first.month or _n_=1 then
do i=1 to (weekday(datex)-1);

days[i] = ' ';
end;

if weekday(datex) = 7 or last.month or lastrec;
run;

*--;
ods html path = repout

body = '_cal.htm';
*--;
proc report nowd data=cal;

columns mon_yr sun mon tue wed thu fri sat;

define mon_yr / order noprint;

break after mon_yr / page;

compute before _page_;
line mon_yr monyy7.;

endcomp;
run;
*--;
ods html close

;%mend calendar;

HTML ENHANCED TITLES
The next parts of the process needed to create the fully
navigational system are hot-link enhanced titles. These
are easy to do because they come along for a free ride
when ODS is used to create HTML. The trick is to make
sure that the correct titles appear at the top of each page.
Parts of the titles can be generally modularized as
follows:

%let mcal = Calendar;
%let mrep =

Reports;

These would be used to produce the hot links to go to the
Calendar page and a day-specific Table of Contents page,
as in:

title1 "<H3>RPC Entertainment Enterprises

Region by Division Sales

Report: &today2</H3>";
title2 "<H4>&mcal &mrep</H4>";

Other titles would be constructed using the same general
format.

DATA-DRIVEN MACRO AUTOMATION
To make the whole system automatic and data driven, it is
all contained in a system of macros, which works as
follows. %CALENDAR is used to recreate the HTML
Calendar page each report day, and %REPSTOC is run to
create a new date-specific HTML Table of Contents page.
Each day that the program is run the source data set is re-
created as a SAS data set called HLDATA. This data set
contains variables REG, DIV and SALES. An alternate
data set, HLDATA2 is created with the converted variables
REGEXT, REG2, REG3, DIV2 and DIV3, along with
SALES. Next, each type of individual TABULATE report
is created as an HTML table and sent to a .htm file. The
code for each different type of TABULATE (Region by
Division, State by Division, Region by Item, State by Item)
is contained in a table macro (%REGXDIV, %STXDIV,
%REGXITM, %STXITM) along with its ODS code. The
code for one of these table macros (%STXDIV) is as
follows (the rest are similar):

%macro stxdiv;
*--------------------------------------;
ods html path =repout

body ="&today1.-stxdiv-1.htm"
newfile=bygroup;

*--------------------------------------;
proc sort data=hldata2;

by regext;
run;
*--------------------------------------;
title1 "<H3>RPC Entertainment

Enterprises

State by Division Sales
Report: &today2

Region=#byval(regext)</H3>";
title2 "<H4>&mcal &t_sp &mrep &t_sp

All Regions</H4>";

run;
*--------------------------------------;
proc tabulate data=hldata2 missing;

by regext;
class state div3;
var sales;
table state='State' all='TOTAL',

(div3='Division' all='TOTAL')
*sales=' '*sum=' '*f=comma32.;

run;
*--------------------------------------;
ods html close;

%mend stxdiv;

A few notes about this macro (and its sister macros for
other table types) are in order. The macro variable &t_sp
is created early in the program as follows:

%let t_sp = %nrstr();

and is used to insert visible spaces in the HTML output.
Also, note that the dataset is pre-sorted by the categorical
variable for which drill-down tables are being created
(REGEXT in this case.) This sorting, in conjunction with
the ODS NEWFILE=BYGROUP option (new in V 8.1) is
what creates a separate HTML file for each byvar level.
Note also that the current byvar value is inserted in the
title by means of the #BYVAL notation (the NOBYLINE
option is also in effect.)

Another major feature employed in this system is the
renaming of the ODS produced files from a simple
sequentially suffixed set (name1, name2, …) to a
meaningfully suffixed set. This is accomplished by
combining data-driven pre-processing of the data with
post-processing file naming via operating system
commands. The code for the first part of the process is
contained in macro %MVARS. This macro is totally data-
driven and contains information about the values of REG
and DIV present in the source data.

%macro mvars;
%global mrdcount mrcount mdcount regdivs

mregs mdivs mrdnums mrnums mdnums;
proc sql;

create table regdivs as
select distinct

reg,
div

from hot._hldata
order by reg,

div;

create table regs as
select distinct reg
from regdivs
order by reg;

create table divs as
select distinct div
from regdivs
order by div;

quit;
*--------------------------------------;
data regdivs(drop=reg div);

set regdivs;
regdiv = trim(reg)||'-'||trim(div);
num = _n_;

run;
*--------------------------------------;
data regs;

set regs;
num = _n_;

run;
*--------------------------------------;
data divs;

set divs;
num = _n_;

run;
*--------------------------------------;
proc sql noprint;

select count(*),
regdiv,
num

into :mrdcount,
:mregdivs separated by '#',
:mrdnums separated by '#'

from regdivs;

select count(*),
reg,
num

into :mrcount,
:mregs separated by '#',
:mrnums separated by '#'

from regs;

select count(*),
div,
num

into :mdcount,
:mdivs separated by '#',
:mdnums separated by '#'

from divs;
quit;

%mend mvars;

The results of the above macro execution are nine macro
variables with the following values:

mrdcount - 12
mregdivs – NC-Games#NC-Toys#NE-Games# …
mrdnums - 1#2#3#4#5#6#7#8#9#10#11#12

mrcount - 6
mregs - NC#NE#NW#SC#SE#SW
mrnums - 1#2#3#4#5#6

mdcount - 2
mdivs - Games#Toys
mdnums - 1#2

The actual values of the macro variables are dependent on
the actual data in the data set each day – this is the fully
populated version.

The second part of the process uses operating system
deletion and renaming commands to change the names of
the ODS produced files (this code is PC-based and uses
the DOS DEL and REN commands; in UNIX, you would
use the RM and MV commands, etc.) In the above
%STXDIV macro, the

body = "&today1.-stxdiv-1.htm
newfile = bygroup

statements instruct ODS to create a new file for each new
byvar level, and to name them (assuming the current date
is June 1, 2000 and there are 6 regions)

2000-06-01-stxdiv-1.htm through
2000-06-01-stxdiv-6.htm.

This is default ODS behavior, and is not very useful,
although fully understandable. ODS has no way of
knowing what to call the files it produces unless you tell
it. Using the data-driven/created macros shown above,
the following code renames all the ODS-produced .htm
files meaningfully, based on the values of the appropriate
byvars:

%macro names;
%if %sysfunc(fileexist(

&hldata.\&today1.-stxdiv-1.htm))
%then %do m = 1 %to &mrcount;

%let num = %scan(&mrnums,&m,#);
%let reg = %scan(&mregs ,&m,#);

%sysexec del
&hldata.\&today1.-stxdiv-®..htm;

%sysexec ren
&hldata.\&today1.-stxdiv-&num..htm

&today1.-stxdiv-®..htm;
%end;

%if %sysfunc(fileexist(
&hldata.\&today1.-regxitm-1.htm))

%then %do m = 1 %to &mdcount;
%let num = %scan(&mdnums,&m,#);
%let div = %scan(&mdivs ,&m,#);

%sysexec del
&hldata.\&today1.-regxitm-&div..htm;

%sysexec ren
&hldata.\&today1.-regxitm-&num..htm

&today1.-regxitm-&div..htm;
%end;

%if %sysfunc(fileexist(
&hldata.\&today1.-stxitm-1.htm))

%then %do m=1 %to &mrdcount;
%let num = %scan(&mrdnums ,&m,#);
%let rd = %scan(&mregdivs,&m,#);

%sysexec del
&hldata.\&today1.-stxitm-&rd..htm;

%sysexec ren
&hldata.\&today1.-stxitm-&num..htm

&today1.-stxitm-&rd..htm;
%end;

%mend names;

For example, 2000-06-01-stxdiv-1.htm becomes 2000-06-
01-stxdiv-NC.htm, 2000-06-01-stxdiv-2.htm becomes
2000-06-01-stxdiv-NE.htm, etc. These names now match
the names built in to the drill-down HREF names in the
TABULATE macros.

The final, fully HTML navigational system, comprised of
the calendar, report table of contents and all component
table reports, is shown in Figs 14-19, as viewed through
an HTML browser.

Fig 14. Final Calendar

(Figures are placed out of sequential order on this page
so as to avoid breaking them across columns.)

Fig 15. Final Report Table of Contents

Fig 18. Final HTML Report
 State by Division (Region: NE)

Fig 16. Final HTML Report
Region by Division

Fig 17. Final HTML Report
Region by Item (Division: Toys

Fig 19. Enhanced HTML Report
State by Item (Region: NE

Division: Toys)

CONCLUSION
This paper has presented an introduction to an optional
method of turning the static HTML documents created by
the SAS Output Delivery System into a fully functional,
HTML drill-down navigational, data-driven system of
information display that can be implemented on a routine
basis in an Internet or intranet environment. The basic
paradigm is to enhance the data being used as input to
ODS, so the values displayed can be rendered by an
HTML browser as fully functional HTML hot links.

The examples presented herein deal with outputs from
runs of TABULATE, PRINT and REPORT procedures,
as well as enhanced TITLE statements. In addition, a
method is displayed in which default ODS created
sequentially suffixed HTML file names are renamed to
content-meaningful names via totally automated and data-
driven processing. This is an integral part of the entire
system.

As far as the author is aware, with the exception of some
minor use of PROC FORMAT related techniques, the
methods presented in this paper are not documented in the
SI collection of distributed literature.

The author has used these techniques successfully on a
large nationwide intranet system with extremely
productive results. In fact, the initial implementation has
spawned numerous other similar systems on the same
intranet. Now it’s your turn to go out and create your
own systems. The tools are there.

REFERENCES
SAS is a registered trademark of the SAS Institute Inc.,
Cary, NC, USA.

CONTACT INFORMATION
The author can be contacted at:

Ray Pass
Ray Pass Consulting
5 Sinclair Place
Hartsdale, NY 10530

(914) 693-5553
raypass@att.net

