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ABSTRACTABSTRACTABSTRACTABSTRACT

When a large, disk-resident, periodically refreshed lookup
table has to be frequently searched, a natural way of
providing a quick access to the data is to store the table
as a SAS data set with a SAS index built on the search key.
The speed of SAS index lookup depends on the nature of the
key. More often than not, the key is not perfect for being
indexed, i.e. discriminant, uniform, and ascending. Besides,
even a ‘good’ indexed key may not be quick enough for some
time-sensitive applications.

In this paper, it is proposed to structure the lookup file
for rapid direct addressing via a hash index, which is
‘good’ regardless of the search key distribution: Each
discrete index value points to about the same number of
search keys. Such a cluster of keys is loaded into memory
via a single direct read as a prehashed table, where the
search key can be located or rejected immediately.

INTRODUCTIONINTRODUCTIONINTRODUCTIONINTRODUCTION

This paper has originated from the practical necessity to
accelerate the following process. A SAS subroutine described
below is called from a variety of programs run under OS/390.
Basically, it does the following:

1. Accepts a driver file with up to 1 million so-called
shadow accounts from a vendor (not allowed to operate on
real account numbers for data security reasons).

2. Replaces the shadow accounts with real accounts from a
disk-resident lookup table. The table is a SAS data set,
sorted and indexed by the shadow account, with upwards
of 40 million rows.

The lookup file is refreshed overnight from a small, about
100,000 records, transaction file, by MODIFYing old real
accounts with new ones in the records with matching keys.
The refresh time does not really matter, and it is very
short anyway.

The problem lies with the step 2. If the driver file has
under 100,000 accounts, the lookup takes 7-10 CPU seconds to
complete. As the number of the keys in the driver grow, the
response time grows approximately linearly, and with
1,000,000 keys, it exceeds 1 CPU minute. For a program run
infrequently, it is more than sufficiently fast. However, on
a typical business day, the subroutine may be executed
hundreds of times in batch (sometimes concurrently). Even
worse, it is called by some online applications.

It was asked to research the possibility of reducing
response time, particularly with large driver sizes, 2 to 3
times. The question therefore is: Is it possible to organize
a lookup process that would search considerably faster than
a SAS index working under favorable conditions?

PROBLEM PURIFIEDPROBLEM PURIFIEDPROBLEM PURIFIEDPROBLEM PURIFIED

Formally, the problem boils down to the following. A file
DRIVER (up to 1,000,000 records) contains a unique 16-digit
integer numeric variable K (the shadow account number)
serving as a key. Another file, LOOKUP (up to 40 million
records), also has the unique key K juxtaposed to a unique
16-digit integer numeric variable S (the real account
number). We need to replace K in DRIVER by the corresponding
values of S in LOOKUP, based on the values of the common key
K, as rapidly as possible. No particular limitations are
imposed on the time required to organize a lookup structure,
since it is done either once or very infrequently.

SAS INDEXINGSAS INDEXINGSAS INDEXINGSAS INDEXING

The approach taken in the original application was to sort
LOOKUP by K, build a SAS index on K, and let it do the job.
It appears to be right on the money, for the conditions
under which the index operates, are close to the ideal.
Indeed, the indexed key is:

•  Discriminant
•  Uniformly distributed
•  Sorted ascending

The code that originally loaded the lookup file (distilled
for the purposes of this paper) is simple. A program,
similar to one shown below, was run to load the lookup file,
sort and index it. Note that there is the libref USER
lurking behind the scenes and pointing to a permanent SAS
library different from LOADLIB. So, all unprefixed data sets
actually reside in the library associated with USER.

proc sort data=loadlib.lookup out=lookup nodupkey;proc sort data=loadlib.lookup out=lookup nodupkey;proc sort data=loadlib.lookup out=lookup nodupkey;proc sort data=loadlib.lookup out=lookup nodupkey;
   by k;   by k;   by k;   by k;
run;run;run;run;
proc sql;proc sql;proc sql;proc sql;
   create index k on lookup(k);   create index k on lookup(k);   create index k on lookup(k);   create index k on lookup(k);
quit;quit;quit;quit;

In the subroutine that replaces K in DRIVER with S from
LOOKUP, one of two well-known methods are used. The first is
a SQL join. After it has executed, the SAS log, prompted by
msglevel=i and _method, confirms that the index has been
used, indeed, to satisfy the query.

option msglevel=i;option msglevel=i;option msglevel=i;option msglevel=i;
proc sql _method;proc sql _method;proc sql _method;proc sql _method;
   create table realacct as   create table realacct as   create table realacct as   create table realacct as
   select l.s   select l.s   select l.s   select l.s
   from lookup l, driver d   from lookup l, driver d   from lookup l, driver d   from lookup l, driver d
   where l.k = d.k   where l.k = d.k   where l.k = d.k   where l.k = d.k
   ;   ;   ;   ;
quit;quit;quit;quit;                  

The second approach is to use SET with the KEY= option,
making SAS use the index regardless of its desire:



data realacct (keep=s);data realacct (keep=s);data realacct (keep=s);data realacct (keep=s);
   set driver (keep=k);   set driver (keep=k);   set driver (keep=k);   set driver (keep=k);
   set lookup key=k;   set lookup key=k;   set lookup key=k;   set lookup key=k;
   if _iorc_ = 0 then output;   if _iorc_ = 0 then output;   if _iorc_ = 0 then output;   if _iorc_ = 0 then output;
   else _error_ = 0;   else _error_ = 0;   else _error_ = 0;   else _error_ = 0;
run;run;run;run;                           

This method runs about 20% faster than SQL. With 40 million
lookup records and 100,000 keys in the driver, the step
finishes in 8.28 CPU seconds. Given the amount of data to
search, it should be considered quite remarkable. However,
already with 500,000 keys, the response time increases to
34.15 CPU seconds, and with 1 million keys - to almost a
minute. The question is, is there anything in Base SAS that
can be done to keep the response under 10 seconds?

ALTERNATIVES APPROACHESALTERNATIVES APPROACHESALTERNATIVES APPROACHESALTERNATIVES APPROACHES

Under the circumstances, the SAS index is searched for a key
much faster than a serial pass through the file would,
dramatically reducing I/O traffic. However, no matter how
efficient the index lookup algorithm is, it is still
predominantly a disk search. Estimating extremely crudely
that log2(NL) probes are necessary to find or reject a key
stored in an index (where NL is the number of lookup keys),
about 26 disk accesses will be necessary to complete the
search for NL=40,000,000.

A lucrative alternative would be to store all the lookup
keys in some kind of memory table, for example, a format.
However, with tens of millions of keys, it is virtually
impossible, even with the amounts of real storage (RAM)
available nowadays: Tests have shown that already at the
level of 10 million keys, formats require upwards of 600 MB.

Another option is to store the shadow and real accounts in a
DB2 table indexed by K and use it as the search medium. This
approach has actually been proposed and even reinforced by
the claim  that DB2 has a speed demon inside, making it ‘an
order of magnitude faster than SAS’ for this kind of task.
Later on in the performance section, we will see how much
water the claim holds (for the time being, suffices it to
say that after some testing, the proposal did not pass).

Finally, we can try a hybrid approach that would somehow
marry disk (external) and memory (internal) searching
methods. Conceivably, this may be achieved by splitting the
lookup file into buckets (strata, partitions: not that the
terminology really matters here) small enough to fit in
memory completely. That is, while still having the entire
file, due to its size, resident on disk, we can attempt to
distribute its records between some M buckets in such a way
that:

•  A bucket is small enough to fit in real storage (RAM),
and hence all keys belonging to it can be searched
completely in memory.

•  The bucket is large enough to embrace as many records,
compete with the keys and satellites, as can be brought
into memory via a single direct addressing instruction.

PLAN OF ATTACKPLAN OF ATTACKPLAN OF ATTACKPLAN OF ATTACK

In other words, under such an organization, each bucket
would  belong to its own observation. In order for this to
work, we need some concrete rule, or function, that would
send a particular key to the particular bucket in the lookup
file. Given a key to search, the function could then be used
to locate the bucket (observation) the key belongs to, in
order to read the observation into memory and search it
there. As to the memory search, the data can be organized in

each bucket in such a way that searching for a key will
require no more than 2-3 key comparisons, irrespective of
the number of keys in the bucket.

Now imagine that the keys in the driver file are tagged with
the bucket numbers using the same distribution rule as the
one applied to the keys in the lookup file. Then, if we re-
group the driver file by the bucket number, each by-group
will correspond to one, and only one, record in the
stratified lookup file.

How would this scheme change the lookup philosophy compared
to SAS indexing? With the latter, searching the index file
for a key (associated with its own I/O traffic) would return
a pointer to the proper record, and the record would be
fetched. So, if there are ND keys in the DRIVER, and all of
them are present in LOOKUP, ND direct internal read accesses
would be needed. The stratified scheme having M buckets
would perform no more than M direct explicit reads, because
all driver keys mapping to the same bucket number could
possibly be found only in the corresponding bucket of the
(reshaped) lookup file. If H is a bucket number, a single
POINT=H read would move the entire bucket into memory, where
the driver keys from the current group could be rapidly
searched.

Effectively, it would replace a ‘long and narrow’ lookup
file, with a separate direct read for every key found in the
index, by a ‘short and wide’ lookup file, with the maximum
of M direct accesses to the lookup file, the rest of the
search occurring completely in memory. As the latter can be
programmed extremely efficiently, there is a hope that the
‘short and wide’ could outperform ‘long and narrow’ enough
to deliver the required decrease in the run-time.

To find out if these speculations hold any water, we need to
express them using the SAS language and test the concoction.
However, first it is necessary to decide on the reasonable
method of distributing the keys among the buckets.

DIVIDE . . .DIVIDE . . .DIVIDE . . .DIVIDE . . .

Intuitively, it is apparent that the more uniformly the keys
will be spread, the better. We certainly do not need a
stratified lookup file with a couple of records containing
the majority of keys and the rest having none, for it would
defy the entire idea of distribution. Moreover, there is
another advantage of mapping the keys to their buckets
evenly: It makes the distribution of the keys themselves
(whose skewness can be detrimental to SAS index performance)
unimportant.

One of the easiest ways to obtain an even distribution is
dividing the key (or its numeric representation, if the key
is character) by a prime number and computing the remainder:

h = mod (k, M) + 1;h = mod (k, M) + 1;h = mod (k, M) + 1;h = mod (k, M) + 1;

The added unity is only needed to shift the range of H from
[0:M-1] to [1:M] and thus make it possible to access the
bucketed lookup file via POINT=H in the future.

Now it is time to decide on the value of M, which will
become the number of records in the final lookup file and
thus define its ‘aspect ratio’, directly affecting the
number of keys per bucket/observation. At first glance, it
seems that the more keys per bucket (the lower M), the
better, since fewer buckets would result in fewer direct
accesses, shifting the balance towards searching in memory.
However, as the number of variables per observation grows,
so does the compilation time. Usually negligible, in this
particular task, the compilation time may become part of the



game: With 20,000 variables in PDV, say, it may take seconds
to compile a step, while we are trying to shave seconds off
the combined compilation and execution time. Keeping no more
than 1,000-2,000 variables per record, split equally between
the shadow and real accounts, makes this concern
insignificant. Extensive testing has shown that throughout
the range of 150 to 5000  keys per bucket, the actual number
has a very little impact on the run time. Choosing the
aspect ratio rather lean, with 150-1000 keys per lookup
observation, might be even beneficial to different users
searching the file concurrently.

The importance of M being prime and not too close to a power
of 2 is paramount, because it guarantees a fairly even
distribution of NL keys across M buckets. To simplify
things, we can first pick the number of key items per
bucket, let us call it IPR, tentatively, and then use a
little fast SAS program to compute the first prime number
greater than NL/IPR:

%let ipr =  150 ; *** items per lookup record;%let ipr =  150 ; *** items per lookup record;%let ipr =  150 ; *** items per lookup record;%let ipr =  150 ; *** items per lookup record;

data _null_;data _null_;data _null_;data _null_;
   do M=ceil(n/&ipr) by 1 until (j=up+1);   do M=ceil(n/&ipr) by 1 until (j=up+1);   do M=ceil(n/&ipr) by 1 until (j=up+1);   do M=ceil(n/&ipr) by 1 until (j=up+1);
      up = ceil(sqrt(M));      up = ceil(sqrt(M));      up = ceil(sqrt(M));      up = ceil(sqrt(M));
      do j=2 to up until (not mod(M,j)); end;      do j=2 to up until (not mod(M,j)); end;      do j=2 to up until (not mod(M,j)); end;      do j=2 to up until (not mod(M,j)); end;
   end;   end;   end;   end;
   call symput('M',compress(put(M,best.)));   call symput('M',compress(put(M,best.)));   call symput('M',compress(put(M,best.)));   call symput('M',compress(put(M,best.)));
   stop;   stop;   stop;   stop;
   set lookup nobs=n;   set lookup nobs=n;   set lookup nobs=n;   set lookup nobs=n;
run;run;run;run;                      

Now, the final number of buckets in the future hybrid-
indexed lookup file (let us call it HLOOKUP), is stored in
the macro variable M, which can also help determine the size
of the arrays we will need to declare in a step where
HLOOKUP is actually organized and written out.

DIRECT ADDRESSING INTO DISKDIRECT ADDRESSING INTO DISKDIRECT ADDRESSING INTO DISKDIRECT ADDRESSING INTO DISK

The next step is tagging each key K in the original lookup
file with the bucket number H, to which it will eventually
belong, and produce a file SPLIT that can be subsequently
grouped by H and re-organized ‘horizontally’ forming
HLOOKUP.

This is done by reading LOOKUP and applying the modulo
formula discussed above to K in every record. However, there
is a subtle hidden caveat, although it is quite unlikely to
manifest itself unless IPR is quite low, approximately under
10. With very few items per bucket on the average, it might
happen that no keys at all map to some bucket (whose number
is, say, HGAP), and the final lookup file will have fewer
records than the number of available buckets M. Therefore,
it will be impossible to address the buckets directly using
POINT= option. To account for such a situation, a dummy
empty record with H=HGAP must be output to file SPLIT. It is
taken into consideration in the step below:

data split (keep=h k s);data split (keep=h k s);data split (keep=h k s);data split (keep=h k s);
   array f(1:&M) _temporary_;   array f(1:&M) _temporary_;   array f(1:&M) _temporary_;   array f(1:&M) _temporary_;
   do until (eof);   do until (eof);   do until (eof);   do until (eof);
      set lookup end=eof;      set lookup end=eof;      set lookup end=eof;      set lookup end=eof;
      h = 1 + mod(k,&M);      h = 1 + mod(k,&M);      h = 1 + mod(k,&M);      h = 1 + mod(k,&M);
      f(h) ++ 1;      f(h) ++ 1;      f(h) ++ 1;      f(h) ++ 1;
      output;      output;      output;      output;
   end;   end;   end;   end;
   k = .K; s = .S;   k = .K; s = .S;   k = .K; s = .S;   k = .K; s = .S;
   do h=1 to dim(f);   do h=1 to dim(f);   do h=1 to dim(f);   do h=1 to dim(f);
      if f(h) > hs then hs = f(h);      if f(h) > hs then hs = f(h);      if f(h) > hs then hs = f(h);      if f(h) > hs then hs = f(h);
      else if f(h) = . then output;      else if f(h) = . then output;      else if f(h) = . then output;      else if f(h) = . then output;
   end;   end;   end;   end;                        

   do hs=ceil(1.25*hs) by +1 until (j=up+1);   do hs=ceil(1.25*hs) by +1 until (j=up+1);   do hs=ceil(1.25*hs) by +1 until (j=up+1);   do hs=ceil(1.25*hs) by +1 until (j=up+1);
      up = ceil(sqrt(hs));      up = ceil(sqrt(hs));      up = ceil(sqrt(hs));      up = ceil(sqrt(hs));
      do j=2 to up until (not mod(hs,j)); end;      do j=2 to up until (not mod(hs,j)); end;      do j=2 to up until (not mod(hs,j)); end;      do j=2 to up until (not mod(hs,j)); end;
   end;   end;   end;   end;
   call symput ('hs',left(put(hs,best.)));   call symput ('hs',left(put(hs,best.)));   call symput ('hs',left(put(hs,best.)));   call symput ('hs',left(put(hs,best.)));
run;run;run;run;

proc sort data=split; by h; run;proc sort data=split; by h; run;proc sort data=split; by h; run;proc sort data=split; by h; run;    

In the DATA step, above, the first DO-loop reads LOOKUP,
tags its records with H-values, and outputs them. At the
same time, it uses the array F(1:&M) to track the number of
keys falling into each bucket. The second DO-loop scans the
array and outputs a dummy record with missing K and S for
each empty bucket, thus closing the gaps, should any happen.
Special missing values .K identify dummy records as such and
allow to skip them in the future without searching. The
second DO-loop also determines HS, the number of keys
falling into the most populated bucket. The third, nested,
DO-loop finds the first prime number greater than 1.25*HS
and assigns it to the macro variable HS. Finally, in the
sort step, file SPLIT is ordered by the bucket number H.

DIRECT ADDRESSING INTO MEMORYDIRECT ADDRESSING INTO MEMORYDIRECT ADDRESSING INTO MEMORYDIRECT ADDRESSING INTO MEMORY

The reason why the third DO-loop above is necessary deserves
a good explanation. In the subsequent steps, we intend to
read the file SPLIT and transpose it, writing K and S values
from each H-group ‘horizontally’ as separate variables.
Given a record from the driver file with its own K tagged
with H, we are going to use POINT=H to access the only
bucket (represented by an observation in HLOOKUP) where K
can possibly be found, and search the lookup keys within the
bucket to find K and its S-counterpart.

The question is, how should the lookup keys be organized
within each bucket in order to facilitate the fastest
possible search in memory? The simplest efficient solution
is to order SPLIT, in the sort step above, by H K (not just
by H), with the intention to use a hand-coded binary search.
With 1024 keys per lookup record, say, it would need only
about 11 key comparisons to locate a search key.

However, we can do much better than that by organizing the
keys within each bucket in the form of a hash table.
Compared to binary search, this type of in-memory search
locates a search key, on the average, only after 2-3 key
comparisons, regardless of the number of keys per record. By
preparing 25% more slots within each bucket than the maximum
number of keys a bucket can possibly have (hence the 1.25*HS
in the code above), we are making the table sparse and thus
can use the simplest collision resolution policy, open
addressing with linear probing, in order to cut down on the
amount of computations. The hash tables in each HLOOKUP
record can be organized on the fly in the same DATA step
where the file is prepared:

data hlookup (keep=kk: ss:);data hlookup (keep=kk: ss:);data hlookup (keep=kk: ss:);data hlookup (keep=kk: ss:);
   array kk(1:&hs);   array kk(1:&hs);   array kk(1:&hs);   array kk(1:&hs);
   array ss(1:&hs);   array ss(1:&hs);   array ss(1:&hs);   array ss(1:&hs);
   do until (last.h);   do until (last.h);   do until (last.h);   do until (last.h);
      set split end=eof;      set split end=eof;      set split end=eof;      set split end=eof;
      by h;      by h;      by h;      by h;
      if k = .K then leave;      if k = .K then leave;      if k = .K then leave;      if k = .K then leave;
      do j=1+mod(k,&hs) by 1 until (kk(j)=. or kk(j)=k);      do j=1+mod(k,&hs) by 1 until (kk(j)=. or kk(j)=k);      do j=1+mod(k,&hs) by 1 until (kk(j)=. or kk(j)=k);      do j=1+mod(k,&hs) by 1 until (kk(j)=. or kk(j)=k);
         if j > &hs then j = 1;         if j > &hs then j = 1;         if j > &hs then j = 1;         if j > &hs then j = 1;
      end;      end;      end;      end;
      kk(h) = k;      kk(h) = k;      kk(h) = k;      kk(h) = k;
      ss(h) = s;      ss(h) = s;      ss(h) = s;      ss(h) = s;                              
   end;   end;   end;   end;
run;run;run;run;                                                   



Note that keeping H would be redundant, since by the very
nature of the algorithm, its values would exactly coincide
with the observation numbers in HLOOKUP.

Before the keys K in DRIVER can be searched in HLOOKUP for
their S-counterparts, the driver itself must be stratified
and ordered by H. This is a simple operation:

data hdriver;data hdriver;data hdriver;data hdriver;
   set driver;   set driver;   set driver;   set driver;
   h = 1 + mod(k, &M);   h = 1 + mod(k, &M);   h = 1 + mod(k, &M);   h = 1 + mod(k, &M);
run;run;run;run;

proc sort data=hdriver; by h; run;proc sort data=hdriver; by h; run;proc sort data=hdriver; by h; run;proc sort data=hdriver; by h; run;

Reorganizing the driver file this way does drain certain
resources, but it results in markedly improved lookup
performance. Besides, in the real-life situation described
in the introduction, the vendor can be required to shape the
file in any specific way beforehand, so that the on-line
application will accept the driver file in its ready-to-
search form.

. . . AND CONQUER. . . AND CONQUER. . . AND CONQUER. . . AND CONQUER

At this point, HLOOKUP is hybrid-indexed and HDRIVER is
grouped properly. The final step replaces the shadow account
K with the real account S, creating file REALACCT:

data realacct (keep=s);data realacct (keep=s);data realacct (keep=s);data realacct (keep=s);
   array kk (1:&hs);   array kk (1:&hs);   array kk (1:&hs);   array kk (1:&hs);
   array ss (1:&hs);   array ss (1:&hs);   array ss (1:&hs);   array ss (1:&hs);
   set hdriver;   set hdriver;   set hdriver;   set hdriver;
   by h;   by h;   by h;   by h;
   if first.h then set hlookup point=h;   if first.h then set hlookup point=h;   if first.h then set hlookup point=h;   if first.h then set hlookup point=h;
   do j=1+mod(k,&hs) by 1 until (kk(j) = .);   do j=1+mod(k,&hs) by 1 until (kk(j) = .);   do j=1+mod(k,&hs) by 1 until (kk(j) = .);   do j=1+mod(k,&hs) by 1 until (kk(j) = .);
      if j > &hs then j = 1;      if j > &hs then j = 1;      if j > &hs then j = 1;      if j > &hs then j = 1;
      if k = kk(j) then do;      if k = kk(j) then do;      if k = kk(j) then do;      if k = kk(j) then do;
         s = ss(j);         s = ss(j);         s = ss(j);         s = ss(j);
         output;         output;         output;         output;
         delete;         delete;         delete;         delete;
      end;      end;      end;      end;
   end;   end;   end;   end;
run;run;run;run;         

According to the plan outlined above, HLOOKUP is read only
once at the beginning of each group by H in DRIVER. It loads
the entire bucket (a particular observation in HLOOKUP) into
memory. The bucket contains lookup keys stored in the cells
of the array KK in the form of a hash table. From that point
on and until the end of the current H-group, no input from
HLOOKUP occurs, because all the keys read from the group are
searched completely in memory.

IT’S BETTER TO SEE ONCE . .IT’S BETTER TO SEE ONCE . .IT’S BETTER TO SEE ONCE . .IT’S BETTER TO SEE ONCE . .

One look at a simple data sample may tell more that tons of
wordy explanations. Imagine that LOOKUP has just 50 keys
valued 1 through 50, and HDRIVER has 20 unique random keys
chosen from K=[1:99]; not all of them have a match in
LOOKUP. Let us take a peek at HDRIVER and HLOOKUP concocted
from the sample set of keys by the process described above.
The files are juxtaposed to each other in Table 1. Matching
keys are shown in boldface.

Note for a key in any given H-group from HDRIVER, a match
can be found only in the observation of HLOOKUP whose number
is H. It means, first off, that no keys from the first
HLOOKUP record-bucket can be present anywhere in HDRIVER,
for the latter has no records with H=1 at all. In fact,
during the search phase, this record will never have to be

even looked at. The table should make the mechanics of
searching clear.

Table 1Table 1Table 1Table 1. Sample HDRIVER and HLOOKUP.

  HDRIVER                HLOOKUP (keys only)
-----------   ------------------------------------------------
|  K |  H |   |Obs | KK1 | KK2 | KK3 | KK4 | KK5 | KK6 | KK7 |
|---------|   |----------------------------------------------|
|    |    |   |  1 |   . |  22 |  44 |   . |  11 |  33 |   . |
|---------|   |----------------------------------------------|
| 23232323 |  2 |-->|  2 |   . |  01 |  23232323 |  45454545 |   . |  12 |  34 |
| 45454545 |  2 |   |    |     |     |     |     |     |     |     |
|---------|   |----------------------------------------------|
| 46464646 |  3 |-->|  3 |  35 |   . |  02 |  24 |  46464646 |   . |  13 |
| 57 |  3 |   |    |     |     |     |     |     |     |     |
|---------|   |----------------------------------------------|
| 36363636 |  4 |-->|  4 |  14 |  36363636 |   . |  03 |  25 |  47 |   . |
|---------|   |----------------------------------------------|
| 26262626 |  5 |-->|  5 |   . |  15 |  37 |   . |  04 |  26262626 |  48484848 |
| 48484848 |  5 |   |    |     |     |     |     |     |     |     |
|---------|   |----------------------------------------------|
| 49494949 |  6 |-->|  6 |  49494949 |   . |  16 |  38 |   . |  05 |  27 |
|---------|   |----------------------------------------------|
| 28282828 |  7 |-->|  7 |  28282828 |  50 |   . |  17 |  39 |   . |  06 |
| 72 |  7 |   |    |     |     |     |     |     |     |     |
|---------|   |----------------------------------------------|
| 07070707 |  8 |-->|  8 |  07070707 |  29 |   . |   . |  18 |  40404040 |   . |
| 40404040 |  8 |   |    |     |     |     |     |     |     |     |
|---------|   |----------------------------------------------|
| 08080808 |  9 |-->|  9 |   . |  08080808 |  30 |   . |   . |  19 |  41 |
| 52 |  9 |   |    |     |     |     |     |     |     |     |
| 63 |  9 |   |    |     |     |     |     |     |     |     |
| 74 |  9 |   |    |     |     |     |     |     |     |     |
|---------|   |----------------------------------------------|
| 20202020 | 10 |-->| 10 |  42424242 |   . |  09 |  31313131 |   . |   . |  20202020 |
| 31313131 | 10 |   |    |     |     |     |     |     |     |     |
| 42424242 | 10 |   |    |     |     |     |     |     |     |     |
-----------   ------------------------------------------------

Let us consider, for instance, what happens for H=3. Once
the H-group in HDRIVER with H=3 is hit, a read from HLOOKUP
with POINT=H is performed, and the third record is moved to
PDV. The first key to search for is K=46. MOD(46,7)+1 yields
5. Since KK(5)=46, we have an instant match. The
corresponding satellite residing in SS(5) (not shown) is
copied to S, and a record is written out to REALACCT. Next
key in the group H=3 is K=57. MOD(57,7)+1 yields 2. Since
KK(2)=., we immediately conclude that 57 is not in the
bucket, and therefore not in HLOOKUP at all.

Thus, even though we have 20 keys to search for and 14
matching keys, they fall in only 9 distinct H-groups, and
therefore HLOOKUP has be to directly accessed 9 times,
strictly in order. In the case of the binary search, LOOKUP
would have to be set (log2(50)+1)*20, i.e. about 140 times,
all out of order. With SAS indexing, first, the index should
be searched for each key in DRIVER, and since there are 14
matches, 14 direct accesses would have to be executed.
Hence, fewer buckets result in higher performance, of
course, with the limitations already discussed above.   

SEMANTICS AND BEYONDSEMANTICS AND BEYONDSEMANTICS AND BEYONDSEMANTICS AND BEYOND

Just to clarify any semantic questions that might arise, the
name for the indexing method described here has been chosen
without any connection to existing algorithmic naming
conventions. Hopefully, ‘direct-addressed SAS data set’ will
not cause any confusion: A specific bucket in the data set
is accessed directly, through POINT=H, hence the term. As
far as ‘hybrid-indexed’ is concerned, one way to classify
searching methods in general is distinguish between external
(disk, tape) and internal (memory only) searches. The
approach adopted in this paper combines the two: It uses a
hash index into records on disk to locate a specific block



of keys and move them, together with their satellites, to
memory. The keys in the block are already hash-indexed,
which is why the final search can be performed very rapidly.

Summarizing, the hybrid indexing comprises two direct-
addressed stages:

1. POINT=H disk access to a record holding a complete pre-
hashed table. This is done only once for each by-group
in the driver file grouped by H.

2. Direct access via hash index in the hash table in memory
to locate (of reject) the current driver key and
retrieve the satellite if a match is found.

Intuitively, we should be able to reap benefits from such a
scheme for a simple reason. If there are 40 million records
in LOOKUP, and it is transformed into HLOOKUP partitioned in
50,000 buckets, we will never have to read HLOOKUP (execute
SET POINT=H instruction) more than 50,000 times regardless
of the number of keys in the driver file. Let us now see
what the verdict of the Supreme Judge, the Experiment, is.

THE NAME OF THE GAMETHE NAME OF THE GAMETHE NAME OF THE GAMETHE NAME OF THE GAME

Performance, that is. Hybrid hash indexing was tested along
with SAS indexing on the same machine that was used in the
real application, that is S/390 9672/R36 under OS/390, SAS
Version 8 (TS M0). As explained above, the influence of IPR
value (items per record) on performance is very weak, so the
benchmarks shown below were obtained with a static IPR set
to 600, which translates into about 700 keys per lookup
record. With that value fixed, the number of buckets depends
on the number of keys in the original LOOKUP. LOOKUP files
with NL=10, 20, 30, and 40 million keys were tested. Another
varying parameter was the number of keys in the driver file
DRIVER. The latter was tested with ND=100K, 500K, and 900K
keys. Test files with the properties close to the real
situation, were simulated in the following manner:

%let nl  =  4e7   ; *** records in lookup;%let nl  =  4e7   ; *** records in lookup;%let nl  =  4e7   ; *** records in lookup;%let nl  =  4e7   ; *** records in lookup;
%let nd  =  1e5   ; *** records in driver;%let nd  =  1e5   ; *** records in driver;%let nd  =  1e5   ; *** records in driver;%let nd  =  1e5   ; *** records in driver;
%let kr  =  1e16  ; *** numeric key range;%let kr  =  1e16  ; *** numeric key range;%let kr  =  1e16  ; *** numeric key range;%let kr  =  1e16  ; *** numeric key range;

data lookup (keep=k s) driver (keep=k);data lookup (keep=k s) driver (keep=k);data lookup (keep=k s) driver (keep=k);data lookup (keep=k s) driver (keep=k);
   do s=1 to &nl;   do s=1 to &nl;   do s=1 to &nl;   do s=1 to &nl;
      k = int(ranuni(1)*&kr);      k = int(ranuni(1)*&kr);      k = int(ranuni(1)*&kr);      k = int(ranuni(1)*&kr);
      output lookup;      output lookup;      output lookup;      output lookup;
      if not mod(s,ceil(&nl/&nd)) then output driver;      if not mod(s,ceil(&nl/&nd)) then output driver;      if not mod(s,ceil(&nl/&nd)) then output driver;      if not mod(s,ceil(&nl/&nd)) then output driver;
   end;   end;   end;   end;
run;run;run;run;                               

This way, it is guaranteed that all keys K in DRIVER will be
found in LOOKUP. From the performance standpoint, this is
the worst case scenario, for unsuccessful searches occur
faster than successful ones, and greater number of hits
leads to heavier output traffic.

The results are summarized in performance Table 1. It
appears that the common-sense strategy devised above works
pretty successfully. Even in the worst case scenario, at 40
million records in LOOKUP and almost 1 million keys in
DRIVER, the response time stays under 10 CPU seconds. Hybrid
indexing thus beats the SAS index quite soundly, especially
in the case of relatively large driver files.

It should also be noted that in the experiments described
above, the relative performance of hybrid indexing was, in
fact, underestimated, because the test data had been
contrived in every possible way to benefit SAS index usage.
The indexed key K was uniform and discriminant, and both
files were sorted into ascending order. Substantial skewness
in the distribution of the keys across their range may

impact B-tree performance quite adversely. But it has no
impact whatsoever on performance of the hybrid-indexing
scheme, because it provides its own randomization mechanism:
The hash modulo function spreads the keys among the buckets
evenly, no matter how the keys are distributed themselves.

TableTableTableTable 2. Hybrid Hash Index vs SAS Index.

---------------------------------------------------------------------
|                            |        Observations in Driver        |
|                            |--------------------------------------|
|                            |    100K    |    500K    |    900K    |
|----------------------------+------------+------------+------------|
|Observations |   Lookup     |            |            |            |
|in Lookup    |  Technique   |            |            |            |
|-------------+--------------|            |            |            |
|10M          |Set Key=      |        4.45|       17.52|       28.15|
|             |--------------+------------+------------+------------|
|             |SQL Join      |        6.72|       28.96|       45.61|
|             |--------------+------------+------------+------------|
|             |Hybrid Index  |        1.20|        2.81|        4.15|
|-------------+--------------+------------+------------+------------|
|20M          |Set Key=      |        5.54|       18.91|       30.74|
|             |--------------+------------+------------+------------|
|             |SQL Join      |        7.91|       29.23|       49.41|
|             |--------------+------------+------------+------------|
|             |Hybrid Index  |        1.86|        3.65|        5.13|
|-------------+--------------+------------+------------+------------|
|30M          |Set Key=      |        6.60|       20.41|       32.28|
|             |--------------+------------+------------+------------|
|             |SQL Join      |        9.08|       31.07|       51.28|
|             |--------------+------------+------------+------------|
|             |Hybrid Index  |        2.59|        4.28|        5.83|
|-------------+--------------+------------+------------+------------|
|40M          |Set Key=      |        8.28|       34.15|       54.64|
|             |--------------+------------+------------+------------|
|             |SQL Join      |       10.97|       37.78|       62.15|
|             |--------------+------------+------------+------------|
|             |Hybrid Index  |        3.34|        5.41|        7.21|
---------------------------------------------------------------------

To fully appreciate the lookup speed delivered by hybrid
indexing (and SAS indexing, too!), let us return to the DB2
alternative mentioned above. On the same computer, a DB2
table structured exactly like LOOKUP and indexed by K was
loaded with 40 million rows. With 100,000 keys in the driver
file, it took DB2 (optimized for the index usage) 35.68 CPU
seconds to do the same job the hybrid index and SAS index
had finished in 3.34 and 8.28 CPU seconds, respectively.

LOADING HLOOKUP FROM SCRATCHLOADING HLOOKUP FROM SCRATCHLOADING HLOOKUP FROM SCRATCHLOADING HLOOKUP FROM SCRATCH

The run-time required to organize a hybrid-indexed lookup
table by loading it from scratch is insignificant in the
context of the current task. However, it may be of some
importance if a hybrid-indexed structure is used, for
example, as a repository for a data mart. A lookup table
that needs an infinite time to be prepared hardly represents
any practical value, even if it can be searched with a jaw-
dropping speed. Fortunately, in the case of hybrid indexing,
it takes roughly the same time to stratify, sort, hash, and
finally shape the table, as it does to sort a file and
create a SAS index. For instance, with 40 million keys in
the original unsorted lookup file, sorting the file by K and
building a SAS index on it takes approximately 400 CPU
seconds. The three steps preparing the hybrid-index file
HLOOKUP take about 420 CPU seconds, in all.

UPDATING HLOOKUP IN PLACEUPDATING HLOOKUP IN PLACEUPDATING HLOOKUP IN PLACEUPDATING HLOOKUP IN PLACE

Much more important than loading is whether it is possible
to update HLOOKUP from a relatively small transaction file.
It is certainly undesirable to rewrite the entire master



file having 40 million keys, to only update 100,000 of them.
In the original setting, where LOOKUP has a SAS index
defined on the key, the file is easily updated directly via
the MODIFY statement. Can the same be done against a hybrid-
indexed file?

The answer is ‘yes’, and in fact it is quite simple. Let us
assume that the file TRANS contains the key K and the new
real account S that is supposed to overwrite the old one
corresponding to the same key. Just like the driver file,
the transaction file has to be tagged with the bucket number
H and sorted by H first:

data trans (keep=h k s);data trans (keep=h k s);data trans (keep=h k s);data trans (keep=h k s);
   set trans;   set trans;   set trans;   set trans;
   h = 1 + mod(k,&M);   h = 1 + mod(k,&M);   h = 1 + mod(k,&M);   h = 1 + mod(k,&M);
run;run;run;run;
proc sort data=trans; by h; run;proc sort data=trans; by h; run;proc sort data=trans; by h; run;proc sort data=trans; by h; run;

Now, the MODIFY statement can be used to update HLOOKUP in
place:

data hlookup (keep=kk: ss:);data hlookup (keep=kk: ss:);data hlookup (keep=kk: ss:);data hlookup (keep=kk: ss:);
   array kk(1:&hs);   array kk(1:&hs);   array kk(1:&hs);   array kk(1:&hs);
   array ss(1:&hs);   array ss(1:&hs);   array ss(1:&hs);   array ss(1:&hs);
   set trans;   set trans;   set trans;   set trans;
   modify hlookup point=h;   modify hlookup point=h;   modify hlookup point=h;   modify hlookup point=h;
   do j=1+mod(k,&hs) by 1 until (kk(j)=. or kk(j)=k);   do j=1+mod(k,&hs) by 1 until (kk(j)=. or kk(j)=k);   do j=1+mod(k,&hs) by 1 until (kk(j)=. or kk(j)=k);   do j=1+mod(k,&hs) by 1 until (kk(j)=. or kk(j)=k);
      if j > &hs then j = 1;      if j > &hs then j = 1;      if j > &hs then j = 1;      if j > &hs then j = 1;
   end;   end;   end;   end;
   kk(j) = k;   kk(j) = k;   kk(j) = k;   kk(j) = k;
   ss(j) = s;   ss(j) = s;   ss(j) = s;   ss(j) = s;
run;run;run;run;

                                    
By the nature of the algorithm, the MODUFY instruction will
always be successful, since H always lies between 1 and &M,
and the number of observations in HLOOKUP always equals &M.

INSERTING NEW ACCOUNTSINSERTING NEW ACCOUNTSINSERTING NEW ACCOUNTSINSERTING NEW ACCOUNTS

If a key in the transaction file is new and is not present
in HLOOKUP, it will be inserted automatically by the
updating program shown above into the first missing array
node encountered when KK(J)=. evaluates to true. It will
never increase the number of HLOOKUP records &M. Instead,
the unused slack left in the hash table when the file was
being loaded will be used. Thus, the sparsity of the
observations in HLOOKUP plays a double role: It promotes
good hashing performance and leaves some room where new keys
and satellites can be inserted. The factor 1.25 in the
program that created HLOOKUP is somewhat arbitrary, and was
used instead of, say, 1.5 just to conserve disk space.
However, if numerous insertions can be anticipated in the
future, the factor can be increased accordingly.

CONCLUSIONCONCLUSIONCONCLUSIONCONCLUSION

Hybrid indexing is a method of organizing lookup data in a
SAS data file, where each row serves as a bucket containing
approximately equal number of keys and corresponding
satellites stored in a hash table. It takes about the same
time to organize a hybrid-indexed data set as it does to
build a SAS index. However, by shifting the main burden of
searching from I/O to memory, hybrid indexing results in 3-7
times faster lookup times. Unlike SAS indexing, hybrid
indexing provides its own randomization mechanism and is
thus insensitive to the distribution of keys. It also scales
much better as the size of the subset returned from the
lookup file grows.

It might seem amazing that with nothing but Base SAS, it is
possible, in under 8 seconds, to read a file with 1 million
keys, find their attributes among 40 million entries stored
in another file, and write the output. However, in reality,
it is a direct product of the power and flexibility of the
SAS Language. The statue was already inside the piece of
marble, and we only had to remove the excess of the
material. Which requires nothing more than the fun of SAS
programming.
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