
SAS® Macros Are the Cure for Quality Control Pains
Implementing A Macro Driven Evaluation of Survey Data for Quality Control

Gary McQuown, Data and Analytic Solutions, www.DASconsultants.com

ABSTRACT

Performing Quality Control (QC) on survey data is
an essential and challenging, but often under
appreciated task. Differences such as survey
length, skip patterns, variable ranges, and
questionnaire length add to the difficulty of the task.
Fortunately, prudent use of macros can reduce the
chore while improving accuracy. This paper
presents the macros and techniques used to
perform quality control on the 1998 Survey of Small
Business Finances data for the Board of Governors
of the Federal Reserve. The macros and routines
described are used to perform various evaluations
and cleaning procedures including the following:

1) Determine validity of each response.
2) Accommodate exceptions and missing values.
3) Differentiate between legitimate skips,

conditional skips, and inappropriate skips.
4) Report errors in an appropriate format.

The macros and routines presented may be useful
for anyone who wishes to improve upon their QC
procedures or performs survey related work.

INTRODUCTION

The Board of Governors of the Federal Reserve
System wished to determine and document the
validity of responses received during their 1998
Survey of Small Business Finances. The purpose
of the task is to condition the survey data set to
help control imputation of missing values and
provide the economists and others with information
about which values on the public data set are
imputed. The 226 page survey consists of
questions and criteria for over one thousand
variables. Additional factors that contribute to the
complexity of the task are the number and variety of
skip patterns and the number of questions that can
entail single or multiple responses. The successful
completion of the task is accomplished through the
use of macros imbedded within conditional
statements that mirror the survey instrument design.

The end product is a data set that contains the
original response values and a set of “shadow
variables”, or Xcodes, that describe the validity of
the original response. Each response value is
evaluated to determine if it conforms to a set of
expected values, falls within an expected range, and

whether a specific question is appropriately asked or
legitimately skipped. For every variable, there must
be a corresponding Xcode to store the result of the
evaluation of that variable. If a value is evaluated
as a legitimate skip, the missing response value is
replaced with the special missing code of .S. This is
the only situation in which the original value is
overwritten.

The following is a list of the possible Xcodes values
and the conditions that they denote. Conditions
such as “Valid”, “Invalid”, “Don’t Know”, “Refuse”,
etc are general in nature and appear on most
surveys. Conditions for Conditional Skips and
Derived are more unusual.

Xcode = condition description
9 = Valid and within appropriate range.
1 = Failed a soft range check, but is otherwise

valid.
2 = Don't Know (D or .D)
3 = Refuse (R or .R)
4 = Exception (X or .X)
5 = Legitimate skip. Based on preceding values,

the question legitimately was not asked.
6 = Conditional skip, value may be, legitimate,

missing or may require imputation due to a .D
or .R in a previous response.

7 = Non-missing but should be missing
8 = Missing but should be non-missing
0 = External, merged from the external data set.
v = Invalid categorical response, out of range or

failed a “hard” check.
w = Derived/calculated incorrectly, pertains to

internal flags and counters
m = Missing value after inappropriately missing

conditional value

If the questionnaire design and the respondent’s
prior responses indicate that a response should be
present, the PRESCHK macro (appendix 2) is used
for the evaluation. The PRESCHK macro produces
Xcode values of 9, 1, 2, 3, 4, 8, 0, v and w. If the
response is expected to be missing, the MISSCHK
(appendix 3) macro is used. The MISSCHK macro
produces Xcode values of 5, 6, 7, and m. Variables
should only be evaluated once. Multiple evaluation
or evaluations by the incorrect macro will create
duplicate values in the output data set and may
falsely increase the error count.

ARRAYS

The first step in the use of the macros for survey
review is to create two arrays, one for character
variables (section_char) and a second for numeric
variables (section_num). The XLISTBLD macro
(appendix 1) is used to create corresponding arrays
of Xcodes (_xsectionchar and _xsectionnum) from
these arrays. For every variable to be evaluated, a
matching Xcode variable is created to store the
results of the evaluation. Xcodes are prefixed with
the letter x, and followed by the name of the
variable they represent (xf2_1 = f2_1). Thus, prior to
Version 7, variable names should be limited to a
length of seven. Variables are ordered the way they
appear in the questionnaire so that the arrays can
be used to process a series of variables within a line
of code.

Example:

%let section = f1;
%let f1_char = f16 ;
%let f1_num =

f1 f2 f2_1 f3
f3_1 f3_1_1 f4 f5
f5_1 f6 f6_1 f6_1_1
f7 f9_1 f9_2 f9_3
f10_1 f10_1_1 f10_2 f10_1_2
f10_3 f10_1_3 f11_1 f11_1_1
f11_2 f11_1_2 f11_3 f11_1_3
f13_1 f13_2 f13_3 f14_1
f14_2 f14_3 f14v_1 f14v_2
f14v_3 f15_1 f15_2 f15_3 ;

array _§ion.char (*) $ &f1_char;
array _x§ion.char (*) $ 2

%xlistbld(&f1_char);
array _§ion.num (*) &f1_num ;
array _x§ion.num (*) $ 2

%xlistbld(&f1_num) ;

The next step is to construct a series of if/then
statements determined by the questionnaire’s skip
patterns and the respondent’s answers. The if/then
statements should direct SAS® to process every
variable only once. Because the questionnaire is
sequential, prior responses and skips dictate
whether a specific question should be asked.
Consequently, the value of the corresponding
variable should be evaluated with the PRESCHK
macro. If the question is to be skipped, the
response should be missing and the value is
checked with the MISSCHK macro. Both macros
evaluate the value, assign the appropriate value to
the associated Xcode and output that record to a
permanent output file.

PRESCHK .. If a response should be present.

Syntax: %preschk(
var = required ,
range = required ,
repvar = optional,
high = optional,
low = optional)

Example : %preschk(
var = f3,
range =%str(1,2,.D,.R),
repvar = f1 f2 f2_1)

The purpose of PRESCHK is to evaluate a response
when it is expected to be present. The parameters
are:

VAR = the variable to be reviewed.
RRANGE = the acceptable range for numeric

values.
REPVAR = a list of variables and their values to

be printed on the error report.
LLOW = minimum value for numeric values.
HIGH = maximum value for numeric values.

As a variable is passed through the PRESCHK
macro, the macro compares the name of the
variable to all values in the character array.

If the name is located, TYPE is set to C and it is
processed as a character variable. Character
variable responses are evaluated to determine if
they are present, missing, or equal to certain
predetermined values in ("D","R"). Each
instance results in the macro assigning a
different value to the corresponding Xcode (see
chart below).

If the variable is not located TYPE is set to N
and it is processed as a numeric variable.
Numeric responses are evaluated to determine
if they are present, missing or equal to various
special-missing values (.D,.R). Numeric values
are also evaluated to determine if they are
within a desired range (RNG).

The following examples of the RANGE parameters
can be easily modified:

RANGE DESCRIPTION OF RANGE

%STR(x,y,z) ie. %str(1,2,.D,.R)
POSINT var > 0 or in (.D,.R)
GEZERO var >= 0 or in (.D,.R))
M1GZERO var > 0 or in (-1,.D,.R))
M1GEZRO var >= 0 or in (-1,.D,.R))
RNG low <= var <= high or in (.D,.R)
ANYNUM not missing or in (.D,.R)

MISSCHK .. If a response should be missing.

Syntax: %misschk(
var = required,
depvar = optional,
repvar = optional)

Example: %misschk(
var = S10_3,
depvar = S10,
repvar = S10 S10_1 S10_2)

The purpose of the MISSCHK macro is to identify
errors when a value is expected to be missing. The
parameters are

VAR = the variable to be reviewed.
REPVAR = a list of variables and values to be

printed on the error report.
DEPVAR = a variable that if DK or RF will

cause this variable to be computed.

After the macro determines if the variable is
character or numeric, it checks to see if the value is
missing. Any value present is considered an error.
In some instances a response that is missing may
need to be computed for analysis due to a “Don’t
Know” or “Refuse” in a previous response. If the
REPVAR variable is DK or RF and this variable is
missing, it is considered a conditional skip. If the
dependent variable is missing but should have been
present, a missing conditional skip value is
assigned. All other missing values are considered
legitimate skips.

Use Of Macros Within Conditional Statements

In the following example, all respondents are asked
question F1 so a value is expected, and it is
evaluated with the PRESCHK macro with range =
%str(1, 2, .D, .R). Any value other than those in the
%str will be evaluated as an error, and the
corresponding Xcode will be assigned a value of v.

A response of 1 signifies that F2 should also be
evaluated with the PRESCHK macro. The macro
will determine that 1 is within the range given and
assign a value of 9 to the corresponding Xcode.

If the response to F1 is 2, all questions between F1
and F4 are skipped and expected to be missing,
therefore they are evaluated with the MISSCHK
macro. If the response values are indeed missing,
the MISSCHK macro assigns the corresponding
Xcode a value of 5 and replaces the missing
response value with a the special missing value of
.S.

A response of either .D or .R signifies that all F2 and
F3 variables should be missing, but the conditional
criteria means that they may need to be imputed at
a later date. Therefore they will be evaluated by the
MISSCHK macro with the REPVAR parameter set
to F1. Xcodes for conditional skips are assigned a
value of 6 and the missing response value is not
altered.

If F1 = 1, F2 is evaluated with PRESCHK with the
RNG parameter set to GEZERO so that any value
less than zero will be considered an error. If a dollar
value is given, F2_1 is skipped and evaluated with
the MISSCHK macro. If the response to F2 is .D or
.R then F2_1 will be evaluated with the same macro
and parameters as F2.

Example of Survey Question:

F1: Did [Firm] use owners’ personal credit cards to
pay business expenses ?
 Yes…………… 1
 No …….……… 2 Å Go to F4
 DK or RF ……. D or R Å Go to F4 (conditional)

F2: On average, how much per month in new
business expenditures did the firm charge to the
owners personal credit cards?
 Amount $ ____Å Go to F3 (non negative number)
 DK or RF ……. D or R

F2_1: Could you give an estimate?
 Amount $ ____Å Go to F3 (non negative number)
 DK or RF ……. D or R

Example of Code:

%preschk(var=f1,range=%str(1,2,.D,.R))
 if f1 = 1 then do;
 %preschk(var=f2,range=GEZERO)
 if f2 in (.D,.R) then
 do ;
 %preschk(var=f2_1,range=GEZERO)
 end ; else
 do ; /* f2 not .D,.R */
 %misschk(var=f2_1,repvar=f2)
 end;
 /* more code for F3, F3_1, F3_1_1 */
 end ; else /*legitimate skip */
 if f1 = 2 then do;
 %misschk(var=f2,repvar=f1)
 %misschk(var=f2_1,repvar=f1)
 %misschk(var=f3,repvar=f1)
 %misschk(var=f3_1,repvar=f1)
 %misschk(var=f3_1_1,repvar=f1)
 end ; else
 if f1 in (.D,.R) then
/* conditional skip and do loop to
perform multiple checks sequentially */

do i = 2 to 6;
%misschk(var=_§ion.num(i),
 depvar=f1)

end;
ERROR REPORT

Both PRESCHK and MISSCHK append
observations to a permanent data set. This data
set contains the SU_ID, variable name (varname)
and value, section, and Xcode for every SU_ID
Variable combination . It also contains the name
and value of reference (repvar) and dependent
(depvar) variables . The error report is generated
by printing observations where the Xcode values are
1, 7, 8, v, or w.

The following example shows three errors found in
section F. For the first observation, the response to
question F1 is missing when it should be present.
The second observation shows an instance when a
value is present, but outside the acceptable range.
The final example occurs when the value should
have been skipped due to the value of a prior
response. In each instance, the repvar variable
names and their values are printed with the value of
the variable in question.

Extract from Error Report:

Section Variable SU_ID Xcode Value(s)
F F1 10004390 8 F1 =
 F2 10004520 v F 2 = -1000
 F1 = 1

 F2_1 10006310 7 F2_1 = 2500
 F1 = 1

 F2 = 5000

CONCLUSION

The length and complexity of the Board of
Governors of the Federal Reserve System’s 1998
Survey of Small Business Finances made quality
control and the evaluation of the response variables
more difficult. The procedures were accomplished
by performing the processing in small sections with
arrays and by standardizing the most common tasks
with macros. PRESCHK processed values where
the response was expected to be present and
MISSCHK processed the remaining values that
were expected to be missing. The macros and
routines can be modified or directly incorporated
into other projects. Changes would depend upon
the specifics of the survey being reviewed. The
most probable modifications will be in the allocation
of alternative Xcode values, ranges, and the
elimination of the conditional skip.

Appendix 1: MACRO XLISTBLD

%macro xlistbld (varlist) ;
 %local i ;
 %let i = 1 ;
 %do %while (%scan(&varlist,&i) ^= %str()) ;
 x%trim(%scan(&varlist,&i))
 %let i = %eval(&i+1) ;
 %end ;
%mend xlistbld ;

Appendix 2: MACRO PRESCHK

%macro preschk (
var=,range=,type=N,repvar=,low=,high=) ;

 /* PRESCHK is used to verify that a variable is
present when it is supposed to be.
 var = variable
 range = acceptable range of variable (from list)
 type = N for number, C for Character
 repvar = report variable for QC
 low = minimum value if range = RNG is used
 high = maximum value if range = RNG is used */

 %local word i rep rvar ;
 %if %index(%STR(&&§ion._char),
 %str(&var)) > 0 %then

 %do ;
 if &var = ' ' then
 %Let word = &var ;
 %let type = C ;
 %end ; %else
 %do ;
 %let word = left(put(&var,12.)) ;
 if &var = . then
 %end ;
 /* variable has a missing value incorrectly */
 do ;
 x&var = '8' ;
 errtype = '8' ;
 variable = "&var" ;
 value = "&var=" || left(&word) ;
 section = "§ion" ;
 output bads ;
 %let i = 1 ;
 %do %while (%scan(&repvar,&i) ^= %str()) ;
 %let rvar = %upcase(%scan(&repvar,&i)) ;
 %if %index(%STR(%upcase(&&§ion._char)
),%str(&rvar)) > 0 %then
 %let rep = &rvar ;
 %else

 %let rep = left(put(&rvar,12.)) ;
 value = "%scan(&repvar,&i) =" || left(&rep) ;
 output bads ;
 %let i = %eval(&i + 1) ;
 %end ;
 end;
 %if &range ^= %str() %then
 %do ; else
/* When a range parameter is specified,
 check the value */
do;
%if %upcase(&range) = POSINT %then
 %str(if not(&var > 0 or &var in (.D,.R))) ;
%else
%if %upcase(&range) = GEZERO %then
 %str(if not(&var >= 0 or &var in (.D,.R))) ;
%else
%if %upcase(&range) = M1GZERO %then
 %str(if not(&var > 0 or &var in (-1,.D,.R))) ;
%else
%if %upcase(&range) = M1GEZRO %then
 %str(if not(&var >= 0 or &var in (-1,.D,.R))) ;
%else
%if %upcase(&range) = MON %then
 %str(if not ((1 <= &var <= 12) or &var in (.D,.R)))
; %else
%if %upcase(&range) = MONX %then
 %str(if not ((1 <= &var <= 12) or &var in (.D,.R,.X)
)
); %else
%if %upcase(&range) = YEAR %then
 %str(if not ((1900 <= &var <= 1999) or &var in
 (.D,.R))) ;
%else
%if %upcase(&range) = RNG %then
%str(if not ((&low <= &var <= &high) or &var in
(.D,.R))) ;
%else
%if %upcase(&range) = ANYNUM %then
%str(if not ((.^= &var) or &var in (.D,.R))) ;
%else
%if &type = N %then
%str(if &var not in (&range)) ;
%else
%str(if length(&var) = 1 and &var not in (’D’,’R’)) ;
 then do ;
 x&var = ’v’ ;
 errtype = ’v’ ;
 variable = "&var" ;
 value = "&var=" || left(&word) ;

 section = "§ion" ;
 output bads ;
 %let i = 1 ;
 %do %while (%scan(&repvar,&i) ^= %str()) ;
 value = "%scan(&repvar,&i) =" || left(
%scan(&repvar,&i)) ;
 output bads ;

 %let i = %eval(&i + 1) ;
 %end ;
 end ; else
 do; /* set to valid and not skipped */
 if &var = .D then x&var = ’2’; else
 if &var = .R then x&var = ’3’; else
 if &var = .X then x&var = ’4’; else
 x&var = ’9’;
 errtype = ’9’ ;
 variable = "&var" ;
 value = "&var=" || left(&word) ;
 section = "§ion" ;
 output bads ;
 end;
 end ; /* value present */
 %end ; /* range supplied */
 %if &type = C and &var ^= ’ ’ %then
 %do ;
 if length(&var) > 1 then
 do;
 x&var = ’9’ ;
 errtype = ’9’ ;
 variable = "&var" ;
 value = "&var=" || left(&word) ;
 section = "§ion" ;
 output bads ;
 end; else
 if length(&var) = 1 and &var in (’D’) then
 do;
 x&var = ’2’ ;
 errtype = ’2’ ;
 variable = "&var" ;
 value = "&var=" || left(&word) ;
 section = "§ion" ;
 output bads ;
 end; else
 if length(&var) = 1 and &var in (’R’) then
 do;
 x&var = ’3’ ;
 errtype = ’3’ ;
 variable = "&var" ;
 value = "&var=" || left(&word) ;
 section = "§ion" ;
 output bads ;
 end; else
 if length(&var) = 1 and &var not in (’R’ ’D’)
then
 do;
 x&var = ’v’ ;
 errtype = ’v’ ;
 variable = "&var" ;
 value = "&var=" || left(&word) ;
 section = "§ion" ;
 output bads ;
 %let i = 1 ;
 %do %while (%scan(&repvar,&i) ^= %str()
);

 %let rvar = %upcase(%scan(&repvar,&i)) ;
 %if %index(%STR(
%upcase(&&§ion._char)),%str(&rvar)) > 0
%then
 %let rep = &rvar ;
 %else
 %let rep = left(put(&rvar,12.)) ;
 value = "%scan(&repvar,&i) =" || left(&rep)
;
 output bads ;
 %let i = %eval(&i + 1) ;
 %end ;
 end;
 %end;
%mend preschk ;

Appendix 3: MACRO MISSCHK

%macro misschk (var=,depvar=,repvar=) ;

 /* This is a utility macro used to verify that a
variable is missing when it is supposed to be.
 var = variable to be evaluated
 depvar = dependent variable.. if special missing
 then conditional not legitimate skip
 repvar = report variable for QC, printed on error
 report */

 %local word i type rvar rep ;
 %if %index(%STR(&&§ion._char),
 %str(&var)) > 0 %then
 %do ;
 if &var = ’ ’ then
 %Let word = &var ;
 %let type = C ;
 %end ;
 %else
 %do ;
 %let word = left(put(&var,12.)) ;
 %let type = N ;
 if &var in(. ,.S) then
 %end ;
 do ;
 x&var = ’5’ ;
 %if &type = N %then
 %str(&var = .S ;) ;
 %if &type = C %then
 %str(&var = ’S’ ;) ;
 do ;

 /* if there is a dependency var, then check it for
DK, RF. If so, the tested variable’s xvar is set to
6 (conditionally legit skip), otherwise the xvar is
set to 5 */

 %if &depvar ^= %str() %then
 %do ;
 if &depvar in (.D,.R) then
 do;

 x&var = ’6’ ;
 if &var = .S then &var = .;
 end;
 else
 if &depvar in (.) and x&depvar = ’8’ then
 x&var = ’M’;
 %end ;
 end ;
 end ;
 else
 do ;
 x&var = ’7’ ;
 errtype = ’7’ ;
 variable = "&var" ;
 value = "&var=" || &word ;
 section = "§ion" ;
 output bads ;
 %let i = 1 ;
 %do %while (%scan(&repvar,&i) ^= %str()) ;
 %let rvar = %upcase(%scan(&repvar,&i)) ;

 %if %index(%STR(
%upcase(&&§ion._char)
),%str(&rvar)) > 0 %then
 %let rep = &rvar ;
 %else
 %let rep = left(put(&rvar,12.)) ;
 value = "&rvar=" || &rep ;
 output bads ;
 %let i = %eval(&i + 1) ;
 %end ;
 end ; %mend misschk ;

ACKNOWLEDGMENTS

The author would like to thank Michael C Hein, Dr.
John Wolken, Mike Sadof, Bruce Gilsen, Emily
Rosenberg and Dr. Dawn Li for their contributions to
the macros and this paper.

CONTACT INFORMATION

Gary McQuown
Data and Analytic Solutions, Inc.

10502 Assembly Drive
Fairfax, VA 22030
Phone: (703) 628-5681
Email: gmcquown@DASconsultants.com
Web: www.DASconsultants.com

SAS is a registered trademark or trademark of SAS
Institute, Inc., the USA and other countries.

