
I'll Have the TABULATEs a la ODS Please, With a Table of Contents On the Side

Ray Pass
Ray Pass Consulting

Abstract
The advent of the Output Delivery System (ODS) in
Version 8 (all right, it was really introduced in V7, but I
still refer to V7 as V8 beta) of the SAS System is truly
monumental in scope. It required rewriting all SAS
procedures that produce output (not all do) and splitting
out their “data components” from their “table definitions”
(presentation format templates). We now have the ability
to combine these components into customized “output
objects” and to send them to different output
“destinations”, including casting them as HTML pages.
When we do use the HTML destination, we also have the
ability to produce our main content output as one
component frame of a multi-frame page, the other
possible component frames being either procedure or
page oriented Tables of Contents. Although there are
methods for customizing the contents of the Tables of
Contents frames, they still do take up valuable screen real
estate. This paper demonstrates a methodology for
creating separate stand-alone Tables of Contents for a
multi-output ODS-HTML run, with navigational tools
included to go back and forth between the Table of
Contents and the content pages. Other data-driven
techniques are also demonstrated for renaming ODS-
HTML generated sequential body file names into more
meaningful content-oriented names. The techniques are
not difficult when based on the power of ODS and simple
SAS programming tools.

Introduction
Starting with Version 7 of the SAS System, the creation
of procedure output has been significantly and positively
enhanced due to the advent of the Output Delivery
System, or ODS to its friends. Waste no time in
becoming one of its friends if you have not already done
so. ODS is a major undertaking in that it reflects a
complete rewrite of all SAS procedures that produce
output. Whereas before ODS came along, the creation of
a procedure’s data was inextricably interwoven with the
creation of the display of the output data, these two
functions are now totally separate. ODS allows us to take
the pure “data components” from SAS procedures, and
combine them with various types of “table definition”
format templates, to produce customized “output objects”
which can be sent to various output “destinations”. These
“destinations” include standard SAS listing output,
HTML formatted output, PostScript ready printer output,
SAS data set output and MS Word compatible RTF
output (there are also additional experimental output
destinations such as LaTeX and CSS stylesheets.)

This paper will be restricted to ODS-HTML output and
will present a method for creating an alternate to one of
the packaged features of ODS, namely the optional
creation of Table of Contents frames to accompany the
main “body” frame of the output. If desired, ODS can
produce a single frame “body” content output, or it can
be instructed to produce the “body” content as one frame
in a multi-frame output. If this latter option is chosen, the
“body” content frame of the output occupies a large right-
hand portion of the page, and the smaller left hand portion
of the output page can contain either a procedure-oriented
Table of Contents frame, or a page-oriented Table of
Pages frame, or both. With simple content output, this
can be quite useful in terms of file or page navigation
within the total procedure output. In addition, there are
methods available to perform limited customization of the
Table of Contents and/or Table of Pages. However, when
the procedure creates multiple pages of sophisticated
output, as can happen with a complex PROC
TABULATE, or when the outputs of multiple procedures
are to be combined in an output-system, screen real estate
becomes much more valuable. It then becomes desirable
to dedicate the entire main output screen to the body
content, and to build separate stand-alone Tables of
Contents, or systems of Tables of Contents, with full
built-in screen-to-screen navigability. This can be easily
done by enhancing the values of selected data points
and/or simple Title statement strings, to contain not only
data but hot-link references to other pages as well. The
techniques themselves are simple and basic, although the
final programs can become quite large and sophisticated.

This paper will first present a sample of the standard ODS
system-provided Table of Contents and Table of Pages,
and will then present an example of building a system of
separate Tables of Contents with full navigational ability.
It will also discuss techniques for amplifying (renaming)
the sequentially labeled body files created by default by
ODS. This technique is totally data-driven and yields
meaningful content-specific names for the files.

ODS-Provided Table of Contents
Out-of-the-box, ODS comes with options for creating a
multi-frame HTML output as well as a single frame
design. If you only specify a body= file-specification,
you get only a main content body page. You can also
however add a frame= file-specification to your ODS
HTML statement. If you do so, you must add either a
contents= file-specification, a page= file-specification,
or both. These give you respectively, a Table of Contents
frame on your output page displaying all the various
procedure outputs that you create, or a Table of Pages

frame displaying all the various pages of output that you
create. These are often identical, however there are many
instances wherein a procedure creates many pages of
output. The following diagram represents a typical ODS

standard output screen containing a multi-frame output as
described above. (All diagrams in this paper are NOT
true screenshots, but rather are constructed facsimiles.)

Table of Contents

 The Univariate Procedure

 · INPDOL
· Moments
· Basic Measures of
Location and
Variability
· Quantiles
· OUTPDOL
· Moments
· Basic Measures of
Location and
Variability
· Quantiles

Table of Pages

1. The Univariate
Procedure

· Page 1
· Page 2

ODS does give you the ability to resize all the frames in
the standard display, and there are some customization
features available for the Table of Contents in which you
can do some re-labeling of output descriptions and some
font customization. When dealing with a large and
complex reporting system as the one used in the
application described in this paper however, screen real
estate is quite important and the limited amount of shared
space allotted to the Tables of Contents and the body
output do neither justice. It is just not possible to
optimally include enough output content information on
the page as well as a meaningful Table of Contents

Alternate ODS Table of Contents
This paper reports on work done on a set of business
reports to transform them from a SAS V6 solution to a

SAS V8 solution. Originally, SAS and Excel were used
to create a series of Excel spreadsheets which were then
distributed as either files or hardcopy. With the SAS V8
solution, the reports are now created as HTML pages and
are distributed on a company intranet. The final reports
are complex in that they are the result of a multi-platform
set of raw data sources, and because they are multi-
dimensional in structure.

All of the needed tables are created in a series of data-
driven macros. At the most granular level, each report is
created via a lengthy PROC TABULATE run resulting in
a table looking something like the following (the tables
presented here are only partial representations of the
actual tables, and contain randomly generated data):

Basic Statistical Measures
Location Variability

Mean 289.7776 Std Deviation 1269
Median 0.0000 Variance 1609344
Mode 0.0000 Range 18880

 Interquartile Range 0

The SAS System

 The UNIVARIATE Procedure

Variable: INPDOL

Moments

N 1319 Sum Weights 1319

Mean 289.777582
Sum
Observations

382216.63

Std Deviation 1268.59913 Variance 1609343.75

Skewness 7.65461147 Kurtosis 74.4715424

Uncorrected SS 2231872876 Corrected SS 2121115065

Coeff Variation 437.783739
Std Error
Mean

34.9302755

AUTOMOBILE Book of Business ALL STATES (Overall)

New **QUOTES** for MAY2000 as of: Jun 30, 2000

(all pages should be printed in landscape format)

Month Table of Contents Year Table of Contents

YE99

N
YE99

 %
MAR00

N
MAR00

%
APR0
0 N

APR00
%

MAY00
N

MAY00
 %

YTD0
0 N

YTD00
%

Premier
20,000 57.1% 2,000 58.7% 1,500 57.5% 1,000 55.4% 10,000 49.9%

Preferred
10,000 28.6% 1,000 29.3% 800 30.7% 600 33.2% 6,000 29.9%

Standard
5,000 14.3% 400 11.7% 300 11.5% 200 11.1% 4,000 19.9%

Unknown
100 0.3% 10 0.3% 10 0.4% 5 0.3% 60 0.3%

Vehicle
Tier

35,100 100.0% 3,410 100.0% 2,610 100.0% 1,805 100.0% 20,060 100.0%

Blended
10,000 11.1% 1,000 9.1% 800 11.8% 600 10.7% 5,000 7.7%

Straight
80,000 88.9% 10,000 91.0% 6,000 88.2% 5,000 89.3% 60,000 92.3%

Blended
Policies

90,000 100.0% 11,000 100.0% 6,800 100.0% 5,600 100.0% 65,000 100.0%

Restricted
5,000 5.6% 9,500 86.4% 800 11.8% 1,000 17.9% 5,500 8.5%

Not
Restricted 85,000 94.4% 1,500 13.7% 6,000 88.2% 4,600 82.1% 59,500 91.5%

Policies
with

Restricted
Vehicles

90,000 100.0% 11,000 100.0% 6,800 100.0% 5,600 100.0% 65,000 100.0%

… … … … … … … … … … …

… … … … … … … … … … …

… … … … … … … … … … …

Many
more
report

variables

… … … … … … … … … … …

The above table is the result of a two-dimensional PROC
TABULATE. The actual application includes this
“OVERALL” table (note the top level Title line) as well
as a series of tables breaking the data down further by
using a third “page”dimension. Note also that the above
table is for “ALL STATES”. Similar tables are created
for each individual state represented in the data. In
addition, sets of tables are created each month (this one is
for MAY2000 – 2nd Title line), with the months contained
in the report rollling forward with each new monthly run.
So, the final application is actually “5-dimensional”
(month, state and the three dimensions contained in each
PROC TABULATE.) Since PROC TABULATE can
create a maximum of three reporting dimensions (page,
row, column), and since the reports are quite wide in
terms of screen space, it was decided to create separate

stand-alone Tables of Contents with full navigational
features.

The list of third TABULATE page dimensions (including
the OVERALL level – collapsing all pages), as well as
the states reported on (including “ALL STATES”), is
contained in a generated Month Table of Contents (one
per month), and the list of sets of monthly reports is
contained in a generated Year Table of Contents. Each
Table of Contents is tabular in structure with the cells
containing hot links to lower level pages. The Year Table
of Contents contains links to various Month Tables of
Contents, and each Month Table of Contents contains
links to data tables. Each page also contains hot links
back to the higher level Tables of Contents in the Title
lines. The Tables of Contents look something like this
(once again, these are only partial renditions):

AUTOMOBILE Book of Business ---YEAR TABLE OF CONTENTS---

New **QUOTES** as of: Jun 30, 2000

*** Click on any Month-Year to go to reports for that Month-Year. ***

Obs Month and Year of Reports

1 May, 2000

2 April, 2000

3 March, 2000

4 February, 2000

5 January, 1999

6 December, 1999

7 November, 1999

8 October, 1999

9 September, 1999

10 August, 1999

11 July, 1999

12 June, 1999

AUTOMOBILE Book of Business ---MONTH TABLE OF CONTENTS---

New **QUOTES** for MAY2000 as of: Jun 30, 2000

*** Click on any state-category combination to go to that page. ***

Year Table of Contents

Overall

by
Comp/
NonComp

by
Tier

by
Business

by
Blend

by
Single/
Multiple

by
Seg/
Unseg

ALL
STATES

ALL-
OVER ALL-CNC ALL-TIER ALL-BUS ALL-BLEND ALL-SM

ALL-
SUS

AL AL-OVER AL-CNC AL-TIER AL-BUS AL-BLEND AL-SM AL-SUS

AR AR-OVER AR-CNC AR-TIER AR-BUS AR-BLEND AR-SM AR-SUS

AZ AZ-OVER AZ-CNC AZ-TIER AZ-BUS AZ-BLEND AZ-SM AZ-SUS

CO CO-OVER CO-CNC CO-TIER CO-BUS CO-BLEND CO-SM
CO-
SUS

CT CT-OVER CT-CNC CT-TIER CT-BUS CT-BLEND CT-SM CT-SUS

DC DC-OVER DC-CNC DC-TIER DC-BUS DC-BLEND DC-SM DC-SUS

Etc … … … … … … …

From the viewpoint of the user, the application begins
with the Year Table of Contents (this is actually the page
that appears when the user decides to view these reports
by clicking on a hot link on a higher overall system-wide
Table of Contents.) After choosing a specific month to
view, all states and “by” reports are viewable (clickable).
Navigation to other “by” reports, or other monthly reports
are always available.

Each Table of Contents is created as a simple PROC
PRINT output. When a PROC PRINT output is sent to
HTML via ODS, the default ODS template highlights the
column headers and the Obs column as seen in the Year
Table of Contents diagram. If any report variable is
declared as an ID variable, the template then highlights
the column for that variable, as shown for state in the
Month Table of Contents diagram (the Obs column is not
printed when an ID variable is present.) The Month Table
of Contents also uses an HREF enriched Title statement
to provide a link back to the Year Table of Contents.

Creation of the Year Table of Contents
The independent Tables of Contents are created each
month along with the sets of data reports. The Year Table
of Contents is updated so as to only include twelve
months of reports, and each new Month Table of Contents
is totally data-driven so as to only include those states for
which there are data. At present, all states are used each
month, but the system is flexible enough to handle
exceptions, should they occur.

Throughout this paper, pieces of code will be given to
demonstrate certain features of the system. These are
merely excerpts of the overall program, which is quite
large and highly intra-connected within itself. The code is
also adjusted herein to conform to the columnar
restrictions of these proceedings. The following code is
part of that used to create the Year Table of Contents:

%let t_sp =
 %nrstr();
%let today = %sysfunc(today(),worddate12.);
*---;
ods html body = "_yeartoc.htm";
*---;
title1 "<H3>AUTOMOBILE Book of Business
 &t_sp –-YEAR TABLE OF CONTENTS---
 </H3>";
title2 "<H3>New **QUOTES** &t_sp as of:
 &today</H3>";
title3 "<H4>*** Click on any Month-Year to
 go to reports for that Month-Year.
 ***</H4>";
run;
*---;
data yeartoc;
 set yeartoc;

 label monyrhtm = 'Month and Year of
 Reports';

 if _n_ = 1 then do;
 output;
 monyr = input("&my3",monyy7.);
 monyrexp = put(monyr,monname9.)||',’
 ||put(monyr,year4.);
 monyrhtm = ""
 ||monyrexp||"";
 output;
 end;

 else output;
run;
*---;
proc sort data=yeartoc nodup;
 by descending monyr;
run;
*---;
data yeartoc;
 set yeartoc(obs=12);
run;
*---;
proc print data=yeartoc label;
 var monyrhtm;
run;
*---;

The system starts with an input parameter for the current
month (in mmmyyyy format) which ends up in a macro
variable called my3. This is used above to create a new
data set variable monyr, which is then transformed into
monyrexp, and finally into a string contained in variable
monyrhtm. This string is constructed as an HTML
Anchor tag which displays as a hot link when viewed in a
web browser. Each month, a new observation is added to
the permanent SAS data set called yeartoc. The data set
is sorted (in descending order), unduplicated (to account
for update runs within a month) and then culled back to
only 12 observations. The final data set is the run through
ODS and PROC PRINT and its output is saved as an
HTML file called “_yeartoc.htm”. This is the initial data
set of the process and is referred to in the Title statements
for all other files.

Creation of the Month Table of Contents and the
TABULATE Report Tables
The Month Table of Contents is also created via a PROC
PRINT output, but it is much more data-driven. Before
we look at the code for it’s creation however, we must
take a short tangential trip to a naming issue in ODS-
HTML-land, and also a longer trip to the production of
the actual TABULATE output. Much of what happens
here is intermingled and can not be separated out in a neat
sequential modular manner. Eventually it all does come
together however.

All SAS output goes through ODS. Even if you do not
use any ODS statements at all, the output is still being
routed to the default ODS LISTING destination. If the
ODS HTML destination is opened via an ods html
statement, then all output is routed there until an ods
html close statement is issued. When ODS creates a
series of “body” files deriving from one ods html
statement, it names the files sequentially by appending
sequential numbers to the given body= name. For
example, given the following opening ODS code snippet,

*---;
ods html body = bodyname.htm;
*---;

files created after this code would be named:
“bodyname.htm”, “bodyname1.htm”, “bodyname2.htm”,
etc. This is as it should be because ODS has no way of
knowing what you really want to call the files, unless you
tell it. You could continually open and close the ODS
HTML destination, but that takes away the possibility of
automating the job through data-driven processing.

Data-driven techniques are those in which code is system-
created, usually through macro processing, which reflects
characteristics of the data being processed. In the present
situation, default sequentially named ODS HTML output
files are renamed with meaningful state labels, depending
on the states that are present in the input data. This is
accomplished in steps. In the sequence that follows, we
first set up some macro variables needed for the
renaming, then we create the TABULATE output, and
then we do the actual file renaming. At that point, we
create the Month Table of Contents.

First, three macro variables are created from the input
data as follows:

*---;
proc sql;
 create table states as
 select distinct state
 from source
 order by state;
quit;
*---;
data states;
 set states;
 num = _n_;
run;
*---;
proc sql noprint;
 select count(*),
 state,
 num
 into :mcount,
 :mstates separated by '#',
 :mnums separated by '#'
 from states;
quit;
*---;

The first thing that happens above is that we create data
set states containing an ordered unduplicated list of
those states that are contained in the data. A counter
variable, num is then added to the data set which assigns a
sequential number to each state. We then create three
macro variables as follows:

mcount - contains the number of states
mstates - contains a #-delimited list of the states
mnums - contains a #-delimited list of numbers
 corresponding to the values in mstates

After these macro variables are created, all of the ODS
HTML files are created via a series of TABULATE runs.
The code for these will not be included in any detail at all
here because it is not germane to the techniques under
discussion. Skeletally, this is what happens.

A few Title statement macro variables are created as
follows:

*---;
%let t4a = <H4> Month
 Table of Contents;
%let t4b =
 Year Table of Contents</H4>;
*---;

The source data set is sorted by state in preparation for
later PROC TABULATEs to be run using state as a
byvar. A macro is then built and run which executes a
PROC TABULATE for “ALL STATES”. This macro,
and the next to be discussed, has many input parameters,
the most important of which is &body. The value of this
parameter is passed into the macros to be used as the
“page” dimension variable in the PROC TABULATEs.
The code looks something like this:

*---;
%macro taball(body=, …);
 ods html newfile = proc
 body = "&body..htm"
 stylesheet = "_tab.css"
 (url="_tab.css");
 *--------------------------------------;
 title1 "<H3>AUTOMOBILE Book of Business
 &t_sp ALL STATES (&by1)</H3>";
 title2 "<H3>New **QUOTES** for &my3
 &t_sp as of: &today</H3>";
 title3 "<H4>(all pages should be printed
 in landscape format)<H4>";
 title4 "&t4a &t_sp &t4b";
 *--------------------------------------;
 proc tabulate data=source missing
 format=comma9.0
 style=[font_size=1];
 class &body …
 table &body,
 (rest of TABULATE code)
 run;
%mend;
*---;

Next, another macro is built and run which executes a
TABULATE procedure using state as a byvar to create
a separate table for each individual state contained in the
data. The code looks something like this:

*---;
%macro tabxst(body=, …);
 ods html newfile = bygroup
 body = "&body1..htm"
 stylesheet = (url="_tab.css");
 *--------------------------------------;
 title1 "<H3>AUTOMOBILE Book of Business
 &t_sp STATE: #byval(state)
 (&by1)</H3>";
 title2 "<H3>New **QUOTES** for &my3
 &t_sp as of: &today</H3>";
 title3 "<H4>(all pages should be printed
 printed in landscape format)
 </H4>";
 title4 "&t4a &t_sp &t4b";
 *--------------------------------------;
 proc tabulate data=source missing
 format=comma9.0
 style=[font_size=1];
 by state;

 class &body …
 table &body,

 (rest of TABULATE code)
 run;
%mend;
*---;

The first macro executes a PROC TABULATE for all the
states combined. The second macro runs the
TABULATE by state, creating separate tables, and
separate HMTL output files, for each state. Note that in
the first macro, a newfile=proc option is used, creating
one HTML file for the whole TABULATE output (all
states combined), and in the second macro, a
newfile=bygroup option is used, creating a new HTML
file for each individual state byvar value.

The macros are called once for each “by” group as
follows:

*-- ALL STATES COMBINED ------------------;
%taball(body=over, …)
%taball(body=cnc, …)
%taball(body=tier, …)
%taball(body=bus, …)
%taball(body=blend, …)
%taball(body=sm, …)
%taball(body=sus, …)

*-- BY STATE -----------------------------;
%tabxst(body=over, …)
%tabxst(body=cnc, …)
%tabxst(body=tier, …)
%tabxst(body=bus, …)
%tabxst(body=blend, …)
%tabxst(body=sm, …)
%tabxst(body=sus, …)

At this point, HTML files exist with names like:

over.htm, over1.htm, over2.htm …
cnc.htm, cnc1.htm, cnc2.htm …
tier.htm, tier1.htm, tier2.htm …
etc.

The final file renaming is accomplished through a macro
loop containing operating system delete and rename
commands. This system is run on a UNIX platform so the
rm and mv commands are used. Different commands
would be used with different operating systems. The code
looks something like the following:

*---;
%macro names;
 %do m=1 %to &mcount;
 %let nm = %scan(&mnums ,&m,#);
 %let st = %scan(&mstates,&m,#);
 %if %sysfunc(fileexist(over&nm..htm))
 %then %do;
 %sysexec rm over&st..htm;
 %sysexec rm cnc&st..htm;
 %sysexec rm tier&st..htm;
 %sysexec rm bus&st..htm;
 %sysexec rm blend&st..htm;
 %sysexec rm sm&st..htm;
 %sysexec rm sus&st..htm;

 %sysexec mv over&nm..htm
 over&st..htm;
 %sysexec mv cnc&nm..htm
 cnc&st..htm;
 %sysexec mv tier&nm..htm
 tier&st..htm;
 %sysexec mv bus&nm..htm
 bus&st..htm;
 %sysexec mv blend&nm..htm
 blend&st..htm;
 %sysexec mv sm&nm..htm
 sm&st..htm;
 %sysexec mv sus&nm..htm
 sus&st..htm;
 %end;
 %end;
%mend names;
*---;

This macro first checks for the existence of the
“over.htm” file. If this file exists, the macro then deletes
previous copies of the state-named files such as
“overAL.htm”, “overAR.htm”, etc. It then renames each
file from its numeric version to its corresponding state-
named version.

over1.htm becomes overAL.htm,
over2.htm becomes overAR.htm,
etc.

The correspondence between numbers and states was
accomplished earlier in the process when the mstates
and mnums macro variables were established.

Now we are finally ready to create the Month Table of
Contents. Here is the code:

*---;
proc template;
 define style styles.lhead;
 parent=styles.default;
 style header from
 headersandfooters
 / just=left;
 end;
run;
*---;
ods html body = "_toc.htm"
 style = lhead ;
*---;
title1 "<H3>AUTOMOBILE Book of Business
 &t_sp--MONTH TABLE OF CONTENTS---
 </H3>";
title2 "<H3>New **QUOTES** for &my3 &t_sp
 as of: &today</H3>";
title3 "<H4>*** Click on any state-category
 combination to go to that page. ***
 </H4>";
title4 "<H4> Year
 Table of Contents</H4>";
run;
*---;

data toc;
 length state over cnc tier bus blend sm
 sus $ 100;

 label state = '00'x
 over = '\\Overall'
 cnc = 'by\Comp/\NonComp'
 tier = '\by\Tier'
 bus = '\by\Business'
 blend = '\by\Blend'
 sm = 'by\Single/\Multiple'
 sus = 'by\Seg/\Unseg';

 state = 'ALL STATES';
 over = " ALL-OVER
 ";
 cnc = " ALL-CNC
 ";
 tier = " ALL-TIER
 ";
 bus = " ALL-BUS
 ";
 blend = " ALL-BLEND
 ”;
 sm = " ALL-SM
 ";
 sus = " ALL-SUS
 ";
 output;

 %do m=1 %to &mcount;
 state = "%scan(&mstates,&m,#)";
 over = "<A HREF='over" || trim(state)
 || ".htm'> " || trim(state)
 || "-OVER ";
 cnc = "<A HREF='cnc" || trim(state)
 || ".htm'> " || trim(state)

 || "-CNC ";
 tier = "<A HREF='tier" || trim(state)
 || ".htm'> " || trim(state)
 || "-TIER ";
 bus = "<A HREF='bus" || trim(state)
 || ".htm'> " || trim(state)
 || "-BUS ";
 blend = "<A HREF='blend"|| trim(state)
 || ".htm'> " || trim(state)
 || "-BLEND ";
 sm = "<A HREF='sm" || trim(state)
 || ".htm'> " || trim(state)
 || "-SM ";
 sus = "<A HREF='sus" || trim(state)
 || ".htm'> " || trim(state)
 || "-SUS ";
 output;
 %end;
run;
*---;
proc print data=toc split='\';
 id state;
run;
*---;

The process is to basically create a SAS data set and then
PROC PRINT it, but let’s go over some code anyway.
First of all, we had to use a small PROC TEMPLATE to
create a style to overcome a minor bug known to SI about
headers in PRINT output via ODS HTML. Sometimes
they just don’t align properly. We wanted them all left-
justified, and that is exactly what the lhead style does. It
is created in the TEMPLATE code and is used in the ODS
code. Simple. This is not the proper forum to go into
PROC TEMPLATE, so suffice it to say that it is an
extremely powerful new formatting tool in SAS. Spend
some time with it.

Data set toc is created with the TABULATE “page”
dimensions to serve as variables, labels to serve as
column headers, and observation cell values to serve as
the hot links in the display. The data set is run through a
PROC PRINT with ODS directing the output to the file
“_toc.htm”. The first observation output is for “ALL
STATES”. Next, an observation is created for each state
present in the source data by looping through the state
macro variables created earlier. Each cell value is built as
an HTML hot link. When it is displayed and clicked on,
the browser links to the called page. As mentioned
earlier, this PROC PRINT uses state as an ID variable.
The default display template used for PROC PRINT
automatically highlights ID variables. Since there is no
Obs column present when ID variables are used, the
display, with row and column headers highlighted, further
enhances the tabular Table of Contents display.

That’s basically it.

Conclusion
Although ODS is a monumental undertaking resulting in a
new world of display options and power, as is usually the
case, there is always room for improvement. In
particular, Table of Contents features of the new system
leave something to be desired when the created output is
more than a simple display. The technique of creating
HTML tag-enriched data values in separate stand-alone
Table of Contents data sets, coupled with similarly
enriched titles, provides a method of developing whole
systems of sophisticated, fully navigable Tables of
Contents to accompany and enhance the very powerful
reporting display systems that can be built with ODS.
The tools presented here are simple, and yet powerful.
You owe it to yourself, your clients, your organizations,
whatever, to spend some time using them to developing
your own powerful and productive systems.

Acknowledgements
SAS is a registered trademark of the SAS Institute Inc.,
Cary, NC, USA.

Excel is a registered trademark of the Microsoft
Corporation, Redmond, WA, USA.

Author Contact Information
The author of this paper can be contacted as follows:

Ray Pass
Ray Pass Consulting
5 Sinclair Place
Hartsdale, NY 10530

Voice: (914) 693-5553
Fax: (914) 206-3780
e-mail: raypass@att.net

