

A High-Level Summary Table Generation Language Supplying the Missing Link

between PROC MEANS using a CLASS Statement and PROC TABULATE

Dorothy E. Pugh, Independent Consultant

ABSTRACT

FlexTab is a high-level language used to generate
summary tables using categorical derived variables.
The FlexTab compiler, written in SAS®, uses as a flat
file containing FlexTab code as input, generating SAS
code requiring minor modifications from the
programmer to generate such a table. FlexTab is the
missing link between PROC MEANS with a CLASS
statement and PROC TABULATE. Each line of
FlexTab code specifies 1) which variables are in that
CLASS statement, 2) what summary statistic to
perform on them, 3) what observations to select from
the output data set based on the values of the variables
in the CLASS statement, and 4) where to put the result
in the generated summary table. To the computer-
naïve user, however, FlexTab code is a straightforward
statement of requirements. This paper provides a
detailed description of how the compiler and its
generated code work. Copies of the compiler code are
available upon request.

INTRODUCTION

PROC TABULATE and PROC REPORT have certain
shortcomings: they put many restrictions on the
observations you can use to calculate denominators
directly from an input data set. PROC TABULATE
requires that the denominators be the same as the Ns
for the CLASS variables. PROC REPORT gives you
more flexibility in defining with its COMPUTE blocks,
but you lose the flexibility with totals and subtotals that
PROC TABULATE gives you, unless you choose to
use the LINE statement, which is a de facto PUT
statement. Neither PROC REPORT nor PROC
TABULATE are really WYSIWYG: the layout of the
final table doesn’t stand out unless it’s very simple.
Finally, both PROC’s are black boxes: neither creates a
SAS data set of computed summary statistics that you
can actually print out as a diagnostic measure.

With FlexTab, a high-level WYSIWYG (what you see is
what you get) frequency table generation language
written in SAS, you can have your cake and eat it too,
in part because it generates PROC TABULATE code.
Using it, you can control the observations used in Ns
(including both numerators and denominators of
fractions) and the cells they are presented in. The
compiler (which translates the FlexTab code into SAS
code) generates a PROC MEANS step using a CLASS
statement for every CLASS variable you specify. The
output data set of this PROC MEANS contains counts
for every combination of unique values for every
combination of CLASS variables. The compiler
identifies the observations with the same combinations
of class variable values that the FlexTab code specifies
and, for each specified column n, creates a COLn
variable and sets it to the value of _FREQ_.
Denominator values are RETAINed variables set either
to the value of a previously defined COLn variable or
newly created. Fractions (which can be converted into

percents via a PROC FORMAT step) are the ratios of
previously defined COLn variable values and those of
previously defined denominator variables. The
resulting data set is the input data set to PROC
TABULATE code also generated by the compiler. This
SAS source code file in turn generates a summary
table.

HOW TO USE FLEXTAB: EXAMPLE

Here is a step-by-step illustration of how to use
FlexTab to create a summary table. First, you create a
flat file containing FlexTab code. Then, you run the
FLEXTAB.SAS program, which generates SAS code.
This SAS code needs you to complete 1) derivation of
discrete variables, one for the PROC TABULATE
CLASS statement and any more needed to select
observations for the summary statistics, 2) addition of
column headers and their formats, 3) addition of the
format for the first column of the table, and 4)
replacement of every instance of "?" in the PROC
TABULATE code with either a "," or a "*".

This table shows the difference in reviewer quality by
clinical center in a hypothetical clinical trial, thereby
identifying centers with possible reviewer training
problems. A value of AGREE = 1 means another QC
reviewer agreed with the review decision.

Step 1: Example FlexTab code and a
line-by-line explanation of what it means

class center baseline agree staffid;
2>baseline(1)*agree(.)*staffid(.) = count;
3>baseline(1)*agree(1)*staffid(.) = count;
4>3/baseline(1)*agree(.)*staffid(.) = count;
5>baseline(0)*agree(.)*staffid(.) = count;
6>baseline(0)*agree(1)*staffid(.) = count;
7>baseline(0)*agree(1)*staffid(.)/5 = count;
8>staffid in center = count;
9>staffid(agree = sum(=>6)) in center = count;
10>9/8 = count;

First line: List all CLASS (categorical) variables to be
used, including those the values of which you will use
to control the observations used in calculations. Put
the “row” (Column 1) variable (“center”) first.

Second line: The “2>” indicates that the output will go in
column 2. We start numbering with column 2 because
there is one “row” variable, which occupies column 1.
This code selects all the observations for which the
variable BASELINE = 1 and AGREE and STAFFID
have any value, counts them, and puts them in column
2. CENTER is not used in this expression: however,
its equivalent would be:

2>center(. 1-8)* baseline(1)*agree(.)*staffid(.) = count;
2>center(.1-4)*baseline(1)*agree(.)*staffid(.) = count,
 center(5-8)*baseline(1)*agree(.)*staffid(.) = count;

Lines 3,5 and 6 follow the same basic logic.

Fourth line: This line calculates a fraction. The
numerator is the same as the N generated by the third
line, and is referenced by the “3” accordingly. The
denominator, after the “/”, is another N calculated the
same way as those in lines 2 and 3.
Seventh line: This time, the denominator is the same
as the N generated by the fifth line, and is referenced
by the “5.”
Eighth line: Use the “in” operator to count the number
of STAFFID’s per CENTER, i.e., the number of unique
values of STAFFID within CENTER.
Ninth line: This line 1) takes the sum of AGREE=1
observations for each STAFFID, and 2) counts the
number of STAFFID’s per CENTER (as defined above)
who have at least 6 observations with AGREE=1.
Tenth line: To get the column 10 value, we divide the
column 9 value by the column 8 value (as computed
above) by simply referring to their column numbers.

Step 2: Generation of data manipulation
and table generation code. FLEXTAB.SAS
has two input parameters, the filespec for the input file,
a flat file containing the code given in Step 1, and the
filespec for the output file, which contains the code
below for this example. Note that you still need to fill in
the blanks and to replace every “?” with valid SAS
code. For instance, "colhd2" refers to the header for
column 2 of the output summary table, and "colfmt2"
refers to its corresponding format. The code used to
create data set INDATA for this example is shown in
Appendix A.

proc format;
 picture countfmt
 low-high = ' 0009 '
 other = ' 0 '
 ;
 picture pctfmt
 low - <0 = ' N/A ' (noedit)
 other = ' 009.9 ' (mult=1000)
 ;
 value rowfmt
 . = 'Overall'
 ???
 ;
run;

%let title=;
%let rowsize=;
%let misstxt=;
%let formchar= _ _ _ _ ;
%let box=; /* Header of first column */
%let colhd2 = ;
%let colhd3 = ;
%let colhd4 = ;
%let colhd5 = ;
%let colhd6 = ;

%let colhd7 = ;
%let colhd8 = ;
%let colhd9 = ;
%let colhd10 = ;

%let colfmt2 =;
%let colfmt3 =;
%let colfmt4 =;
%let colfmt5 =;
%let colfmt6 =;
%let colfmt7 =;
%let colfmt8 =;
%let colfmt9 =;
%let colfmt10 =;

* Build Data indata *
* -> create categorical variables *;
**************************************;

data indata;
 ???
run;

data indata;
 set indata;
 people = 1;
 numer = 1;
run;

proc sort data=indata;
 by center staffid;
run;

data indata;
 set indata;
 by center staffid;
 if first.staffid and staffid gt .z then
 count8 = 1;
run;

proc sort data=indata;
 by center staffid;
run;

proc means data=indata noprint;
 by center staffid;
 var agree ;
 output out=sums ;
 sum =sum ;
run;

data sums ;
 set sums (where=(sum ge 6));
 by center staffid;
 count9 = agree;
run;

data indata;
 merge indata sums ;
 by center staffid;
 if not first.staffid then count9 = . ;
run;

proc sort data=indata;
 by center baseline agree staffid;
run;

proc means data=indata noprint;
 class center baseline agree staffid;
 var count8 count9 numer people ;
 output out=stats
 n =count8 count9 countnum countpeo
 sum =sum8 sum9 sumnum sumpeo
;
run;

proc sort data=stats;
 by center baseline agree staffid;
run;

data stats;
 set stats;
 by center baseline agree staffid;
 retain den4_1;
 retain denom5 denom8;
 if baseline in (1) and agree in (.) and staffid in (.)
 then col2 = sumnum; ;
 if baseline in (1) and agree in (1) and staffid in (.)
 then col3 = sumnum; ;
 if baseline in (1) and agree in (.) and staffid in (.)
 then den4_1 = sumpeo; ;
 if baseline in (0) and agree in (.) and staffid in (.)
 then col5 = countnum; ;
 if baseline in (0) and agree in (1) and staffid in (.)
 then col6 = countnum; ;
 if col5 ne . then denom5 = col5 ;
 if baseline eq . and agree eq . and staffid eq .
 then col8 = count8 ;
 if baseline eq . and agree eq . and staffid eq .
 then col9 = count9 ;
 if col8 ne . then denom8 = col8 ;

 col4 = col3 /den4_1 ;
 if baseline in (0) and agree in (1) and
 staffid in (.) and denom5 ne . then
 col7 = sumnum /denom5 ;
 col10 = col9 / denom8 ;
 if col2 ne . or col3 ne . or col4 ne . or
 col5 ne . or col6 ne . or col7 ne . or
 col8 ne . or col9 ne . or col10 ne .;
run;

PROC TABULATE DATA = stats

 NOSEPS
 MISSING
 FORMCHAR= " &formchar ";
 VAR col2 - col10 ;
 FORMAT center rowfmt. ;
 CLASS center;
 TABLE center = ' ' ? /* replace each ? with
 , or * */
 (
 col2 = "&colhd2"*mean=' '*f=&colfmt2
 col3 = "&colhd3"*mean=' '*f=&colfmt3
 col4 = "&colhd4"*mean=' '*f=&colfmt4
 col5 = "&colhd5"*mean=' '*f=&colfmt5
 col6 = "&colhd6"*mean=' '*f=&colfmt6
 col7 = "&colhd7"*mean=' '*f=&colfmt7
 col8 = "&colhd8"*mean=' '*f=&colfmt8
 col9 = "&colhd9"*mean=' '*f=&colfmt9
 col10 = "&colhd10"*mean=' '*f=&colfmt10
)
 /PRINTMISS
 MISSTEXT = "&misstxt"
 RTS = &rowsize
 BOX = " &box " ;
run;

Step 3: Fill in the blanks and “?’s” on the
above file and run it. Note that you should
replace the “?” in the TABLE statement of the PROC
TABULATE code with a “*” or a “,”. Final summary
table output for this example is presented in Appendix
B. A printout of the final data set input to PROC
TABULATE code is presented in Appendix C.

COMPILER DESIGN

A compiler is a program that reads input code written in
one computer language, parses it (i.e., analyzes its
structure and components), and generates equivalent
code in another, usually lower-level, language. This
section will explain how this compiler was designed and
display an intermediate data set, a data dictionary that
contains a data set containing the results of the
parsing.

SAS is not an ideal language for writing a compiler.
For one thing, it is not capable of doing recursion, i.e.,
the calling of subroutines/functions/macros by one
another in any sequence that you might specify.
Recursion allows you to write code which nests
expressions at a depth limited only by your computer's
resource allocations. However, in a language like SAS,
a compiler would have limited ability to generalize and
all combinations would have to be spelled out by the
parser. Fortunately, the expression complexity that
FlexTab is able to handle is sufficient for the typical
programming problem.

The compilation process consists of 1) parsing the
code, i.e., recognizing and storing grammatical units
(i.e., by applying rules of that input language’s
grammar, and 2) converting each grammatical unit into
code for an equivalent grammatical unit in the output
language. In this case, FLEXTAB.SAS reads the input
code as an input flat file, parses it, puts the language

units into a SAS data set, and, on the basis of its
content, writes equivalent SAS code to an output flat
file.

The grammar of this language is analogous to that of
English. English sentences are broken up into
syntactical units, such as “subjects” and “predicates.”
In turn, each syntactical unit is broken up into “parts of
speech” which include nouns, verbs, adjectives,
adverbs, etc. This is not a hierarchical relationship,
however, since, for instance, a noun can be either part
of a “subject” or a “predicate.” However, different “parts
of speech” are allowable in a “subject” and others in a
“predicate.”

Imagine, then, a new grammar in which the syntactical
units have numbers. Within them, “Variable” and “Stat”
are roughly equivalent to nouns or noun clauses, and
are modified by “quantifiers,” which may be constants,
variables or expressions. Operators, somewhat like
verbs in English, are “*” (intersection), “/” (division), “,”
(end of a phrase), “;” (end of a sentence). A sentence
fully describes the contents of a summary table
column, while a phrase describes part of a column,

sometimes as little as a table cell. Another operator,
“in,” represents the observation count for one variable
within each unique value of another.

At the end of the parsing step, FLEXTAB.SAS
generates a data dictionary containing its interpretation
of the code in the form of a SAS data set. This data
set contains a line for every variable and operator
which in turn contains variables which indicate how
they should be handled. The second part of
FLEXTAB.SAS uses this data set to determine what
SAS code needs to be generated. Appendix D
contains a printout of the observations of the data
dictionary SAS data set produced by the above
example which pertain to column 9 of the output
summary table.

A state transition diagram describing the language
grammar serves as a compiler programming aid in the
way that a flow chart serves as a data processing
program aid. It is displayed in Figures 1 and 2.
Figure 2 is an expansion of the “Quantifier” state in
Figure 1 describing the special construction in
Statement 9 of the FLEXTAB.SAS code above.

ANOTHER EXAMPLE

It is important to note that PROC TABULATE will
generate rows for every combination of unique values
of all variables in the CLASS statement, regardless of
whether these combinations exist in the data. For
example, if you are reporting baseball statistics for
Team 1 and 2, where Team 1 has Players 1, 2 and 3,
and Team 2 has Players 4,5 and 6, PROC TABULATE
will generate rows for Players 1 through 6 for both
Team 1 and Team 2. Therefore, you are better off
deriving one CLASS variable from multiple discrete
variables and using a format that displays what these
values really mean.

One feature the previous example does not illustrate is
the use of one category variable as a row sequence
number designator, which can in turn have a
complicated format illustrating hierarchical
relationships. For this example, you will need to add
this format to the designated section of the code
generated by FLEXTAB.SAS, i.e., near the top where
"value rowfmt" is shown.

 VALUE rowfmt
 1 = 'Hypertension Yes'
 2 = ' No'
 3 = ' Unknown'
 4 = ' Missing'
 5 = 'Diabetes mellitus Yes'
 6 = ' No'
 7 = ' Unknown'
 8 = ' Missing'
 9 = 'Insulin treated diabetes Yes'
 10 = ' No'
 11 = ' Unknown'
 12 = ' Missing'
 13 = 'Oral hypoglycemic Rx Yes'
 14 = ' No'
 15 = ' Unknown'
 16 = ' Missing'
 17 = 'Smoking History Yes'
 18 = ' No'
 19 = ' Unknown'
 20 = ' Missing'
 21 = 'Hypercholesterolemia Yes'
 22 = ' No'
 23 = ' Unknown'
 24 = ' Missing'
 25 = 'Estrogen Prior to MI Yes'
 26 = ' No'
 27 = ' Unknown'
 28 = ' Missing'
 29 = 'Estrogen use, Current Yes'
 30 = ' No'
 31 = ' Unknown'
 32 = ' Missing'
 ;

There is one more consideration in producing this
format. SAS will discard all the blanks when producing
the summary table the way the format is. Therefore, a
special blank character has to be entered in place of
the first of a block of existing blanks, so that, e.g., the
last line above would be "32 = '&blnk Missing' " third

line above it would be "29 = 'Estrogen use, Current
&blnk.Yes' "; The macro variable &blnk would be
created this way:

%let ffx = FF;

data _ null _;
 call symput('blnk',trim(left(input("&ffx",$hex2.))));
run;

Here is the accompanying FlexTab code:

data indata;
trvar r0-r32;
class varno group sex;
3>varno(1-24)*sex(' ') = sum,
 varno(25-32)*sex('F') = sum;
4>varno(1-8)*sex(' ')/varno(0)*sex(' ') = sum,
 varno(9-12)*sex(' ')/varno(5)*sex(' ') = sum,
 varno(13-24)*sex(' ')/varno(0)*sex(' ') = sum,
 varno(25-28)*sex('F')/varno(0)*sex('F') = sum,
 varno(29-32)*sex('F')/varno(25)*sex('F') = sum;

Although you will need to create the r0-r32 variables by
assigning a 1 to r0 and either 1 or 0 to the rest of this
series of logical variables, FLEXTAB.SAS creates
VARNO, i.e., the first listed CLASS variable, by
transposing r0-r32.

This is a table with many different N’s and
denominators. For some entries, we need to report
data that applies only to diabetic patients (VARNO=5),
women (SEX=’F’), or women who have taken estrogen
prior to MI (SEX=’F’*VARNO(25)).

Note that the second line starts with “3>”. This
indicates that there are two categorical variables this
time (VARNO and GROUP) that will appear in the
CLASS statement of the PROC TABULATE code that
this FlexTab code will generate. Two columns are
specified (3 and 4), but the final number of columns
depends on what you replace the “?” with in the TABLE
statement. If you replace it with “*”, you will have four
columns, one each for VARNO and GROUP, and two
reflecting, respectively, the counts and fractions as
specified. However, if you replace the “?” with “,”, the
results will not be quite as WYSIWYG: You will have
one COLUMN for VARNO values, then six others:, the
unique values of GROUP by the two columns above.
Since GROUP values were not restricted by the above
FlexTab statements, they default to the two unique
values GROUP assumes, plus a third overall category.

This is the SAS code produced by the above FlexTab
code:

proc format;
 picture countfmt
 low-high = ' 0009 '
 other = ' 0 '
 ;
 picture pctfmt
 low - <0 = ' N/A ' (noedit)

 other = ' 009.9 ' (mult=1000)
 ;
 value rowfmt
 . = 'Overall'
 ???
 ;
run;

%let title=;
%let rowsize=;
%let misstxt=;
%let formchar= _ _ _ _ ;
%let box=; /* Header of first column */
%let colhd3 = ;
%let colhd4 = ;

%let colfmt3 =;
%let colfmt4 =;

**
* Build Data indata *
* -> user creates categorical variables *;
**;

data indata;
 ???
run;

data indata(drop=r0-r32);
 set indata;
 array _trvars(varno) r0-r32;
 do over _trvars;
 numer = _trvars - 1;
 people = 1;
 output;
 end;
run;

proc sort data=indata;
 by varno group sex;
run;

proc means data=indata noprint;
 class varno group sex;
 var numer people ;
 output out=stats
 sum =sumnum sumpeo
;

run;

proc sort data=stats;
 by varno group sex;
run;

data stats;
 set stats;
 by varno group sex;
 retain den4_1 den4_2 den4_3 den4_4 den4_5;
 if 1 <=varno <=24 and sex in (' ')
 then col3 = sumnum; ;
 if 25 <=varno <=32 and sex in ('F')
 then col3 = sumnum; ;
 if varno in (0) and sex in (' ')
 then den4_1 = sumpeo; ;
 if varno in (5) and sex in (' ')
 then den4_2 = sumpeo; ;
 if varno in (0) and sex in (' ')
 then den4_3 = sumpeo; ;
 if varno in (0) and sex in ('F')
 then den4_4 = sumpeo; ;
 if varno in (25) and sex in ('F')
 then den4_5 = sumpeo; ;

 if 1 <=varno <=8 and sex in (' ') and den4_1 ne .
 then col4 = sumnum /den4_1 ;
 if 9 <=varno <=16 and sex in (' ') and den4_2 ne .
 then col4 = sumnum /den4_2 ;
 if 17 <=varno <=24 and sex in (' ') and den4_3 ne .
 then col4 = sumnum /den4_3 ;
 if 25 <=varno <=28 and sex in ('F') and den4_4 ne .
 then col4 = sumnum /den4_4 ;
 if 29 <=varno <=32 and sex in ('F') and den4_5 ne .
 then col4 = sumnum /den4_5 ;
 if col3 ne . or col4 ne .;
run;

PROC TABULATE DATA = stats
 NOSEPS
 MISSING
 FORMCHAR= "&formchar";
 VAR col3 - col4 ;
 FORMAT varno rowfmt. ;
 CLASS varno group;
 TABLE varno = ' ' ? group = ' ' ? /* replace each ? with , or * */
 (
 col3 = "&colhd3"*mean=' '*f=&colfmt3
 col4 = "&colhd4"*mean=' '*f=&colfmt4
)
 /PRINTMISS
 MISSTEXT = "&misstxt"
 RTS = &rowsize
 BOX = " &box " ;
run;

CONCLUSION

We have shown you how to use FlexTab to do most of
the work toward generating an important type of
summary table with complexities that once represented
a quality assurance nightmare. The section explaining
the compiler should serve as a guide to help you

modify your own copy of the code from me, which I will
distribute on request. This new language can, at the
very least, serve as a useful communication tool
between you and the most harried statistician or
medical monitor. At the other extreme of possibilities, it
can help you 1) to identify bugs in the most complex
algorithms generating categorical variables, 2) to spot
extra, i.e., unwanted, observations in your data set, 3)

to display troublesome trends in complex abstracted or
otherwise categorical data, including signs of danger in
biomedical data. I especially hope that this prototype
program will someday lead to the development of a
power tool reducing the current burden on the clinical
monitoring aspect of clinical trials programming enough
to keep clinical trials from being the bottleneck in the
prohibitively expensive drug development process.

ACKNOWLEDGMENTS

SAS is a registered trademark or trademark of SAS
Institute Inc. in the USA and other countries. 
indicates USA registration. Other brand and product
names are registered trademarks of their respective
companies.

REFERENCES

Abolafia, Jeffrey M. and Stephen M. Noga (1997), “The
Tabulate Procedure: One Step Beyond the Final
Chapter,” Proceedings of the Sixth Annual Southeast
SAS Users Group Conference,292-300.

SAS Institute Inc. (1990), The SAS Guide to
TABULATE Processing, Second Edition, Cary, NC:
SAS Institute, Inc.

SAS Institute Inc., The SAS Guide to the REPORT
Procedure: Usage and Reference, Version VI, First
Edition, Cary, NC: SAS Institute, Inc.

AUTHOR CONTACT INFORMATION

Dorothy Pugh

29 Sandstone Ridge Dr.
Durham, NC 27713
(919) 493-1237
dorothypugh@aol.com

APPENDIX A
Example of user-written code creating
“raw” input data

* Build Data IN
**************************************;
data in;

 do center = 1 to 8;
 do pat = 1 to 5;
 patid = 10*center+pat;
 do vis = 1 to 5;

 baseline = vis gt 2;
 agree = ranuni(357) gt .5;
 output;
 end;
 end;
 end;
run;

data in;
 set in;
 staffid = 100*center + int(2*ranuni(2));
run;

APPENDIX B
Summary Table Output

QC Overread Stats for Staff

 Clinical Center Number Number Percent
 Number Number Percent Number Number Percent of with >=6 with >=6
 Overread Agr. Agr. Overread Agr. Agr. Intervi- Overread Overread
 Baseline Baseline Baseline Followup Followup Followup ewers Agr. Agr.

 Overall 120 72 60.0 80 41 51.2 16 13 81.2
 A Univ. 15 12 80.0 10 2 20.0 2 2 100.0
 B Univ. 15 11 73.3 10 6 60.0 2 2 100.0
 C Univ. 15 11 73.3 10 4 40.0 2 2 100.0
 D Univ. 15 9 60.0 10 3 30.0 2 1 50.0
 E Univ. 15 8 53.3 10 7 70.0 2 2 100.0
 F Univ. 15 5 33.3 10 4 40.0 2 1 50.0
 G Univ. 15 6 40. 0 10 8 80.0 2 1 50.0
 H Univ. 15 10 66.6 10 7 70.0 2 2 100.0

APPENDIX C
Observations from input data set to PROC TABULATE
 b
 a s
 c s t _ _ c c p d d d
 e e a a T F o o e e e e c
 n l g f Y R u u o n n n c c c c c c c c o
 O t i r f P E n n p 4 o o o o o o o o o o l
 b e n e i E Q t t l _ m m l l l l l l l l 1
 s r e e d _ _ 8 9 e 1 5 8 2 3 5 6 8 9 4 7 0

 1 0 200 16 13 200 . . 16 16 13 . . 0.8125
 2 . 0 . . 4 80 13 . 80 . 80 16 . . 80
 3 . 0 1 . 6 41 9 . 41 . 80 16 . . . 41 . . . 0.5125 .
 4 . 1 . . 4 120 3 13 120 120 80 16 120
 5 . 1 1 . 6 72 2 11 72 120 80 16 . 72 0.60000 . .
 6 1 . . . 8 25 2 2 25 120 80 2 2 2 . . 1.0000
 7 1 0 . . 12 10 2 . 10 120 10 2 . . 10
 8 1 0 1 . 14 2 . . 2 120 10 2 . . . 2 . . . 0.2000 .
 9 1 1 . . 12 15 . 2 15 15 10 2 15
10 1 1 1 . 14 12 . 1 12 15 10 2 . 12 0.80000 . .
11 2 . . . 8 25 2 2 25 15 10 2 2 2 . . 1.0000
12 2 0 . . 12 10 2 . 10 15 10 2 . . 10
13 2 0 1 . 14 6 2 . 6 15 10 2 . . . 6 . . . 0.6000 .
14 2 1 . . 12 15 . 2 15 15 10 2 15
15 2 1 1 . 14 11 . 2 11 15 10 2 . 11 0.73333 . .
16 3 . . . 8 25 2 2 25 15 10 2 2 2 . . 1.0000
17 3 0 . . 12 10 1 . 10 15 10 2 . . 10
18 3 0 1 . 14 4 1 . 4 15 10 2 . . . 4 . . . 0.4000 .
19 3 1 . . 12 15 1 2 15 15 10 2 15
20 3 1 1 . 14 11 1 2 11 15 10 2 . 11 0.73333 . .
21 4 . . . 8 25 2 1 25 15 10 2 2 1 . . 0.5000
22 4 0 . . 12 10 1 . 10 15 10 2 . . 10
23 4 0 1 . 14 3 1 . 3 15 10 2 . . . 3 . . . 0.3000 .
24 4 1 . . 12 15 1 1 15 15 10 2 15
25 4 1 1 . 14 9 . 1 9 15 10 2 . 9 0.60000 . .
26 5 . . . 8 25 2 2 25 15 10 2 2 2 . . 1.0000
27 5 0 . . 12 10 1 . 10 15 10 2 . . 10
28 5 0 1 . 14 7 1 . 7 15 10 2 . . . 7 . . . 0.7000 .
29 5 1 . . 12 15 1 2 15 15 10 2 15
30 5 1 1 . 14 8 1 2 8 15 10 2 . 8 0.53333 . .
31 6 . . . 8 25 2 1 25 15 10 2 2 1 . . 0.5000
32 6 0 . . 12 10 2 . 10 15 10 2 . . 10
33 6 0 1 . 14 4 1 . 4 15 10 2 . . . 4 . . . 0.4000 .
34 6 1 . . 12 15 . 1 15 15 10 2 15
35 6 1 1 . 14 5 . . 5 15 10 2 . 5 0.33333 . .
36 7 . . . 8 25 2 1 25 15 10 2 2 1 . . 0.5000
37 7 0 . . 12 10 2 . 10 15 10 2 . . 10
38 7 0 1 . 14 8 1 . 8 15 10 2 . . . 8 . . . 0.8000 .
39 7 1 . . 12 15 . 1 15 15 10 2 15
40 7 1 1 . 14 6 . 1 6 15 10 2 . 6 0.40000 . .
41 8 . . . 8 25 2 2 25 15 10 2 2 2 . . 1.0000
42 8 0 . . 12 10 2 . 10 15 10 2 . . 10
43 8 0 1 . 14 7 2 . 7 15 10 2 . . . 7 . . . 0.7000 .
44 8 1 . . 12 15 . 2 15 15 10 2 15
45 8 1 1 . 14 10 . 2 10 15 10 2 . 10 0.66667 . .

APPENDIX D
Selected observations from "data dictionary" data set

----------------------------------- col=9 ------------------------------------

 s a c o
 t l l l v
 a s p i a d q a
 t t h s q n s s d q s r
 e n a a t u l f t s e i u t t
 O m a n d a a i l a v n n a a y
 b n m a e t n n a g a o o n g p
 s t e m n e t e g e r m p t e e

 59 1 staffid count . variable (ge 6) 0 9 1.0 0 0 agree = sum(ge 6) 1 alpha
 60 1 count . in 0 9 1.0 0 9 1
 61 1 center count . variable 0 9 1.0 0 9 1 alpha
 62 1 count . = 0 9 1.5 0 0 1
 63 1 count count . stat 0 9 2.0 0 0 1 alpha
 64 1 count . ; 0 9 5.0 0 0 1

----------------------------------- col=9 ------------------------------------

 s a c o
 t l l l v
 a s p i a d q a
 t t h s q n s s d q s r
 e n a a t u l f t s e i u t t
 O m a n d a a i l a v n n a a y
 b n m a e t n n a g a o o n g p
 s t e m n e t e g e r m p t e e

 59 1 staffid count . variable (ge 6) 0 9 1.0 0 0 agree = sum(ge 6) 1 alpha
 60 1 count . in 0 9 1.0 0 9 1
 61 1 center count . variable 0 9 1.0 0 9 1 alpha
 62 1 count . = 0 9 1.5 0 0 1
 63 1 count count . stat 0 9 2.0 0 0 1 alpha
 64 1 count . ; 0 9 5.0 0 0 1

