
Walk Our Children to School: an Internet Data Management Application
Carol Martell, Highway Safety Research Center, Chapel Hill, NC

ABSTRACT
This paper describes a complete data management and query
system wherein data is collected, maintained and dynamically
surfaced on the web. The system integrates SAS/IntrNet
Application Dispatcher, htmSQL, the email facility, and an ODS
HTML imagemap. Even though all data is manually screened
prior to release, the manual effort is minimal and the people
screening and maintaining data are not SAS users. Good, old-
fashioned data management experience teamed up with common
sense can use the power of SAS to take care of the scene behind
the web pages.

INTRODUCTION
The fourth annual National Walk Our Children to School Day is
scheduled for October 6, 2000. Children, parents and community
leaders will walk to school together to promote safety, health,
physical activity, and environmental concern. Anticipation is that
participation in this event to engender partnerships for change will
again dramatically increase as in previous years. The goal of
enabling synergy among event providers and of quickly surfacing
new information would best be realized with a dynamic web
application.

Having encountering various difficulties using other application
server products to manage data, our web development group
asked whether the SAS System could handle data from an online
registration form and incorporate the following requirements. After
initial web registration, people would need to update their records
as event plans coalesce and more community leaders and
organizations agree to participate. All registrants would be asked
to update after the event, describing what actually happened in
their community. Event information provided would be
immediately available at www.walktoschool-usa.org. All content
would be manually screened prior to release.

The project was a litmus test of integrating web developers with
SAS programmers, so there were effectively two sets of clients
needing special care: the people registering on the web
(‘registrants’) and the in-house people who would manage the
data (‘users’). The SAS System provides a variety of components
that made it possible to build an application designed to keep the
users in their native web environment with no learning curve.

SAS Application Dispatcher handles the original registration data.
Manual data content screening occurs via email. Registrants are
given a userid and password to access and update their records.
A SAS/GRAPH drilldown map of the United States is the entry
point for dynamic data queries, providing immediate access to
new data. A dynamic web page listing all registrants gives the in-
house users update access and the means to easily supply lost
userids and passwords or to simply communicate with individual
registrants. A web form provides a bulk email facility for general
announcements to the registrants.

INITIAL REGISTRATION

The SAS Application Dispatcher broker accepts information from
the registration form in Figure 1 and executes a SAS program.
The program creates a permanent SAS table containing only that
registrant’s observation and sends email containing those values
to the in-house users for screening. The acknowledgement seen
in Figure 2 is returned to the registrant’s browser window.

Figure 1

Figure 2

Userid and password variables are also created in the program
and are combined to form the SAS table name seen in Figure 3.

Figure 3

 With Application Dispatcher, information typed into each input
field in a web form is passed to a SAS program. The program
handling this form data is called register.sas and it resides in a
directory defined to Application Dispatcher as myjobs. This
information is specified in the html source code as:

<input type=hidden name="_program"
value="myjobs.register.sas">

As example of how data is passed, the html source code for the
first name field is:

<input type = "text" name = "first_name"
size = "30">

The registration form in Figure 1 has ‘Carol’ in the blank for first
name. The field name, first_name, is passed to register.sas as
the macro variable &first_name having the value ‘Carol’. The
program can assign the macro variable’s value to the SAS table
variable for first name:

f_name=symget(‘first_name’);

Register.sas also sends an email message to a project email
account. The body of the message contains all the data from the
registration form for screening as seen in Figure 4.

Figure 4

Sending email is accomplished using filename and put
statements. Following the syntax for our Unix host system, the
fileref is:

filename m email
'walk@www.walktoschool-usa.org'
subject=”&userid&pwd”;

Put statements generate the message body:
file m;
put
‘Please screen the following registration:’;
put salutation f_name l_name;

MANUAL SCREENING
Content screening is carried out using email. A reviewer reads
the email message to determine whether to keep or delete the
record. The end of each message contains three hypertext links
as seen in Figure 5. The URL for each link includes parameters
equivalent to the fields in a web form.

Figure 5

Each link executes a different SAS Application Dispatcher
program. One link adds a valid registration to the main
registration table. Another link deletes a bogus registration. The
third link sends email to the registrant acknowledging registration
and conveying the userid and password. Figure 6 shows the
bottom of that email message for our example registration.

Figure 6

SURFACING DATA
The entry point for data presentation on the web is an imagemap
of the United States (Figure 7.) Since the map shows states with
registered events, it must be recreated whenever someone
registers from a new state. When a record is added, if the state of
residence was not already in the main table, code is executed to
recreate the imagemap with the new state highlighted.

Figure 7

Imagemaps are generated using SAS/GRAPH and the Output
Delivery System (ODS).

ods listing close;
filename carol 'mypath';
ods html file='us2.html' path=carol;
goptions device=gif noborder;
pattern1 color=CXFFCC00 value=msolid ;
proc gmap map=maps.us imagemap=mapds all
data=states;
 id state;
 choro j/
 coutline=black cempty=black
 html=st name="us" nolegend ;
run;
ods html close;
quit;

Highlighted states, those with registrants, are drillable. Every link
in the map is to the same htmSQL page. A state parameter
customizes the resulting page. The links are set to the value of
the variable named in the html= parameter in the choro
statement. That variable was earlier constructed using SAS SQL.

create table states as
 select
 1 as j,
 stfips(state) as state,
 'href="citylist.hsql?st='||state||’”’
 as st
 from
 (select distinct state from r.registrants)
 order by state;

The North Carolina link, for example, is the following:
citylist.hsql?st=NC

When clicked, the htmSQL page queries the registration table for
all records from the state of North Carolina and return a list of
communities with registered events (Figure 8).

Figure 8

Figure 9

SAS htmSQL resembles other application server packages in
that the code for the page contains one or more query sections
with corresponding sections to html-encode the query results for
the browser window. The browser window shows only the
formatted query results. The parameters passed in as well as the
columns selected in the SQL query are treated as macro
variables syntactically referenced inside brackets: {&var}.

A SAS SHARE server provides access to the data and is
identified in the query tag.

{query server="host.myserver"}

The citylist.hsql query is complicated by the fact that a single
registration can encompass events in up to five schools that may
be in different communities. The following sql section selects a
distinct list of communities in a given state.

{sql}
select distinct * from
(
 (select city1 as city,
 translate(trim(city1),'+',' ') as cityp
 from wr.registrants where state="{&st}")
 union
 ...
 union
 (select city5 as city,
 translate(trim(city5),'+',' ') as cityp
 from wr.registrants where state="{&st}")
)
{/sql}

The eachrow section formats the results of the query. Each
community returned from the above sql section is html-encoded

to be a link with appropriate parameters. This enables the
browser to drill down to another level of information.

{eachrow}
 <p>

 {&city}</p>
{/eachrow}
{/query}

Clicking on Chapel Hill in Figure 8 drills down to reveal the event
used in our illustrations. Getcity.hsql?sta=NC&cit=Chapel+Hill
dynamically creates Figure 9.

REGISTRANT UPDATES
Registrants may update information using their userid and
password in the login web form seen in Figure 10.

Figure 10

Clicking the update button executes an htmSQL query which
returns what appears to be the original registration form (Figure
11) with the current information already typed into the fields.

Figure 11

Populating the registration form with data from the registrant table
using SAS htmSQL is simple. The html code for the original form
is sandwiched into the eachrow section. The preceeding sql
section selects the correct record. Macro variables containing

values for that record are inserted into each input field using the
value= html tag parameter.

{sql}
 select *
 from wr.registrants
 where userid="{&u}" and pwd="{&p}"
{/sql}

{eachrow}
 …
 <input type="text" name="first_name”
 size="30" value=”{&f_name}”>
 …
{/eachrow}

Processing registrant updates follows a path nearly identical to
that for the original registration. Email reflecting the new version
of the registration is sent to the reviewer, who again clicks an
appropriate link to either accept or reject the changes. If
accepted, an update data step replaces the old record.

MAINTENANCE
An htmSQL page (Figure 12) provides access for in-house users.
The query lists all registrants, providing the options to update
(update.hsql) or delete (remove.hsql) each record or to send an
email message to the registrant (emailem.hsql). Each option is
available as an htmSQL link with parameters to select the
specific record. The eachrow section from the htmSQL page to
list all registrants follows:

{eachrow}
 <tr>
 <td>{&st}
 <td>{&ct}
 <td>{&f_name}{&l_name}
 <td><a href=
 "update.hsql?u={&userid}&p={&pwd}">
 update record

 <td><a href=
 "remove.hsql?u={&userid}&p={&pwd}">
 delete record

 <td><a href=
 "emailem.hsql?u={&userid}&p={&pwd}">
 email registrant

 </tr>
 {/eachrow}

Figure 12

The email htmSQL page creates a customized web form. This
dynamic form uses SAS Application Dispatcher and the email
facility to send a message to a specific registrant. For illustration,
the form seen in Figure 13 is completed and sent. Figure 14
shows the message received by the registrant.

Figure 13

Figure 14

All correspondence is logged with email messages to the
reviewer email account. Subject lines are constructed using
userid and password so that when messages are sorted, all
activity for a registrant appears together. The original registration
subject has no suffix. Update subject lines contain the suffix
‘update’. Figure 15 shows a documentary email message and
subject line with the ‘msg’ suffix to show there was individual
correspondence.

Figure 15

BULK MAIL
A bulk mail form (Figure 16) allows in-house users to send
announcements and reminders to registrants. The users are
encouraged to send and examine a trial message before clicking
‘back’ and changing the choice to ‘all registrants’. Documentary
copies of bulk email messages are sent to the reviewing mailbox
with a subject line prefix of ‘Bulkmail’.

Figure 16

SUMMARY
As illustrated in Figure 17, this dynamic data collection and
retrieval system focuses around the registration table. The event
participants generate new records and update existing ones. In-
house users update or delete records. Data-triggered updates
keep the imagemap current. Dynamic data retrieval occurs when
visitors to the site drill down on the imagemap and subsequent
pages, when registrants login to update their information, or when
in-house staff use the maintenance utility. Email serves as
documentation in addition to providing a means to communicate
with registrants.

Figure 17

This application was built using SAS Application Dispatcher,
htmSQL, SAS/GRAPH, the SAS Output Delivery System and the
email facility. The only machine which actually runs The SAS
System is the application server housing the data. Neither the
registrants nor the in-house monitors need SAS running on their
desktops because everything is processed using web
technologies. The components we have used represent only the
basic SAS internet technologies. The facilities exist to do much
more, and we will continue to incorporate them as they are
implemented at our site.

ACKNOWLEDGMENTS
The US Department of Transportation (DOT) provides funding for
www.walktoschool-usa.org through the Pedestrian and Bicycling
Information Center (www.walkinginfo.org).

CONTACT INFORMATION
Your comments and questions are valued and encouraged.
Contact the author at:

Carol Martell
UNC Highway Safety Research Center
730 Airport Rd, CB# 3430
Chapel Hill, NC 27599-3430
Work Phone: 919-962-8713
Fax: 919-962-8710
Email: carol_martell@unc.edu

SynopsisSynopsis

Registrants

new

updates

Registrant input

proc append

update data
step

Incidental repair work

updates

deletions

Dynamic data retrieval

htmSQL

update data
step

drilldown pages

maintenance list

update form

imagemap htmSQL

Data-driven information retrieval
Imagemap refresh

