Paper #303

The Power of PROC DATASETS
Lisa M. Davis, Bank of America, Jacksonville, Florida

ABSTRACT

The DATASETS procedure can be used to do many functions that are
normally done within a SAS data step more efficiently.
For example:

. Labeling and renaming variables

. Concatenating and indexing datasets

This paper will demonstrate the power of the PROC DATASETS
procedure and the enhancements made in V8. This paper is intended
for beginning to intermediate SAS users. PROC DATASETS is a
powerful procedure that everyone needs to know.

INTRODUCTION

PROC DATASETS is a SAS utility used to manage more than one
SAS file at a time. This procedure allows you to append, copy, delete,
label, rename, index, and collect information about the dataset that
has been modified, all in one step. The DATASETS procedure
executes in order. The first statement executes first, then the second,
and so on. This allows you to concatenate two data sets, then rename
the variables, change the labels and create an index all in the same
procedure. The ability to do so improves processing time,
programming length, and data steps needed. The following is a list of
statements used in the DATASETS procedure:

PROC DATASETS;
AGE;
AUDIT;
CHANGE ;
CONTENTS;
COPY;
EXCLUDE;
SELECT;
DELETE;
EXCHANGE;
MODIFY;
FORMAT;
IC CREATE;
IC DELETE;
IC REACTIVB;
INDEX CREATE;
INDEX DELETE;
INFORMAT;
LABEL;
RENAME ;
REPAIR;
SAVE;
RUN;
QUIT;

This tutorial will show you why and how to use PROC DATASETS.
We will not cover all statements and options with the DATASETS
procedure, but you will walk away knowing how powerful this
procedure is.

THE DATASETS STATEMENT

The DATASETS procedure is an interactive procedure that executes
immediately and does not stop processing until QUIT or RUN
CANCEL command is issued. The DATASETS statement executes a
list of all of the members in a SAS library in the log of your program.
The list can contain members with a member type of: data, view,
access, catalog, any and program.

The general form of the DATASETS statement is:

PROC DATASETS LIBRARY=LIBREF
MEMTYPE=MEM-LIST <OPTIONS>;

The LIBRARY= and MEMTYPE-= are options, but | always
stress to specify both a library reference and a member type
so you know what library and member type you are working
with. This is crucial when you have several member types in
the same library that could be named the same.

If you haven't worked with a library over a period of time, this is
a good way to find out what is in that library. Here is the code
to do so:

libname mylib 'c:\temp';

proc datasets library=mylib memtype=data;
run; quit;

Refer to OUTPUT 1.1 in the appendix

The output generated in you r log, gives you the libref pointing
to the library, engine the data set was created with, physical
name, file name, name of the datasets that are located in that
library, the memtype (in this case memtype = data), file size,
and the day and time the data set was last modified. As you
can see there are three data sets in the library: MORTGAGES,
PLUS, SECUREDLOANS. These are the data sets we will be
working with throughout this tutorial.

One other option | want to cover with the DATASETS
statement is KILL. KILL deletes all data sets within a library
automatically. The general form is:

proc datasets library=mylib memtype=data
kill;

Caution: KILL executes immediately before the DATASETS
procedure completes processing.

THE CONTENTS STATEMENT

The CONTENTS statement acts the same as the CONTENTS
procedure. This statement gives you information about the
variables within a SAS library. How do you know which one to
use? The CONTENTS statement is very useful when you are
combining other DATASETS statements to manipulate a SAS
library. Otherwise PROC CONTENTS is recommended to use.
The general form of the CONTENTS statement is:

CONTENTS DATA=LIBREF.MEMBER <OPTIONS>

DATA = is an option that is very useful to always use. This
specifies which library and member you want contents on. The
libref is not always needed in the case that the libref is
specified in the DATASETS statement. _ALL_ is also an
option that may be used when you want contents on all of the
data sets that reside in that library.

To find out what variables reside in the data set
SECUREDLOANS submit the following code:

libname mylib 'c:\temp';

proc datasets library=mylib memtype=data;
contents data=securedloans;
run; quit;

Refer to OUTPUT 1.2 in the appendix.

The CONTENTS statement is added after the DATASETS statement
after all the changes have been done to that dataset. The CONTENTS
statement gives you number of observations, engine created with, last
date modified, and engine host information. It also gives you a list of
variables within the data set, type of variable, length, format, position,
informat, and labels. Examples of how the CONTENTS statement is
used with other statements will be covered later in the tutorial.

THE APPEND STATEMENT

The APPEND statement is used to concatenate two SAS data sets
together. SAS takes one data set and appends the second data set to
the bottom of the first. Being able to do this in one step saves
processing time and space allocation. Only SAS data sets can be
concatenated together.

The general form of an APPEND statement is:

APPEND BASE=SAS DATASET DATA=SAS DATASET <FORCE>

The BASE= is the SAS dataset that you want the observations added
to. The DATA= is the SAS dataset that you want added. FORCE is
an option that is used when you want to force a concatenation when
the two data sets have different variable names. The following code
is an example of concatenating two data sets and viewing the contents
after the two are appended.

libname mylib 'c:\temp';

proc datasets library=mylib memtype=data;
append base=securedloans data=mortgages;
contents data=securedloans;

run; quit;

Refer to OUTPUT 1.3 in the appendix

This example appends the MORTGAGES data set to the bottom of the
SEUREDLOANS data set. The contents is ran on the
SECUREDLOANS data set showing that the number of observations
in MORTGAGES have been added to SECUREDLOANS. The
MORTGAGES data set still exists in the library. This was done in one
procedure versus a data step, creating a third data set, and the
CONTENTS procedure. This may not be noticeably faster with small
data sets, but as the data sets exist of million of rows, the processing
time surpasses by hours and space allocation is greatly reduced. Of
course this means major savings, these days.

THE DELETE STATEMENT

The DELETE statement deletes specified data sets within a library.
Multiple data sets or all of the data sets can be deleted at the same
time in a library. The deletion occurs immediately, and does not wait
for the DATASETS procedure to complete. For example: If you delete
a member in the first line of the DATASETS procedure you cannot run
a CONTENTS statement referring to that member. You will receive a
‘this file does not exist’ error. The advantage of using the DELETE
statement is during a long process you can delete data sets that are
no longer being used. This frees up space and reallocates this space
to be used in your same process.

The general form of the DELETE statement is:
DELETE MEMBER-LIST

For an example:

libname mylib 'c:\temp';

proc datasets library=mylib memtype=data;
append base=securedloans data=mortgages;
delete mortgages;

contents data=securedloans;

run; quit;

The DELETE statement here deletes the data set
MORTGAGES because this data set has been appended to
the SECUREDLOANS data set and is no longer needed. The
space MORTGAGES was occupying is now free to be used to
store another data set.

THE MODIFY STATEMENT

The MODIFY statement; in my opinion is the most powerful
and useful statement in the DATASETS procedure. Within the
MODIFY statement you can label, rename, create and delete
indexes, create integrity constraints, delete integrity
constraints, reactivate integrity constraints, format, and
informat variables within a library. These actions can only
occur after a MODIFY statement. We will discuss several of
these actions that are most used in this procedure. The
structure of the MODIFY statement is:

MODIFY DATA SET <OPTIONS>;

FORMAT;

IC CREATE;

IC DELETE;

IC REACTIVB;

INDEX CREATE;

INDEX DELETE;
INFORMAT;

LABEL;

RENAME ;

The MODIFY statement alone points to the data set that you
want to change. The LABEL option allows creating or deleting
a label on the data set specified. For example:

libname mylib 'c:\temp';

proc datasets library=mylib memtype=data;
modify securedloans (label='Secured Loans') ;
contents data=securedloans;

run; quit;

Refer to OUTPUT 1.4 in the appendix
As you can see in the contents output you can see that the
SECREDLOANS data set has been labeled ‘SECURED
LOANS'. If you wanted to delete this label you would use the
label option and leave a blank * ‘. Also with multiple MODIFY
statements you can modify more than one dataset at a time.
The reason you may want to do this is to prepare two data sets
to be merged without all of the preparation data steps.
libname mylib 'c:\temp';

proc datasets library=mylib memtype=data;
modify securedloans(label='Secured Loans');
modify mortgages (label='Mortgage Loans');
contents data=securedloans;

contents data=mortgages; run;quit;

THE INDEX STATEMENT

The INDEX statement allows you to create or delete an index
on a SAS data set. Creating an index on a SAS data set
allows for more efficient processing of observations. If you
wanted to do BY processing on two data sets with an index
created, sorting is not needed. By eliminating sorting, again
processing time and space is saved. The advantage of

creating an index instead of sorting is within the DATASETS procedure
you can combine several statements to manipulate the data set in one
procedure instead of multiple. If you wanted to merge two data sets
you could do so without sorting. Once an index is created, you can
rename, copy, label, etc... and the index will be transferred.

The general form of an INDEX statement is:

INDEX CREATE VARIABLE-LIST or
INDEX DELETE INDEX-LIST

If you want to merge two very large data sets by two variables, you
can first create an index on these two variables on both data sets at
the same time. For example:

libname mylib 'c:\temp';

proc datasets library=mylib memtype=data;
modify securedloans (label='Secured Loans') ;
index create accno cct no;
modify plus (label='Plus Customers') ;
index create account companycost;
contents data=securedloans;
run;quit;

Refer to OUTPUT 1.5 in the appendix

By creating an index on the SECUREDLOANS data set and PLUS
data set, you have avoided two SORT procedures, saving time and
space again. As you look in the indexes portion of the contents
output, you can see that the indexes create two extensions of the data
sets. These extensions are treated as the data set; so all indexes
transfer through all modifications.

THE LABEL STATEMENT

The LABEL statement allows you to label variable within a data set.
Multiple variables can be labeled within one MODIFY statement.
Multiple variables from different data set can also be labeled within
several MODIFY statements.

The general form of a LABEL statement is:

LABEL VARIABLE='LABEL’;

For example:
libname mylib 'c:\temp';

proc datasets library=mylib memtype=data;
modify securedloans (label='Secured Loans') ;
label accno='Account Number'
cct no='Cost Center';
modify plus (label='Plus Customers') ;
label acct='Account Number'
cost='Cost Center';
contents data=securedloans;

run;quit;

Refer to OUPUT 1.6 in the appendix

As you can see in the variable list portion of the contents output you
can see that ACCNO and CCT_NO have been labeled within the
SECUREDLOANS data set. Along with ACCT and COST within the
PLUS data set. The advantage of using the LABEL statement with the
DATASETS procedure is that the labels are stored permanently in the
data set. If you execute a LABEL statement within other procedures
such as: PROC FREQ, PROC PRINT, etc, the label is only active for
that procedure. With the labels being stored permanently, you do not
have to worry about label consistency throughout the reports you
produce.

THE RENAME STATEMENT

The RENAME statement allows you to rename variables within
a data set. Multiple variables can be renamed at one time.
The general form of a RENAME statement is:

RENAME VARIALBLE=NEW VARIABLE

Once you rename a variable, the new name overwrites the old
name. As you can tell we are building step-by-step of the
DATASETS procedure to allow you to get the most benefit and
power of this procedure. So if you wanted to merge two data
sets by two variables that were named different in both data
sets, you would rename the variables so they matched for
merging. First you would want to create an index, so you could
avoid sorting, second rename the variables so they match
each other, avoiding one possibly two data steps. For
example:

libname mylib 'c:\temp';

proc datasets library=mylib memtype=data;
modify securedloans (label='Secured Loans') ;
index create accno cct_no;
rename accno=accountnumber
cct_no=costcenter;
label accountnumber='Account Number'
costcenter='Cost Center';

modify plus (label='Plus Customers') ;
index create account companycost;
rename account=accountnumber
companycost=costcenter;
label accountnumber='Account Number'
costcenter='Cost Center';
contents data=securedloans;
run;quit;

Refer to OUPUT 1.7 in the appendix

In this example we are preparing our data sets to be able to
merge. We have labeled our data sets in the MODIFY
statements. We created indexes on the two data sets. Now
we renamed ACCNO to ACCOUNTNUMBER and CCT_NO to
COSTCENTER in the SECUREDLOANS data set. Then we
did the same in the PLUS data set. We renamed ACCOUNT
to ACCOUNTNUMBER and COMPANYCOST to
COSTCENTER. After renaming the variables, the index is
transferred to the new names of the variables. This is why it
was crucial to create the index before renaming or modifying
the data set any further. In the contents output of
SECUREDLOANS you can see that the variables have been
renamed and the indexes have been transferred to the new
names.

THE FORMAT STATEMENT

The FORMAT statement is used to modify, change, or add a
format onto a variable. You can also use the INFORMAT
statement to change how the variable is read in. The
FORMAT statement changes how the variable is put out.

The general form of the FORMAT and INFORMAT statements
are:

FORMAT VARIABLE-LIST format or
INFORMAT VARIABLE-LIST format

The following is an example of how the FORMAT statement is
used:

libname mylib 'c:\temp';
proc datasets library=mylib memtype=data;

modify securedloans (label='Secured
Loans') ;

index create accno cct_no;
rename accno=accountnumber
cct_no=costcenter;
label accountnumber='Account Number'
costcenter="'Cost Center';
format accountnumber $12.
costcenter 8.;
modify plus (label='Plus Customers');
index create account companycost;
rename account=accountnumber
companycost=costcenter;
label accountnumber='Account Number'
costcenter='Cost Center';
format accountnumber $12.
costcenter 8.;
contents data=securedloans;

run;quit;

In this example we have made ACCOUNTNUMBER to be outputted as
a character with a length of 12, COSTCENTER a numeric with a
length of 8. Notice that both the LABEL and FORMAT statements
were done on the new variable names. This is allowed because the
DATASETS procedure executes in order and automatically.

TYING EVERYTHING TOGETHER

Now that we have learned the basics of the DATASETS procedure, |
want to give a complete example of everything we have learned and
compare it to what you would have to do if you did not use the
DATASETS procedure.

Example:

libname mylib 'c:\temp';

proc datasets library=mylib memtype=data;
append base=securedloans data=mortgages;
delete mortgages;
modify securedloans (label='Secured Loans') ;
index create accno cct_no;
rename accno=accountnumber
cct_no=costcenter;
label accountnumber='Account Number'
costcenter="'Cost Center';
format accountnumber $12.
costcenter 8.;
modify plus (label='Plus Customers');
index create account companycost;
rename account=accountnumber
companycost=costcenter;
label accountnumber='Account Number'
costcenter="'Cost Center';
format accountnumber $12.
costcenter 8.;
contents data=securedloans;

run;quit;

Refer to OUTPUT 1.8 in the appendix

This example gives us a complete look at the statements we have
covered. This example is good for the following scenario:

You have three SAS data sets. Two of the data sets have the same
data but about different products. You want to combine the two
product data sets and merge it with the third data set to get
demographic information on those customers with these precuts. So
the steps would be:

1. Concatenate the two product data sets together
2. Delete the data set that was concatenated so you can save

of space

3. Create an index so when you merge the two data
sets you do not have to sort them

4. Rename the variables on the two data sets so they
will be able to merge

5. Label the data set and variables to have consistency
on reports

6. Format how you want the variables outputted on your
reports

7. Getinformation about the two data sets to make
sure everything is correct

All seven steps can be done in one procedure. Here is an
example of what would have to been done if the DATASETS
procedure was not used:

libname mylib 'c:\temp';

data mylib.three;
format accountnumber $12.
costcenter 8.;
set mylib.one (rename= (accno=accountnumber
cct_no=costcenter))
mylib.two (rename= (accno=accountnumber
cct_no=costcenter)) ;
label accountnumber='Account Number'
costcenter='Cost Center';
run;

proc datasets library=mylib memtype=data;
delete one tow;
run;quit;

proc contents data=mylib.three;
run;

data mylib.plus2;
format accountnumber $12.
costcenter 8.;
set mylib.plus (rename= (acct=accountnumber
companycost=costcenter)) ;
label accountnumber='Account Number'
costcenter='Cost Center';
run;

proc datasets library=mylib memtype=data;
delete plus;
run;quit;

proc contents data=mylib.plus2;
run;

proc sort data=mylib.three;
by accountnumber costcenter;
run;

proc sort data=mylib.plus2;
by accountnumber costcenter; run;

In this example you can see that the program is much longer
(code wise) , multiple data steps and procedures were used.
Processing time was always faster using the DATASETS
procedure, but the time was greatly reduced when using large
amounts of data. By using the second example, it requires you
to know more syntax, procedures and data steps within SAS.
If you know the DATASETS procedure you can do all of this
with only knowing one procedure.

CONCLUSION

The DATASETS procedure is a powerful procedure to know. |
only touched on the basis of this procedure; how to know what
data sets exist in your library, information on the variable

within you data set, append two data sets together, indexing data
sets, renaming variables, labeling data sets and variables, modifying
data sets, deleting data sets, all within one procedure. There are a lot
more things this procedure can do and | challenge you learn all you
can about this procedure. Saving time, space and work is what our
goal is as programmers. PROC DATASETS does all three for us with
little effort.

REFERENCES

SAS Institute Inc. (1990), SAS Procedures Guide, Version 6, Third
Edition, Cary, NC: SAS Institute Inc.

SAS Institute Inc. (1990), SAS Language Reference, Version 6, Third
Edition, Cary, NC: SAS Institute Inc.

SAS Institute Inc. (1999), “SAS Procedures”, SAS Version 8 Online
Documentation, Cary, NC: SAS Institute Inc.

SAS is a registered trademark or trademark of the SAS Institute Inc. in
the USA and other countries. ® indicates USA registration.

ACKNOWLEDGMENTS

Special thanks to Christine Grande and Lee Robson for allowing the
time to create this tutorial.

CONTACT INFORMATION
Your comments and questions are valued and encouraged. Contact
the author at:

Lisa M. Davis

Bank of America

9000 Southside Blvd.

FL9-400-05-04

Jacksonville, Florida 32256

Work Phone: 904-987-3753

Fax: 904-987-3747

Email: Lisa.M.Davis@bankofamerica.com

APPENDIX

OUTPUT 1.1
Libref: MYLIB
Engine: V8
Physical Name: c:\temp
File Name: c:\temp
File
Name Memtype Size Last Modified
T fffffFffffffffffffsfsrfsfsrs
1 MORTGAGES DATA 648192 19JUL2000:21:53:54
2 PLUS DATA 123904 19JUL2000:21:52:56
3 SECUREDLOANS DATA 656384 19JUL2000:16:02:02
OUTPUT 1.2

Sortedby:

Validated: YE

The DATASETS Procedure

Data Set Name: MYLIB.SECUREDLOANS Observations: 10000
Member Type: DATA Variables: 8
Engine: V8 Indexes: 0
Created:15:10 Tuesday, July 11, 2000 Observation Length: 64
Last Modified: 16:02 Wednesday, July 19, 2000
Deleted Observations: 0
Protection: Compressed: NO
Data Set Type: Sorted: YES
Label:
————— Engine/Host Dependent Information-----

Data Set Page Size: 8192

Number of Data Set Pages: 80

First Data Page: 1

Max Obs per Page: 127

Obs in First Data Page: 96

Number of Data Set Repairs: 0

File Name: c:\temp\securedloans.sas7bdat

Release Created: 8.0000MO

Host Created: WIN_ NT
Variable Type Len Pos Format Informat Label

T ff A ffFfffFfF A FFFFfFfffffffffsfsrs

1 ACCNO Char 21 32 $21. $21. ACCNO

3 ACC_OPN DT Num 8 8 DATE9. DATE9. ACC _OPN DT

6 ACC_PD CTGY_CD Char 3 53 $3. $3. ACC_PD _CTGY_CD

2 CCT_NO Num 8 0 11. 11. CCT_NO

4 CLS_DT Num 8 16 DATE9. DATES. CLS_DT

7 PRD PRMRY TYPE CD Char 3 56 $3. $3. PRD PRMRY TYPE CD
8 PRD_SECDRY TYP CD Char 3 59 $3. $3. PRD_SECDRY TYP_ CD
5 acctbalance Num 8 24 17.2 17.2 Average Account

CCT_NO

IS

Character Set: ANSI

OUTPUT 1.3

The DATASETS Procedure

Data Set Name: MYLIB.SECUREDLOANS Observations:
Member Type: DATA
Engine: V8 Indexes: 0
Created:15:10 Tuesday, July 11, 2000 Observation Length: 64
Last Modified: 22:03 Wednesday, July 19, 2000
Deleted Observations: 0
Protection: Compressed: NO
Data Set Type: Sorted: NO
Label:

OUTPUT 1.4

The DATASETS Procedure

OUTPUT 1.5

Data Set Name: MYLIB.SECUREDLOANS Observations: 20000
Member Type: DATA Variables: 8
Engine: V8 Indexes: 0
Created:15:10 Tuesday, July 11, 2000 Observation Length: 64
Last Modified: 22:19 Wednesday, July 19, 2000
Deleted Observations: 0
Protection: Compressed: NO
/;nfa‘SEE’Type: Sorted: NO
————— Directory-----
Libref: MYLIB
Engine: V8
Physical Name: c:\temp
File Name: c:\temp
File
Name Memtype Size Last Modified
S fffffffffffffffsssrrsrrrsrsrs
1 MORTGAGES DATA 656384 19JUL2000:22:26:26
2 PLUS DATA 74752 20JUL2000:00:28:04
PLUS INDEX 21504 20JUL2000:00:28:04
3 PLUSCUSTOMERS DATA 123904 19JUL2000:22:05:48
4 SECUREDLOANS DATA 1950720 20JUL2000:00:28:02
SECUREDLOANS INDEX 865280 20JUL2000:00:28:02

OUTPUT 1.6

————— Alphabetic List of Variables and Attributes-----
Variable Type Len Pos Format Informat Label
T FFFfffFFFFfffFFFFFFFFFFFFFfFfffss
1 ACCNO Char 21 32 $21. $21. Account Number «§—f—
3 ACC_OPN DT Num 8 8 DATE9. DATE9. ACC_OPN DT
6 ACC_PD_CTGY_CD Char 3 53 $3. $3. ACC_PD_CTGY_CD
2 CCT_NO Num 8 0 11. 11. Cost Center
4 CLS_DT Num 8 16 DATES. DATES. CLS_DT
7 PRD_PRMRY TYPE CD Char 3 56 $3. $3. PRD PRMRY TYPE CD
8 PRD_SECDRY TYP CD Char 3 59 $3. $3. PRD_SECDRY TYP CD
5 acctbalance Num 8 24 17.2 17.2 Average Account
OUTPUT 1.7

————— Alphabetic List of Variables and Attributes-----

Variable Type Len Pos Format Informat Label

T ffFffFfffFffFffFFFfFffffffffffss

3 ACC_OPN_DT Num 8 8 DATES. DATES. ACC_OPN_DT
6 ACC_PD_CTGY CD Char 3 53 $3. $3. ACC_PD_CTGY_CD
4 CLS_DT Num 8 16 DATEOS. DATES. CLS_DT
7 PRD_PRMRY TYPE CD Char 3 56 $3. $3. PRD PRMRY TYPE CD
8 PRD_SECDRY TV Dty 57 S3T 4o RRO_SECDRY TYP CD
accountnumber Char 21 32 S12. $21. Account Numb€
<: 2 costcenter Num 8 0 F8. 11. Cost Center
5 tHeoakance Num 8 24 17.2 17.2 Ao

of
Unique
Index Values
T ffffffffffffrffrsrsrs
1 accountnumber 10000

2 costcenter 116

OUTPUT 1.8

————— Directory-----
Libref: MYLIB
Engine: V8
Physical Name: c:\temp
File Name: c:\temp
File
Memtype Size Last Modified

T fffffFffFffFFffFffFFffFffFFFfFfffsfssfs

Name
1 PLUS
PLUS

2 PLUSCUSTOMERS
3 SECUREDLOANS
SECUREDLOANS

Data Set Name: MYLIB.SECUREDLOANS

Member Type: DATA
Engine: V8
Created:15:10 Tuesday,

DATA 74752 20JUL2000:00:33:34
INDEX 21504 20JUL2000:00:33:34
DATA 123904 19JUL2000:22:05:48
DATA 1950720 20JUL2000:00:33:34
INDEX 865280 20JUL2000:00:33:34

Observations: 20000
Variables: 8
Indexes: 2

July 11, 2000 Observation Length:64

Last Modified: 0:28 Thursday, July 20, 2000

Deleted Observations:

0

Protection:
Data Set Type:

Label: Secured Loans

Data Set Page Size:

Number of Data Set Pages:
First Data Page:

Max Obs per Page:

Obs in First Data Page:
Index File Page Size:
Number of Index File Pages:
Number of Data Set Repairs:
File Name:

Release Created:

Host Created:

Compressed: NO
Sorted: NO

8192

238

1

127

96

4096

211

0
c:\temp\securedloans.sas7bdat
8.0000MO
WIN_NT

OUTPUT 1.8 CONTINUED

Variable Type

Len Pos

3 ACC_OPN_DT Num 8 8
6 ACC_PD CTGY CD Char 3 53
4 CLS_DT Num 8 16
7 PRD_PRMRY TYPE CD Char 3 56
8 PRD_SECDRY_TYP_CD Char 3 59
1 accountnumber Char 21 32
5 acctbalance Num 8 24
2 costcenter Num 8 0

Format

DATES.
$3.

DATES.
$3.
$3.

$12.
17.2
F8.

————— Alphabetic List of Indexes

Informat Label

T fFffFfff A ffFFffFff A fFFFfFffffffffffsrs

DATES. ACC_OPN_DT

$3. ACC_PD _CTGY CD
DATES. CLS_DT

$3. PRD_PRMRY TYPE CD

$3. PRD_SECDRY TYP CD
$21. Account Number

17.2 Average Account

11. Cost Center

and Attributes-----
of
Unique

Values

10000

Index

S ffffffffffffffffrssrsrsrs
1 accountnumber

2 costcenter

116

