Introduction in Efficient SASO Programming via
Incremental Refinement by Example

Paul M. Dorfman
Citibank Universal Card, Jacksonville, Fl

Abstract

How to write efficient SAS programs? Should you allow
performance considerations to be a hurdle on the way of
coding a workable program by suspiciously looking at
each statement as a potential resource hog? Or should
you keep efficiency in the background until a working
prototype has been devised, and then refine its
performance incrementally?

As the title suggests, not only the author is rather
inclined to accept the latter notion, but also he has the
audacity to use real-life SAS examples to prove that this
is the way to go! He also dares to assert that by
applying this process repeatedly and accumulating the
knowledge about high-performance techniques, a SAS
programmer acquires the ability to look ahead and
program efficiently from onset.

Introduction

SAS programs are written to deliver accurate information
on time. That is why writing efficient code is important.
A program unable to complete because it runs out of
resources or keeps running past the time its results can
be used, is one extreme. From this standpoint, writing
efficient code is not just the question of programming
aesthetics, but a vital, real-world concern.

However, an efficient program may take longer to write
than a quick-and-dirty one. A program finishing in a
millisecond and spending zero resources but taking
eternity to develop is as useless as one that runs
forever. This is the opposite extreme.

A useful SAS program resides somewhere in the middle
between the two extremes, not really close to either
one. Developing an efficient program is important, but
almost as important is to spend programming resources
judiciously. The question is, if there is a good approach
that would allow to strike the balance.

Unfortunately, attempts to write an ultimately fast,
efficient program at once rarely lead to the goal. This is
because too much time gets spent optimizing things that
afterwards prove to be insignificant. The irony is that
usually only quite insignificant part of code governs the
speed of a program in any significant way. However,
such part, also known as the inner loop, can only be

identified after the skeleton of the program is ready.
Therefore, it might make sense to attack the efficiency
issue in two stages:

1. Write a workable running prototype trying to avoid
major and obvious inefficiencies.

2. Run the prototype and establish a tentative
benchmark.

3. Identify the inner loop.

4. Make every endeavor to optimize the inner loop
comparing the run-times with the previous
benchmark after each improvement.

5. See if any other performance enhancements can be
made with little effort.

In this tutorial, this approach is illustrated by taking a
simple real-life problem and following the steps as
outlined above.

The Sample Problem

You have a large “production” SAS file MST.M (master)
intended to keep track of customers logging on the
company'’s site. It contains many variables, but only
several of them are of interest: K (the key, numeric), E
(current e-mail address, $24), and P (current phone,
numeric). Note that even though the file is sorted, it is
sorted by account number, while K represents an
encrypted key used for communication with vendors.
Therefore, with respect to the key, file MST.M is
disordered. The fields in the file might resemble
something like this:

K E P

1849625698220742
9216025778658700
0497940262080143

2593987194
5316917697
5238705691

gpwoei@hartz.com
mgiwuey@hotmail.com
vbdjhf6@jvinet.com

You receive an e-mail (from whomever has a right to
send you such e-mails) containing a short list like this:

8533943108531620
2726117890666294
6882365502827971
4757893050442400
5825815264054488

2971940344
2265075959
2872256820
5903647102
5066035788

afyq7q@epicor.com
q387gh@aol .com
1jgfdsp@ix.netcom.com
qwertymew@pacbell .net
gwgb7t9g@gateway - net

The list is followed by a request to extract the variables
K, E, P from the master file and create an updated file
UPD.U, where the fields in the records matching the
keys on the list are overwritten with the new values of
the address and phone. The sender also wants to know
how many records have actually been updated. Pure and
simple, and of course, the updated file is needed
yesterday for some kind of urgent marketing initiative.

“Wallpaper” Approach

The UPDATE statement seems to be banging on the
door, but since the file is not sorted, no good use can be
made of it. On the other hand, being against the
negative deadline, you do not feel like getting fancy. So,
you cut-and-paste the data from the e-mail to your
editor and insert them into the code, coming up with the
following, say:

data upd.u;
set mst.m (keep=k e p) end=eof;
select (k);
when (8533943108531620) do;
e = "afyqg7q@epicor.com”;
p = 2971940344 ;
u ++ 1;
end;
when (2726117890666294) do;
e = "q387gh@aol .com -
p = 2265075959
u ++ 1;
end;
when (6882365502827971) do;
e = "ljgfdsp@ix.netcom.com”;
p = 2872256820 ;
u ++ 1;
end;
<... rest of the case structure ...>
otherwise;
end;
if eof then put u = comma.;
run;

The variable U is intended to print the number of
updated records in the log. You submit the program, it
runs just OK first time in, the customer is happy, and so
are you. All the more that the program runs quite fast.

But the happiness is short-lived, because in a couple of
days, you receive another e-mail of the same nature.
This time, however, it has some 100 plus lines of data.
You still manage to change your program in a matter of
an hour, run it, and create the much needed file on
time. However, this time, not everything goes as
smoothly. First, there are those pesky typing errors, and
the program has to be resubmitted several times.
Secondly, it runs noticeably slower than the first variant.
This is unpleasant, but at least logically justifiable:
Finding a key among 100 entries takes longer than
among five.

The real problem arises the next time you receive a
similar request, because now it does not contain any
data per se. Instead, it has a reference to a SAS data file
with upwards of 1,000 records. The perspective of
printing it out and doing the same boring typing thing all
over again is not inviting at all! Much more importantly,
with this many records, the probability of making a typo
— and hence that of creating a corrupted file — is very
high, virtually guaranteed, no matter how good and
attentive a typist you are.

Finally, if you have attended lan Whitlock’'s SUGI 24
lecture about the relationship between code and data,
you understand that the code above qualifies for lan
cleverly calls “wallpaper”. Your data (transaction
records) already reside separately, and embedding them
in your code is a bad habit and principal mistake.

Increment 1: Automate

The entire purpose of computers is to automate
mundane, error-prone processes. This one seems just
like a perfect candidate. Why not read the attached file
into an array in memory and use it as a lookup table?
This way, the data will stay where they belong —in a
separate file, while the program will only tell the
computer what to do with the data, and this is exactly
what and only what any program should do. The plan is
simple:

1. Store all the information from TRN.T in parallel
temporary arrays.

2. Read arecord from MST.M, and search the array
containing the keys for K.

3. If the current key read from MST.M is found in
TRN.T, overwrite the variables E and P by moving
data from the corresponding array cells.

4. Write the record out and go to step 2.

Naturally, the array has to be populated before the very
first observation from data set M has been read. A
“standard” way of making it happen is to test if the
automatic variable _N_=1 and take the action only if the
condition is true.

How large should the arrays be? Obviously, they should
have at least as many entries as there are observations
in TRN.T. You have already run CONTENTS and know
that the file has 1009 records, so you may decide to size
the arrays accordingly. However, thinking again in terms
of code and data (you are trying to get rid of the
wallpaper!), every time the size of the transaction file
changes, the manual process of running CONTENTS and
retyping the upper array bound in the program will be
required. If you have decided to automate, then
automate! The simple step below extracts the number of
observations from TRN.T and populates the macro
variable DIM:

data _null_;
call symput("dim",compress(put(dim,best.)));
stop;
set trn.t nobs=dim;

run;

If the macro variable DIM is used to size the arrays, the
program will adjust itself without the need of manual
intervention. Finally, there is no need to output the array
elements as variables, so temporary arrays can be used.
It will save a lot of compilation time and relieve the
compiler from keeping track of hundreds of unneeded
variables. Now the plan of attack can be executed:

data upd.u (drop=j u);
array ka (1: &dim) _temporary_;
array ea (1: &dim) $24 _temporary_;
array pa (1: &dim) _temporary_;
if _n_ =1 then do j=1 to &dim;

set trn.t;

ka() = k;

ea(J) = e;

pa(d) = p;
end;

set mst.m (keep=k e p) end=eof;
do j=1 to &dim;
if k ne ka(J) then continue;
e = ea(d);
p = pad);
u ++ 1;
leave;
end;
if eof then put u = comma.;
run;

This piece looks and feels like a program rather than a
wallpaper. Actually, it can be considered a viable
prototype, because:

1. Itis automated. You no longer need to type
anything taking care of the program. Instead, the
program takes care of itself — and you.

2. It works, and it produces the correct output.

3. It completes before the deadline.

Creating a simple workable prototype similar to the
above is very important not only because it is a correct
program executing on time and giving you some peace
of mind (for now). It is also important because it can
serve as a pad, from which incremental performance
improvements can be launched.

One of the concerns you may have running the code is
that with 1,000 transaction records, the program takes
almost 3 hours to run against 20 million records in the
master file. This concern might be somewhat muffled by
the fact that if the code is submitted in the morning, and
the file is due the next morning, there is nothing to
worry about. Yet there is:

1. There is no guarantee that the next time you do not
have 10,000 transaction records, in which case the
deadline will definitely be missed. And 10,000
records is still not a whole lot, since having 1 million
transaction records is not unusual at all under such
circumstances. What will happen then? 3,000 hours
is definitely not the amount of time you want any
business program to run, let alone one whose
output is needed yesterday.

Intuitively, it is apparent that something must be
not quite right, for you know that without updating,
it takes only minutes to read the master file and
write the necessary variables out. So there has got
to be a better way.

Since, for the time being, the request is off your back,
there is some time to take a fresh look at the code and
try to find ways of speeding it up. But to be able to
improve performance of the program, you have to
identify its inner loop first.

The Inner Loop

The inner loop is a block of instructions executing much
more frequently than any other part of the program.
Typically, the difference between the number of
iterations of the inner loop and other pieces of code
constitutes an order of magnitude or more. Because of
that, the speed of the inner loop governs the speed of
the entire program. Any extra instruction, utterly
insignificant when it stands alone, acquires a huge
weight when executed as part of an inner loop.

It suggests two principal ways of making a program run
faster:

1. Reduce the number of instructions in the inner loop
to the bare minimum.
2. Reduce the number of times the inner loop iterates.

It is easy to identify the inner loop in the prototype
above directly from its definition. We have three loops in
the program. The loop loading the array cannot be the
inner loop, for it executes only once. The outer loop -
the implicit observation loop iterating each time to read
a record from the master file — is a better candidate,
since it executes as many times as there are
observations in MST.M. However, the loop

do j=1 to &dim;
if k ne ka(J) then continue;
e = ea(d);
p = pa(d):;
u ++ 1;
leave;
end;

is an even better candidate. Why? Because for each
record read from the master file, this loop goes over all

array items N times (assuming that KA() has N items), if
the current master key K is not present in the array. And
if it is present, the loop iterates, on the average, N/2
times, for it is equally likely, on the average, to locate
the key at the beginning and at the end. So, with 1,000
transaction records and 20 million master records, the
loop executes, in the average, 30 billion times! Since
there is no other loop nested inside it, the “DO J="is
the inner loop of the program.

ldentifying the inner loop is a program as simple as this
is not difficult. With more convoluted real-life programs,
it may not be as easy. However, there is almost a sure-
fire way of pinpointing the most frequently executing
block by inserting counters in likely locations, running
the program against a fairly large test file, and printing
the counters. Effort spent on diagnostics like that is
usually richly rewarded thereafter.

Increment 2: Making Inner Loop Leaner

Now that you know where the likely culprit is, it makes
sense to concentrate intellectual efforts on making the
inner loop as lean as possible, for this is where the
greatest performance-improving potential is lurking.
Because of the CONTINUE, the block of instructions

e = ea(d);
p = pa(d);
u ++ 1;

is performed only if and when the master key K is
actually found, and therefore only once per master
record. If the key is not in the transaction file, this
instruction block is not performed at all. So, effectively,
the instructions are not part of the inner loop, and then
none of them can be left out, anyway. The instructions
executing each time the inner loop iterates are:

1. Explicit comparison IF K NE KA(J) at the top.
2. Implicit comparison IF J > &DIM at the bottom.
3. Implicit increment J=J+1 at the bottom.

At first glance, both comparisons seem to be necessary.
In reality, the second of them is actually excessive! At
every iteration, the instruction asks the computer: Is it
the end of array yet?

The only reason the second comparison is in the loop is
preventing the index J from running past the upper
array bound. But the same thing can be accomplished
simply by placing the search key itself as stopper
(sentinel) to the right of the upper bound of the array.
Then all we have to ask is: Does the current array item
KA(J) equal the search key K? If the answer is ‘yes’, the
pointer is either at the end of array (and so the key is
not found), or it is still within the array bounds (and so
the key is found, and the loop can be terminated). To

implement the improvement, another element in array
KA() is needed. Without changing anything else, it can
be accommodated by redefining the array as

array ka (1: %eval(&dim+l)) _temporary_;
Now the shrunk inner loop can be written as follows:

ka(hbound(ka)) = k;
do j=1 by 1 until (k = ka(3));
end;
if j <= &dim then do;
e = ea(d);
p = pad);
u ++ 1;
end;

The first assignment moves the stopper value to the last
item of KA(). Even though this instruction is added to
the previous code, it is added outside the inner loop. For
1 such extra instruction executed outside the loop,
1.5*N comparisons “IF J > &DIM” are eliminated. The
same is true about the comparison “IF J <= &DIM”.
Note that the inner loop has become a null loop — its
body is empty, but it does not mean it does nothing! Its
only purpose now is to locate the slot whose content
equals K and return its index J.

Benchmarking the program with the change discussed
above results in 20 to 30 percent shorter run-times. And
this is achieved just by eradicating a single implicit
comparison from the inner loop. However, the largest
performance-improving potential lies in a radical
reduction of the number of times the inner loop iterates.

Increment 3: Making Inner Loop Iterate
Fewer Times

The algorithm used in the prototype program is nothing
else but plain sequential search. The scheme improved
by identifying the inner loop and making it leaner is
sometimes called quick sequential search. Although the
latter is more efficient, both are similar in that they rely
on a 2-way decision:

1. K = KAQ) .
2. K NOT= KAQJ).

And it is the only way of going about the searching
business if the array is not organized in any particular
way but simply searched as is. However, organizing a
table in an intelligent manner ahead of the time can
(and does) make a gigantic difference.

Out of great many ways items can be arranged to
facilitate efficient searching, the simplest is sorting.
Having the elements ordered, we possess enough
knowledge about them beforehand to make a
judgement about the location of the search key in the

lookup array without comparing it to all or the majority
of items. Hence, it should be expected that the order
relation, if exploited properly, would result in a major
performance gain.

Rearranging the arrays into order by key is as simple as
sorting the transaction file by K:

proc sort data=trn.t; by K; run;

But how exactly can we take advantage of the order
relation between the keys? Suppose we have chosen
some array element KA(J), sometimes called a pivot.
That will divide the array into three parts: the items in
the locations lower than KA(J), KAQJ) itself, and the
items in the locations higher than KA(J). Accordingly,
three mutually exclusive outcomes are possible:

1. K =KAQ). The key has been found.

2. K> KA(@J). All elements with indices lower than J
are eliminated from consideration.

3. K < KA(J). All elements with indices higher than J
are eliminated from consideration.

Thus, whilst the sequential search is limited to a 2-way
decision (equal or unequal), ordering enables us to
continue search based on a 3-way decision. Regardless
of the way it branches, substantial advance has been
made. However, it is important to choose J correctly. If
the only fact known about the keys is that they are
sorted, the choice suggesting itself naturally is to start
searching by comparing K to the middle item in the
array. The result of the comparison will either locate the
right key or tell which half to search next, and the same
process can be used again. As a result, after at most
about log(N) iterations, we will have either found the
key or established that the array does not have it.

The basic idea of this widely known binary search seems
to be transparent. However, it is surprisingly easy to
code it wrong! One of the most popular correct ways of
implementing binary search is to maintain three indices:
L pointing to the lower limit of the current search
interval, J pointing to its middle, and H pointing to its
upper limit. Then you can proceed as follows:

Initially, set L and H to the lower and upper bounds.
Compute J as the half-midpoint between L and H.

If K < KAQJ), set H to (J-1) and go to 6.

If K > KA(QJ), set L to (J+1) and go to 6.

If K = KAQJ), the key has been found. Terminate.

If the pointers L and H cross then stop, else go to
step 2.

ourwbE

Expressed in terms of the SAS Language, the binary-
search-based inner loop may look as follows:

1;
&dim;
o until (I > h);

1
h
d

j = floor((1 + h) * .5);
if k < ka(j) then h
else if k > ka(j) then 1
else do;

e = ea(J);

p = pa(d);

u ++ 1;

leave;
end;

end;

Note that binary search contains more instructions in the
inner loop than even plain sequential search. Every time
the inner loop iterates, two comparisons are made: one
inside the loop, and one (L > H) at its bottom, plus
some extra time is spent calculating the midpoints. But it
is more than alleviated by the fact that to either find or
reject a key, binary search iterates, on the average, only
log(N)+1 times, not N. Effectively, it cuts the number of
inner loop iterations to 11 times for N=10,000 and to 21
times for N=1,000,000.

The performance consequences of this relationship are
hard to overestimate. The update job, that used to run
for 2 hours with quick sequential search, now takes only
several minutes. But the most important advantage of
the method is its scalability. Because of its O(log(N))
nature, the run-time increases just twice when the size
of the transaction file grows full 3 orders of magnitude.
That is why you do not have to fear that the next file
that might be thrown at you may have 10,000 or more
transactions. Benchmarking shows that even with
100,000 observations in TRN.T, the binary search
program takes only about 12 minutes to run against a
20-million-record master file.

Increment 4: Buy None, Get One Free

Let us sum up what has been done so far. You started
with a wallpaper-type program, then created a decent
working prototype based on sequential search. Taking a
single comparison instruction out of the inner loop
allowed to cut the run-time 20 to 30 per cent. Replacing
sequential search with binary search reduced the
number of times the inner loop iterates orders of
magnitude. As a result, the run time, especially with
large transaction files, is reduced orders of magnitude as
well.

After the giant leap the last incremental improvement
offers, it is, generally speaking, almost impossible to
significantly improve performance remaining within the
domain of lookup methods based on comparisons
between the search key and keys in the table. Direct-
addressing techniques, discussed elsewhere at this
meeting, are able to cut run-times several times even
compared to binary search.

However, the threshold we have achieved so far is high
enough for the purposes of the original task. The
program is automated, it runs correctly, scales well, so
let us see how the last, fastest so far, version looks like
(last step only, trn.t being sorted by K is assumed):

data upd.u (drop=j u);
array ka (1: &dim) _temporary_;
array ea (1: &dim) $24 _temporary_;
array pa (1: &dim) _temporary_;
if _n_=1 then do j=1 to &dim;

set trn.t;
ka() = k;
ea(jJ) = e;
pa(d) = p
end;
set mst.m (keep=k e p) end=eof;
1 = 1;
h = &dim;

do until (1 > h);
j = floor((1 + h) * .5);
if k < ka(J) then h
else if k > ka(§) then 1
else do;
e = ea(d);
p = pad);
u ++ 1;
leave;
end;
end;
if eof then put u = comma.;
run;

o
-
=

In principle, the code can be left alone this way. But let
us look at the program with a critical eye just one more
time and see if there is anything else that can be saved
without huge sacrifices in brainpower and time.

Now with binary search in place, the inner loop iterates
only about 10 times per record read from the master
file, so some modest performance improvement can be
achieved by going after extra instructions outside of the
inner loop, if any such instructions exists. They may be
worth something: The outer loop, after all, iterates 20
million times, and with the 10:1 ratio between the
number of inner and outer iterations, there should be,
speaking intuitively, a chance to save another 10 per
cent of the total run-time.

There are only two suspicious outer-loop instructions:
“IF _N_=1" and “IF EOF”. The first comparison can be
indicted on the ground that we only need to load the
array once, so why should the computer be compelled to
ask the question “Have | already started doing
anything?” every single time a master record is read?
Likewise, if the number of updates U must be printed
only once after the entire file has been processed, why
should the computer evaluate the condition “IF EOF” 20
million times? Straightforward logic tells that both
actions — loading the array and printing the final value of
the number of updates — should be done no matter
what, so why do we need those IFs?!

The answer is: We do not. Because of the force of
inertia, it is customary in SAS to leave the automatic
observation loop intact, trying to do whatever has to be
done inside it. However, this practice flies right in the
face of the most fundamental programming doctrine: All
those instructions that can be performed outside a loop,
do not belong inside it. What IF _N_=1 et al. amounts to
from the standpoint of common-sense programming can
be easily understood from the following example.
Imagine that you have an array A() with 1 million,
elements and you need to: a) print the first element; b)
increase each element twice; c) print the last element.
Which translates into the SAS Language directly as:

put a(lbound(a))=;

do j=Ibound(a) to hbound(a);
ad) = ag) * 2;

end;

put aChbound(a))=;

That is it. Now imagine you reaction if someone
suggested that the right way of doing this were

do j=Ibound(a) to hbound(a);
if j=lbound(a) then put a(j)=;
a@d@) = a@) * 2;
if j=hbound(a) then put a()=;
end;

You would perhaps say: “Wait a minute! Why should |
test those IFs 1 million times each? Why not do the
prints outside the loop?” And be exactly right, because
the IF clauses above are not modified at each iteration
of the loop, and therefore they need not be there. Yet
testing for _N_=1 and EOF follow precisely the same
pattern. To place the unconditional before- and after-
loop actions where they belong, it is necessary to make
the automatic observation loop explicit:

data upd.u (drop=j u);
array ka (1: &dim) _temporary_;
array ea (1: &dim) $24 _temporary_;
array pa (1: &dim) _temporary_;
do j=1 to &dim;

set trn.t;

ka() = k;

ea(jJ) = e;

pa(d) = p;
end;

do until (eof);
set mst.m (keep=k e p) end=eof;
1= 1;
h = &dim;
do until (1 > h);
j = floor((1 + h) * .5);

if k < ka(j) then h = j 1
else if k > ka(j) then 1 = j 1
else do;

e = ea(J);

p = pad):;

u ++ 1;

leave;
end;
end;
output;
end;
put u = comma. ;
run;

But do not we eliminate just one condition instead of
two by still testing for EOF at the bottom of the explicit
outer loop? No, because in the previous version, EOF
was actually tested twice: Once implicitly, once explicitly,
and in this version, it is tested just once.

Rounding off this seemingly small rough edge does not
take any more programming effort than the “standard”
coding, but yields 2-3 per cent shorter run-time. Is it
worth bothering? Well, why forfeit performance
improvement, even several per cent of it, if it is free?
More importantly, the structure of the last version is
vastly superior to that using the automatic loop, because
it a) perfectly aligns with the logic of the pseudocode,
and b) is much more extendible. For example, if, after
the master file has been processed, you would like to
read and process yet another file, it can be done in the
same step without breaking any logic — another explicit
file-reading loop simply follows the first one, and so on.

Conclusion

Donald E. Knuth once quipped in writing that “premature
optimization is the root of all evil”. It is a waste of time
to spend it trying to find small efficiencies and looking at
every statement suspiciously before the most critical
part of the program, its inner loop, has been identified.
A program approached like that will be, most likely,
never finished on time.

Instead, it makes sense to write a good working
prototype avoiding performance blunders (such as not
dropping 100 unnecessary variables from input) and
locate its inner loop. That is where most of the
performance gain can be obtained from. Without the
prototype, it is difficult, and often impossible to tell a
priori where the inner loop resides. Additionally, since
the prototype is an already correctly working program in
terms of its output, it can fulfil imnmediate needs.

Each improved working version of the program can then
serve as a basis for further incremental improvements.
In our simple example, taking a single comparison
outside the inner loop immediately led to the version
running 20 to 30 per cent faster than its predecessor.
Over the course of the next increment, deploying a new
strategy to cut the number iterations the inner loop goes
through, improved performance an order of magnitude
or better.

After the inner loop has been taken care of, other, more
subtle, performance improvements can be considered.
Those should be weighed against the time and mental
effort they require to be implemented. And, most
certainly, they should not be passed up if they are free!

Finally, incremental approach to enhancing the efficiency
of coding is a good self-teaching tool. The knowledge
garnered at different stages of making a program run
faster using fewer resources accumulates into an
experience letting a programmer skip the entire stages
of the optimization process and thus reduce the time
both the programmer and machine spend to accomplish
the task.

SAS is a registered trademark or trademark of SAS

Institute, Inc. in the USA and other countries. O
indicates USA registration.

References

=

D. E. Knuth, Literate Programming, CSLI, Stanford.
D. E. Khuth, The Art of Computer Programming, v.
3.

3. SAS Language Reference, Concepts, SAS Institute
Inc., Cary, NC.

4. 1. Whitlock, Code or Data? Proceedings of SUGI 24,
Miami Beach, FI, SAS Institute Inc., Cary, NC.

5. P. M. Dorfman. Array Lookup Techniques: from
Sequential Search to Key-Indexing, Proceedings of
SESUG'99, Mobile, Al.

6. P. M. Dorfman. Table Lookup via Direct Addressing,
Proceedings of SESUG’00, Charlotte, NC.

7. T. A. Standish. Data Structures, Algorithms &

Sorfware Principles in C, Addison-Wesley, 1995.

n

Acknowledgements

Thanks to lan Whitlock for suggesting a topic and
inviting the author to present it at SESUG’00. Thanks to
lan Whitlock and Sig Hermansen for discussing a variety
of SAS programming efficiency issues both tete-a-tete
and on-line. Thanks to all SAS-L contributors who, by
asking questions and replying to posts, keep the interest
to efficient SAS programming alive.

Author Contact Information

Paul M. Dorfman

10023 Belle Rive Blvd. 817
Jacksonville, FL 32256
(904) 564-1931 (h)

(904) 954-8533 (0)
sashole@mediaone.net
paul.dorfman@citicorp.com

