
SAS Software Macros- You're Only Limited by Your Imagination

Peter Parker, US Dept. of Commerce, Washington, DC
Peter_parker@ita.doc.gov

Abstract
SAS Macros have many uses besides
passing parameter values through
programs. You can craft elaborate
automated queries, write more user-friendly
applications, and create maintainable code.
I am going to demonstrate four advanced
uses for SAS Macros:

1. User Interface- Macro Windows
 Using simple window forms, you can
create queries to produce user-customized
results.

 2. Code libraries- Using existing common
code stored in library files, you can
"include" (i.e., share) standardized code.

3. Top-Down Structured Programming-
Using the best conceptual feature from
COBOL, a programmer can selectively run
parts of a program, by dividing up the code
into macro routines. Also, you can read
large SAS programs easier, since the code
can be divided up into module-like routines,
with the last one being the "driver" of the
other modules. You
can then selectively run them, similar to the
sequential methodology used in well-written
COBOL code.

4. Batch Processing- You can create
customized SAS desktop icons to run
specialized tasks.

1. What's a SAS Macro and why make

your code more complex?
(Functionality vs. Complexity)

SAS macros are short-cut code. Instead of
explicitly writing code, one can use the
Macro "sub-language" to generate code. In

this paper, programs will be examined that
produce the simple report shown in
Figure1.

Figure 1- Sample Output Generated with Data
NULL
Keep up the great work ! Keep up the great work!
 Keep up the great work ! Keep up the great work!
 Keep up the great work ! Keep up the great work!
 Keep up the great work ! Keep up the great work!
 Keep up the great work ! Keep up the great work!
 Keep up the great work ! Keep up the great work!
 Keep up the great work ! Keep up the great work!
 Keep up the great work ! Keep up the great work!
 Keep up the great work ! Keep up the great work!
 keep up the great work !

To produce the preceding report that
repeats a message in a "v-shaped" pattern,
one could write each line explicitly in a Data
Null data step, generating several lines of
code (unmanageable, if one decides to
repeat this printing pattern for several
hundred lines). However, by using do-
loops, one could create it using only a few
lines of code:

Figure 2. SAS Code for Generating Sample
Output of Figure 1.
*HARD-CODING EACH LINE;
DATA _NULL_;
FILE PRINT NOTITLES;

PUT / @5 "KEEP UP THE
GREAT WORK!" @80 "KEEP
UP THE GREAT WORK!"
/ @5 "KEEP UP THE GREAT
WORK!" @80 "KEEP UP THE
GREAT WORK!"
/ @6 "KEEP UP THE GREAT
WORK!" @79 "KEEP UP THE
GREAT WORK!"
/ @7 "KEEP UP THE GREAT
WORK!" @78 "KEEP UP THE
GREAT WORK!"
/ @8 "KEEP UP THE GREAT
WORK!" @77 "KEEP UP THE
GREAT WORK!"
/ @9 "KEEP UP THE GREAT

*SHORTCUT USING DO-
LOOPS;
DATA _NULL_;
FILE PRINT NOTITLES;
 DO I=5 TO 30;
 J= 85-I;
 PUT / @I "KEEP UP
THE GREAT WORK!" @J
"KEEP UP THE GREAT
WORK!";
 END;
RETURN;
RUN;

mailto:Peter_parker@ita.doc.gov

WORK!" @76 "KEEP UP THE
GREAT WORK!"
/ @10 "KEEP UP THE
GREAT WORK!" @75 "KEEP
UP THE GREAT WORK!"
/ @11 "KEEP UP THE
GREAT WORK!" @74 "KEEP
UP THE GREAT WORK!"
/ @12 "KEEP UP THE
GREAT WORK!" @73 "KEEP
UP THE GREAT WORK!"
.
.<one line of code per
line of desired output>
.

RETURN;
RUN;
This simple report example is a fine
metaphor for SAS Macros. SAS Macros
provides tools for writing more maintainable
code. For repetitive coding, one can set
macro variables at the beginning of a
program that would pass parameters
throughout the program. Instead of having
to edit several lines throughout the
program, one only would have to do light
editing at the beginning.

For the previous example, one could pass
the message "Keep up the great work!" to
the report using macros that can be edited
at the beginning of the program, rather than
throughout the program. This shortcut is
especially useful if the macro variables are
scattered among several places within the
program.

Figure 3- Example of using Macros to pass
parameters in code
%LET MESSAGE="KEEP UP THE GREAT WORK!";

DATA _NULL_;
FILE PRINT NOTITLES;
 DO I=5 TO 30;
 J= 85-I;
 PUT / @I &MESSAGE @J &MESSAGE;
 END;
RETURN;
RUN;

In the first line in Figure 3, the macro
variable "Message" is defined with the value
of "KEEP UP THE GREAT WORK!", using
the macro function of %let. This value will
be substituted in the Put statement, since
an "&" in front of a macro variable causes
the value of that variable to be used in the
SAS code when it is running.

The downside of macros is that they make
your program more complicated. You can
over-macro a program, and turn it into a
nightmare program, especially when you
need to tweak it a year later. One must use
common sense, or rather, restraint. I have
rejected some code solutions, purely on
that realization, knowing that a multi-page
macro-based solution will become a future
problem to laboriously decipher. See
Appendices I and II for examples of using
macros both poorly and properly.

However, SAS macros do more than just
pass parameters through a program. They
can also be used as a user interface to
pass parameters through a program
interactively. They can share code from
other programs for code writing
standardization. They can be used to write
more logical, easier to read code, using the
techniques of Top-down Structured
programming. Finally, they can be used to
batch process SAS programs by clicking on
a customized desktop icon.

2. Using Macro Windows as a

simple User Interface.

Figure 4. Example of Macro Window to pass
values to macro variable
%WINDOW SELMESS COLOR=YELLOW
 #3 @5 "ENTER YOUR MESSAGE" @30 MESSAGE 25
 PROTECT=NO ATTR=HIGHLIGHT COLOR=BLACK
REQUIRED=YES
;
%DISPLAY SELMESS;
RUN;
DATA _NULL_;

FILE PRINT NOTITLES;
 DO I=5 TO 30;
 J= 85-I;
 PUT / @I "&MESSAGE" @J "&MESSAGE";
 END;
RETURN;
RUN;

In this example (Figure 4), instead of hard-
coding a value for the macro variable
"message", one can run the SAS program
and have it prompt you for that value. The
Macro Window "Selmess" is made up
several components:

a. %WINDOW SELMESS COLOR=YELLOW-
<The Macro Window is called Selmess and
the background color is yellow>

b. #3 @5 "ENTER YOUR MESSAGE"-
< starting at column 5 of line 3 of the screen,
the text "Enter YOUR MESSAGE" will
appear.>

c. @30 Message 25 PROTECT=NO
ATTR=HIGHLIGHT COLOR=BLACK
REQUIRED=YES
<at column 30 of that same line, one will be
prompted for a value for the Macro variable
"Message" which has the following attributes:
 i. 25 characters length
 ii. PROTECT=NO (value of "Message" can
be changed, the default)
 iii. ATTR=HIGHLIGHT (displays the field at
high intensity)
 iv. COLOR=BLACK (specifies that field's
color will be black)
 vi. REQUIRED=YES (one must enter a
value for this field)>

d. %DISPLAY SELMESS;-
<cause the Macro Window Selmess to run>

Figure 5- How the Macro Window example will
appear when running.

ENTER YOUR
MESSAGE

|<enter the value here>

Here are some other uses for Macro
Windows:

1. ask who the user is (based on
your name, the program can do
some
internal housekeeping, such as
deciding how to map the network
drives to the libname and
filename statements)

2. ask which reports to run
3. ask which variables to print, to

sort and to break by in those
reports

4. give directions on running
production (e.g., where the output
will be stored, or when to run
certain parts of production)

3. Using Macros to share code (Code

Libraries)

Code sharing is another way of recycling
code. A good programmer will re-use code
whenever possible. Rather than write a
program from scratch, I prefer to find a
similar program that I've written and then
modify it for my new application. SAS
macros can enhance this ability to share.
Code that will be used for multiple
applications can be stored as a file with any
extension and stored in a library folder.
Using the macro %include statements, this
code can be placed in several programs.
Here are some of the advantages of using
this method of sharing code:

1. If a paragraph of code needs to be
changed, one only needs to change
it in one place, rather than in all of
the programs (such as the record
layout in an infile statement).

2. One could save time from copying
and pasting code, by putting this
"link" to the coding needed.

3. One could enforce standardization of
coding by requiring that certain code
be shared.

There is a disadvantage to using %include.
It will be harder to read and to debug a
program, since some of the coding is in
another file.

Figure 6. Using shared code with %Include
Macro Function
* LIBRARY PROGRAM:
(h:\sugicode\prntnull.sas
);
DATA _NULL_;
FILE PRINT NOTITLES;
DO I=5 TO 30;
 J= 85-I;
 PUT / @I
"&MESSAGE" @J
"&MESSAGE";
 END;
RETURN;
RUN;

*MAIN PROGRAM:;

%WINDOW SELMESS
COLOR=YELLOW
 #5 @5 "ENTER YOUR
MESSAGE" @30 MESSAGE 25
 PROTECT=NO
ATTR=HIGHLIGHT COLOR=BLACK
REQUIRED=YES
;
%DISPLAY SELMESS;
RUN;
* prints the message
entered in the Windows
menu;
%INCLUDE
"H:\SUGICODE\PRNTNULL.SAS";
RUN;

In Figure 6, the Main program will use the
code from the program, prntnull.sas, to print
the message entered from the Windows
Macro. The code in prntnull.sas can be
used in any other program, by inserting the
code, %INCLUDE
"H:\SUGICODE\PRNTNULL.SAS;".

4. Writing Top-Down Structured

Programming, using the SAS macro
language (more advanced code)

Writing a program is only the start of the
implementation of a computer-based
solution. Maintaining the solution may
require effort over many years. Most of us
don't write programs that will be easy to
figure out years later. We write "coffee-
break" programs, something we can churn
out quickly (ideally in the time it takes to

have a cup of coffee) to do the crucial task
at hand. Even if we commented every
other line, it still wouldn't be an easy task to
read a program for comprehension. That's
where top-down structured programming
comes into play. A program is broken down
into modules, such as "read data",
"manipulate data" and "print data". These
modules should be placed in a linear order,
for ease of reading. A final module, the
"driver," would be used to run these
modules selectively, based on parameters
passed through the program.

Base SAS does not default to such a
modular logical design. It's purely linear
code. You start at the top and execute
code line by line until you reach the last
line. In that sense, it is "top-down" but it's
not inherently "structured." However, with
SAS macros, one could develop this
modular structure. You can create a macro
for each module, including the final driver
module. Every line of code could be in a
macro. For instance, all code to read in the
data could be contained in a macro called
"Readdata". For example:

Figure 7. Sample of code using Macros for Top
Down Structured Design
%macro readdata;
* this macro is used to read in SAS datasets;
data testfile;
set test1;
.
.
%mend readdata;
*;
%macro sortdata;
* this macro is used to sort SAS datasets;
Proc sort;
By value1;
.
.
%mend sortdata;
*;
%macro printdata;
proc print;
var…..;
.

.
%mend printdata;
* this macro is used to print SAS reports;
*;
%macro driver;
* this macro is used to decide which macros to run;

* this is the driver of the program;
%readdata;
run;
%sortdata;
run;
%printdata;
run;
%mend driver;
%driver;
run;

The preceding example in figure 7 shows a
simple case of running a program. There
are four macros defined here, readdata,
sortdata, printdata and driver. While the
first three are defined in the code, they are
not executed until the "driver" macro is run.
Within the "driver" macro, are "%"s followed
by the name of the macro (e.g.,
%readdata). These macros will not run
until the driver macro is run, %driver, which
is not until the next to last line in this
example.

 Using Macro "IF" statements, one could
selectively run macros, based on
parameters passed through the macro
windows. For instance, one could have
three reports- detail, summary, and
forecasts, where the execution of each
macro runs that particular report. In a
macro window program, one could setup a
menu where a user can decide which report
to run:

Figure 8. Sample of code to selectively run
macros

*here is the macro window to be used to query
the user for which report to run;

QUIT;
RUN;

* initial settings;

%GLOBAL USEDET USESUM USEFORE;

%WINDOW SELECT COLOR=BLUE
 #5 @5 "OTEXA SPECIAL REQUEST- REPORT"
@60 "&sysday, &sysdate.."
 #12 @20 "TYPE OF REQUEST (mark only one with
X)"
 PROTECT=NO ATTR=HIGHLIGH
COLOR=WHITE REQUIRED=NO
 #15 @15 "DETAIL" @55 USEDET 1
 PROTECT=NO ATTR=UNDERLINE
COLOR=WHITE REQUIRED=NO
 #17 @15 "SUMMARY" @55 USESUM 1
 PROTECT=NO ATTR=UNDERLINE
COLOR=WHITE REQUIRED=NO
 #19 @15 "FORECAST" @55 USEFORE 1
 PROTECT=NO ATTR=UNDERLINE
COLOR=WHITE REQUIRED=NO

 #22 @15 "PRESS ENTER TO CONTINUE" @55
CONT 1
 PROTECT=NO ATTR=UNDERLINE
COLOR=WHITE REQUIRED=NO

;
RUN;
.
.
%MACRO DETREP;

*this macro will print the detailed report;
PROC SORT; BY …..
.
.
%MEND DETREP;
*;
*;

%MACRO SUMREP;
*this macro will print the summary report;
PROC SORT; BY …..
.
.
%MEND SUMREP;
*;
*;

%MACRO FORCREP;
*this macro will print the forecast report;
PROC SORT; BY …..
.
.
%MEND FORECREP;

*'
* driver to take choices in windows macro and
determine which macro to execute;

%MACRO DRIVER;
* display selection menu;

%DISPLAY SELECT;
%IF "&USEDET" = "X" %THEN %DO;
 %DETREP;

 RUN;
 %END;

%IF "&USESUM" = "X" %THEN %DO;
 %SUMREP;

 RUN;
 %END;

%IF "&USEFORE" = "X" %THEN %DO;
 %FORECREP;

 RUN;
 %END;
 %MEND DRIVER;
 %DRIVER;

 RUN;

Here is a detailed explanation of the
program example in figure 8:

a. USEDET, USESUM AND USEFORE are
defined as global macro variables so that
the values of these macro variables can be
referenced in all defined macros.

b. The macro window, SELECT, creates a
screen upon execution where an user can
select which report to run, by marking the
values of the macro variables, USEDET,
USESUM, and USEFORE with an "X"

c. Three macros are defined for running the
detailed report (DETREP), summary report
(SUMREP), and the forecast report
(FORCREP). Note that these programs are
only defined and will not run until later in the
code.

d. The final macro, DRIVER, determines
which of the three macros mentioned in c.
will run, depending on the values of the
macro variable USEDET, USESUM, AND
USEFORE which received user values
when the macro window SELECT (see b.)
was displayed.

5. Putting it all together (Creating
desktop icons for running SAS programs)

Now that you've created a program using
SAS macros, SAS macro windows, shared
code, and a top-down structured
programming methodology, you can
simplify running the program by creating an
icon on your computer desktop. Rather
than clicking on the SAS icon to open SAS
software, and then browsing and clicking
through menus to find your program, you
can streamline the process to the clicking of
only one icon.

Suppose you've created a program called
test.sas that you store in the following
folder- c:\SAS Programs. Here's how to
create the icon (assuming a Windows NT,
Windows95 or Windows98 operating
system):

a. Right click on the SAS program icon
and then left click on the "create
shortcut" item (this will create
another copy of the SAS program
icon on your desktop).

b. Right click on this new icon and then

left click on the "rename" item.
Rename it to "Test."

c. Right click again on this new icon

and then left click on the "properties"
item. Click on the "shortcut" tab. On
the "target" item, you'll see a
reference to running SAS-
<driveletter>:\SAS\SAS.exe.
Append to it a blank space and then
add c:\SAS Programs\test.sas. If
your SAS software is installed on
your C: drive, this code will look like
this-
C:\SAS\SAS.EXE C:\SAS
Programs\test.sas
(note that these three Microsoft
operating systems are not case
sensitive)

d. Click on "OK" to save these new
settings.

e. When you double-click on this new

icon on your desktop, your new SAS
job will run, including the SAS macro
windows. The SAS log will be stored
in a file called <name of
program>.log and the SAS output
will be stored in <name of
program>.lst. In this example where
SAS is installed on the C: drive, the
two files generated for the test.sas
program will be called c:\sas\test.log
and c:\sas\test.lst.

5. Concluding Remarks

Good code writing is more than correct
syntax, just as good fiction writing is more
than error-free typing. One needs to write
with obvious logic that can be readily picked
up by other programmers for maintenance
and also can be transmitted with a minimal
amount of coding lines. The point of using
computers is to save time. Whether using a
do-loop algorithm or a Macro Windows user
interface, a well-written program should be
created from a minimalist artist's point of
view; less is better. Little as possible is
best. SAS software's appeal is in its
minimalist approach in basic programming
functionality. Rather than write a detailed
bubble-sort program, you only need a
"PROC SORT" statement with a list of
variables to sort by. SAS macros take this
generated-code concept a step further, and
simplifies the running of a SAS job. A SAS
macro, properly used, can be the polish to a
well-crafted SAS program.

This paper serves only a brief introduction
to some of the programming methodologies
that SAS macros can enhance. Further
reading of the referenced material in
section 7 below will introduce the reader to

other similar concepts. Appendix I will
show a program with SAS macros out of
control. Appendix II shows how to gain
control.

6. References

Art Carpenter, Carpenter's Complete Guide to
the SAS Macro Language, Cary, NC: SAS
Institute Inc., 1998 242 pp.

SAS Institute Inc., SAS Guide to Macro
Processing, Version 6, Second Edition, Cary,
NC: SAS Institute Inc., 1990, 319 pp.

SAS Institute Inc., SAS Macro Language:
Reference, First Edition, Cary, NC: SAS
Institute Inc., 1997. 304 pp.

SAS and all other SAS Institute Inc. product or
service names are registered trademarks or
trademarks of SAS Institute Inc. in the USA and
other countries.  indicates USA registration

Other brand and product names are registered
trademarks or trademarks of their respective
companies.

Appendix I- Making a Macro
Monster Program (some ugly
programming)

Be warned that this over-macroed coding,
while it will work (at least until you try to
maintain it) will not be pretty.

Figure 9- Example of Ugly Programming
%GLOBAL DATA NULLS YES D1 D2 D3 D4 D5 D6 D7 D8
D9 D10 J85;
%LET DATA=DATA;
%LET NULLS=_NULL_;
%LET YES=RUN;
%LET J85=85-I;
&YES;
%MACRO A123;
&DATA &NULLS;
FILE PRINT NOTITLES;
 DO I = 1 TO 30;
 J= &J85;
 PUT / @I "&MESSAGE" @J "&MESSAGE";
 END;

RETURN;
%MEND A123;
*;
%WINDOW ABC COLOR=YELLOW
 #5 @5 "ENTER YOUR MESSAGE" @30 MESSAGE 25
 PROTECT=NO ATTR=HIGHLIGHT COLOR=BLACK
REQUIRED=YES
;
%DISPLAY ABC;
&YES;
%A123;
&YES;

Salient points on the Ugly program in figure
9:

1. %Global statement
 a. Here are non-intuitive names for
macro variables that have no
meaning in themselves (J85? Yes?).
 b. Why include macro variables that
won't even be used (D1, D2…) or
don't need to be used?

2. %let data=data; Why rename a SAS
keyword with a macro variable?

3. %let Nulls=_null_ ;Why rename a
SAS keyword with a similar named
macro variable?

4. %let Yes=run; Why rename a SAS
keyword with a totally different
named macro variable?

5. %let J85=85-I; Why use a macro
code to replace code unless one
wants to change it later? Here, the
code is not likely to be changed later.

6. &Yes; "Run;" should be used
instead. An unnecessary layer of
complexity has been added.

7. &MACRO A123; This is the only
macro in the program. Why have it?

8. &Data &Nulls; Why not "Data _
Null _ "? This is unnecessary and
confusing.

9. J=&J85; Why not "J= 85-I" ? While
this code is syntactically correct, it's
not how SAS macros where meant
to be used.

10. %Window ABC…. This Macro
window appears first in the running
of the program but appears after

Macro A123 in the code. This is not
top-down design.

Overall, this program will run correctly, but it
can be written much simpler (see
Appendix II). As well, when a programmer
tries to maintain this program a year later,
he'll spend much time trying to figure out
the meaning of these macro variables
names and how they're used. SAS macros
can be a major programming aid, if properly
used.

Appendix II- Taming the beast (an
alternative to some ugly
programming)

Figure 10. Cleaner Example of Macro Window to
pass value to macro variable
%WINDOW SELMESS COLOR=YELLOW
 #3 @5 "ENTER YOUR MESSAGE" @30 MESSAGE 25
 PROTECT=NO ATTR=HIGHLIGHT COLOR=BLACK
REQUIRED=YES
;
%DISPLAY SELMESS;
RUN;
DATA _NULL_;
FILE PRINT NOTITLES;
 DO I=5 TO 30;
 J= 85-I;
 PUT / @I "&MESSAGE" @J "&MESSAGE";
 END;
RETURN;
RUN;

The example shown in figure 10 produces
the same output as the ugly code in figure
9, but in fewer lines and in clearer syntax.
A Macro window (selmess) will prompt the
user for a message and then the Data
_Null _ statement will print it out in a "V"
shaped pattern.

