
ABSTRACT

All SAS� programmers, no matter if they are
beginners or experienced gurus, share the need to
debug their programs. Many techniques have been
suggested over the years to solve the problem of
debugging Data step logic. Until now SAS
programmers have never been able to interactively
watch the Data step execute and debug their logic
as it executes.

Introduced in Release 6.11 of SAS, the Data Step
Debugger is part of Base SAS software. It is an
interactive tool that allows the SAS user the ability
to watch and control DATA step execution.

The Data Step Debugger can be used to:

v watch program logic execute

v examine variable values as they change

v repeat program statements

v jump to other sections of the DATA step

v modify DO loops interactively

v test for "dead" code

v give commands

v observe the results interactively

The Data Step Debugger is a very useful tool,
whether you are a Beginning SAS Programmer or a
SAS veteran. This Tutorial will demonstrate how to
use the Debugger. It will review the Debugger
commands, and demonstrate how they can be used
to improve the debugging process. While this is a
Beginning Tutorial, the subject matter is appropriate
for all levels of SAS expertise if you have not
previously been introduced to the Data Step
Debugger.

INTRODUCTION

The Data Step Debugger was first introduced in
Release 6.11 of the SAS System. It is shipped with
Releases 6.12 and 6.09e of the SAS System and is
part of Base SAS Software. As its name implies,
the Data Step Debugger is valid only for DATA
steps and not for PROC steps.

The Data Step Debugger is easy to use and
simplifies the task of debugging SAS Data steps.
While It is intended to be used as an interactive
debugging tool, it can be used in either Interactive
or Batch mode. There are some very useful
reasons for adding Debugger commands to batch
jobs. Information about using the Debugger in batch
mode is listed later in this paper.

INVOKING THE DEBUGGER

Invoking the Data Step debugger is as simple as
adding a parameter to the DATA statement:

DATA dsname / DEBUG ;

When SAS encounters the DEBUG parameter on
the DATA statement, it changes the default
behavior for processing the Data step.

Normally, SAS processes a Data step in two passes.
The first pass compiles the Data step. This pass
performs a syntax check, resolves any macro
values, and converts the program text into a
program which can be executed by the computer.
Assuming the Data step has compiled correctly,
SAS then executes the Data step in a second pass.

Normally, the user has no control over the execution
of the code that has been compiled. The default
behavior is to execute the entire Data step program
with no external access. Historically, the only
means available to view or modify the execution of
a Data step has been with hard coded PUT
statements or conditional logic. However, with the
DEBUG parameter, SAS first compiles the Data
step and then enters DEBUG mode so the user can
interact with the execution of the Data step. In
DEBUG mode, the user can view and control how
SAS executes the Data step program statements.

How to Use the Data Step Debugger

S. David Riba, JADE Tech, Inc., Clearwater, FL

DEBUGGER WINDOWS

Once the Data Step Debugger has been invoked, an
interactive environment is displayed. The Debugger
environment consists of two windows -- a SOURCE
window and a LOG window.

The SOURCE window displays the original Data
step source code. The currently executing line is
highlighted in the SOURCE window.

The LOG window is similar to the Log window in the
Program Editor, with one major exception. The
Debugger LOG window contains an additional
command line. This command line is for issuing
commands to the Debugger.

A typical Data Step Debugger session might look
like this:

The top window is the Debugger Log window. The
results from executing the Data step are displayed
here. The Debugger command line can be found at
the bottom of the Debugger Log window. The
Debugger command line follows the right arrow sign
at the bottom of the Log window > below the row of
dashes.

The bottom window is the SOURCE window. Here,
the Data step code is displayed, and the current line
being executed is highlighted. The line numbers
displayed in the Debugger Log window are the same
as the line numbers displayed in the Debugger
Source window.

The position and characteristics of each window can
be customized, the same as the SAS Display
Manager windows. Once a window has been
redefined, issue the WSAVE command to
permanently store those definitions.

DEBUGGER EXPRESSIONS

Since the Data Step Debugger is different from the
SAS Program Editor, it has different programming
requirements than the Program Editor.

The commands that are issued from the Debugger
command line must follow the following rules:

v There is a limited set of Debugger commands.

v Commands that are issued during a Debugger
session can include any valid SAS operator.

v SAS functions can not be used in a Debugger
command.

v All commands must fit on one line. With one
exception (DO blocks), Debugger expressions
can not be continued on another line.

v Debugger commands can be assigned to
Function Keys. This saves considerable time,
as well as lessening the opportunity for errors, if
frequently used commands are assigned to
Debugger function keys.

v Macros can be issued from the Debugger
command line.

The RECALL command will recall Debugger
commands from the command stack. By default,
the F4 key is assigned the value RECALL. Up to 20
previous commands can be RECALLed from the
Debugger command stack.

DEBUGGER COMMANDS

There are several categories of commands that can
be issued to the Data Step Debugger. These
commands are issued on the Debugger Command
Line, which is at the bottom of the Debugger LOG
window. These commands are also available from
the Debugger PMenu.

The Debugger commands can be grouped as
follows:

v Control Program Execution

v Manipulate Data Step Variables

v Manipulate Debugger Requests

v Tailor the Debugger

v Terminate the Debugger

v Control the Debugger Windows

Each of these groups will be discussed in turn on
the following pages.

DEBUGGER COMMANDS TO CONTROL
PROGRAM EXECUTION

There are three commands that control the order of
execution of a Data Step. These commands are:

v GO
v JUMP
v STEP

GO
Starts or resumes execution of the Data step.
When a GO command is issued, execution
continues until a BREAK point or WATCH variable
changes, or until the Data step terminates. In
addition, GO can be modified by a line number.
Thus, GO 35 will continue to execute all program
code until line 35, and then will stop and await the
next debugger command.

GO can be shortened to G.

JUMP
Changes the point to resume execution of the Data
step. JUMP requires a valid line number or label for
the next program statement to execute. With the
JUMP command, the normal order that a Data step
is processed can be modified under user control.
Sections of Data step code can be repeated, code
can be skipped, conditional logic blocks can be
entered or terminated, etc.

For example, to move directly to the labeled section
HEADER:

 JUMP header

While it is possible to do so, it is unwise to JUMP
into the middle of a DO loop or into a label that is
the target of a LINK - RETURN group. Directly
JUMPing into either of these program groups
bypasses the normal controls and unexpected
results can occur.

JUMP can be shortened to J.

STEP
Executes statements one at a time. STEP can take
a numeric parameter, which will execute the next X
statements (i.e. STEP 4 will execute the next four
statements). By default, the ENTER key steps
through the program sequentially, one line at a time.
However, this can be modified with the ENTER
command, which will be reviewed later in this paper.

STEP can be shortened to ST

DEBUGGER COMMANDS TO MANIPULATE
DATA STEP VARIABLES

There are four commands that allow the user to
examine and change the values of Data step
variables. These commands are:

v CALCULATE
v DESCRIBE
v EXAMINE
v SET

CALCULATE
Evaluates debugger expressions and displays the
results. It is important to note that CALCULATE can
not evaluate an expression that uses a function.
However, calculate can be used with variable
names and numeric values. The results of the
calculation are displayed in the LOG window.

 CALCULATE var1 / var2 * 100

CALCULATE can be shortened to CAL.

DESCRIBE
Displays the attributes of a variable. DESCRIBE
takes as a parameter the name of a variable or
ALL. DESCRIBE will display the Name, Type,
Length, Label, Informat, and Format for a variable.
If an attribute is not currently defined for the
variable, it is not displayed.
The results are displayed in the LOG window.

 DESCRIBE _ALL_

DESCRIBE can be shortened to DES or DESC.

EXAMINE
Displays the current value of a variable or list of
variables. Like DESCRIBE, EXAMINE takes as a
parameter the name of a variable or _ALL_.

 EXAMINE var1 var2 var3 ... varn

In addition, the format used to display the variable
value can be changed. EXAMINE can be modified
with a valid format.

For example, to examine a date variable which does
not have a format assigned (or to change the
assigned format used for display purposes):

 EXAMINE dob mmddyy8.

The results are displayed in the LOG window.

EXAMINE can be shortened to E or EX.

SET
Assigns new values to a variable. SET takes the
argument Variable = Expression. The variable to be
changed can also be used as part of the expression.

 SET value = value + 1

Unlike the default behavior exhibited during SAS
program execution, the expression to be evaluated
must be the same type as the variable to be
assigned. Thus, if the variable is character, the
expression can not be numeric. There is no implied
type conversion in the Debugger.

SET immediately changes the value of the variable,
but does not display any information in the LOG
window.

SET can be shortened to SE.

DEBUGGER COMMANDS TO MANIPULATE
DEBUGGER REQUESTS

There are five commands that allow the user to
manipulate the debugger. These commands are:

v BREAK
v DELETE
v LIST
v TRACE
v WATCH

BREAK
Sets Break Point to stop execution at an executable
statement. Multiple Break Points can be set in a
Data step. Once a Break Point is set, the debugger
will continue to execute program statements until
the Break condition is met. When the Break
condition is met, the debugger will stop executing at
the specified line and await further commands.

A more complete description of the BREAK
command options follows this section.

BREAK can be shortened to B.

DELETE
Deletes a Break Point or Watch variable. Individual
Break Points, Watch variables, or all Break Points
or Watch variables can be deleted.

At a minimum DELETE takes one required
parameter. Either BREAK (or B) or WATCH (or W)
must be specified after the DELETE command.
Additional parameters, as appropriate, must then be
supplied. For example, _ALL_ will delete all
currently defined Break Points or Watch variables:

DELETE W _all_

For Break Points, the same parameters that are
used to define the Break Point can be supplied to
DELETE the Break Point. These are either a line
number, a statement label, or * for the current line.

For Watch variables, the name(s) of the variables
will delete the Watch on each named variable.

DELETE can be shortened to D.

LIST
Displays a list of the requested items. LIST will
display information about the following six types of
items, if they are currently defined:

v BREAK (or B) current breakpoints
v WATCH (or W) current watch variables
v FILES (or F) current external files wr itten
v INFILES (or I) current external files read
v DATASETS (or D) Input/Output datasets
v _ALL_ values of all of the above

LIST requires one of the above arguments as a
parameter.

LIST _all_

LIST can be shortened to L.

TRACE
Displays a record of program execution in the LOG
window. The value of TRACE can be turned ON or
OFF. By default, TRACE is set to OFF. With
TRACE turned ON, the LOG window will contain a
record of all actions taken during the debugging
session. With no parameters, the TRACE
command will display the current value (ON or OFF)
of the TRACE command.

TRACE on

TRACE can be shortened to T.

WATCH
Suspends execution when the value of a variable
changes. Multiple variables can be defined with one
WATCH command. When the value of a Watch
variable changes, the log displays the old variable
value, the new variable value, and the line number.
Execution of the program then stops and awaits
further commands.

 WATCH var1 var2 ... varn

WATCH can be shortened to W.

THE BREAK COMMAND

The BREAK command suspends execution of a
Data step when a condition is met. The BREAK
command can be shortened to B.

The simplest form of the BREAK command is:

 BREAK location

where location can be either a line number, a
statement label, or * for the current line.

Once a Breakpoint has been set, the SAS debugger
will continue to execute program statements until
the line (or label) is about to be executed. At that
point, execution will stop and the debugger will wait
for the next command.

In addition, the BREAK command can be modified
by:

v AFTER count
v WHEN expression
v DO group

These can also be combined for a compound
BREAK command.

AFTER count
Stops execution when the BREAK condition has
been executed the number of times specified by
COUNT. For example:

 BREAK * AFTER 5

Will stop at the current line on the sixth pass.

WHEN expression
Stops execution when the WHEN expression
evaluates as TRUE. If both AFTER and WHEN are
specified, AFTER is evaluated first. The WHEN
expression is evaluated only if the AFTER count
condition is satisfied. Like the CALCULATE
command, the WHEN expression can not contain
SAS functions.

 BREAK * WHEN (var = expression)

DO group
Like the DO statement in Base SAS, DO group
processing allows multiple debugger commands to
be executed. An END statement is required to
terminate the sequence of commands to be
executed. Unlike the other debugger commands,
however, DO groups can span multiple command
lines.

The simplest form of the DO group is :

 BREAK * DO; command; command;
END;

Multiple debugger commands can be specified
between the DO and END statements. When the
debugger encounters this syntax, the Data step will
continue to execute until the BREAK condition is
met. When the debugger suspends execution at the
Break Point, the commands between the DO and
END statements will be acted upon.

Multiple commands on the same line must be
separated by semicolons. Commands can span
multiple lines. In addition, DO groups can include IF
- THEN and IF - THEN - ELSE conditional logic.

Thus, the BREAK command can be used to
conditionally execute other commands as follows:

 BREAK * DO ;
 IF (condition-is-true) THEN command ;
 ELSE IF (condition-is-true) THEN DO;
 command ;
 command ;
 END ;
 ELSE command ;
 END ;

Note the use of semicolons. Without a semicolon to
terminate each command, the debugger would
immediately act on the command rather than
waiting on the BREAK condition. The above would
be evaluated and acted upon when the BREAK
condition is satisfied. At that point in the
processing, the debugger would act on the
conditional commands, and then wait for further
commands (unless one of the commands was GO).

All of the BREAK command options can be
combined as appropriate. In addition, regularly
used BREAK commands can be assigned to
function keys to minimize typing during a debugger
session.

DEBUGGER COMMANDS TO TAILOR AND
TERMINATE THE DEBUGGER

There are two commands that allow the user to
tailor and terminate the Data Step Debugger. These
commands are:

v ENTER
v QUIT

ENTER
Assigns one or more Debugger commands to the
ENTER key. By default, the ENTER key is
programmed to execute the command STEP 1.
However, the ENTER key can be reprogrammed to
any valid combination of debugger commands.

For example, if breakpoints and watch variables are
set, it might be useful to continue execution until the
program stops at a breakpoint or watch variable and
then examine the values of all variables. To do this,
the ENTER key can be reprogrammed to:

 ENTER g ; e _all_

QUIT
Terminates the Debugger. The currently open
Dataset(s) is closed, any open files are closed, and
the Debugger terminates.

It is important to note that when the Data step
completes execution, the Debugger environment
does not automatically close. In order to exit the
Debugger, the QUIT command must be issued.

QUIT can be shortened to Q.

COMMANDS TO CONTROL DEBUGGER
WINDOWS

There are two global commands that can be issued.
Both of these commands are not Debugger
commands, but must be entered from the
Command Line, Command Bar, Pmenu, or the
appropriate Function Key. These commands are:

v SWAP
v HELP

SWAP
Changes the active window. The SWAP command
toggles between the Debugger SOURCE and the
LOG windows.

By default, Shift F3 is defined as SWAP.

HELP
Opens the Debugger command help window. All of
the current SAS documentation on the Data Step
Debugger is contained in the HELP file.

By default, F1 opens Debugger Help.

DEBUGGING DATA STEPS CREATED BY A
MACRO

SAS default behavior in resolving Macro code
creates a problem when using the Data Step
Debugger. The Debugger source window displays
the original source code that is being stepped
through during the debug session. However, since a
Macro is resolved at compile time and the source
code is modified prior to execution, the original
source code being executed is not available to the
Debugger to display. In this case, the Debugger will
still step through the Data step program code.
However the SOURCE window is blank, since there
is no valid source code to display.

To resolve this problem, SAS recommends a three
step approach. SAS recommends that the Macro
code be executed, the resolved data step code be
saved, and the resolved code rerun with the
Debugger turned on.

The specific steps are as follows:

v Enable the System option MPRINT

v Invoke the Macro

v Route statements in the SAS log displayed by
MPRINT to a file

v Edit the file to remove line headers and extra
text like notes and warnings

v Add the DEBUG option to the DATA statement

v Rerun in Debugger

There is a new system option that was introduced in
Version 7 of the SAS System. The MFILE option
routes macro MPRINT output to an external file.
Using MFILE, the above steps would change
slightly:

v Enable the System option MPRINT

v Enable the System option MFILE

v Define a fileref named MPRINT pointing to an
existing external file

v Invoke the Macro

v Edit the file to remove line headers and extra
text like notes and warnings

v Add the DEBUG option to the DATA statement

v Rerun in Debugger

Note that the MFILE option appends output to the
external file defined in a fileref named MPRINT.
The external file must exist or MPRINT will fail.

DATA STEP DEBUGGER MACROS

It is possible to define Macros which contain
multiple debugger commands for use during a
Debugger session. Once defined, Debugger macros
are stored in the Macro library for the duration of the
SAS session.

Debugger macros can also contain replaceable
parameters. Thus, a single debugger macro can be
defined with user definable parameters in a similar
manner to the SAS macro facility.

Debugger macros can be defined with the following
syntax:

 %MACRO name; command(s); %MEND name;

The Macro name can be any valid SAS name.
Multiple commands are separated by semicolons.
All commands must be entered on the same line.

In addition to macros defined in the Debugger, the
Debugger recognizes macros defined from the
Program Editor. While these macros must contain
valid Debugger commands, the commands do not
have to be typed on a single line. The Data Step
Debugger treats all macros the same, regardless if
they were defined in the Program Editor or during a
debugging session.

To invoke a macro in the Debugger, type the macro
name from the Debugger command line.

 %macroname

USING THE DISPLAY MANAGER TO ASSIGN
DEBUGGER COMMANDS TO FUNCTION
KEYS

The Data Step Debugger uses a separate set of
Function Key definitions. In addition to the Display
Manager Key definitions stored in the user’s profile,
the Data Step Debugger stores Function Key
definitions in a keys entry named DSDKEYS. Like
Display Manager key definitions, the Debugger key
definitions can be customized.

To assign Debugger commands to a Function Key,
prefix the command with DSD. Each command in a
multiple command string must be separated by a
semicolon.

For example, to define a function to Examine the
values of all variables and then STep to the next
program statement, a Function Key can be defined
as:

 dsd e _all_; dsd st

Since the Function Key definitions are stored in the
user’s Profile, these definitions will remain in effect
until they are changed.

USING THE INTERACTIVE DEBUGGER IN
BATCH MODE

Yes. The interactive Data Step Debugger can be
used in batch mode. While the Debugger is
intended as an interactive tool, it can be useful
when running batch SAS jobs. Any Debugger
command can be used, plus there is an
undocumented command that is only valid in batch
mode.

To run the Debugger in batch mode, the parameter
on the DATA statement is slightly different. Instead
of / DEBUG to invoke the Debugger, for batch mode
use / LDEBUG.

DATA dsname / LDEBUG ;

This will invoke the Debugger, but will not open the
interactive SOURCE and LOG windows.

When running in batch mode, the Debugger
commands are entered AFTER the RUN statement
at the end of the DATA step. Each command that
would be typed in interactively, must be listed. It is
very important to terminate the Debugger with a
QUIT command. In addition, the Debugger in batch
mode can not be used with a CARDS statement or a
%INCLUDE statement.

Below is a sample of the Debugger commands for a
batch job:

 DATA CHECKIN / LDEBUG;
 SET HOSPITAL;
 STAY=ENDDT-STRTDT;
 RUN;
 GO;
 WATCH ENDDT;
 EX ENDDT MMDDYY10. STRTDT MMDDYY10.;
 GO;
 QUIT;

Each Debugger command is listed after the RUN
statement which marks the DATA step boundary.
The Debugger is terminated with the QUIT
command. Between them are the commands that
would have been entered interactively from the
Debugger command line.

There is one additional undocumented command
which is only available to the Debugger in batch
mode.

v PRINT
The PRINT command takes as an argument the line
number or range of line numbers from the SOURCE
window. It then prints those line numbers to the
Log.

WHY USE THE INTERACTIVE DEBUGGER IN
BATCH MODE?

An unintended side effect of the ability to use the
Data Step Debugger in batch mode is its high
degree of usefulness for Source Code Control and
Source Code Maintenance issues.

The traditional method of debugging SAS programs
has relied on PUT statements and other external
means of tracking the progress of Data step
execution. Typically, when a SAS job is debugged
and placed into production these extra statements
are removed. The job then needs to be tested to
verify that nothing was “broken” in the process of
removing these extra statements. Future
modifications to production jobs require the same
process, and have the potential for unintended
consequences when something changes that was
not planned.

Using the Data Step Debugger, no code is changed.
In fact, all interactions occur outside of the Data
step, so maintenance and source code control are
unaffected. For testing purposes, using the batch
mode of the Debugger might be an ideal solution.
All Debugger commands can be entered after the
Data step, and each debugging session will be
consistent with prior sessions.

INVOKING DEBUGGER CODE IN BATCH
MODE

One additional recommendation and the Data Step
Debugger becomes the ideal debugging situation
when source code control is an issue. Replacing the
/ DEBUG parameter with a macro value allows the
source code to be unchanged between test and
production versions, yet allows total debugging
flexibility.

For example:

 %LET dmode = / LDEBUG ;
 DATA dsname &dmode ;

To turn off DEBUG mode, change the macro value
to:
 %LET dmode = ;

Finally, establish a macro flag to determine if the
program should be debugged:

 %LET debug = Y ;

Using the previous example, the completed code
would now look like this:

%LET debug = Y ;
%LET dmode = ;
%MACRO do_debug ;
 %IF &debug = Y %THEN
 %LET dmode = / LDEBUG ;
%MEND do_debug ;
%do_debug ;

DATA CHECKIN &dmode;
 SET HOSPITAL;
 STAY=ENDDT-STRTDT;
RUN;

 WATCH ENDDT;
 GO ;
 EX ENDDT MMDDYY10. STRTDT MMDDYY10.;
 GO;
 QUIT;

Thus, no source code needs to be changed in order
to take advantage of the Data Step Debugger
whether it is interactive or batch mode. The only
final step necessary before production is to remove
the Debugger statements which are OUTSIDE of
the production SAS code.

CONCLUSION

The Data Step Debugger is a useful tool for all SAS
users, from the beginner to the advanced guru. It is
an easy to user, interactive environment that allows
total control of the execution stage of Data step
processing. As this paper demonstrated, the
Debugger can also be very useful in non-interactive
batch mode. The Data Step Debugger has been
part of Base SAS software since Release 6.11. This
paper has reviewed the use of the Debugger and
the Debugger command set.

REFERENCES

SAS Institute, Inc., SAS® Online Doc, Version 7-1
Cary, NC. SAS Institute Inc., 1999.

AUTHOR

The author may be contacted at:

S. David Riba

���|�;.P4|�[.i
P O Box 4517

Clearwater, FL 33758
(727) 726-6099

INTERNET: dave@JADETEK.COM

This paper is available for download from the
author’s Web site:

HTTP://WWW.JADETEK.COM/JADETECH.HTM

ACKNOWLEDGMENTS

The author would like to gratefully acknowledge the
assistance of Sharon Hamrick of SAS Institute
Technical Support in reviewing this paper.

TRADEMARK INFORMATION

SAS is a registered trademark of SAS Institute Inc. in the
USA and other countries. ® indicates USA registration.

AUTHOR BIO

S. David Riba is CEO of JADE Tech, Inc., a SAS
Institute Quality Partner who specializes entirely in
applications development, consulting and training in
the SAS System. Dave has presented papers and
assisted in various capacities at SUGI, SESUG,
NESUG, MWSUG, SCSUG, and PharmaSUG.

Dave is an unrepentent SAS bigot. His major areas
of interest are efficient programming techniques and
applications development using the SAS System.
His SAS software product specialties are SAS/AF
and FRAME technology, SAS/EIS, SAS/IntrNet,
AppDev Studio, and CFO/Vision. Dave is a SAS
Certified Professional.

Dave is the founder and President of the Florida
Gulf Coast SAS Users Group. He chartered and
served as Co-Chair of the first SouthEast SAS
Users Group conference, SESUG ’93, and serves as
President of the Executive Council of the SouthEast
SAS Users Group. He also serves on the Executive
Council of CONSUG, the Consultant’s SAS Users
Group. His first SUGI was in 1983, and he has been
actively involved in both SUGI and the Regional
SAS User Group community since then.

Dave is currently the Co-Chair of SSU 2001, the
combined SouthEast and SouthCentral SAS Users
Group conference to be held in New Orleans in
August, 2001.

