
P-310

Static SAS (R) Web Publishing (SAS/IntrNet @ Social Work)
Roderick Rose, Jordan Institute for Families, UNC-Chapel Hill

ABSTRACT
This course is for experienced SAS programmers who want to
learn static SAS web publishing using basic SAS commands,
such as data statements and macros, and also with the Output
Delivery System (ODS). Taking this class requires no previous
HTML programming skills, nor does it require experience with
ODS. It is assumed that the user has SAS programming
experience and some familiarity with Windows 95. During the
class, the student will download programs and data sets and
"learn-by-doing" by authoring a web page, using FTP and building
SAS programs. This class serves primarily as an overview so as
to familiarize students with the options available. Further
exploration of one or more web publishing options in SAS will
require turning to other sources.

The Web Formatting Tools and ODS are very simple to use to
convert your existing libraries of SAS programs, such that they
can produce static web output. The advantages of static SAS
web publishing are numerous. Your reports can be distributed
worldwide for a cost, at the margin, of next-to-nothing. They can
be updated periodically and re-distributed, also at a cost of next-
to-nothing. The means of distributing and displaying the
information has been relegated to a common software tool - the
web browser. In the future, users may bypass traditional
information channels and go directly to the web page instead,
leaving you and your associates free to be more productive.

THE CLIENT/SERVER APPLICATION
The Client/Server Application consists of several computers,
protocols, and files, most of which are invisible to users of the
Internet. Understanding the client/server application does not
require a great leap for someone with basic Internet skills. It will
help you understand your role in the process, and give you an
idea of how any random computer user retrieves the information
you've put online.

Web pages must be stored on a web server, which is a computer
connected to the Internet. The files on the web server are
accessible by users worldwide. Each server is assigned a unique
numeric identifier called an IP address, making it accessible to
others. The domain, which you recognize as www.unc.edu or
www.cnn.com, for instance, is translated into the IP address by
routers, computers which control the flow of traffic on the Internet.

The programmer must:
• Determine what content will be made available on your static

pages
• Write the SAS programs that generate the static content
• Debug the content for errors in both SAS and HTML
• Make the material available on a server by uploading it

The web pages are retrieved over the Internet by a user whose
computer is referred to as the "client". The user types the domain
into the address bar (or selects a link) and the client sends a
request to the corresponding server. The server responds with the
requested information. In many cases, the requested information
would be a static web page. In order to retrieve this information,
the client must have appropriate access to the server. This would
mean a computer with an Internet connection and a web browser,
like Netscape Navigator or Microsoft Internet Explorer.

The audience will:
• Use a computer (the client) to find your website
• View the pages you have already designed and uploaded

It is not the job of the audience to determine what content will be
made available on the pages. That is strictly relegated to a

dynamic application. With static, the audience views exactly what
you have created beforehand.

HTML
HTML is the predominant "language" of the web. You will need to
know a little in order to use DATA _NULL_ to generate HTML on
your pages.

Elements & Attributes
Everything on an HTML document is an element. There are three
different types distinguished by their use - structural elements,
object elements, and formatting elements. Many elements can be
formatted to your liking by employing "attributes". Common
attributes include color and size options.

Tags
 Each element must be invoked by a "tag". Every element on an
HTML-formatted page, with the noted exception of readable text
itself, must be enclosed within "<" and ">".

Each of these elements requires a "start tag" to invoke the
element, ie., to tell the browser to format everything that
follows with a bold face. Additionally, certain elements
require "end tags" to tell the browser to stop formatting the
element. The end tag is indicated by a "/" inserted inside the
tag, ie., , which will tell the browser to return to whatever
formatting options prevailed before the element was invoked with
the start tag.

Rules
 There are no strict rules of organization to recall when writing a
simple HTML document. However, you should note:
1. As you might expect, the browser parses the page from top

to bottom. This becomes very important when fixing your
mistakes. If there is a mistake, the browser will show
whatever it understands and mis-format everything that
comes after.

2. No matter how much white space you insert between one
letter and the next, it will format only one white space.

3. Following directly from (2), you can put your code on as
many lines as you like, or on as few as one.

4. Almost nothing on the page is case-sensitive (text is one
obvious exception).

We use the four-character extension file-naming convention,
".html", but you can just as easily use ".htm".

WRITING HTML WITH DATA _NULL_
To produce HTML code as SAS output, you will employ DATA
NULL, using the PUT statements to encapsulate the HTML
code from the previous lesson.

The key feature to keep in mind is that instead of directly
authoring an HTML document yourself, you are directing SAS to
author one for you. You must tell it to write exactly what code you
need in order to produce the desired output. HTML code can be
generated in a DATA _NULL_ step using FILE and PUT
statements:

���� ������	

��� ��� ���� ���� ����� ���� ��

��������� �� ����� ���

���� ���� ���� �!���"���	

#�� ��� $�"���$ %�&� �������"	

#�� &��� %�&�	

 '��	

Since no SAS data set is being created, we specify the _NULL_
keyword in the DATA statement. You can use more than one
DATA _NULL_ in a SAS program to create as many .html files as
you want, or to append to one .html file. You can also use as
many PUT statements as are necessary to generate the desired
HTML output.

STEPS
The process of developing static SAS-based output on the web
involves several steps: HTML, SAS programming, uploading and
debugging.

Step 1: HTML
 Use what you learned in the previous lesson to write a page of
HTML, like the following:

(����)(�����)� *����� ���� *�� +, ����

������(-�����)

(+�$,)

(# .��""/0�10)� *����� ���� *��(-�)

(��)

(�)

(�

����/0����2--���� ��. �$�-"����"��.��-"�"

�������-"����.����"�3 ����0)

4� 5�.6(-�)

(-7�)

(-+�$,)

(-����)

Step 2: SAS Programming
 The best way to proceed is to program your SAS code around
what you've already developed using DATA _NULL_, FILE and
PUT.

-8 �!����� �� *�* 7����� �� %�&� 8-

-8 ����1 "�" 8-

$��� ������	

���� ����1 ����	

��� (����)	

��� (�����)

� *����� ���� *�� +, ����

������(-�����)	

��� (+�$,)	

��� (# .��""/0�10)� *����� ����

*��(-�)	

��� (��)	

��� (�)	

��� (�

����/0����2--���� ��. �$�-"����"��.��-	

��� "�"�������-"����.����"�3 ����0)4�

5�.6(-�)	

��� (-7�)	 ��� (-+�$,)	

��� (-����)	

���	

The code follows the protocol of any SAS program, including the
use of a semicolon at the end of a line of code and comments
between /* and */. The file name you assign to your output file
must have the extension ".html" or ".htm". The elements between
the quotes, in the put statements, are the exact HTML tags that
will be used to format a .html file.

Step 3: FTP
 The last lesson in this part of the presentation is to place your
material online. You will become familiar with several methods of

file transfer protocol. For now, we will skip this step. It is not
necessary to upload static files to the server before debugging
them, as it can be done "off-line" usually much quicker.

Step 4: Debugging
 HTML and DATA _NULL_ are from two different systems, and
each has their own problems. Together, they can cause even
greater problems. You have to be especially careful regarding
unbalanced quotes.

To review problems, you should refer to both the log from the
SAS program as well as the page you've created. To avoid
compounding problems, I encourage you to write an HTML file
first, formatting it and working the "kinks" out. Then build PUT
statements in standard SAS syntax around the HTML code and
run the program in SAS.

PUTTING YOUR FILES ON THE WEB
The last step in this process is to actually place the files you have
created on a server which is accessible worldwide. In this class
we strictly use the FTP Access Method, and we encourage you to
use it as well.

Drawbacks
• When the program runs, the user will be prompted to enter

the password for the user account to which the output is
being sent. A prompt will occur for each file, and for each
time the file is edited and submitted. This is for security
purposes and can be bypassed.

• Only files created by SAS can be uploaded this way. Other
static files, like logo or header images, must be uploaded
using one of the other FTP clients.

Invoking and Uploading in One Step
 To use this simple tool, a few statements must be added to your
SAS program:

�������� ������� ��� ��������

.$/9�"����-��+��.�����

��"�/��"�����

Finally, specify the userID again, and 'prompt', such that the
program prompts you for the password:

�"��/�"���� ������	

As an alternative to prompt, you can use
pass=your_isis_password. This is not recommended because it
makes your login password clear to anyone with access to the
program. But it does save you the trouble of having to constantly
re-type your password.

There should be a semi-colon on the end. It should come before
you specify any output destinations (using DATA _NULL_,
macros or ODS). You can copy these exact statements and
simply insert your specific references as required.

THE DATA SET FORMATTER - %DS2HTM
The Data Set Formatter converts SAS data sets to well-defined
HTML tables. %DS2HTM is a macro which must be invoked in
your SAS program and cannot be called from a SAS command
line. A list of common arguments, required and optional, are
available below. More are available at the SAS Institute website.

The Data Set Formatter is invoked only once every time you want
to generate output (as opposed to twice, which as you will see
shortly, is how the Tabulate and Output formatters work).

Use
The Data Set Formatter can replace PROC PRINT as an output
procedure. For instance, the following represents the print
procedure from a working SAS program:

���. ����� $���/��� $"1	

����� ����.�$� / : ��$ ��������) ;<<	

��� �������� ����.�$� .���+�= .�����$	

+, .���+�=	

���	

Alternatively we can use %ds2htm to generate the same output in
HTML form:

>$"?����$��� / ��� $"1�

�������� / $"?�

��� / �������� ����.�$� .���+�= .�����$�

+, / .���+�=�

.����� / ,�

�+"��� / ,�

�����/�����.�$� �@ : ��$ �������� =�

;<<��

������$�/�����.��

�����$� / +�	

���	

OUTPUT FORMATTER - %OUT2HTM
The HTML Output Formatter macro is utilized to present data
output in the format of an HTML document.

Use
Write a SAS program as you normally would. Include the following
in your program, at the location where the data is to be
processed, starting with the macro call "%out2htm":

>���?����.������/���

���$��/�������

�����$�/+�	

CAPTURE=ON tells SAS to output HTML. After specifying to SAS
that it should capture output using %OUT2HTM, you specify the
procedures it should capture:

���. ����� $���/��� $"1	

����� ����.�$� / : ��$ ��������) ;<<	

��� �������� ����.�$� .���+�= .�����$	

+, .���+�=	

���	

Each CAPTURE=ON is accompanied by a CAPTURE=OFF, after
all procedures to send to web output have been specified:

>���?������������/���?�

.������/����

���$��/�������

������$�/�����.��

�.����/��$�

�����$�/+�	

STATIC OUTPUT USING ODS HTML
ODS HTML is a versatile alternative to using the HTML
Formatting Macros. It provides more options and better default
formatting. ODS HTML can be used with any of the HTML
Formatting Macros and Data _NULL_. You can place as many
procedures on one .html page as you would like, and they can all
be processed while the HTML destination is opened.

The instruction of ODS HTML skills is centered around building a
SAS program from top to bottom, much in the same way that I did
with the HTML Formatting Tools.

Opening the HTML Destination
 The files specified (in this case a body page, a contents page
and a frame page in which to display them) can be named in any
order. The options refer to each file and follow the file
specification in parenthesis. If more than one option is specified,
they are all in the same parentheses, separated by commas.
Remember that it is a good idea to use a fileref, with the FTP
Access Method, in which case your file specifications would refer
to filerefs. If instead you choose to name files you need to contain
the file names within quotes.

7�* %�&�

���� / �$"? ��7��7#�&����'�

.������"/ .�$"? ��7��7#�&����'�

�����/��$"?	

Directly after the last specification, you need to place a semicolon
(as shown after frame). There are additional file specifications
which you can name in your program as well (they should be
placed before the semicolon):

����/-��"-�"�" ��. �$�-�-�-����"�-��+��.

����� ��'�/����2--��� ��. �$�-9����"��

���$��!�/(�����)��.����� �����

����(-�����)

��.���/�++���������

������� / �7�� A 7��#�� A #�4� A #'7B

Producing Output
At this point you would specify the procedures you would like SAS
to perform. The syntax follows standard SAS procedural syntax.
The following example assumes that I have specified a libname
out and that a data set ods1 exists.

���. .������" $���/��� �$"1	

���	

���. ����� $���/��� �$"1	

����� ����.�$� / : ��$ ��������) ;<<	

��� �������� ����.�$� .���+�= .�����$	

+, .���+�=	

���	

ODS will generate as many procedures on one page of HTML
code as you specify. In this case, it will output the contents and
print procedures. In order to finish the program you need only
close the destination.

Closing the HTML Destination
 In order to close the HTML destination, use ODS HTML CLOSE:

7�* %�&� B�7*�	

SUMMARIZING KEY CONCEPTS
We provided an introduction to several useful tools:
• HTML
• Uploading with the FTP Access Engine
• HTML output with DATA _NULL_
• HTML Formatting Macros
• ODS

These tools, used together or separate, provide great versatility:
• You can use any combination of these tools to put static

SAS output online.
• You can write several SAS programs to append to one

output file by specifying the append, mod or
no_bottom_matter/no_top_matter options, depending on the
tool you are using.

• Static output skills are useful when programming dynamic
online content.

You should be reminded of key hints that will simplify your work:
• If you intend to write HTML output directly by using a Data

Step, write the HTML beforehand, view it, and then build the
SAS program around it.

• Use the programs provided on this website around which to
build your own programs.

• Return here in the future and delve deeper into each tool's
programming features by reviewing other pages on this
website.

• Use the SAS Institute's website to supplement our
instruction.

And finally, for the truly overwhelmed: recognize that, out of
necessity, you need one of each of the following:
• A method of sending output to a web page (The HTML

Formatting Macros, ODS).
• A method of adding headers, footers and other

complementary elements to the page (The Data Step, ODS)
• A method of putting your work on the server for access (by

working in your AFS space, or by FTP uploading, either by
client, or by SAS FTP Access Method)

CONTACT INFORMATION
Your comments and questions are valued and encouraged.
Contact the authors at:
Roderick A. Rose
Jordan Institute for Families
CB 3550
301 Pittsboro St.
Chapel Hill, NC 27599
Email: rarose@email.unc.edu

