
The Variable List Wildcard Character

Malachy J. Foley

University of North Carolina at Chapel Hill, NC

ABSTRACT

 A very simple and powerful, yet relatively unknown,
programming technique is the use of a wildcard character
in variable lists. The wildcard is the colon. This paper
shows how to use the technique, when it works, and when
it does not work. Finally, this article presents code to
make the wildcard work in many cases.

INTRODUCTION

 The lowly : (colon) character can greatly simplify a
SAS programmer’s life. When used in a variable list, it
reduces keying errors, keying time and keying drudgery.
Anyone who uses the SAS BASE product can benefit
from this article.

 The best way to introduce the colon wildcard character
is through examples. To this end, the next section shows
some test data. The subsequent sections give examples of
the wildcard’s use. Throughout the paper there is a
discussion of various aspects of the colon wildcard. The
conclusion of this paper summarizes the features of the
colon wildcard.

A TEST DATA SET

 The following is part of the PROC CONTENTS of a
test data set. This data will be used to illustrate the
wildcard character. Note that the file is called TEST1, has
24 variables, and its contents are in position order.

 Exhibit 1: Contents of TEST1 file.

 # Variable Type Len Format

 1 ID_NUM Char 4 $4.
 2 ID_SEQ Char 2
 3 IVAA1 Char 1
 4 XIVAA1 Char 3
 5 IVAA2A Char 1
 6 XIVAA2A Char 3
 7 IVAA2B Num 8
 8 XIVAA2B Char 3
 9 IVAA3 Char 1
 10 XIVAA3 Char 3
 11 IVAB1 Num 4
 12 XIVAB1 Char 3

 13 IVAC1 Num 8
 14 XIVAC1 Char 3
 15 IVAC2A1 Num 8
 16 XIVAC2A1 Char 3
 17 IVAC2A2 Num 8
 18 XIVAC2A2 Char 3
 19 IVAC2B1 Num 8
 20 XIVAC2B1 Char 3
 21 IVAC2B2 Num 8
 22 XIVAC2B2 Char 3
 23 IVAC3A Num 8
 24 XIVAC3A Char 3

A SIMPLE EXAMPLE – Dropping Variables

 The above file has a certain semblance of order. The
first two variables (ID_NUM and ID_SEQ) identify each
record. After the identifying variables, there is a series of
data variables in the file. The data variable names all start
with either IVA or XIVA. The IVA variables are actual
data values needed for processing. The XIVA variables
contain information on how the corresponding IVA
variable was keyed.

 To illustrate the use of the : (colon) wildcard character,
all XIVA variables will be dropped from the TEST1 file
given in Exhibit 1. Notice how the XIVA are interspersed
with the IVA variables. Normally, you would need to list
all the XIVA variables in a drop statement to eliminate
these variables. For example, one would have to type the
following:

 DROP XIVAA1 XIVAA2A XIVAA2B . . .
XIVAC3A2;

 There are more than 100 keystrokes in the above
DROP statement. To type out the entire statement is a
cumbersome, time-consuming and error-prone process. It
is fairly easy to mis-key one of the l00 characters in the
statement. However, there is a simpler and less error-
prone way to drop all the variables beginning with XIVA,
namely:

 DROP XIVA: ;

Or even more simply:

 DROP X: ;

The “X:” in the previous statement can be read as “all
variables starting with the character X”. The next exhibit
shows how this DROP statement works.

 Exhibit 2: Drop all vars starting with X.

 DATA TEST2;
 SET TEST1;
 DROP X: ;

 RUN;

 Contents of the output file TEST2

 # Variable Type Len Format

 1 ID_NUM Char 4 $4.
 2 ID_SEQ Char 2
 3 IVAA1 Char 1
 4 IVAA2A Char 1
 5 IVAA2B Num 8
 6 IVAA3 Char 1
 7 IVAB1 Num 4
 8 IVAC1 Num 8
 9 IVAC2A1 Num 8
 10 IVAC2A2 Num 8
 11 IVAC2B1 Num 8
 12 IVAC2B2 Num 8
 13 IVAC3A Num 8

EXAMPLE with KEEP, LENGTH, & FORMAT

 Exhibit 2 demonstrates how the colon acts as a
wildcard character in naming a list of variables in a
DROP statement. This wildcard character can be used just
about everywhere a variable list is required. In the next
example, the colon is successfully used in the KEEP,
LENGTH and FORMAT statements.

 Exhibit 3: Using the : in 3 SAS Statements.

 DATA TEST3;
 SET TEST2;
 KEEP ID: IVAC: ;
 LENGTH IVAC2: 4;
 FORMAT IVAC2: 6.;
 RUN;

 Contents of the output file TEST3

 # Variable Type Len Format

 1 ID_NUM Char 4 $4.
 2 ID_SEQ Char 2
 3 IVAC1 Num 8
 4 IVAC2A1 Num 4 6.
 5 IVAC2A2 Num 4 6.
 6 IVAC2B1 Num 4 6.
 7 IVAC2B2 Num 4 6.
 8 IVAC3A Num 8

WHERE THE COLON WORKS

 The previous examples show how the : (colon)
wildcard can work with the DROP, KEEP, FORMAT,
and LENGTH statements. The colon works with the
DROP and KEEP SAS Data Set Options as well.

 In fact, it works just about anywhere a variable-list is
called for in the SAS syntax. As such, the colon functions
in the ARRAY, BY, and PUT statements. It also
functions in SAS PROC’s. For instance, it works in the
VAR statement of PROC PRINT:

 Exhibit 4: Using the : in a SAS PROC

 PROC PRINT DATA=TEST1;
 VAR IVAA:;
 RUN;

 Output from the PROC PRINT (LST file)

 OBS IVAA1 IVAA2A IVAA2B IVAA3

 1 N Y 1 Y
 2 N Y 1 Y
 3 N N . Y
 4 N N . N

HOW THE WILDCARD WORKS

 Notice how the wildcard worked in the prior exhibit.
When the colon is used in statements like KEEP and
LENGTH the order of the variables is usually not
important. However, when using the : in statements like
the VAR or BY, order can be important or even critical.

 So how does SAS construct a variable list when a colon
is used? Exhibit 4 reveals the process involved. When
SAS sees a colon at the end of a variable name, it looks
through the PROC CONTENTS in position order and
selects any variable it finds that has a name that starts
with the characters that precede the colon. If a variable
name is exactly equal to the characters that precede the
colon, that variable is included in the list as well.

 Thus the variable list created by the colon wildcard is
in position order from the descriptor part of the file as
given in the PROC CONTENTS. Strictly speaking, the
variables and position order is taken from the Program
Data Vector (PDV) rather than the CONTENTS.
However, the two almost always provide exactly the same
results. The two might differ in a SAS Step that creates
a new variable that matches the wildcard specification.
For more information on the Program Data Vector see
pages 16-19 of the SAS Language Reference and
Whitlock’s paper (given in REFERENCES).

EXAMPLE with PUT

 Below is an example of how the wildcard is used with
the PUT statement. This case is mentioned because it
may not be obvious. Page 451 of the SAS Language
Reference outlines the relevant syntax.

 PUT …(variable-list) (format-list)…;

 In the PUT statement a variable list must be enclosed
in parenthesis. Furthermore, a parenthesized variable list
must be followed by a parenthesized format list. Thus,

 Exhibit 5: Using the : in a PUT Statement

 DATA _NULL_;

 SET TEST1;
 PUT "*** PUT = " (IVAA:) (5.);
 RUN;

 Output from the DATA Step (LOG file)

 *** PUT = N Y 1 Y
 *** PUT = N Y 1 Y
 *** PUT = N N . Y
 *** PUT = N N . N

 Notice that the IVAA: in the PUT Statement really
means IVAA1 IVAA2A IVAA2B IVAA3. Just like
in the PROC PRINT example of Exhibit 4, the variables
are in position order.

 Also notice that the format-list did not correspond to
the variables! Nonetheless, the PUT Statement operated
properly. In this case, SAS was smart enough to find a
format that worked with each of the variables in the list
generated by the wildcard.

WHERE THE COLON DOES NOT WORK

 The colon wildcard does not work in all the places you
might expect it should. For instance, it does not work in
SAS Functions like NMISS and MEAN. Namely, when
SAS encounters the following statement it gives an error
message that the colon “symbol is not recognized”.

 NUM_MIS=NMISS(OF IVAC2:);

 However, in the case of the NMISS and other SAS
functions, there is a simple way to change the code so that
the functions will work. The next section presents this
change.

THE WORKAROUND

 As explained in the previous section, variable lists are
not always allowed in SAS code where you would like to
use the colon. One way around this predicament is to put
the wildcard variable list in an ARRAY and specify the
ARRAY in the code. This technique is presented in the
following Exhibit.

 Exhibit 6: The Workaround for a SAS
Function

 DATA _NULL_;
 SET TEST2;
 ARRAY LST(*) IVAC2:;
 NUM_MIS=NMISS(OF LST(*));
 PUT "*** PUT = " (LST(*))(5.) NUM_MIS=;
 RUN;

 Output from the DATA Step (LOG file)

 *** PUT = 164 . 160 80 NUM_MIS=1
 *** PUT = 190 . 180 . NUM_MIS=2
 *** PUT = . 80 . . NUM_MIS=3
 *** PUT = . 80 180 . NUM_MIS=2
 *** PUT = 144 72 146 70 NUM_MIS=0

 Observe that in the above illustration all the variables
in the ARRAY and in the wildcard list are of the same
type, namely numeric. SAS requires that all the variables
listed in an ARRAY statement be of the same type (either
all character or all numeric). Similarly, many functions
have the same requirement. Therefore, the workaround is
valid for most functions and can be used in any situation
where an ARRAY can be used.

CONCLUSION

 A wildcard character is a special symbol used to
represent, or replace, one or more characters. Most
operating systems and many applications use wildcard
characters. SAS is no exception. When it comes to list of
SAS variables, the : (colon) can be used as a suffix
wildcard.

 When a set of characters is followed by a colon in a
variable list (ex: “IVAA:”), it implies that several
variables are to be specified in the list. SAS creates the
implied variables by scanning the Program Data Vector
and selecting all the variables that start with the characters
preceding the colon. For example “IVAA:” would mean
“IVAA1 IVAA2A IVAA2B IVAA3” for the data set
given in Exhibit 2. This process is explained in more
detail in the section entitled “How the Wildcard Works”.

 The wildcard can select variables with mixed types
(character and numeric). The IVAA: is a case in point.
IVAA2A is Character and IVAA2B is numeric.

 The colon wildcard may be employed almost
anywhere a variable list is allowed in SAS. Exhibits 2-6
demonstrate the use of the wildcard in the DROP, KEEP,
LENGTH, FORMAT, VAR, PUT, BY and ARRAY
statements. The wildcard can be used in the KEEP and
DROP data set options as well.

 In some cases SAS does not allow the use of the
wildcard in a variable list. For instance, a colon can not
be used in a SAS function like NMISS and MEAN. In
these cases the ARRAY workaround can be used. Exhibit
6 gives an example of this workaround. Note that the
ARRAY’s can not accept mixed variable types.

 Using the wildcard in variable lists is easier, faster and
more accurate than typing the entire variable list. As
such, the colon wildcard is the SAS programmer’s friend.

REFERENCES

SAS Institute, Inc. (1990), SAS Language: Reference,
Version 6, First Edition, Cary, NC: SAS Institute Inc.

Whitlock, Marianne. (1998) "The Program Data Vector
As an Aid to DATA step Reasoning" Proceedings of the
Sixth Annual Conference of the SouthEast SAS Users
Group, 229-238.

TRADEMARKS

 SAS is a registered trademark or trademark of SAS
Institute Inc. in the USA and other countries.  indicates
USA registration.

 Other brand and product names are registered
trademarks or trademarks of their respective companies.

AUTHOR CONTACT

 The author welcomes comments, questions, corrections
and suggestions.

 Malachy J. Foley
 2502 Foxwood Dr.
 Chapel Hill, NC 27514

 Email: FOLEY@unc.edu

