
Mailing List Management

Imelda C. Go, Richland County School District One, Columbia, SC

ABSTRACT

SAS! functions and procedures can be very helpful in
managing mailing lists. For example, duplicate addresses
are to be eliminated for a particular mailing. A data set has
two addresses: ’501 Pelham Drive’ and ’501
Pelham Dr’. These are logically equivalent addresses
but are not recognized by SAS as the same character
values. Use the TRANWRD function to change ‘Drive’ to
‘Dr’ or to change substrings within an address. The paper
includes other mailing list management-related tasks and
uses SAS to automate them.

INTRODUCTION

Input data can come from a variety of sources and it is not
always possible to control how they are created and their
quality. High quality data naturally require less
troubleshooting and programming. Some strategies for
preventing data processing problems are:

• Establish data entry standards. For example, only standard
Postal Service abbreviations are to be entered as the street
type. This would avoid the problem described in the abstract.
Another example is to denote the apartment numbers
consistently with ‘#’ or ‘Apt’ after the street name or have a
separate field for the apartment number. Consistent data
facilitates programming.

• Prevent invalid values from being entered as data. For
example, use lookup tables that restrict values of variables to
valid values only.

• Validate the data prior to processing. Decide what happens to
records with incomplete addresses. Undeliverable mail is
waste.

• Plan the data’s structure to be compatible with the uses of the
data. For data used in applications that rely heavily on street
address data (e.g., transportation routing, mapping, geographic
information systems), it might be useful to decompose a street
address into a number of variables (street number, street
name, street type, and apartment number) instead of using one
variable to represent it.

There is typically more than one SAS programming
solution to a problem. A few general examples are given
to illustrate the use of SAS character functions and other
features to handle mailing list management issues.

EXAMPLES

Situation 1 How do I change address substrings into other
values?

Inconsistent data cause problems. For example, if
addresses in the data inconsistently use ‘Drive’ and ‘Dr’ to
denote the street type, address comparisons become
more difficult. Although ‘Drive’ and ‘Dr’ are logically
equivalent, they are not equivalent based on a character-
by-character comparison. Use the TRANWRD function to
change substrings within an address.

address=tranwrd(address,’Drive’,’Dr’);

Making global replacements require caution. For example,
if all occurrences of Court were to be replaced by Ct,
Courtney St would incorrectly become Ctney St. This
can be avoided by using the INDEXW function.

if indexw(address,’Court’)>0 then
 address=tranwrd(address,’Court’,’Ct’);

The INDEXW function searches address, from left to
right, for the first occurrence of Court and returns the
position where it first occurs in address. If there are
multiple occurrences, the function returns the position of
the first occurrence. The function searches for patterns
that are words and not parts of words. Word boundaries
for INDEXW are blanks, and the beginning and the ending
of address. If the pattern does not occur as a word, the
function returns a value of 0. Otherwise, it returns a
positive integer. (Caution: Punctuation marks are not
considered word boundaries.)

test=indexw(address,’Court’)
value of address value of test
’Courtney’ 0

’River Court’ 7
’Court,’ 0

Situation 2 There are records in my data set that have zip
codes, but have no state. Can SAS can help me find the
state values?

The ZIPNAME, ZIPNAMEL, and ZIPSTATE functions
require a five-character expression and return a character
expression. They provide the state or U.S. Territory that
corresponds to the zip code.

sample statement value of test
test=zipname(’29209’); ’SOUTH CAROLINA’
test=zipnamel(’29209’); ’South Carolina’
test=zipstate(’29209’); ’SC’

ZIPNAME returns the name in uppercase. ZIPNAMEL
returns the name in mixed case. ZIPSTATE returns the
two-character state postal code (or world-wide GSA
geographic U.S. territories code).

Situation 3 How do I validate the zip codes (zip) and
state (state) information?

There are four possibilities in a record:
correct zip, correct state
correct zip, incorrect state
incorrect zip, correct state
incorrect zip, incorrect state

Each state has a range of valid zip code values. The
ZIPNAME, ZIPNAMEL, or ZIPSTATE functions can be
used to check if the zip code corresponds to the state in
the data. Whenever there is a discrepancy, either one or
both of the zip and state values are incorrect. If there
are parameters that govern the data, it might be possible
to determine which value is invalid. For example, if all
addresses in a data set are South Carolina addresses,
then the zip codes for those addresses must start with the
number 2. Conditional statements, PROC FORMAT, etc.
can also be used to validate zip codes and other variables.

Situation 4 A single variable contains the street number
and street name. How do I obtain the street name from
this variable?

The SCAN function can be used to obtain the value of the
street name. Both examples scan for the 2nd word in the
given character expression. The word separator specified
is a space. Pelham would be the desired street name.
However, the street number 3 1/2 was not compatible
with the intent of the SCAN function in the example below.

test=scan(address,2,’ ’);
value of address value of test

’501 Pelham Drive’ ’Pelham’
’3 1/2 Pelham Dr’ ’1/2’

To prevent such an error, use the COMPRESS function to
remove specified characters from a string. If no characters
for removal are specified, the function removes spaces by
default. The LEFT function left aligns a character
expression.

test=left(compress(address,’1234567890/’));
value of address value of test

’501 Pelham Drive’ ’Pelham Drive’
’3 1/2 Pelham Dr’ ’Pelham Dr’

test=compress(’exam ple’) results in test=’example’

Situation 5 With one record per person, how do I find out
how many people live in the same city?

Comparing strings is case-sensitive. That is, ’COLUMBIA’
is not the same as ’Columbia’. When data are typed in
mixed case, it can be prone to human error. For example,
’Columbia’ may have been typed as ’COLumbia’. One
solution is to use the UPCASE or LOWCASE functions.

sample statement value of test
test=upcase(’Columbia’); ’COLUMBIA’
test=lowcase(’COLumbia’); ’columbia’

Another problem that could occur is ’West Columbia’
might be entered as ’West Columbia’where there are
two spaces between West and Columbia. Use the
COMPBL function to convert two or more consecutive
blanks into one blank.

test=compbl(city);
value of city value of test

’West Columbia’ ’West Columbia’
’West Columbia’ ’West Columbia’

After modifying the data to prevent problems of
inconsistent data entries, use PROC FREQ or other SAS
procedures to count the number of people who live in the
same city.

proc freq;
 tables city;

Situation 6 Some records have duplicate addresses. How
do I create a data set that only has unique addresses?

Perhaps only one piece of mail needs to go to each
address that occurs more than once in the data set.

proc sort data=withduplicates
 nodupkey out=noduplicates;
 by address;

The NODUPKEY option checks for observations with the
same BY values. All but one of the records with the same
BY values are excluded from the output data set
noduplicates. If no output data set is specified, the
input data set is overwritten by the output data set.
(Caution: In most operating systems, only the first of a set
of duplicate records based on BY values will be kept.)

Situation 7 The data set has records that are exact copies
of each other. How do I eliminate all but one of these
duplicate records?

proc sort data=withduplicates
 noduprecs out=noduplicates;
 by …;

The NODUPRECS (alias NODUP) checks for and
eliminates consecutive duplicate observations. (Caution:
Because it analyzes consecutive observations, it is
important to sort on variables that will cause duplicate
records to be adjacent to each other. Otherwise, there is
the potential to not eliminate all duplicate records.)

Situation 8 It is assumed that students who have exactly
the same address are siblings. How do I separate the
students with no siblings from the students with siblings?

Perhaps a separate mailing goes to each group of
students. One approach is to use the FIRST. and LAST.
variables.

proc sort data=students;
 by address;

data onlychild siblings;
 set students;
 by address;
 if first.address and last.address
 then output onlychild;
 else output siblings;

CONCLUSION

SAS has features that facilitate the management of
address-related data. Whenever possible, create
procedures that help produce high quality data instead of
relying solely on programming to fix problems with the
data.

REFERENCES

SAS Institute Inc., SAS! Language Reference, Version 8,
Cary, NC: SAS Institute Inc., 1999. 1256 pp.

SAS Institute Inc., SAS OnLineDoc!, Version 8, Cary,
NC: SAS Institute Inc., 1999.

TRADEMARK NOTICE

SAS is a registered trademark or trademark of the SAS
Institute Inc. in the USA and other countries. ! indicates
USA registration.

Imelda C. Go
Office of Research and Evaluation
Richland County School District One
1616 Richland St.
Columbia, SC 29201

Tel.: (803) 733-6079
Fax: (803) 929-3873

icgo@juno.com

