
Paper P-408

Producing a Table of Seeds for Random Number
Generation

F. Joseph Kelley
University of Georgia, Athens, GA

Abstract.
The need for producing a random sample of
some population of interest is common and is a
frequent topic of discussion in various disciplines
and in the fora related to those disciplines. When
using SAS Software, one of the most
straightforward (albeit inefficient) methods of
producing such a sample is assigning a (uniform)
random number to each observation in the data
file of interest; sorting by that random number;
then selecting the first n records (observations)
desired. If drawing several samples from the
original population, this process could be
repeated as many times as might be wished;
however a SAS Macro could easily be written to
accomplish the same.

If researchers wished to assign different random
number generation seeds to each sample, a
small complication is introduced. This might be
resolved by using a single seed to set up a table
of seeds, but that introduces a potential trap.
This paper will present a method of setting up
table of seeds for random number generation and
will present a small example that attempts to
minimize the sorting and space requirements of
the basic process.

Introduction.
A researcher has a data file of N observations.
For the purposes of a study, it is necessary to
generate k samples of n observations each.
Both k and n may vary, but this will be at the
discretion of the researcher. It is required that a
separate random number seed be used in
selecting each sample and this cannot be ≤ 0
(which causes the random number generator to
use the system clock) as the results must be
reproducible. The samples produced are
independent of each other; an observation may
appear in more than one sample. When working
with more than one sample, it would be
necessary to provide a seed to be used by the
random number generator; this would require we
devise a selection of seeds in advance. For 100
samples, we will need 100 seeds. It is of course
necessary there be no duplicates in this
selection, as they will generate identical streams
of “random” numbers.

In the usual SAS program, we might code
something like this:

data test ;
infile fileref ;
retain seed 999999937;
input variable list ;
ran = ranuni(seed) ;
output ;

proc sort data=test;
by ran ;

data select ;
set text ;
if _N_ <= n then
output;

This code assigns the random number ran
(uniformly distributed on the interval (0,1)) and
then sorts the data by that number. The final
step simply takes the first n records.

If only one or only a few samples were desired,
this would be fine (we would vary the value
assigned to seed of course). When we need a
number of samples, this becomes tedious and
error-prone. SAS itself provides the tools needed
for a more robust solution.

Solution 1.
More control over the seeds used is needed. If k
samples are to be generated, then k seeds will
be needed. Instead of the ranuni function, a SAS
call function is used. Instead of RANUNI, we will
use CALL RANUNI. The ranuni function as used
in the program above, is replaced with

call ranuni(seed,ran);
instead. In this form, RANUNI is called almost as
though it were a (Fortran) subroutine; a value of
seed is passed and, on return, ran has been
assigned a random value and seed has a new
value for the next call (the old having been
replaced). Using this, we can save the value of
seed, and use it elsewhere. We could call ranuni
a dozen times, save the values of seed to an
array then use the array values as the seeds for
our large samples. However, we must remember
that if

seed1 → seed2 → seed3 → … → seedn
Then saving these and using “seed2” will
produce the same “seed3”, “seed4” and so on

that “seed1” did. So we can add a small
“perturbation” to our seeds. Here is some code
that does that:

data test ;
retain seed 999999937 ;
array seeds {*} seed1-seed3 ;
do i = 1 to 3 ;

put i= seed= ;
call ranuni(seed,x);
seeds{i} = seed + 64
put _ALL_ ;

end;
run;

The little seed assignment loop could be placed
in a program, executed once and fill the SEEDS
array with numbers for subsequent use. It might
be placed in a macro, and we would almost
certainly use macro variables to take care of the
number of seeds we assigned (our k) and the
number of observations to go in each sample
(our n). Depending upon the values of N (the
total number of records/observations in the file
we wish to sample), n (the total to be in each
sample) and k (the total number of samples to
take), we will probably find that a substantial
number of our records will not be in any sample
and few will be in more than one. In some areas,
N may be enormous (financial institutions, for
example, may deal with millions of records). We
certainly wouldn’t want to create 10 copies of the
same huge file, then sort it just to obtain a
relative handful of records. So let’s consider that
our researcher may face some constraints.

Solution 2.
Rather than assign a random number to each
observation, sort the data, then extract our
observation, why not assign each observation all
k random numbers at once? The problem is, of
course, that we will use the results individually:
how are we to identify the records we wish in any
individual sample?
With a few modifications, the code used above
will get us started, but more is needed. If, for
example, we wish to draw five samples of 1000
from a file with, say, 20,000 observations, how
would we determine whether any particular
observation were desired at all? And if it were to
be a part of one of the samples, which would it
fall into? In the plan described, each observation
would have been assigned 5 numbers from the
uniform distribution (each of these numbers will
have been generated by the seed for that
sample). We cannot examine the random
numbers themselves and determine whether the
observation should be taken. However, the
RANK procedure will allow us to order the
random variables. RANK will assign an ordinal
value to the variables named in the procedure

call. If we have 2 random numbers in an
observation:

Obs Value _rndm1 _rndm2
1 2045.2339 0.37313 0.73802

They might look like this after the RANK
procedure:

Obs Value _rndm1 _rndm2
1 2045.2339 10 24

If we were using an n of 15, the observation
above would be used in the 1st sample, but not in
the 2nd. Easy to tell when you can see it. Proc
RANK is an old procedure, and does have a
drawback: identical values for a variable will
either be the highest, the lowest or the average
rank (this is the default). That is, if we had five
numbers: 1, 2, 3, 4, 4, the default ranks would be:
1, 2, 3, 4.5, 4.5. (This last is the average of 4
and 5). We don’t expect our random numbers to
repeat, but it is an inherent failing of random
number generators, though it is unlikely we would
encounter it even in very large sampling.
Additionally, although the numbers might be
repeated, as long as the data values themselves
are unique, this is of no consequence, though it
might produce a sample slightly larger than
desired.

The Macro and Example.
What follows is a macro and small example,
together with selected output. A short note on
style: the author attempts to make any (data
step) variables or files created in his macros look
generally unlike any he might create or encounter
in his usual programming. So, for example, loop
counters tend to be “_i_” and not “i” when inside
a macro, and dataset names tend to begin (and
end) with “_”.

%let strt_seed = 999999937 ;

Assign a SEED; in this case, a prime number is
specified.

options mprint ;

%macro Assign_Rndm(dsin=,dsout=,
select=,num_reps=);

The SAS macro, ASSIGN_RNDM has four
parameters:
� DSIN and DSOUT name the input and

output files.
� SELECT is the number to be in any sample

(the n).
� NUM_REPS are the number of samples to

create (the k).

data _NULL_ ;
retain seed &strt_seed;

do i = 1 to &num_reps ;
call ranuni(seed,x);
seeds = seed + 64 ;
call symput('seed'||

trim(left(put(i,3.))),
seeds) ;

end;

This is a macro version of the usual DATA step
shown previously. Instead of writing to an array,
the values are saved as macro variables.

run;

data _temp_ ;
set &dsin ;
retain

%do i = 1 %to &num_reps ;
seed&i &&seed&i

%end ;
%str(;);

The RETAIN statement is used to assign the
seeds from the macro variables to array values.

array _seeds {*}
seed1-seed&num_reps ;

array _rndm {&num_reps};
do _j_ = 1 to &num_reps;
call ranuni(_seeds{_j_},

_rndm{_j_});
end ;
run;

At this point, each observation has been
assigned “NUM_REPS” random numbers. Now
we must determine whether the observations are
wanted. This intermediate output is saved in a
temporary file: _TEMP_

proc rank data=_temp_
out=_temp2_ ;

var _rndm1-_rndm&num_reps;

The random numbers (_RNDM1-
_RNDUM&NUM_REPS) are now ranked from
lowest to highest. Though not strictly necessary,
a second intermediate file _TEMP2_ is used for
the output. This could be omitted. The random
numbers in _RNDMn have been replaced with
their ranks.

data &dsout ;
set _temp2_ ;
array _rndm {&num_reps};
drop _rndm1-_rndm&num_reps
i _j_
seed1-seed&num_reps ;

do _i_=1 to dim(_rndm);
if _rndm{_i_} <= &select

then do;
k = _i_ ;

o = _rndm{_i_} ;
output ;

end ;
end ;

Now, much as when we looked at the data
above, the program scans the values of _RNDMn
on each observation. If one of these is found to
be less than or equal to SELECT, the observation
is written to DSOUT. Most of the extra variables
added by the macro are removed, however two
remain:
� _K_ which identifies the sample.
� _O_ which identifies the order within the

sample (the rank order).
These will be used by the SORT which follows.

run ;
proc sort data=&dsout ;
by _k_ _o_ ;

We now have a data file containing all the
samples. It may be broken into smaller files or
processed with BY-group processing.

proc datasets library=work;
delete _temp_ _temp2_ ;

run;

This step simply removes the temporary Library
files created.

%mend Assign_Rndm ;

Here is a sample program using the macro:

data test ;
infile cards;
input id $ region $ age score ;

cards;
a23 1 19 23.8
a22 1 20 22.1
b02 2 22 26.3
d45 3 19 24.4
b22 2 18 28.2
c90 4 20 22.1
s33 2 21 23.7
a20 3 22 25.1
d14 3 24 25.2
c12 4 21 21.8
d29 4 22 22.6
s11 3 21 26.1
e09 3 22 23.2
a65 2 25 21.4
a28 1 19 22.3
c16 2 20 24.1
d11 2 20 21.8
g14 1 21 25.3
b40 4 21 24.9
b41 4 20 23.5
c10 3 22 26.2
h48 1 19 20.9
a39 2 21 24.6

b24 1 21 23.8
d19 4 22 21.6
c47 4 20 25.1
p47 3 19 24.1
a17 2 20 25.7
b52 1 21 24.8
d33 1 20 23.6
;
%Assign_Rndm(dsin=test,select=8,

dsout=test2,num_reps=5)

run;

proc print data=test2 ;
run;

Here is some selected output:

The SAS System

Obs id region age score _k_ _o_

1 g14 1 21 25.3 1 1
2 s33 2 21 23.7 1 2
3 a20 3 22 25.1 1 3
4 d33 1 20 23.6 1 4
5 e09 3 22 23.2 1 5
6 d19 4 22 21.6 1 6
7 c12 4 21 21.8 1 7
8 a39 2 21 24.6 1 8
9 h48 1 19 20.9 2 1
10 s11 3 21 26.1 2 2
11 a22 1 20 22.1 2 3
12 b24 1 21 23.8 2 4
13 a28 1 19 22.3 2 5
14 c47 4 20 25.1 2 6
15 d14 3 24 25.2 2 7
16 a17 2 20 25.7 2 8

Conclusion.
Selecting a random sample is not (usually) a
serious problem. Selecting multiple samples can
be; however, a DATA step or a macro can relieve
that problem as well. The macro shown above
trades processor time for space. It also could
result in slightly larger sample sizes because of
the possibility of non-unique ranks caused by
duplicate random numbers. Though the
existence of these duplicates is unlikely, it is not
impossible. The (possible) duplicate would not
produce duplicate observations (unless the data
itself had these, in which case, it is another
problem altogether). At worst, it presents the
possibility of a slightly larger sample size.
Further checks could be made to verify the size
and discard excess observations. However, it
seems likely that if a researcher were selecting
samples from a data file that was so large as to
make duplicate ranks a possibility, anything that
might reduce the space requirements would be
necessary.

References.
Johnson, Robert E. and Hui Liu, “Psuedo-
Random Numbers – Out of Uniform,” in
Proceedings of the Twenty-Fifth Annual SAS

Users Group International Conference, Cary, NC:
SAS Institute, Inc, pp. 1218-1220.

SAS Institute, Inc., (1990) SAS Language:
Reference, Version 6, First Edition, Cary, NC:
SAS Institute, Inc.

SAS Institute, Inc., (1990) SAS Procedures
Guide, Version 6, Third Edition, Cary, NC: SAS
Institute, Inc.

Trademark.
SAS and all other SAS Institute, Inc. products or
services named are registered trademarks of
SAS Institute, Inc in the USA and other countries.
 indicates USA registration.

Author Contact Information.
F. Joseph Kelley
Research and Computational Science
University Computing & Networking Services
University of Georgia
Athens, GA 30602-1911

jkelley@uga.edu

