
Macro Design Considerations for a Word Wrapping Macro

Ian Whitlock, Westat, Rockville, MD

Abstract

This paper presents a short tutorial on a macro designed
for flexibility. A word wrapping problem is used to make
the author's points.

%WordWrap is used within a DATA step to generate
partial DATA step code. The discussion centers around
why the macro should operate at this level and how the
user can get control of the output without a great deal of
effort.

For example: Generate a report writing, the value of
LONGSTRING from the work data set REPORT. The
value must begin in column 20 for up to 40 characters.
When LONGSTRING is more than 40 bytes it should be
broken on a word boundary and continued to the next line
in column 20. The user might write a short macro,
UserMac, to distribute the processing within his DATA
step.

%macro usermac ;
 i + 1 ;
 if i = 1 then link topline ;
 else link continue ;
%mend usermac ;

followed by the step.

data _null_ ;
 length wrap $ 40 ;
 set report ;
 i = 0 ;
 %wordwrap (invar = longstring ,
 outvar = wrap,
 mac = usermac)
return ;

topline:
 file print ;
 put // "Report for " id
 @20 wrap

 @70 "more stuff" ;
return ;

continue:
 file print ;
 put @20 wrap ;
return ;
run ;

Introduction

SAS Version 8 simplifies the job of making a word
wrapping macro since we can assume the material to be
wrapped is all in one variable.

First we have to answer some questions:

1. How much should the macro control?

Compete DATA step or part of one

2. Should it produce an array, a data set, or a file?

Trying to control the whole step is wrong. What if the
consumer wants to wrap two or more variables? How can
we know what the consumer of the macro wants? All the
possibilities listed in question 2 are reasonable and under
the appropriate circumstances correct. A macro should
not try to make decisions that it is in no position to make.

The only reasonable decision is to let the consumer
decide. Now what is the best form to give him the
information? An array is an obvious possibility. Should it
be defined by the consumer or by the macro? If the
macro, how big should the array be? What if the
consumer merely wants to write each value in a PUT
statement? Now an array doesn't look so good.

What is left? We must obtain a portion of the string in a
loop. How can we give the consumer control? Asking the
consumer to control the loop is too much. If he has to do
that, he might as well write all of the code. The answer is
we have to ask the consumer what code should be
executed inside the loop producing each wrapped portion
of the character string. We have to provide a parameter
for the consumer to name a macro, which holds the code,
he wants executed.

What are the other parameters? We have to provide a
parameter for the name of the variable to wrap, otherwise
he always has to know and be careful to use our variable
name and, moreover, make sure it doesn't conflict with
any of his names. This is a rather unreasonable request
for a macro that should help the consumer. How do we
name the output variable? Again we should provide a
parameter for the user to assign his name, but this time it
makes sense to give him a default name that he can
change if desired.

How long should the output variable be? Well if the
consumer names this variable and writes code to use this
variable, it makes sense to let him assign the length. But
how can we get that length? Version 8 provides the
function VLENGTH. What if the consumer doesn't want to
be bothered? We can provide a length parameter. If he
isn't using version 8, or doesn't want to make a length
statement, then he must provide the needed length.

We conclude that we need parameters:

INVAR to name the input variable to be wrapped
OUTVAR to name the output variable
MAC to name the consumer macro to execute
LEN in case the length of &OUTVAR has not already
been determined.

The Macro

With this preparation we are ready to write a useful and
friendly macro. To prevent the collision of variable names
we specify that the consuming code should not use any
variables beginning with a double underscore.

The basic algorithm is to mark off the length of &OUTVAR
and then back up to a space. What if the end falls at a
word boundary? Then we don't need to back up. Hence
we should start looking for the space after the end of the
marked length. Two variables, __START and __END are
used to keep track of where we are in the string to be
wrapped. At the beginning,. __END is 1 and we loop until
__END is greater than or equal to the last relevant position
in &INVAR. The final trick is to skip over leading spaces in
&OUTVAR.

%macro WordWrap
 (invar = , /* reqd inpt var */
 outvar=chunk, /* result var */
 mac = m1 , /* required mac */
 /*name of macro to execute */
 /* when a chunk is ready */
 len=/* null deflt to len of */
 /* &outvar (null req V8)*/
) ;
 /* -----------------------------
 Break at space bndry within reqd
 length unless word longer than
 reqd len, then word is broken
 into reqd len pieces.
 The consumer controls what is
 done with created var, &outvar,
 in a macro that he specifies.
 Assume no vars begin with double
 underscore in PDV

 Examples:

1) %macro m ; output w ; %mend ;
 data w ;
 length chunk $ 40 ;
 set in ;
 %wordwrap (invar = string
 , mac = m)
 run ;

 2) %macro m ;
 i + 1 ;
 if i <= dim (a) then
 a(i) = chunk ;
 %mend ;

 data w (keep = a1 - a10) ;
 array a (10) $ 80 ;
 i = 0 ;
 set w ;
 %wordwrap(invar=longstring

 , mac = m)
 run ;

 Ian Whitlock whitloi1@westat.com
 5may2000

*/

 %if %length(&len) = 0 %then
 %let len = vlength(&outvar) ;
 drop __len __start __end __i ;
 __len = length (&invar) ;
 __end = 1 ;
 do until (__end = __len) ;
 do __end = __end to __len ;
 if substr(&invar, __end, 1)

 ^= "" then leave ;
 end ;
 __start = __end - 1 ;
 __end = __start + &len + 1;
 if __end > __len then
 __i = __len ;
 else
 do __i=__end to __start+1 by-1;
 if substr(&invar,__i,1) = " "
 then leave ;
 end ;
 if __i < __start + 1 then
 __i = __end - 1;
 else
 __end = __i ;
 &outvar = substr(&invar,
 __start+1,__i-__start)
 ;
 %&mac
 end ;
%mend wordWrap ;

Conclusion

With a little care one can learn to write useful friendly
macros helpful to the consumer, rather than providing
obscurity in ampersands and %-signs.

The author may be contacted by mail at

Ian Whitlock
Westat
1650 Research Boulevard
Rockville, MD 20850

or by e-mail

whitloi1@westat.com

SAS is a registered trademark or trademark of SAS
Institute Inc. in the USA and other countries. indicates
USA registration.

