Coders’ Corner Panel Discussion on Problem Solving
Frank Dilorio, Paul Dorfman, lan Whitlock
Introduction by Steve Noga

Introduction

As abstracts for the Coders’ Corner section
began to filter in, a veteran SESUG participant
suggested that a panel discussion on problem
solving might be interesting. This idea was
floated among the conference and section chairs
with all parties agreeing that such a panel
discussion could make for an interesting
session. The panel needed to be comprised of
individuals with certain traits including, but not
limited to outstanding knowledge of SAS®, being
comfortable speaking in front of a group, desire
to educate an audience without being
overbearing.

One of the main reasons for presenting a topic
such as ‘problem solving’ in a panel discussion
is because there are any number of approaches
and techniques to solve the problem, but an
equal number of traps that a programmer can
fall into. This panel of experienced SAS users
have each attacked the problem in their own
style. The reader, regardless of their own level
of expertise with SAS, should come away with a
good understanding of issues involved in writing
code to solve a problem.

Problem

The full problem, location code format, and a
sample of data can be found in Attachment 1.
The problem was designed to replicate a real-
world situation without making it too complex for
a one-hour panel session. To solve the problem,
the following tasks needed to be accomplished:
Read and understand the specs

e Read data from an external file

e Manipulate data

e Display results

The participants were each emailed the problem
and then left to their own devices to solve it.
What follows are the three solutions to the
problem.

Participants
Frank Dilorio, Paul Dorfman, and lan Whitlock
agreed to participate in the panel.

Frank Dilorio is author of "SAS Applications
Programming: A Gentle Introduction" and (with
Ken Hardy) "Quick Start to Data Analysis with
SAS." He was co-chair of SESUG 94 and
SESUG 96 and is past President of the
SouthEast SAS Users Group.

Paul Dorfman, originally a physicist (whence
Ph.D. comes), started using SAS in
computational physics an undetermined period
of time ago. Thereafter, used it for client-,
customer-, and self-aggrandizing in engineering,
telops, pharma, banking, and managed
healthcare. Specializes in programming high-
performance custom routines. Speaks some
tongues other than SAS, not limited to C,
Ukrainian, and Cobol. Awards: 'Sashole’ from
WACB (World Association of Cobol Bigots),
1995, 'MVS' from SAS-L, 2000.

lan Whitlock has a Ph.D. in mathematics and
comes to programming from a former teaching
career. He has been active many SUGI,
SESUG and NESUG conferences in addition to
his local DCSUG and in house WesSug, in
addition to being a frequent contributor on SAS-
L.

Acknowledgments

The section chair would like to thank Frank,
Paul, and lan for taking the time and effort to
participate in the panel discussion. He would
also like to express his thanks to Andrew T.
Kuligowski for not only suggesting the problem
solving panel idea, but also for providing the
sample problem as a starting point for this
exercise.

Attachment 1: Sample Problem and Data
The famed oceanographer, Dr. Nigel Dripp-
Drye, has obtained a data set containing water
temperatures of the Gulf of Mexico, taken at
various locations, from Pensacola to Key West,
during Thanksgiving (Nov 25) week 1999
(Sunday through Saturday). The data is not
sorted in any order. However, there may be
some records for days preceding or following the
week in question, these should be ignored, and
since we are trying to replicate real world data
files, there may be additional quirks in the file.
The data is formatted as follows:

LOCATION CODE (00-99) 01-02

DATE (mm/dd/yyyy) 04-13
TIME (24 hour) 15-18
DEPTH (meters) 21-24

TEMPERATURE (see below) 26-36
COLLECTOR (last name, first) 38-50

Two things to note: First, more than one
individual entered the professor's data for him.
Some of them entered the temperature using a
standard decimal notation (with 2 digit
precision), while others entered it as a fraction,
such as "27 1/4". Second, since each collector

was receiving a stipend for each temperature
collected, some may have used assistants to
collect the data even though it was still entered
into the data file under the primary collectors’
name. In cases like the above, it is conceivable
that the data might look like a collector was in
two places at once, and because of the
assistants, these records will be counted as
valid. However, if an assistant got overzealous
and entered more than one temperature for the
same time, date, location code, and collector
then only the maximum temperature taken from
the maximum depth for that time, date, location
code, and collector will be counted as valid.

Dr. Dripp-Drye has requested a simple report,
sorted by Location Name and Collector. (A
code/name translation table is included as an
addendum to this text.) He is only interested in
temperatures taken between 6:00pm and
8:00pm at a depth of between 10 and 15 meters
- all others should be ignored. The format should
resemble the following and be as pleasing on
the eyes as possible since Dr. Dripp-Drye has to
submit the report to his superiors.

Sun Mon Tue Wed Thu Fri Sat

Location Collector

Code (Text)
First name Last name

N (%) XX(XX.X%0)

Mean XXX oiianainns
Min XXX tviennnnn.
Max XXX veienainns

(Only list codes and collectors that actually have
valid data. For those days when a collector did
not have any valid collections for a code, just
leave the column stats blank. (n=) in the column
headers represents the total number of valid

(n=) (n=) (n=) (n=) (n=) (n=) (n=)

collections for that day. N represents the total
number of valid collections by the individual
collector for that day and (%) is a based on
N/(n=) with the sum of all (%)s in a column
equaling 100.0)

Codes & Corresponding Locations

00 — PENSACOLA
01 - PANAMA CITY

08 — APALACHICOLA

09 - CEDAR KEY

13 - TARPON SPRINGS

14 — CLEARWATER

15 - ST. PETERSBURG

16 — BRADENTON
17 — SARASOTA
22 — CAPTIVA

24 — FLAMINGO
25 - KEY WEST

Sample Data (20 obs out of 1,500)

01 11/26/1999 1700
16 11/23/1999 1830
08 11/27/1999 1800
00 11/23/1999 0700
14 11/26/1999 1800
09 11/20/1999 1830
25 11/28/1999 1900
22 11/20/1999 1830
01 11/23/1999 1800
08 11/26/1999 1930
01 11/19/1999 1800
01 11/26/1999 1930
09 11/25/1999 1830
01 11/21/1999 1800
13 11/20/1999 1830
09 11/28/1999 1900
09 11/22/1999 1800
24 11/20/1999 1930
02 11/20/1999 1930
02 11/27/1999 1800

17 20.74

5 20

2 24.64

7 233/4
10 23 13/16
10251/2
12 24 3/16
11 20.05
13 21.29
10 24 9/16
17 21 11/16
10 21 5/16
4 21.14

0 21.68
10 24.90

1 253/4
14 20.42
1023 3/8
10 23.60
10 24.94

Wabhiini

Beard, B.

FISH, SEYMOUR
morgan, Cap'n
Beard, B.

FISH, SEYMOUR
Beard, B.

Beard, B.

FISH, SEYMOUR
Wahiini

Beard, B.
Whostow, Jock
Beard, B.

Tide, Rip
Whostow, Jock
FISH, SEYMOUR
morgan, Cap'n
Wabhiini

Wabhiini

Wabhiini

Deep Blue SAS: One Programmer’s Approach to Problem-Solving
Frank C. Dilorio
Advanced Integrated Manufacturing Solutions, Co.
Durham NC

My comments are organized into some of the pre-coding issues,
followed by thoughts on the actual program’s techniques and
organization. The last section briefly notes the impact of some
changes that would probably be made in Version 2.

PRE-CODING

The first step is to look at what you have been handed, namely
specs and data.

SPECS

The specs adequately described the background of the study, the
format of the data, quirks in data format (temperature, for
example), location code mappings, and the layout of the report. As
is always the case with even simple projects like this,
implementation revealed holes in the spec (handling of missing
values, degree of parameterization, etc.). These will be discussed
as we go. It's important, though, to remember that any written
spec, no matter how well-crafted, will have some omissions that
are revealed only when coding begins.

DATA

The data source is small enough (1,500 records) to examine
visually. We look both for adherence to the spec and features not
covered by the spec. Notice that the time field is in 24-hour format
and does not contain a colon separating hours and minutes.
Notice too that the date contains slashes and location code has
leading zeroes.

Since we have to manipulate the name field (changing to first-last
on output from last-first on input), we should pay attention to the
method used for separating names. Examination of the field
reveals not only (a) people who probably know the Jimmy Buffet
songbook by heart, but also (b) people with one name. Finally, we
see on examination of Location that there are codes (02, 23) that
were not mentioned in the spec and so will not have a descriptive
label on output.

SIMPLE STATS

Visual examination is fine, but even in such a small dataset some
descriptive statistics should be run. A quick DATA step will
produce a bare-bones dataset. Frequency counts of values such
as name, location, date/time, and temperature should be examined
for inconsistent name capitalization, invalid codes, and unexpected
methods of temperature data representation.

CODING TECHNIQUES

The key is to develop the program incrementally. First, read the
data, do essential observation filtering and data massaging, then
work on shaping the dataset for the reporting procedure(s).

The program is reproduced in Figure 1, which follows this text.
Comments in the text match numbers in the program entered as
{number}.

{1} Parameterize

This wasn't in the spec, but you can't tell me that once Dr. Drye’s

superiors see such a nice report they won't want similar output for
different dates and/or times. It isn't that hard to do, so just build it
in from the start.

{2} Format-driven labeling

This is the only reasonable way to assign text identifiers to values
of a variable. It can also help identify location codes that “fall
through the cracks” (we can test for the formatted values mapping
to “*unknown**").

{3} Time as character

We don't need to convert the time field to a time constant. The
only way it will be used is for observation filtering, and for this
purpose character representation is adequate (and a tad more
efficient than reading it as numeric).

{4} Filter first, then tweak

Rather than convert temperature for every record we read and
then use only some of the records, we filter the records first, then
do the temperature adjustments. This efficiency consideration
yields minimal processing speed improvements, but is a good habit
to develop for when file sizes and/or data adjustments are more of
an issue.

{5} Sort, then select

The spec requires that duplicate location — collector — date — time
records be eliminated. It also requires that the max depth-
temperature combination be the record selected in these
situations. This means a single SORT with the NODUPKEY option
cannot be used to eliminate duplicates because we have to use
depth and temperature as sort keys.

Instead, we sort to arrange the data in the correct order, then use a
DATA step to pick the first (maximum) record for a recorded time.
This two-pass solution is less efficient than a single sort, but is
necessary. The DATA step also allows us to easily issue a
message about duplication (again, we anticipate “scope creep”).

{6} Summarize

Although they are easy to calculate in a DATA step, it makes more
sense to let the procedures do the work for you. SUMMARY and
MEANS could accomplish this. | use MEANS just out of habit.
Notice the use of BY rather than CLASS - this takes advantage of
the dataset’s sort order and saves a bit of processing time.

At this point, we have all the information we need for reporting.
Now it's a matter of choosing a reporting tool and reshaping the
dataset to facilitate use of that procedure or DATA step. | chose
the REPORT procedure. _NULL_ data steps require too much
coding and are not responsive to formatting changes. PRINT is
easy to use but limited with respect to column-spanning headers,
text wrapping within columns, and similar “prettifying” aspects of
report writing. Finally, | didn’t want to have to re-learn TABULATE.
{7} Transposing

Given the need for the combined N-% field it seemed to me that
the most straightforward way to massage the data was to make
everything that was summarized into a character field. That way,
it's easy to manipulate pieces of the field as needed — the
parentheses, percent sign and the like can be inserted with
concatenation operators or the SUBSTR function.

Since we had this data handling requirement it didn’'t seem like the
ACROSS feature of REPORT columns (in effect, a transpose)
would be helpful. | used the TRANSPOSE procedure to create a
dataset (SUMMTRAN) whose observations were distinct location —
collectors, with variable names corresponding to dates.

As an aside, this multiple pass approach to problem solving is a
hallmark of SAS programming. We read the data, passed it to a
summarizing procedure, then passed that data to a transposing

procedure. All perfectly reasonable and concise, but a difficult
aspect of SAS programming to pick up if you're a novice.

{8} SQL-generated macro variables

The transposed summary dataset would be ready for some quick
formatting and REPORT but not for a few things: we don’t know
how many distinct dates were present in the dataset; we don’t
know which dates were present; and we don’t know the weekday
of these dates or the number of measurements taken on each day
(remember the column heading requirement).

Rather than postprocess the summary data and merge it with the
transposed data, | used SQL to create a set of macro variables
that will be used in later DATA steps and PROCs as array bounds,
array constants, and in column headers in the report.

{9} Transpose dataset reshaping and formatting

Dataset SUMMTRAN is in the correct order for reporting. What we
need to do now is calculate percentages across days and do some
sleight of hand to insert Location-Collector rows.

We use some of the macros generated in {8} to define array
bounds and elements {9a}. As we pass through each observation
we look for the start of a location or collector {9b}. If so, assign
text to variable ROWHEAD (the first column in the report) and
output an observation with missing values for the VALUEXx
variables.

Finally, all that's left to do is loop through each DTyyyy mm_dd
variable and assign it to the corresponding VALUESXxx variable
{9c}. The content will depend on whether we are reading an
observation contain n, mean, min, or max data. In all cases, we
create a character variable (VALUEX) from a PUT, and possibly
other manipulations, of a numeric variable.

{10} The REPORT procedure

Once we get this far, the work is basically done. The use of
REPORT is straightforward, the only tricky part being the definition
of a macro so we can have a %DO loop to define the column
header text for each of the DT variables. The header scans the
appropriate portion of the weekday name and daily count macro
variables created in {8}. These headers could have been defined
in the previous DATA step (part {9}), but seeing the values defined
in-line makes for somewhat easier reading.

The title reflects the time and date constraints and is build using
the user-supplied values at the top of the program. A few lines of
the output are reproduced in Figure 2, below.

FIGURE 1 — THE REPORT-WRITING PROGRAM

options nocenter pageno=1 nodate;

{1}

* Because everyone is entitled to a change of heart

%let start time = 1800;

%let end time = 2000;
%let start_date = 21nov99;
%let end_date = 27nov99;

filename datain "C:\SESUG00\sesug2k.dat";

{2}

proc format;

Here are some modifications to this program that are suggested
from real-world experience:

o Print all names for all locations even if they don’t have any
data for any dates in range. Currently, if collector “x” has no
data for any day at a location he/she will not be in that
location’s summary. It may be desirable to display collector
“X" with blanks in every day. This could be done by creating a
reference dataset with every possible, rather than every
present combination of location-collector, then merging it with
SUMMTRAN (the reference dataset could be created as a
FREQ output dataset with the SPARSE option). A related
refinement to the program might require display of all days
even if no data collection occurred on a day.

o If no observations are in range, print alternate report rather
than generate no LST file. This is easily achieved by using
SQL to retrieve the number of observations in the dataset
(dictionary table TABLES column NOBS), then conditionally
executing a “good” report if the count exceeds 0 or printing a
“failure” report if the observation count were 0.

o Collapse collectors across days and/or locations. That is,
summarize a collector’s activity for the week or the location’s
activity across collectors. This could be addressed in the
DATA step before the REPORT procedure (item {9}). Values
could be summarized across DT variables (i.e., the daily
statistics) to create collector summaries. Daily summaries
could be RETAINed counts and sums which would be written
as a new record at end of file.

o Page breaks, “continued” marks, etc. in the report. A truly
pretty report would not have a collector’s information broken
across pages, or at worst would have a “continued” indicator
at the start of the next page. If there are enough of these and
other requirements it may be faster to use a _NULL_ DATA
step. An alternative which keeps using REPORT is to
determine the number of lines available for printing, then as
the report dataset is created, keep track of lines left on a
page. Use this as a HIDDEN ORDER variable in REPORT
and put it in a BREAK statement. The ROWHEADER value
would have to change as well to indicate “Cont.”

COMMENTS? QUESTIONS?
Your input is always welcome. Contact the author at:

102 Westbury Drive
Chapel Hill NC 27516-9154
919.942.2028
fcdl@mindspring.com

7

value $loc '00' = 'Pensacola' '01' = 'Panama City' '08' = 'Apalachicola'
'09' = 'Cedar Key' '13' = 'Tarpon Springs' 'l4' = 'Clearwater'
'15' = 'St. Petersburg' 'l6' = 'Bradenton' '17' = 'Sarasota’
'22' = 'Captiva’ ‘24" 'Flamingo' ‘25" 'Key West'
other = '**unknown**'

7

run;

data temps;
infile datain;

input @l loc $2.
@4 date mmddyy10.
@15 time $4. {3}
@21 depth 4.

@26 char temp $charll.
@38 collector S$Scharl3.
* Adjust temp and use only for obs that we know we want to use ;

{4}

if ("&start_time." <= time <= "&end time.") &
("&start date."d <= date <= "&end date."d)
then do;

if index(char_temp, '/') > 0 then do;

base = input (scan(char temp, 1, ' '), 4.);
numer = input (scan(char temp, 2, ' /'), 4.);
denom = input (scan(char temp, 3, ' /'), 4.);
temp = base + (numer/denom);

end;

else temp = char temp;

output;

end;
drop base numer denom char temp;
format date yymmddl0. temp 6.2;
run;

{5}

* Prepare for finding highest temp per loc-collector-date/time ;
proc sort data=temps;

by loc collector date time descending depth descending temp;
run;

* Take only the highest depth-temp if duplicate loc-collector-
date/time ;

data temps;

set temps;

by loc collector date time;

if *(first.time & last.time) then do;
put "Duplicate for " loc= collector= date= time=;
end;

if first.time then output;

run;

{6}

* Get summary stats. Take advantage of sort order (BY processing is
faster than using CLASS). ;

proc means noprint nway data=temps;

by loc collector date;

var temp;

output out=summ(drop=_type_ _freq) n=n mean=mean min=min max=max;

run;

{7}

* Vars in SUMMTRAN are LOC, COLLECTOR, DT[yyyy mm dd] ;
proc transpose data=summ out=summtran prefix=dt;

var n mean min max;

id date;
by 1loc collector ;
run;

{8}

* Create macro vars used for headings in Proc Report, array bounds
in a late DATA step. ;

proc sgl noprint;

* Use for array size and macro loop control.

This tells us the number of dates for which we have data. ;
select count (distinct date) into :n_dates
from temps;

* Use for array definition in next DATA step so we can assign/slot
the vars in the correct order. Vars from COLUMNS are stored in
alpha order. ;

select distinct name into :transpose name separated by ' '

from dictionary.columns

where libname = "WORK" & memname = "SUMMTRAN" and name like "dt$%";

* Use for column headers in REPORT.
These are the prettified, readable day of the week. ;
select distinct date format=downame9. into :display date separated by ' '
from temps
order by date;

* Use for counts per date (denominators) when computing N percents.
This tells us how many non-missing temps we have each day.;

select n(date) into :date_counts separated by ' '

from temps

where temp is not missing

group by date;

quit;

options symbolgen;

%let n _dates = %$left(&n_dates);

* Unit of observation for input dataset SUMM is loc-collector-
date. Collapse into one obs per statistic per loc-collector.
We are massaging the data for minimal handling by REPORT. ;

{o}

data temps2;

set summtran;

by loc collector;

length rowheader $20 last _name first name $13;

array ns(&n_dates) _temporary (&date counts.); * Created by SQL ; {9a}
array dt (&n_dates) &transpose name; * Created by SQL ;
array values(&n dates.) $12; * Values that will be used by REPORT ;

* Create blank lines if we are at the start of a location or
collector. ;
{ob}
if first.loc then do;
rowheader = put(loc, $loc.);
output;
end;
if first.collector then do;
* Tweak collector name, swapping last-first names if we can. ;
if index(collector, ',') > 0 then do;
last_name = scan(collector, 1, ' ,');
first _name = scan(collector, 2, ' ,');
collector = trim(first name) || ' ' || last_name;
end;
rowheader= ' " || collector;
output;
end;

do i = 1 to dim(dt) ;

if name_ = 'n' then do;
{9c}
if dt(i) *= . then values(i) = put(dt(i), 3.) || " (" |]
put (100* (dt (i) /ns (1)), 5.1) || '%)';
rowheader = ! N (%)';
end;

else if name = 'mean' then do;

if dt(i) *= . then values(i) = put(dt(i), 4.1);

rowheader = ' Mean';
end;
else if name = 'min' then do;
if dt(i) *= . then values(i) = put(dt(i), 4.1);
rowheader = ' Min';
end;
else if name_ = 'max' then do;
if dt(i) *= . then values(i) = put(dt(i), 4.1);
rowheader = ' Max';
end;
end;
output;

keep loc rowheader valuesl-values&n dates.;
run;

$macro writerpt;
{10}
proc report headline nowindows data=temps2 split="#";
columns loc rowheader valuesl-valuesé&n dates.;
define rowheader / "Location# Collector";
define loc / order noprint;
%do 1 = 1 %to &n dates;

define values&i / center width=12

"$scan(&display date, &i.)#(n=%scan(&date_counts, &i))";

%$end;
break after loc / skip;
Title "Temperatures between time &start time. and &end time., &start date. - &end date.";
run;
$mend;
sSwriterpt

FIGURE 2 -PROGRAM OUTPUT

Temperatures between time 1800 and 2000, 21nov99 - 27nov99 1
Location, Sunday Monday Tuesday Wednesday Thursday Friday Saturday
Collector (n=85) (n=92) (n=92) (n=79) (n=85) (n=74) (n=102)
Pensacola
B. Beard
N (%) 1 (1.2%) 1 (1.1%) 2 (2.5%) 1 (1.2%)
Mean 24.7 24.4 22.1 21.1
Min 24.7 24.4 20.5 21.1
Max 24.7 24 .4 23.6 21.1
SEYMOUR FISH
N (%) 1 (1.2%) 2 (2.2%) 1 (1.1%) 1 (1.3%) 1 (1.2%) 1 (1.4%)
Mean 20.5 22.3 23.4 24 .4 22.6 23.9
Min 20.5 20.3 23.4 24 .4 22.6 23.9
Max 20.5 24.3 23.4 24 .4 22.6 23.9
Rip Tide
N (%) 1 (1.1%) 1 (1.3%)
Mean 20.2 23.1
Min 20.2 23.1
Max 20.2 23.1
Wahiini
N (%) 1 (1.1%) 1 (1.3%) 2 (2.0%)
Mean 22.7 22.7 21.3
Min 22.7 22.7 21.1
Max 22.7 22.7 21.5
Jock Whostow
N (%) 2 (2.4%) 1 (1.0%)
Mean 21.7 20.6
Min 21.5 20.6
Max 22.0 20.6
Cap'n morgan
N (%) 1 (1.2%)
Mean 20.9
Min 20.9
Max 20.9

Panama City

B. Beard

N (%) 3 (3.5%) 4 (4.3%) 3 (0 3.3%) 3 (3.8%) 3 (3.5%) 3 (4.1%) 4 (3.9%)
Mean 23.8 21.6 21.9 22.3 21.3 21.5 22.7
Min 23.6 21.4 21.1 21.8 20.7 21.2 21.4
Max 24.2 21.8 22.8 22.7 22.5 21.7 25.4
SEYMOUR FISH

N (%) 2 (2.4%) 1 (1.1%) 2 (2.2%) 3 (3.8%) 1 (1.2%) 2 (2.7%) 3 (2.9%)
Mean 21.9 22.2 23.0 22.1 20.1 21.4 24.1
Min 20.4 22.2 21.3 21.3 20.1 20.4 22.7
Max 23.4 22.2 24.8 23.0 20.1 22.4 25.3

Reporting from the Depths of Florida Sashole
Paul M. Dorfman
Citibank Universal Card, Jacksonville, Fl

Mainline

First, the data are scrubbed, cleaned up, and standardized, as they are being input. The fractional temperatures are separated from
ones represented in decimal notation by using the bestw.d informat preceded by ‘??’. This way, SAS inputs decimal values
uneventfully and converts fractional ones to missing without warnings. The filtered fractions are then converted to decimals by
parsing the fractional strings.

Secondly, collectors’ names are to be reported in reverse with respect to the first and last name. Moreover, the raw hames are
cased rather sporadically, while we need them title-cased. The specs call for the report sorted by the name without saying which
one. Normally it would be the last name. However, one look at the raw data tells that the names are rather pseudonyms, so the
collectors are more likely to be known by their nicknames, “Cap’n Morgan” or “B. Beard”, say, rather than “Morgan, Cap’n” and
“Beard, B". | hence decided to swap the parts of the names in the input, title case the whole thing, use it as a name ID, and order
accordingly. Instead of coding title-casing from scratch, | decided to use a macro function | wrote once before:

)i

%macro caps

(s

%$local 1 u lc uc i trn;
$let 1 = %$lowcase (abcdefghijklmnopgrstuvwxyz) ;
$let u = %upcase (abcdefghijklmnopgrstuvwxyz) ;
%$let lc = %substr(&l,1,1);
%$let uc = %substr(&u,1,1);
$let trn = tranwrd(" "||lowcase(&s)," &lc"," &uc");
%do i=2 %to 26;

$let lc = %substr(&l,&i,1);

$let uc = S%substr(&u,&i,1);

%$let trn = tranwrd(&trn," &lc"," &uc");
%$end;
left (&trn)

$mend caps;

It works by assembling nested calls to function TRANWRD converting any character with a leading blank into its uppercase
counterpart. At first glance, it may seem that 26 nested calls might be inefficient, but in reality, SAS handles them with aplomb.

Thirdly, there is a data selection issue. The date, time, and depth ranges can be coded as inequalities. We do not have the date
range provided, but only a reference day in the middle of the working week. It is more extendible to parameterize it in the beginning
of the program as a macro variable and let SAS automate the computation of the corresponding week endpoints via INTNX. The
time and depth ranges could be accounted for by providing their endpoints on the top of the program in the same manner. However,
| decided against this method for one reason. From the first glance cast at the task, it is clear that we will need some formats
juxtaposing the location codes and their textual descriptions, so why not code the time and depth ranges in the same PROC
FORMAT, too? An extra format, WKDAY, can be useful in reporting procedures, so let us throw it in as well. Now, what do we do
with the observations containing codes having no valid text counterparts? Usually, they would go to an exception report broken by
the original codes, so that they could be identified later on if necessary. However, since there is no demand for such a report in the
professor’s requirements, | follow the path of least resistance and kick such record out relying on the *’ in the LCODE format.

$let infile
%let weekof

c:\sesug00\sesug2k.dat;
"25no0v1999"d ;

proc format;

value hmrng 1800-2000 = '1l' other = '0';
value depth 10 - 15 = '1l' other = '0';
value wkday 1='Sun' 2='Mon' 3='Tue' 4='Wed' 5='Thu' 6='Fri' 7='Sat’';
value lcode 00 ='pensacola ' 13 ='tarpon springs' 17 ='sarasota'
01 ='panama city ' 14 ='clearwater ' 22 ='captiva '
08 ='apalachicola' 15 ='st. petersburg' 24 ='flamingo'
09 ='cedar key ' 16 ='bradenton ' 25 ='key west'

other ='*"';
run;

At this point, the raw data can be read, scrubbed, manipulated as indicated, and output to the SAS file CLEAN. Since the name of
the input file location can change, it is convenient to have it as an input parameter, so in the step below, only the macro reference
&INFILE is used.

data clean (keep=loc date hhmm name depth temp) ;
infile "&infile"

input @ 01 lcode 02.
@ 04 date mmddyy10.
@ 15 hhmm 04.
@ 21 depth 04.
@ 26 tempc Scharll.
@ 38 name Scharl3.
if put (depth,depth.) = '1' and put (hhmm, hmrng.) = '1';

if intnx('week', &weekof,0) <= date < intnx('week', &weekof,1);
temp = input (tempc, ?? bestll.);
if temp = . then temp = round (input (scan(tempc,1),best.) +
input (scan (tempc, 2) ,best.) /input (scan (tempc, 3) ,best.), .01);
[l ;

name = trim(scan(name,2,','))||"' '||left(scan(name,1,',"'));
name = %caps (name);
loc = put (lcode, lcode.);
if loc = '*' then delete;
loc = %caps (loc);
run;

At this stage, the question is, how to comply with the ‘maximum temperature at maximum depth’ requirement? The simplest thing is
to do it in two stages. First, sort by LOC NAME DATE HHMM DEPTH TEMP (at the same time, bringing LOC NAME into the correct
reporting order):

proc sort;
by loc name date hhmm depth temp;
run;

“Lazy Sashole” Approach

Second, grab the last record from each group identified by the same value of DEPTH. However, before doing that, it is time to make
a decision about the reporting tool. While | was pondering about it, | heard a loud noise of TABULATE banging on the door and
offering a fast and cheap service. | succumbed to the temptation:

data maxx (keep=loc name wd temp) ;
set clean;
by loc name date hhmm depth;
if last.depth;
wd = weekday (date) ;
run;

proc tabulate data=maxx;
class loc name wd tab;
var temp;
table loc,
name*temp=""%*
(n*f=2. pctn<loc*name>='N(%)'*f=2.1 (mean min max)*f=5.1),

wd="" /

row=float rts=28 misstext='' box=_page_ printmiss;
format wd wkday3.;
label loc='Location: ' name='Collector';

run;

A 10-minute deal produces the output like this:

|Location: Pensacola | Sun | Mon | Tue | Wed | Thu | Fri | Sat

R T [— Ea— Ea— B Ea— Eap— [—
| IN I 2| 4 2| | 2| 1] 3]
R Fommme e s [— Ea— Ea— B Ea— Eap— [—
[Collector | [| | | | [| |
|-eeroeeanne L EGRRITERTREY I B R R B B
|B. Beard [N I | | 11 | 11 [|
| | ------------- — e L R —— L —— L Ea— |
I IN(%) I | | 50.0] | 50.0] [|
	------------- — e L R —— L —— L Ea—				
[MEAN			24.4]	21.1]	
	------------- — e L R —— L —— L Ea—				
[[MIN I		24.4] [21.1] [
	------------- — e L R —— L —— L Ea—				
I [MAX I | | 24.4] [21.1] [|

| ------------ B [— e e B R — L L p— \
[Cap'n Morgan|N [| | [| I I |
| | ------------- — e L R —— L —— L Ea— |
[IN(%) I | | I | [[|
| | ------------- — e L R —— L —— L Ea— |
[[MEAN I | | I | [[|
| | ------------- — e L R —— L —— L Ea— |
[[MIN I | | I | [[|
| | ------------- — e L R —— L —— L Ea— |
[[MAX I | | I | [[|
| ------------ B [— e e B R — L L p— \
|Jock Whostow|N | 2| | | | | | 1]
| [T [— R R B Eap— Eap—— R
I IN(%) [100.0] | | | | | 33.3]
| [T [— R R B Eap— Eap—— R
| | MEAN | 21.7] | | | | | 20.6]|
| [T [— R R B Eap— Eap—— R
| [MIN | 21.5] | I | I | 20.6]
| [T [— R R B Eap— Eap—— R
| | MAX | 22.0] | I | I | 20.6]
R Fommme e s [— Ea— Ea— B Ea— Eap— [—

As a bang for the programming hour, it is hard to beat. Note that the specs call not for an exact replication of the suggested layout,
but rather for something resembling it, which is a rather good fit for TABULATE usage. And we are done in only 4 steps. As a side
point, writing the percentages right beneath the count, just as TABULATE does, promotes better comprehension of the data
presented in the report than the requested N(n%) style.

“Industrious Sashole” Approach

However, if the professor insists on the style, though, accommodating it will require custom coding. There are several ways to
choose. For instance, the percentages can be computed beforehand, concatenated with the necessary characters and parentheses
into a single string variable, and then fed into (altered) TABULATE. This method, though, feels rather kludgy. And then still, the
TABULATE output has its own mind. It is not necessarily bad, but it would be interesting to see how much more effort DATA step
reporting would require.

The weekday statistics can be obtained as a subset of SUMMARY output, or, since | am going to try DATA step anyway, they can
be computed on the fly. | go with the latter because 1) | feel like it 2) it saves an extra step. Before commencing work on the final
coding, the question remains, how to incorporate the summary counts at the LOC level in the reporting step? Ten different SASmen
would most likely come up with ten different solutions. | compute the daily counts in the same DATA step where the duplicate
temperature observations are eliminated. It is very easy to do by key-indexing the array FD(7) by the number of the current
weekday, WD. The counts are output to a separate data set ALL, which thus will have exactly as many records as there are distinct
valid locations. At the same time, the frequencies can be pre-formatted into the items of the array FF(7) with the parentheses and
equal signs needed in the report. Then in the reporting step, it will suffice to read the next record from ALL in the beginning of each
LOC by-group. As | am planning on using the ‘mass-formatting’ technique when a line containing homogeneous items is printed at
once from an array, having the width of each such item assigned ahead of the time makes code more flexible and less error-prone.
This is the purpose of the macro variable F.

%$let £ = 10; * Mass format length;

data maxx (keep=loc name wd temp) all (keep=f:);
array f£d(7);
array ff£(7) $ &f.; * all*wkday freq formatted;
do until (last.loc);
set clean;
by loc name date hhmm depth temp;
if not last.depth then continue;
wd = weekday (date) ;
fd(wd) = sum(fd(wd),1);
output maxx;
end;
do wd=1 to 7;
if fd(wd) ne . then ff(wd) = ' (N='||compress (put (fd(wd), best.))||')";
end;
output all;
run;

What is the condition “fd(wd) ne .” is for? Leaving the FD buckets with no hits missing is my purpose but | just happen to abhor
‘missing’ messages in the log. The intent here is to use the option MISSING=""to fulfil one of the reporting requirements, namely
printing blanks for the cells for which the data are not available.

Now it is time for the reporting step. Its actions should be evident from the code. The step, in the interpretation below, combines
reporting per se with computing the statistics on the fly and accumulating them at the categorical level of NAME. The technique of
using expressions like

accumvar = sum(accumvar, variable) ;

may seem unconventional. The reason for using it is that | am interested in keeping the cells with no data available populated with
missing values and use MISSING option to print blanks. An expression of the type above performs the accumulation without the
need to initialize the daily buckets to zeroes. The explicit DO UNTIL loops make use of the default action at the bottom of the DATA
step reinitializing the buckets exactly when needed (that is, after a by-group at the correct level has been processed) and exactly
with what is needed (missing), without any RETAINSs (the technique learned from lan Whitlock).

option missing='";
%$let 1s = 100;

data _null_;
file print 1ls=&ls 11=11 header=hh;

array f£d(7); * all *N;

array fq(7); * loc*name*N;

array av(7); * loc*name*mean;

array mi(7); * loc*name*min;

array ma(7) ; * loc*name*max;

array pn(7) $ &f.; * pctn<all loc*name> formatted;

array dy(7) $ &f. ('Sun' 'Mon' 'Tue' 'Wed' 'Thu' 'Fri' 'Sat');

retain a 01 b 16 ¢ 18 d 24; * tabs;
do until (last.name);
set maxx;
by loc name;
if first.loc then do;
set all; put _page_;

end;

fg(wd) = sum(fg(wd), 1);

av(wd) = sum(av(wd), temp) ;

mi(wd) = min(mi(wd), temp) ;

ma (wd) max (ma (wd) , temp) ;
end;

if 11 < 11 then put _page_;
do wd=1 to 7;

if nmiss(fg(wd),fd(wd),av(wd)) then continue;
[

pn(wd) = put(fq(wd),2.) put (fg(wd) /£d(wd) *1e2,4.1) | |'%) ' ;
v(wd) = av(wd)/fg(wd) ;
end;
put @b name
// @ 'N(N%)' @c+&f (pn(*)) ($&f..)
/ @b 'Mean' @d+1l (av(*)) (&f..1)
/ @ 'Min ' @d+l (mi(*)) (&f..1)
/ @ 'Max ' @d+1 (ma(*)) (&f..1) /;
return;
hh: put @c+3+&f (dy(*)) ($&f..) / @a &ls*'-'
/ @d+6 (ff1-f£f7) (&f..) @a 'Location' @b 'Collector'
/ @a &ls*'-' / @a loc @ ;

run;

(FF1-FF7) are coded as an explicit list instead of FF(*) because the array FF(7) is not declared in the step: Since nothing relies on
the subscripted FF values, the array is unnecessary. Here is a sample of the kind of report this step prints:

Pensacola B. Beard

Jock Whostow

N (N%) 2(100%) 1(33.
Mean 21.7 20.
Min 21.5 20.
Max 22.0 20.

oo oW

Rip Tide

N (N%) 1(25.0%)
Mean 20.2
Min 20.2

Max 20.2

Seymour Fish

N (N%) 2(50.0%) 1(50.0%) 1(50.0%) 1(100%

Mean 22.3 23.4 22.6 23.9

Min 20.3 23.4 22.6 23.9

Max 24.3 23.4 22.6 23.9

Wahiini

N (N%) 1(25.0%) 2(66.7%
Mean 22.7 21.3

Min 22.7 21.1

Max 22.7 21.5

Note that in this report, Cap’n Morgan is absent from the Pensacola group: At this location, he has collected nothing. In TABULATE,
the empty cells are included because of PRINTMISS, which | had to use because | wanted to print all the daily columns regardless
of them being empty or not, and could not have one without the other. Thus, at least in this respect, DATA step is more flexible than
TABULATE, to say nothing of the report appearance being somewhat closer to the layout in the specs. However, there is a price for
everything! It took mere 10 minutes to code TABULATE, and well over an hour to write the DATA step and format the printout
satisfactorily, plus some more time to cross-check the figures by comparing it with the output produced by TABULATE and quick-
and-dirty SUMMARIes | ran against CLEAN to get an initial feel of the data.

The Penalty for not Reading the Specs Carefully

Just when | thought | was done, it struck me that | might have produced something quite different from what is actually requested.
Rereading the specs, | realized that nothing there tells to produce percentages relative to the cumulative counts at the location level!
It was rather my interpretation, since without the ability to communicate with the professor directly (even though both of us live in
Florida) | assumed that he would be rather interested in knowing how relatively successful was an individual in thermodiving at a
particular location. If my assumption were wrong, how difficult would it be to fix the report? One might be given a whole business
day to produce a report like that, but when it is on the desk before the boss and something is wrong with it, it has to be redone in an
hour!

Luckily, it is not difficult. If we stick with TABULATE, the cumulatives at the LOC level have to go, and the denominator definition has
to be slightly altered. Besides, the professor would like to see the daily totals at the beginning of the report. These can be produces
by a separate TABLE statement. The altered TABLE statement(s) will now look like

table wd=''*n=''*f=8. / rts=28;

table loc ,
name*temp="'"'*%*
(n*f=2. pctn<loc*name>='N(%)'*f=2.1 (mean min max)*f=5.1),
wd='"' / row=float rts=28 misstext='' box=_page_ printmiss;

The rest of the proc remains intact. Now at the beginning of the report, it prints the summary header

Collector |

,,,,,,,,,,,, bmmmmmmmmmoo

B. Beard N 1 1
N (%) 1.5 1.6
MEAN 24.4 21.1
MIN 24.4 21.1
MAX 24.4 21.1

Cap'n Morgan|N

ot — o — b — o — o — o — o ——
|
I
I
I
I
ot — o — b — o — F — F — o ——— o+ —
|
I
I
I
I
ot — o — b — o — F — F — o ——— o+ —
|
I
I
I
I
ot — o — ot — o — F — F — F ——— o+ —
|
I
I
I
I
I
I
I
I
I
I
ot — o — b — o — o — o — o ——— o+ —
|
I
I
I
I
ot — o — b — o — F — F — F ——— o+ —
|
I
I
I
I
ot — o — b — o — F — F — o ——— o+ —
|
I
I
I
|

MIN \ \ \ \ \ \ \
------------- B e e e il et
MAX \ \ \ \ \ \ \
------------ Bt e e i i e e it
Jock Whostow|N | 2| | | | | | 1
7777777777777 B e e e A e i
N (%) | 3.3] | | | | | 1.4
------------- B e e e il et
MEAN | 21.7] | | | | | 20.6
7777777777777 B e e e S s Ak Sl
MIN | 21.5] | | | | | 20.6
7777777777777 B e e e A e i
MAX | 22.0] | | | | | 20.6

So, with the TABULATE, it does not take much — the proc is deservedly known for its chameleon-like abilities. However, it is not
difficult with the DATA step, either, even though changes have to be made in two places. First, the unduplicating step producing
MAXX and ALL should accumulate at the grand total level instead of location level, and thus output a single observation containing
total daily counts (and their formatted siblings) across all collectors and locations. All the changes to this step are confined to its
inner loop. LAST.LOC gets replaced with LAST.EOF, and the corresponding END= option has to be added to the SET statement.
Here is how the altered loop looks like (with changes in boldface):

do until (EOF);
set clean END=EOF;
by loc name date hhmm depth temp;
if not last.depth then continue;
wd = weekday (date) ;
fd(wd) = sum(fd(wd),1);
output maxx;

end;

Secondly, in the reporting step, ALL has to be read just once before anything happens, so now the step acquires the form (again,
the changes are shown in boldface):

data _null_;
file print ls=&ls 11=11 header=hh;

array £d(7); * all *N;

array fq(7); * loc*name*N;

array av(7); * loc*name*mean;

array mi(7) ; * loc*name*min;

array ma(7) ; * loc*name*max;

array pn(7) $ &f.; * pctn<all loc*name>=f*&f;

array dy(7) $ &f. ('Sun' 'Mon' 'Tue' 'Wed' 'Thu' 'Fri' 'Sat');

retain a 01 b 16 ¢ 18 d 24; * tabs;
IF _N_ = 1 THEN SET ALL;
do until (last.name);
set maxx;
by loc name;
IF FIRST.LOC OR LL < 11 THEN PUT _PAGE_;

fg(wd) = sum(fg(wd), 1) ;

av(wd) = sum(av(wd), temp) ;

mi(wd) = min(mi(wd),temp);

ma (wd) = max(ma(wd),temp) ;
end;

do wd=1 to 7;
if nmiss (fg(wd),fd(wd),
pn(wd) = put(fq(wd),2.)
v(wd) = av(wd)/fg(wd) ;

end;

put @b name

av(wd)) then continue;
[|'" ("] |put (fEq(wd) /£d(wd) *1e2,4.1) || '%) ';

// @ 'N(N%)' @c+&f (pn(*)) ($&f..)
/ @b 'Mean' @d+1l (av(*)) (&f..1)
/ @ 'Min ' @d+1 (mi(*)) (&f..1)
/ @ 'Max ' @d+1 (ma(*)) (&f..1) /;
return;
hh: put @c+3+&f (dy(*)) ($&f..) / @a &ls*'-'
/ @d+6 (ff1-f£f7) (&f..) @a 'Location' @b 'Collector'
/ @a &ls*'-' / @a loc @ ;

run;

So, it actually takes surprisingly few alterations to make the transition from percentages at the location level to ones at the level of
daily totals across all locations. The amended DATA step results in the picture similar to the one before. Now the totals displayed at
the beginning of each location are the ones for all locations, and the percentages are consequently much smaller, but of course the
statistics at the location*name crossings remain intact:

Jock Whostow

N (N%) 2(3.3%) 1(1.4%)
Mean 21.7 20.6
Min 21.5 20.6
Max 22.0 20.6

Rip Tide

N (N%) 1(1.8%
Mean 20.2
Min 20.2
Max 20.2
Seymour Fish

N (N%) 2(3.5% .5

Mean 22.3 23.4 22.
Min 20.3 4

Max 24.3 4

Conclusion

The most difficult thing in SAS reporting is not programming per se, but deciding what to choose from the roster of programming,
analytic, and reporting tools the SAS System offers. Just during the course of this exercise, | was split between SUMMARY,
TABULATE, FREQ, and DATA step, TRANSPOSE, and arrays, etc., before finally settling on something concrete. Luckily, for me, it
was easy to disregard the REPORT procedure, since | am not sufficiently good at it. | do realize, though, that in this situation, the
proc may be just the ticket for an expert REPORT programmer.

SAS is a registered trademark or trademark of SAS Institute, Inc. in the USA and other countries. ® indicates USA registration.

Author Contact Information

Paul M. Dorfman

10023 Belle Rive Blvd. 817
Jacksonville, FL 32256
(904) 564-1931 (h)

(904) 954-8533 (0)
sashole@mediaone.net
paul.dorfman@sciticorp.com

Coders’ Corner Panel Problem
lan Whitlock, Westat, Rockville, MD

Analysis of the Problem

At first glance the problem looks like a simple two-part
problem - read the data, report the statistics. Let's analyze
the problem.

What are the problems with the data?

1. Records out of scope (wrong date, wrong time,
wrong depth)

2. Multiple readings (at same location and time by
the same person)

3. Fractions and decimals used in depth

4. Name - order (first last) and missing parts

What are the problems with the report? It looks like a
PROC TABUATE except that

1. Header labels include data values
2. Cell contains two numbers for the line N (%)
3. Order of report

The data problems (3) and (4) are easily handled in the
step that reads the file. Problem (2) cannot be solved in
the reading step, hence it is reasonable to postpone all the
subsetting to a subsequent step. This means one can get
a better picture of name problems by looking at the
complete file. In fact, there were few problems with
names. Beard abbreviated his first name and Whabhinii
didn't give it. A call to Dr. Dripp-Drye ironed out these
problems.

The header problem, can be answered with a few macro
variables, but the report problem (2) is the big question. |
decided to use TABULATE for a debugging report, but not
use it for the main report. So what's left? PROC
SUMMARY can get the statistics, but how should they be
reported. The CLASSDATA= option would fill in with the
missing categories. These can easily be generated from a
cartesian product of sets of distinct elements using PROC
SQL. The new TYPES statement is used to make the
code more efficient since now only types 8 and 15 are
generated. The data out of PROC SUMMARY could be
massaged to make a DATA _NULL_ report, a PROC
REPORT report, or possibly a PROC PRINT report.
Having abandoned PROC TABULATE, | could afford to
leave the decision until after massaging the data. A
double PROC TRANSPOSE should rearrange the
statistics for reporting - the first reduces the multiple
statistic variables to one column and the second
redistributes them over days as required by report
structure.

What about the N (%) line? Well it looks like this has to be
a character variable, so lets make all the statistics into
character variables (no problem for PROC TRANSPOSE).
At this point | decided to aim for a PROC PRINT. Now
what about order? A nasty twist. The report should be
Name (first then last) but | wanted them alphabetized by
last name. The statistic names also caused a problem;
they wouldn't sort nicely. | had to abandon PROC PRINT
because and variables used in ordering a BY statement
must appear in the report.

Normally | would go for a DATA _NULL_ report and did
start to code it. But, | really wanted to include an HTML
version and didn't want to get into a mess between HTML
and DATA _NULL_. PROC REPORT looks like my
answer. You don't have to report all variables used and
you can get some of the flexibility of a true DATA _NULL_
report. The big problem here was how to get the location
and collector on different lines. After a few false tries with
options like FLOW, it became clear that it would be best to
use a COMPUTE block to write the location and another
compute block to write the name. The weakness here is
getting the output of the LINE command where you want
it. | added long blank strings with an unprintable character,
"00"x on the end. Now when PROC REPORT centers the
line the printed portion is on the left.

Well we should be ready to consider the code.

The Code
/* Report.sas - read file, massage, get stats,
massage, and report
input: Dripp-Drye Water temps - SESUG.dat
output: report (print and html)
author: IW 24jun2000
*/
$let apppath = work ; /* work or home */
/* __ */
%let home =
c:\my documents\ian\sas\sastalk\sesug00\panel;
$let work =

h:\my documents\sas\sastalk\sesug00\panel ;

libname sesug "&&&apppath" ;
filename main "&&&apppath\sesug2k.dat" ;

title
"Dripp-Drye Water Temperatures in Western "
"Florida Week of 21Nov1999" ;

/* read in data and fix record level problems */
data sesug.main (keep = loc datetm depth temp
fname lname name) ;

infile main truncover ;

input loc Schar2.
+1 dt mmddyy10.
+1 hr 2.
min 2.

@21 depth 3.
ctemp $charlo.
@38 name Scharl3.

/* get correct week */
if "21nov1999"d <= dt <= "27nov1999"d
datetm = dhms (dt , hr , min , 0) ;

/* fix temperature */
if index (ctemp , ".") then

temp = input (ctemp , bestl0.) ;

else

if index (ctemp , "/") = 0 then
temp = input (ctemp , bestl0.) ;

else

do ;

temp = input (scan(ctemp, 1), bestl0.)
+ (input (scan(ctemp, 2), bestl0.)
/ (input (scan(ctemp, 3), bestl0.))
) i

end ;

/* fix up names */

lname = lowcase(scan (name , 1)) ;

substr (lname,1,1)= upcase (substr(lname,1,1));
fname = lowcase(scan (name , 2)) ;

substr (fname,1,1) = upcase (substr (fname,1,1));

if lname = "Beard" then fname = "Bob";
else
if lname = "Wahiini" then fname = "Frank" ;
name = trim(fname) || " " || lname ;
run ;

/* sort and subset to max temp
for datetm loc fname lname
where time between 6pm and 8pm
where depth 10 and 15 meters.
*/
proc sort data = sesug.main out = main ;
by datetm loc lname fname descending temp ;

run ;

data wmain ;
set main ;
where loc not in ("Q2", "22", "23")
by datetm loc lname fname descending temp ;
if first.fname ;
if "18:00"t <= timepart (datetm) <= "20:00"t
if 10 <= depth <= 15 ;
day = weekday (datepart (datetm)) ;

run ;

title2 "Debugging Report"
proc tabulate data = wmain ;

class loc fname lname day ;

var temp ;

table (all loc*fname*lname)

* temp=" " * (n mean min max)
, day / rts = 50 ;

run ;

title2 ;

get stats
generate all possible class combinations
and summarize
*/
proc sqgl ;
create table shell as
select day, loc, lname, name
from (select distinct day from wmain)
, (select distinct loc from wmain)
, (select distinct lname , name
from wmain)

quit ;

proc summary data = wmain classdata = shell ;
class day loc lname name ;
types day day*loc*lname*name ;
var temp ;
output out=summary

n=N mean=Mean min=Min max=Max

*/
proc format ;
value $loc
"00" = "00-Pensacola"
"0l" = "0l-Panama City"
"08" = "08-Apalachicola"

"09" = "09-Cedar Key"

"13" = "l3-Tarpon Springs"
"14" = "l4-Clearwater"
"15" = "15-St. Petersberg"
"l6" = "l6-Badenton"

"17" = "l7-Sarasota"

124" = "24-Captiva"

"25" = "25-Key West"

7

value S$Sstat

"apctn" = IIN(%) n
"bmean" = "Mean"
"cmin" = "Min"
"dmax" = "Max"

run ;
/* combine summary information to create %
and massage data */
data chrsum (keep = day loc lname name
apctn bmean cmin dmax) ;

length name $17 ;

merge
summary (where = (_type = 8)
keep = day n _type
rename = (n = daytot))
summary (where = (_type = 15))
by day ;

/* create macro variables for report labels*/
if first.day then
call symput ("d" || put(day,1.) ,
trim(left (put (daytot,3.))));

/* indent name for paper report */

name = " " || name ;

/* convert stats to character to combine
n and % names chosen to sort correctly
*/
if n > 0 then
do ;
pctn=100 * n / daytot ;
apctn =
put (n,2.) ||" ("] |put (pctn,3.1)||"%)" ;
bmean = put (mean,4.1) ;
cmin = put(min,4.1) ;
dmax = put(max,4.1) ;
end ;

run ;

/* reduce all stats to one column */
proc transpose data = chrsum out = tl ;

by day loc lname name ;

run

/*

*/

pro

run ;
proc transpose data = tl out = report prefix
day;

by loc lname name name_ ;

var coll ;
run ;

*/

ods

pro

var apctn bmean cmin dmax ;

7

remove day from sort

to combine stats under day columns

c sort data = tl ;

by loc lname name name_ ;

html body="&&&apppath\report.htm" ;

c report data = report nowd ;

column loc lname name name dayl-day7 ;

define loc / group noprint ;
define lname / group noprint width = 1 ;
define name / group ;
define name / "Location/ Name"
format=$Sstat. ;

define dayl display "Sun/ (n=&d1)
define day2 display "Mon/ (n=&d2)
define day3 display "Tue/ (n=&d3)
define day4 display "Wed/ (n=&d4)" ;
define days display "Thr/ (n=&d5)
display "Fri/ (n=&d6)

()

display "Sat/ (n=&d7

define dayé

N N N N

define day7

break after lname / skip ;

compute before loc ;

X =

put (loc, $loc20.) | |repeat ("™ ",69)||"00"x;

line " " ;
line x S$char9l. ;

endcomp ;

compute before name ;

X =

put (name, S$charl7) | |repeat (" ", 69)|]|"00"x ;

line x S$char9l. ;

endcomp ;

run ;

ods

html close ;

Conclusion

One should spend as much time analyzing the problem
before coding as possible. One should plan the code for
flexibility, postponing decisions that can be delayed.

Approximately half the code was need to fix the problems
and produce the basic information. The remaining half
was used to get a report in the precise form required.
Perhaps more time should have been spent investigating
a TABULATE solution.

The author may be contacted by mail at

lan Whitlock

Westat

1650 Research Boulevard
Rockville, MD 20850

or by e-mail
whitloil@westat.com
Corrections

The key format $LOC. was poorly executed. The
location 22 was omitted and its name applied to 24.

This had two disastrous consequences. Data for
location 22 were deleted and the report for location
24 was mislabeled.

The second biggest mistake due to a hasty reading
of the problem specification was to take the
maximum temperature for multiple readings instead
of the maximum temperature at the maximum depth.
One could question the basic INPUT statement on
the basis of the specs, however the data given
support the INPUT statement. Of course, future
data might not be readable and still be with in
specification.

No attempt was made to make the program
parameter driven. On the other hand, any of the
most probable changes covered by parameters are
easily made and parameterization would not be
difficult.

SAS is a registered trademark or trademark of SAS
Institute Inc. in the USA and other countries. ®
indicates USA registration.

Report
Dripp-Drye Water Temperatures in West Florida Week of 21Nov1999 1
20:03 Friday, July 21, 2000

Location Sun Mon Tue Wed Thr Fri Sat
Name (n=51) (n=43) (n=53) (n=49) (n=48) (n=40) (n=53)

00-Pensacola

Bob Beard
N (%) 1(1.9%) 1(2.1%)
Mean 24 .4 21.1
Min 24 .4 21.1
Max 24 .4 21.1

Seymour Fish

N(%) 2(4.7%) 1(1.9%) 1(2.1%) 1(2.5%)
Mean 22.3 23.4 22.6 23.9
Min 20.3 23.4 22.6 23.9
Max 24.3 23.4 22.6 23.9

Cap'n Morgan
N (%)
Mean
Min
Max

Rip Tide
N (%) 1(2.3%)
Mean 20.2
Min 20.2
Max 20.2

Frank Wahiini

N (%) 1(2.3%) 2(3.8%)
Mean 22.7 21.3
Min 22.7 21.1
Max 22.7 21.5

Jock Whostow

N (%) 2(3.9%) 1(1.9%)
Mean 21.7 20.6
Min 21.5 20.6

Max 22.0 20.6

