
ABSTRACT

Now that you have your data warehoused, how do
you share that information with others who need
access to it? SAS software provides a variety of
tools to access and retrieve data from
multidimensional databases (MDDBs). However,
MDDBs are not accessible to non-SAS users in your
organization. Until now. Starting with Version 7 of
the SAS System, OLE DB can be used to access
the information stored in SAS MDDBs and CFO
Vision FDBs.

OLE DB can be used to access the information
stored in ANY multidimensional database that is
OLE DB compliant. Starting with the release of
Windows 2000 Professional, OLE DB will be
installed as part of the operating system. In
Microsoft Office 2000, all member applications will
be OLE DB consumers. The same is true for Lotus
SmartSuite member applications. Thus, any OLE
DB compliant consumer (such as Microsoft Excel,
Lotus 1-2-3, Knosys ProClarity, and many others)
will be able to directly query a SAS MDDB file using
OLE DB on all major platforms, including Windows
NT, UNIX, and mainframes.

This paper will provide an introduction to OLE DB.
It will describe OLE DB and how it works. The SAS
implementation of OLE DB will be demonstrated,
along with other OLE DB consumers such as
Microsoft Excel and Lotus 1-2-3. The paper is
intended as a beginning paper for the advanced
user.

INTRODUCTION

In 1995, I first presented ODBC: Windows to the
Outside World, an introduction to the topic of Open
DataBase Connectivity and how to use it effectively.
Since then, ODBC has become a useful tool for
many SAS sites for cross application access to data.

However, ODBC has its limitations. To address
these limitations, and to provide a more flexible
means of access to many different types of data,
Microsoft proposed a new standard for data access
technology, OLE DB.

At SUGI 24, Thomas Cox presented What’s Up with
OLE DB?, which provides an excellent overview of
OLE DB architecture and concepts. This paper will
attempt to provide some additional background on
OLE DB, and present some techniques for using
OLE DB to access both SAS and non-SAS data.

WHAT IS WRONG WITH ODBC?

ODBC was originally proposed by Microsoft in the
early 1990’s to solve the problem of accessing
relational and tabular data on the Microsoft
Windows platform. It subsequently was ported to
other platforms and is now a universal method to
share data between non-compatible applications on
a wide variety of hardware platforms.

The ODBC architecture consisted of four tiers:

^ ODBC Driver Manager
^ ODBC Drivers
^ Applications
^ Data Sources defined to ODBC

The ODBC Driver Manager is typically supplied by
the operating system vendor (e.g. Microsoft).

ODBC Drivers are typically supplied by the vendor
of a specific type of data to be accessed with ODBC
(e.g. Oracle, SAS, Lotus, etc.).

Data Sources are defined by the end user to identify
a specific type of data to be read or written.

Extending the Data Warehouse: An Introduction to OLE DB

7��(EZMH�6MFE��.%()�8IGL��-RG���'PIEV[EXIV��*0

However, there are several limitations that affect the
use of ODBC. These limitations include:

^ ODBC uses SQL as the common language
^ ODBC Drivers are written to different Levels
^ Deployment issues

Since ODBC is based on SQL as the common
language for communicating between different types
of data, the structure of SQL limits the types of data
that can be accessed. SQL is best at accessing
relational and tabular data. SQL can not be used
effectively to access hierarchical, multi-dimensional
(MDDB), and free-form data. In addition, there are
many different interpretations of the SQL language,
with differing levels of conformance to the SQL
specifications. This can cause problems when
trying to construct a SQL query for ODBC.

ODBC Drivers are individual DLLs written by
different software vendors to support their specific
data structures. However, the ODBC standard
specifies several different levels of ODBC
compliance, Core, Level 1, and Level 2. Each
ODBC driver is written to one of these compliance
levels based on the features that they support.

Deployment of ODBC has been a problem at many
sites. In order for ODBC to function properly, the
server, operating system, network transport, client
software, and drivers must all be compatible. If this
does not happen, troubleshooting ODBC problems
can be extremely difficult.

WHAT IS OLE DB?

In the Summer of 1996, Microsoft published the first
specifications for OLE DB (Object Linking and
Embedding for DataBases). OLE DB was intended
to overcome the limitations that had become
apparent in ODBC.

According to Microsoft:

OLE DB is an open specification designed to
build on the success of ODBC by providing an
open standard for accessing all kinds of data
throughout the enterprise. OLE DB is a core
technology supporting universal data access.
Whereas ODBC was created to access relational
databases, OLE DB is designed for the relational
and nonrelational information sources, such as
mail stores, text and graphical data for the Web,
directory services, and IMS and VSAM data
stored in the mainframe. OLE DB components
consist of data providers, which expose data;

data consumers, which use data; and service
components, which process and transport data
(for example, query processors and cursor
engines). These components are designed to
integrate smoothly to help OLE DB component
vendors quickly bring high-quality OLE DB
components to market. OLE DB includes a
bridge to ODBC to enable continued support for
the broad range of ODBC relational database
drivers available today.

OLE DB is intended to be an open standard capable
of providing access to any type of data. As such,
OLE DB will be useful for:

^ Relational Data
^ MultiDimensional Data (MDDB)
^ Non-Relational Data

^ E-Mail
^ Web Data
^ Directory Services
^ IMS and VSAM data

Since OLE DB is an object oriented interface to
data, it is intended for use in thin client (web based)
environments. With OLE DB many different types
of data can be accessed in a common manner using
web browsers, database software, stand alone
applications, etc.

IS ODBC OBSOLETE?

In many respects, OLE DB can be considered a
superset to ODBC. OLE DB includes all of the
functionality of ODBC, adds additional functionality,
and is easier to use. In fact, OLE DB ships with an
ODBC Provider (more on this later). Thus, OLE DB
can perform all of the functionality previously
performed by ODBC, with the additional capabilities
built into OLE DB.

However, OLE DB is not intended to replace ODBC.
The ODBC technology has matured and is widely
used. ODBC is still the best choice when accessing
standard relational databases from a non-OLE
environment. OLE DB is still an evolving standard.
It is important to realize that Microsoft is fully
integrating OLE DB into its product line (operating
systems and Office suite) as their solution for
universal data access. In addition, other vendors
such as SAS Institute are adopting OLE DB as a
standard for external data access.

In deciding whether to use ODBC or OLE DB, here
are some recommendations:

^ Use ODBC to access standard relational
databases from a non-OLE environment

^ Use OLE DB for non-SQL data
^ Use OLE DB in an OLE environment
^ OLE DB is the only option for building

interoperable database components (COM)

UNDERSTANDING OLE DB

Technologically, there is a fundamental difference in
the architectures of ODBC and OLE DB.

^ ODBC is a procedural based specification
^ OLE DB is a component based specification
^ ODBC is designed to provide access primarily

to relational data using SQL in a
multiplatform environment.

^ OLE DB is designed to provide access to all
types of data in an OLE Component Object
Model (COM) environment.

OLE DB includes the Structured Query Language
(SQL) functionality defined in ODBC, but it also
defines interfaces suitable for gaining access to data
other than SQL data. OLE DB is intended to be an
open standard capable of providing access to any
type of data. In addition, OLE DB for OLAP
(OnLine Analytical Processing) is intended to
extend the features of OLE DB to OLAP data.

Microsoft intended OLE DB to be the foundation of
their Universal Data Access strategy. To
accomplish this, OLE DB is tightly coupled with
ADO (ActiveX Data Objects). ADO is the
application level interface (API) that provides the
Component Object Model (COM) objects.
Specifically, OLE DB is intended to be an object
oriented solution for data access. COM
(Component Object Models) is Microsoft’s solution
for object oriented programming. Virtually all of the
Windows oriented environments (Visual Basic,
Visual C++, Delphi, PowerBuilder, etc.) all support
COM components. While Visual Basic originally
created VBX files, COM files have the extension of
OCX (OLE Custom Control). OLE DB uses ADO
(ActiveX Data Objects) which are COM compliant
objects that are designed for data access.

Thus, OLE DB is the interface to various types of
data, which uses ADO object oriented components
to access the data. This is a very superficial view,
and the reader is encouraged to research ADO and

COM in more detail for a better understanding of
how they interrelate.

OLE DB for DATA MINING

In February, 2000, Microsoft updated a draft of a
specification for OLE DB for Data Mining. The
specification is currently at Version 0.9. In
cooperation with over 40 vendors in the business
intelligence field, the OLE DB for DM specification
defines a common interface for data mining
applications. The goal of this specification is to
provide an industry standard for data mining so that
different data mining algorithms from various data
mining vendors can be easily plugged into user
applications.

OLE DB for DM specifies the API between data
mining consumers and data mining providers. The
specification does not add any new OLE DB
interfaces. Instead, the specification defines a
simple query language similar to SQL syntax and
specialized schema rowsets so consumer
applications can communicate with data mining
providers.

Like OLE DB, this area is still evolving and
maturing. The OLE DB for DM specification is
currently in public beta. However, the potential
benefits from OLE DB for Data Mining are
significant.

PROVIDERS AND CONSUMERS

OLE DB introduces two new terms to the computer
lexicon -- “provider” and “consumer”. These terms
refer to the application software and how they
interact with OLE DB.

^ Providers are applications that implement
OLE DB interfaces

^ Consumers are applications that request an
OLE DB interface

The OLE DB specifications define four categories:

^ Data Providers
^ Data Consumers
^ Data Service Providers
^ Business Component Developers

An OLE DB Provider implements OLE DB
interfaces. Microsoft Windows 2000, Windows NT,
and the SAS Local Data Provider are all OLE DB

providers. Other OLE DB provider applications
include Microsoft SQL Server, DB2, AS400, Oracle,
Red Brick, Sybase, Lotus Notes, and Microsoft
Exchange. OLE DB providers allow consumers to
access data in a uniform way through a known set of
documented interfaces. In a sense, an OLE DB
provider is similar to an ODBC driver that provides
a uniform mechanism for accessing relational data.
OLE DB providers not only provide a mechanism for
relational data but also for nonrelational types of
data.

OLE DB Consumers use, or consume, OLE DB
interfaces. Any application that connects to a
database using OLE DB is a consumer application.
Many applications are already OLE DB consumers.
Microsoft Office 2000, Lotus Notes, and
SAS/Access to OLE DB are all examples of OLE
DB consumers.

The other two categories, Data Service Providers
and Business Component Developers, are
concerned with building and deploying OLE DB
components and will not be discussed in this paper.

THE ODBC PROVIDER FOR OLE DB

OLE DB ships with an ODBC Provider. The ODBC
Provider maps OLE DB interfaces to ODBC APIs.
With the ODBC Provider, OLE DB consumers can
connect to a database server through the existing
ODBC drivers as follows:

^ Consumers call an OLE DB interface on the
ODBC Provider

^ The ODBC Provider invokes corresponding
ODBC APIs

^ The ODBC Provider sends the requests to an
ODBC driver

^ Responses are returned to the OLE DB
consumer

Because the ODBC Provider allows OLE DB
consumers to use existing ODBC drivers, there may
be some performance concerns about the additional
layer of the ODBC Provider on top of the existing
ODBC driver manager. The design goal of the
ODBC Provider is to implement all the functionality
of the ODBC driver manager. Thus, the ODBC
Driver Manger is not needed. However, the ODBC
Provider still requires the ODBC Driver Manager to
support connection pooling with ODBC applications.

CONSUMER INTERFACES TO OLE DB

Since OLE DB is intended as an object oriented
interface to many different types of data, consumer
applications must communicate with the OLE DB
objects. This is done by means of program code
written in one of the object oriented programming
languages. Visual Basic, Visual C++, VB Script,
and Java are among the languages that support
OLE DB. The syntax of each of these languages
needed to communicate with the OLE DB objects
are beyond the scope of this paper. Any application
that supports OLE DB as a consumer has a scripting
language that can be used to communicate with the
OLE DB objects.

Appendix A to this paper is a sample of HTML which
uses VB Script to read a SAS dataset from within a
web page. The VB Script invokes the SAS Local
Data Provider to open and read a SAS dataset
without the need to open SAS software in the
background. This VB Script could be generalized
to use any OLE DB provider as a variable, instead
of hard coding the value in the script. The key here
is that an HTML page, irrespective of operating
system or location, can now access and retrieve
data across a thin client.

SAS INTERFACES TO OLE DB

As part of the Nashville Project, SAS Institute is in
the process of implementing support for OLE DB.
The current initiatives are:

^ SAS/Access to OLE DB
^ OLE DB for OLAP
^ SAS Local Data Provider
^ SAS/Share Data Provider
^ SAS IOM Data Provider
^ SAS SPD Server Data Provider

The status of each of these initiatives is listed as of
April, 2000.

SAS/Access to OLE DB is production effective with
Version 8.0. OLE DB for OLAP is a pass-through
component of SAS/Access to OLE DB. It is also
production in Version 8.0. SAS/MDDB server and
CFO Vision Release 2.2 both have OLE DB for
OLAP compliant interfaces.

The SAS Local Data Provider was formerly named
the SAS OLE DB BaseProvider. It is experimental
in Version 8.0. The role of the SAS Local Data

Provider is to provide access to local SAS datasets
from non-SAS applications on the same machine.

The SAS/Share Data Provider was formerly named
the SAS/Share OLE DB Provider. It is experimental
in Version 8.0. It is intended to provide access to
non-local SAS datasets managed by a SAS/Share
server. It can surface any data that SAS can
process.

The SAS IOM Server OLE DB Provider has been
renamed to the SAS IOM Data Provider. It is
currently considered Developers Release. It will be
production in the Version 8.0 Maintenance Release.
SAS Integration Technologies use the IOM Server
to provide access to OLE DB data managed by the
Integration Technologies object server.

The SAS SPD Server has an ODBC interface and
would be accessible using the ODBC Provider for
OLE DB . It is due out later this year.

SAS/ACCESS TO OLE DB

SAS/Access to OLE DB is a separately licensed
product from SAS Institute. Like the other
SAS/Access products, SAS/Access to OLE DB
provides an interface between the SAS System and
OLE DB compliant data. The programming syntax
is similar to that already used by the other
SAS/Access products.

With SAS/Access to OLE DB, SAS has introduced a
library engine, the OLEDB engine. Libraries using
the OLEDB engine can be defined either with SAS
program statements or with the new Library Wizard.

Defining a library containing OLE DB compliant
data, can be as simple as:

LIBNAME libref OLEDB ;

SAS will then prompt the user to define the rest of
the information necessary. A popup window is
presented to define the properties of the data link.
The popup window contains three tabs where the
Properties, Connection, and Advanced features can
be set. The fourth tab, All, displays the initialization
properties that have been defined for the data.

Alternatively, the user can complete all of the
required data, such as:

LIBNAME libref OLEDB
 PROVIDER = ‘oledb_provider’
 PROPERTIES =
 (“userid” = userid
 password = xxxxxx
 “data source” = dsname) ;

The details of configuring an OLE DB connection
are beyond the scope of this paper. However, the
SAS Version 8 OnLine Docs contained a very
complete description of the specific process
required to define OLE DB data to SAS.

Since SAS/Access to OLE DB functions the same
as all of the other SAS/Access products, the same
SQL syntax is valid for OLE DB data. The SQL
Procedure Pass Through Facility is common across
all of the SAS/Access product line.

For example, a Microsoft Access table can be
opened in SAS using the Microsoft Jet OLE DB
Engine as follows:

 PROC SQL feedback ;
CONNECT to OLEDB (
 PROVIDER = “Microsoft.Jet.OLEDB.4.0”
 PROPERTIES =
 (“data source” = “ ds_name ”)) ;
CREATE TABLE sugi as
 SELECT * from CONNECTION TO oledb
 (select * from table_name) ;

 QUIT ;

Each OLE DB Provider must be defined to the
system. The Data Link Properties popup will
identify each of the Providers available. However,
to use the Provider with the SQL Pass Through
Facility, the proper Provider ID must be used.

CONCLUSION

OLE DB is an emerging standard which will provide
a common means of accessing many different types
of information. Through the use of object oriented
programming languages such as Visual Basic,
Visual C++, Java, or SAS software, OLE DB data
objects can be accessed from almost any
application. OLE DB is particularly useful with thin
client applications, such as web browsers, and with
complex data such as multi-dimensional databases.
As database vendors implement OLE DB support in
their products, the inherent capabilities of OLE DB
will become apparent to anyone who needs the
ability to access and exchange information between
many different types of applications.

TRADEMARK INFORMATION

SAS is a registered trademark of SAS Institute Inc. in the
USA and other countries. ® indicates USA registration.

Other products mentioned are trademarks or service
marks of their respective owners.

ABOUT JADE Tech, Inc.

For more information about JADE Tech, Inc. visit
our website at.

HTTP://WWW.JADETEK.COM

AUTHOR

The author may be contacted at:

S. David Riba

P O Box 4517
Clearwater, FL 33758

(727) 726-6099
INTERNET: DAVE@JADETEK.COM

REFERENCES

Cox, Thomas W. (1999). What’s Up with OLE DB?
Proceedings of the Twenty-Fourth Annual SAS
Users Group International Conference. SAS
Institute, Inc., Cary, NC. Pp. 808-817

Maata, B., Alam, M., Maartens, G., McRoberts, R.,
Pelie, C., and Sharma, P. (1998). Fast Path to
AS/400 Client/Server Using AS/400 OleDB Support.
IBM Corp.

Microsoft Corp, Microsoft OLE DB online library

Microsoft Corp, (2000) OLE DB for Data Mining
DRAFT Specification, Version 0.9.

SAS Institute, Inc. SAS OnLine Docs

AUTHOR BIO

S. David Riba is CEO of JADE Tech, Inc., a SAS
Institute Quality Partner who specializes entirely in
applications development, consulting and training in
the SAS System. Dave has presented papers and
assisted in various capacities at SUGI, SESUG,
NESUG, MWSUG, SCSUG, and PharmaSUG.

His major areas of interest are efficient
programming techniques and applications
development using the SAS System. His SAS
software product specialties are SAS/AF and
FRAME technology, SAS/EIS, SAS/IntrNet, AppDev
Studio, CFO/Vision, and the SAS Collaborative
Server. Dave is a SAS Certified Professional.

Dave is currently the Co-Chair of SSU 2001, the
combined SouthEast and SouthCentral SAS Users
Group conference to be held in New Orleans in
August, 2001.

APPENDIX A

Sample HTML to access SAS data
using OLE DB

<html>
<head>
<title>OLE DB Using ADO Example</title>

<table bgcolor="#333333" cellpadding=1 border=0 width="100%">
<tr><td><table bgcolor="#9999CC" cellpadding=1 border=0 width="100%">
<tr><td align="center"><h1>View SAS Data</h1>
</td></tr></table>
</td></tr></table>

<script language="vbscript">

’ADO Constants
Const adCmdTableDirect = 512
Const adOpenStatic = 3
Const adLockOptimistic = 3

’ Error handling routine
Sub GetErrors(conn)

If conn.Errors.Count = 0 Then Exit Sub
i = 1
msg = ""
For Each adoErr in conn.Errors
 msg = msg & "ADO Error " & i & ":" & vbNewLine
 msg = msg & "Source: " & adoErr.Source & vbNewLine
 msg = msg & "Number: " & adoErr.Number & " (0x" & Hex(adoErr.Number) & ")" & vbNewLine
 msg = msg & "NativeError: " & adoErr.NativeError & vbNewLine
 msg = msg & "Description: " & adoErr.Description & vbNewLine
 i = i + 1
Next
MsgBox msg, vbExclamation
conn.Errors.Clear

End Sub

’ Format a recordset as an HTML table
Sub DisplayRecordset(rs)

document.write "<table border=1 cellpadding=3 align=cenTer><tr>"
for each column in rs.Fields
 document.write "<th>" & column.Name & "</th>"
next
document.writeln "</tr>"
do until rs.Eof
 for each column in rs.Fields
 document.write "<td"
 val = column.Value
 if IsNull(val) then
 val = "-null-"
 end if

 if Trim(val) = "" then
 val = " "
 end if
 if IsNumeric(val) then
 document.write " align=center"
 end if
 document.write ">" & val & "</td>"
 next
 document.writeln "</tr>"
 rs.MoveNext
loop
document.write "</table>"

End Sub

’ Main routine
On Error Resume Next

Sub OpenTable_OnClick

On Error Resume Next
strDirectory = document.form1.sasDirectory.value
strDataset = document.form1.sasDataset.value
strConnect = "Provider=sas.LocalProvider.1;Data Source=" & strDirectory

Set rs = CreateObject("ADODB.Recordset")
rs.Open strDataset, strConnect, adOpenStatic, adLockOptimistic, adCmdTableDirect
Call GetErrors(conn)
Call DisplayRecordset(rs)
rs.Close
rs = Nothing

End Sub
</script>
</head>
<body>
<form name="form1">
 <table border=1 cellpadding=3>
 <tr>
 <td>SAS Directory:</td>
 <td><input type="text" name="sasDirectory" size=50></td>
 </tr>
 <tr>
 <td>SAS Dataset Name:</td>
 <td><input type="text" name="sasDataset" size=50></td>
 </tr>
 </table>
 <table border=0 cellpadding=3>
 <tr>
 <td><input type="button" name="OpenTable" value="Open Table"></td>
 <td><input type="reset" value="Reset Form"></td>
 </tr>
 </table>
</form>
</body>
</html>

