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ABSTRACT
The association of antecedents to performance outcomes, including
individual behaviors, interfaces and the environments in which
engagements are performed and sustained as a behavioral system
is certainly implied, but has not been a primary focus of traditional
data mining techniques. The current paper introduces the concept of
Underlying Construct Analysis (UCA) using techniques associated
with confirmatory factor analysis, and demonstrates their utility for
theory development. We provide step-by-step instructions for data
mining beyond observable variables, to include larger units of
behavior frameworks and demonstrate using a case example, unique
variance associated with two distinct populations in a large data set
(Survey of Parents and Children, 1990), populations that were not
defined prior to the UCA. We lastly emphasize the potential global
application of our proposed procedures for individuals with only
moderate levels of understanding of statistics, and across multiple
domains of exploration.

INTRODUCTION
Data mining is an analytical process, but moreover a reflection of
traditional thinking designed to explore large aggregates of data in
search of consistent patterns of relationships among variables. For
many years, the concept of data mining has included the notion of
exploring observable factors in three basic stages: (1) data
exploration; (2) model building or pattern definition; and (3) model
validation. The authors of the current paper argue that the utility of
data mining techniques for many researchers in medicine,
engineering, business, and the social sciences can be greatly
enhanced by the use of multiple additive regression analyses that
elucidate underlying constructs in the prediction of observed factors.
Required is the re-framing of knowledge discovery, first at the
conceptual level to include objective and subjective indicators of
outcomes as geo-physical, -psychological, -physiological, or -
sociological phenomena. Second, at the procedure level by taking
advantage of rapid advancements in data mining techniques to
better leverage pattern recognition. In the true spirit of "mining"
defined as extracting underlying wealth, the current paper will
present a rationale supporting SAS code and a case example of the
utility of Underlying Construct Analysis (UCA). This new procedure,
when combined with advanced data visualization techniques, can
assist researchers to attain maximum meaning from their data.

We propose using UCA to explore the underlying systematic
coherence that ties people, events, and situations together in a
meaningful manner that drives measurable relationships. The
justification of UCA using a mining analogy can be conceptualized
as “why focus on nuggets of data when you can excavate core
structure?” Because UCA focuses on mining beyond the
observable, we believe that UCA provides data miners a more
reliable representation of the relationship between variables in a
large data set, and a great foundation from which to develop, not just
respond to, theory. Lastly, we believe that UCA has increased utility
over traditional data mining approaches because of its relative ease
of application to multiple domains of science, medicine and industry,
and the need for only a moderate level of knowledge of statistics to

quickly and effectively gain benefit in the data mining process.

The current paper is organized to provide step-by-step instructions
for the use of UCA procedures, and, using an example from the
social sciences to guide the reader’s thinking and learning
processes, each data mining procedural step is conceptualized in
detail, along with specific examples of SAS code. The paper is
designed to provide readers an enhanced understanding of the use
and interpretation of UCA as a data mining tool. Code segments,
and in some instances exemplary programs, are provided for user
convenience. No specialized knowledge is required. For a
supplementary reference, the reader is referred to Hatcher (1994).

DATA MINING USING UCA
In the following sub-sections, we describe a series of procedural
steps required to mine a raw data set for the underlying factorial
associative network implied by the covariances. For extended
generalizability, we propose techniques that can be used to induce
and compare the associative networks of multiple groups. Because
UCA draws heavily on the theory and methodology of Confirmatory
Factor Analysis (CFA), we couch much of the procedural description
in CFA terminology.

SELECT DATA SET
In recognition of the CFA heritage, the observed data variables are
referred to as manifest variables. Manifest variables may be drawn
from either primary or secondary sources or a mixture of both.
Regardless of source, the analyst should ensure that a complete
data set is available for each of the groups to be modeled. The use
of proxy variables across groups under the assumption of
measurement equivalency is to be avoided, as CFA is extremely
sensitive to violations of this assumption.

The presence of nonnormal manifest variables influences the tests
of statistical significance used in CFA modeling. We therefore
recommend that the data set for each group be simultaneously
tested for skewness and kurtosis using multivariate procedures as
exemplified by Mardia (1974), Mardia and Foster (1983) and Mardia
(1985). In cases of significant departure from normality, the analyst
has the following choices: transforming the data in hopes of
achieving better approximations of multivariate normalcy, removal of
outliers, or employing alternative parameter estimation techniques.
Commonly employed transformations include logarithmic, square
root, and other power functions that alter distributional shape. The
stem-leaf tables produced by PROC UNIVARIATE are
recommended for identification of outlier cases. Covariance matrices
with and without outliers can be computed and compared to
ascertain outlier effect. A more drastic solution is to use an available
alternative estimator that does not depend upon multivariate
normalcy (Bentler, 1989).

Missing data is an ongoing problem that is typically dealt with by a)
pairwise deletions, b) listwise deletions, or c) estimation of missing
values. Pairwise deletion is to be avoided in CFA modeling, as
negative definite covariance matrices are possible and, when
present, will abort the estimation procedure. Therefore, we



recommend that the nomiss option be used in the PROC CORR
statement. However, in some cases, listwise deletion can result in
severe attenuation of sample size. As a result, the use of a reduced
sample leads to less efficient CFA parameter estimates than would
be obtained with the full sample (Bollen, 1989). Use of sample
means or linear estimates has pitfalls, including increased
possibilities of violation of multivariate normalcy assumptions and
heterogeneity of error variances.

For the research herein reported, the data set was drawn from the
Survey of Parents and Children (1990). This secondary source was
selected because it provided a national sample of antecedent
variables with potential relevance for educational achievement of
youth from white and black families. Development of separate CFA
models for black and for white families allows for a structural
comparison of cross-cultural effects. Data screening and cleaning
resulted in the selection of a data set consisting of 21 variables for
each group.

DRAW RANDOM SAMPLE
At the present stage of development, CFA parameter estimation
requires simple random sampling from each of the k population
groups under modeling consideration. Current advances such as
PROC SURVEYREG and PROC SURVEYSELECT suggest that
procedures may soon be available to allow survey researchers to
conduct CFA using complex sampling designs.

For our research project, we defined the sample to be the set of all
observations having no missing data on the selected data set. As a
result, we obtained a sample of 193 white families and 117 black
families. To ensure that the reduced sample did not differ from the
full sample, we compared the reduced and full samples on selected
demographic characteristics. No significant differences were
obtained. From this, we concluded that missing values were
distributed randomly and thus that our selected sub- samples could
be said to be representative of the full sample for each population
group. Consistent with CFA requirements, we further assumed that
each sample could be construed as a simple random sample drawn
from a population as defined by the respective sampling frames
used in the overall survey design.

CONDUCT EXPLORATORY FACTOR ANALYSIS
An initial exploratory factor analysis is helpful in making the
preliminary assignment of manifest data set variables to an
underlying factor, referred to as a latent variable in CFA terminology.
A suggested command line is as follows:

proc factor data=groupdataset priors=smc
min=1 scree rotate=varimax;

These options instruct the procedure to select the appropriate date
set for the group to be analyzed, use the prior multiple correlation of
each manifest variable with all others as the communality estimate
for that variable, retain only those factors whose eigenvalues equal
or exceed 1, produce a scree plot of the retained eigenvalues, and
rotate the factor loadings using an orthogonal transformation.
Orthogonal rotation is preferred because its use tends to reduce the
number of manifest variables that load on more than one factor.

Several heuristics are offered to guide the analysis. First, with
respect to sample size, we concur with Hatcher’s (1994) advice that
the sample size should exceed either 100 or 5 times the number of
manifest variables in the data set, whichever is greater. The
requirement that only factors whose eigenvalues exceed 1 be
retained for further consideration is admittedly arbitrary but
commonly employed in the factor analytic literature. Use of the
assignment rule that manifest variables are assigned to an
underlying factor only if the absolute value of its rotated factor
loading exceeds .40 enjoys wide usage. Manifest variables whose
rotated loadings are in excess of .40 on several variables warrant
special attention. These cases are termed cross-loaders and should
initially be assigned to the factor with the highest rotated loading.

When applied to our data, exploratory factor analysis yielded three
factors for the white family sample and four factors for the black
family sample that met the minimum eigenvalue criterion. For the
white family sample, 6 manifest variables were assigned to factor 1
(f1), 6 manifest variables to factor f2, and 5 manifest variables to
factor f3, with no cross-loaders. In contrast, for the black families, 4
factors met the minimum eigenvalue criterion, with 4 manifest
variables assigned to the first factor, 5 to the second factor, 4 to the
third factor, and 5 to the fourth factor, with one manifest variable
loading on two factors.

TEST THE SAMPLE COVARIANCE MATRICES FOR
EQUIVALENCY
The fundamental hypothesis of CFA modeling is that the population
covariance can be reproduced as a function of a set of parameters
as represented by the matrix equation

ΣI = Σi(θI)
where ΣI  is the covariance matrix and θI is the vector of structural
parameters for the ith population. Thus, if ΣI  = …= Σk, the underlying
structure as represented by the vector of model parameters must
also be equivalent. What is needed, then, is a statistical test for
equality of covariance matrices using k random samples, one from
each population.

A SAS  IML program of a likelihood ratio test of the hypothesis of
equality of covariances as described by Anderson (1984) is
presented in the Appendix to this paper. The numerator of the
likelihood ratio is proportionate to a power of the weighted geometric
means of the sample generalized variances and the denominator is
proportionate to a power of the determinant of the arithmetic means
of the sample covariance matrices. The likelihood ratio criterion is
asymptotically distributed as chi-square.

Use of this test criterion requires that the data sets for the k samples
contain the same manifest variables. Sample sizes need not be
equal. The common data set should include all manifest variables
retained as a result of the exploratory factor analysis conducted
separately for each sample. Covariance matrices can be computed
separately for each sample using the command line

proc corr data=commondatasetsamplei cov
nocorr outp=sampleicovariance;

The cov option instructs the procedure to compute and print a
covariance matrix. The nocorr option suppresses printing of the
correlation matrix. The outp option creates a new SAS  data set
containing the sample covariance matrix. The sample covariance
matrices are used as input to the covariance equality test.
Acceptance of the null hypothesis H0: ΣI  = …= Σk implies an
equivalency of underlying parametric structure; hence, pooling of
sample covariance matrices is permissible. Pooling is achieved by
summing the corrected sums of cross-products matrices across the
k samples and dividing each matrix entry by N – k. If H0 is rejected,
the covariance matrices must be analyzed separately for each
sample in subsequent procedural steps.

As a result of exploratory factor analyses of our cross-cultural
samples, 19 variables from the original set of 21 were retained for
further analysis. Two manifest variables were unique to the black
families sample and 1 to the white family sample. One common
variable was found to cross-load on the black family sample but not
on the white family sample. The presence of unique variable
assignments suggests nonequivalent sample covariances. A
common data set of 19 variables was created and covariance
matrices computed separately for each sample. Testing the two
covariance matrices for equality using the program as presented in
the Appendix yielded χ2 = 287.8, which with 190 df resulted in p <
.0001. The hypothesis of no differences in population covariances
was consequently rejected in favor of the alternative hypothesis of
differential parametric structure.

CREATE MEASUREMENT MODELS



The purpose of this step is to select subsets of manifest variables
that are pure measures of a single latent variable. Sets of manifest
variables that measure a single underlying construct (latent variable)
are referred to as congeneric variables (Drewes, in press). The goal
is to identify congeneric variables for every factor identified in the
exploratory analysis conducted for each sample. The obvious
candidates for initial consideration are the manifest variables
assigned to a specific factor. These variables are submitted as a
preliminary CFA model for confirmation. If the CFA model results in
an acceptable fit of the covariances of the included variables, the
measurement model is accepted. If not, manifest variables are
sequentially dropped, and the reduced model refit until an acceptable
model is found or the number of remaining variables is less than 4.
With less than 4 manifest variables, model fit cannot be tested.

Measurement models are tested using PROC CALIS. The following
prototype program is suggested:

proc calis data=reducedcov edf=samplesize-1
corr method=ml res se;
   lineqs

v1 = gamma1 f1 + e1,
v2 = gamma2 f1 + e2,
.
.
vp = gammap f1 + ep;

   std
e1 – ep = error: (p * .1),
f1 = 1.0;

run;

In the above code, v(i) refers to a manifest variable name, with p
being the number of manifest variables assigned to the factor
designated for notational simplicity as f1. Before the program is
submitted, the appropriate integer value should be substituted for p.
The measurement model is defined in the lineqs (line equations)
section. Each manifest variable is assumed to be decomposable into
an underlying true component designated as f1 and a measurement
error component designated as e(i). The latent variable (f1) is
weighted by a constant, gamma(i), which in a standardized model is
interpreted as the correlation of the manifest variable with the
underlying true component f1. The free parameters to be estimated
are the p gamma values and the p error variances. As the variance
of f1 is arbitrarily fixed at 1.0, these parameters are sufficient to
estimate the observed covariance matrix. For further discussion and
clarification, see Hatcher (1994).

The CFA measurement model when run returns 30 indices of model
fit. For simplicity of interpretation, we recommend primary
consideration be given to the following: a) the fit function, b) Pr >
Chi-Square, c) RMSEA Estimate, and 4) Bentler & Bonett’s (1980)
NFI. In order to qualify as acceptable model fit, the fit criterion
should be near 0, Pr > Chi-Square should be > .05, RMSEA should
be < .08, and Bentler & Bonett’s NFI should be > .90. If these
multiple criteria are met, the measurement model can be said to
have been confirmed and may be retained for subsequent use.
Before a confirmed model is designated as the final choice, it is a
good idea to test several alternate candidates to determine if an
improved fit can be obtained. For direct model comparisons, the fit
criterion and the RMSEA should be given the greatest decision
weighting.

If a given assignment of manifest variables is rejected as a
candidate measurement model, a variable from the set should be
dropped and the model rerun. Which variable to drop requires a bit
of detective work. A good place to start is the PROC CALIS output
section titled “Rank Order of the 10 Largest Asymptotically
Standardized Residuals.” Residuals greater than 2.0 should be
singled out and the row and column examined to determine if one
manifest variable is contributing to multiple residuals greater than
2.0. If so, that variable is a prime candidate for exclusion. A
companion tactic is to examine the standard errors (Std Err) found in
“Manifest Variable Equations with Estimates” and in the “Variances
of Exogenous Variables” for size consistency. A variable with an

inordinately large standard error is suspect. In CFA modeling, there
is always the possibility that dropping manifest variables will not
guaranteed a good fitting measurement model. If all variables have
been exhausted and no acceptable measurement model found, the
factor should be removed from further consideration.

Once a measurement model has been found for each factor across
all k samples, the factor should be named. Factor naming is critically
important in that the name serves to identify and communicate the
central construct being measured. Factor naming is an inferential
process that begins with a close examination of the manifest
variables of the measurement model to determine what it is that they
share in common. Factors should be considered as theoretical
identities drawing their meaning from the relevant physical, social,
life, engineering, or management sciences. The gamma weights
associated with each manifest variable are invaluable aids in factor
naming. The closer the gamma weight approaches 1, the more the
variable can be said to be “loaded” on the underlying factor.
Consequently, those manifest variables with the highest loadings
provide the strongest clues as to factor identity. Negative signs
indicate an inverse relation between the manifest variable and the
latent factor—the lower the manifest variable score, the higher the
associated factor score and vice versa.

The measurement models for our white and black families are
shown in Tables 1 and 2, respectively.
Table 1: Measurement models for white family sample

Factor Gamma wt. Fit criterion RMSEA
f1 .0109 .0162
   V4 .5877*
   V9 -.6848*
   V16 -.4553*
   V21 .-.7357*
f2 .0025 .0000
   V3 .4174* .
   V8 .7006*
   V13 .9184*
   V20 .5808*
f3 .0229 .0790
   V7 .3408*
   V14 .7951*
   V15 -.4215*
   V18 .6178*
* Significant at .01 level or beyond.
Table 2: Measurement models for black family sample

Factor Gamma wt. Fit criterion RMSEA
f1 .0068 .0000
   V4 .6010*
   V9 -.7620*
   V16 -.6221*
   V21 -.8439*
f2 .0199 .0368
   V3 .6388*
   V5 .5255*
   V13 .5657*
   V20 .3577*
f3 .0035 .0000
   V5 .4020*
   V7 -.6230*
   V18 -.3460*
   V19 .5866*
* Significant at .01 level or beyond.

The measurement models for factor f1 contained identical manifest
variables for both samples, although the black family sample
exhibited consistently higher absolute gamma weights.
Measurements models for f2 overlapped on three manifest variables
(V3, V13, and V20), with the white family measurement model



loading higher on V13 and V20 and the black family model loading
higher on V3. The measurement models for f3 shared two manifest
variables (V7and V18), with a sign reversal across samples.
Manifest variable V5 loaded on both f2 and f3 in the black family
sample.

Factor names, measurement variables, and their associated factor
loadings for the white family sample are presented below:

f1: Neighborhood Context
Global evaluation  .5877
Neighborhood problems -.6848
Neighborhood norms -.4553
Economic opportunities/stability -.7357

f2: Family educational expectations
Student educational aspirations .4174
Parental educational aspirations .7006
Parental educational expectations .9184
Parents educational attainment .5808

f3: External influences
Family norms .3408
Peer norms .7951
School practices                -.4215
School safety .6178

Comparable information for the black family sample is as follows:
f1: Neighborhood Context

Global evaluation  .6010
Neighborhood problems -.7620
Neighborhood norms -.6221
Economic opportunitities/stability -.8439

f2: Family educational expectations
Student educational aspirations .6388
Peer expectancies .5255
Parental educational expectations .5657
Parents educational attainment .3577

f3: External influences
Peer expectancies  .4020
Family norms -.6230
School safety -.3460
Maternal support  .5866

Comparison of factor composition across samples reveals subtle
differences. Although the factors have been assigned identical
names, their measurement models differ with respect to manifest
variable composition, factor loadings, or both. For f1, the variable
composition of the measurement models is identical for both
samples; however, the black family sample exhibits consistently
higher absolute factor loadings. For factor f2, parental expectation is
the defining variable for the white family sample, but is of lesser
importance in the black family sample. Peer expectancies replace
parental educational aspirations in the black sample. Student
educational aspiration is assigned a higher loading in the black
family measurement model than in the white model. Parental
education correlates higher with factor f2 (has a higher loading) in
the white sample than in the black sample. Factor f3 shows the
greatest sample differences, sharing only two common manifest
variables---family norms and school safety. Interestingly enough,
both variables change signs from the white to the black
measurement models. The unique variable contributors are peer
norms and school practices for the white family sample and peer
expectancies and maternal support for the black family sample.

CREATE STRUCTURAL EQUATIONS MODELS
The remaining task is to meld the factors into an associative
network. Interfactor covariances/correlations are used as the

defining network relation and are estimated using multifactor CFA
techniques. The number of samples and the factor set for each
sample is dependent upon the empirical results of the previously
detailed procedures. For each sample, a multfactor, noncorrelated
error CFA model can be conducted using the suggested program
code:

proc calis data=reducedcov edf=samplesize-1
corr method=ml res se;
   lineqs

v1 = gamma1 f1 + e1,
v2 = gamma2 f1 + e2,
.
vi = gammai f1 + ei,
v(i+1) = gamma(i+1) f2 + e(i+1),
v(i+2) = gamma(i+2) f2 + e(i+2),
.
v(i+j+1) = gamma(i+j+1) f3 + e(i+j+1),
.

v(i+j+…+m+1) = gamma((i+j+…+m+1)) fp +
e(i+j+…+m+1),

.

v(i+j+…+m+n) = gamma(i+j+…+m+n) fp +
e(i+j+…+m+n);
   std

e1 – e(i+j+…+m+n) = error: ((i+j+…+m+n)
* .1),

f1 = 1.0, f2 =1.0, …, fp=1.0;
   cov
f1 – fp = cov:((p(p-1)/2 * .1);
run;

For the above code, i refers to the number of variables in the f1
measurement model, j to the number in the f2 measurement model,
and n to the number in the fp measurement model. Prior to running,
symbols within the parentheses should be replaced with the
appropriate integer values. The lineqs section, then, contains a
sequential listing of the factorial measurement models with
appropriate variable notation. The cov statement instructs the
procedure to estimate the p(p-1)/2 factor correlations, where p is the
total number of factors included in the model. Program code should
be run separately for each of the samples previously deemed to have
been drawn from populations with unequal covariance matrices.

The extent of model fit should be determined by employing the same
criteria as that specified for measurement models. Because the
multifactor CFA model is testing for cross factor as well as within
factor order constraints, the test is more stringent than are single
factor measurement models, leading to a greater expectation that
moderate to poor fitting models will likely be encountered. Unlike
measurement models, dropping variables is no longer an option for
improving model fit. Nor, for that matter, is eliminating factors, as the
underlying factor structure has been already established. The only
viable option for improving structural model fit is to scan for
correlated error and/or cross-factor loadings. Correlation between
error variables ei and ej, where variables i and j are from different
factor sets, implies the presence of a common contribution to both
error variables. Correlated errors within a factor variable set are
disallowed by virtue of the definition of a measurement model.
Correlated errors would imply the contributing effects of other factors
beyond that of  the single factor being measured. Cross-loaders
indicate that manifest variables are subject to the causal influences
of multiple factors.

A procedure is required that is capable of differentiating the unique
signatures of poor fitting structural models containing  correlated
error versus those containing cross loading variables. For the sake
of explication, let p=4 and further suppose that each of the four
factors has a measurement model containing 4 manifest variables.
The complete data set then contains 4 x 4 = 16 manifest variables.
The 16 x 16 correlation matrix can be partitioned as



F1 F2 F3 F4

F1 R

F2 R R

F3 R R R

F4 R R R R

F1F1

F2F1 F2F2

F3F1 F3F2 F3F3

F4F1 F4F2 F4F3 F4F4

where RFiFj is the submatrice of the variables in the Fi

measurement model crossed with the variables in the Fj
measurement model. When i≠j, these blocks are termed hetro-factor
blocks to emphasize that the variables cross factor pairs. When i≠j,

RFiFj is of unit rank for a perfectly fitting structural model. Anderson

(1984) describes a test statistic
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where p is the sum of the manifest variables in the measurement
models of Fi and Fj, p1 is the lesser number of variables in either
measurement model, N is the sample size, and ri

2 is the squared Ith

canonical correlation of the variables in Fi measurement model with
those in the Fj measurement model. Under the null hypothesis of
unit rank, the test statistic is distributed as χ2 with (p1 –1) (p2-1) df.
We adopt the notation Fi*Fj to signify a  canonical correlation
computed using PROC CANCORR with the manifest variables in
the Fi measurement model indicated by the var statement and those
in the Fj measurement model by the with statement.

For a structural model with p factors, there are p(p-1)/2j canonical
correlations of the form Fi*Fj to be computed. Test statistics should
be computed and tested for significance for each Fi*Fj. A significant
Fi*Fj pairing indicates the presence of correlated error between
variables in the two measurement models for that hetro-factor block.
Testing for cross-loaders requires a bit more notation. For each
column in the partitioned matrix described above, we define the
notation Fi*(Fj x Fk x Fl), where the hetro-factor block is the ith

column crossed with all rows excluding i. Again the notation signifies
a canonical correlation between the variables in the ith column with
the variables in the remaining rows. In the above example, F1*(F2 x
F3 x F4) signifies a canonical correlation with the variables in the F1
measurement model designated by the var statement and all others
by the with statement. For each column of the partitioned matrice,
compute the statistic

γ (Fi * (Fj x Fk x Fl)) =  - ln( )1 2

2

1
−

=
∑ r

i
i

p

as well as the p-1 statistics
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for j = 1, 2, …, p - 1. Under the null hypothesis, the test statistic

γ γ(Fi * (Fj x Fk x Fl) -  (Fi *  Fj)
j

l
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is distributed as χ2  with (pi – 1) (p – pi –1) – (pi –1) Σ(pj –1) df,
where pi is the number of variables in the Fi measurement model,  pj

is the number of manifest variables in the Fj measurement model,
and p is the total number of manifest variables in the structural
model. If the statistic is significant, the interpretation is that one or
more of the manifest variables comprising the measurement model
of Fi cross load on at least one of the factors Fj, Fk, or Fl. Exactly
which variables and factors are involved can be determined by using
the modification option of PROC CALIS. Examination of the output
section “Rank order of the 10 largest Lagrange multipliers in
_GAMMA_” can be expected to identify which manifest variables in
the Fi measurement model are cross loading on one of the remaining
factors.

For our research data, initial CFA structural models were separately
run for each sample. For the black family sample, manifest variable
V5 was dropped from the f2 measurement so as to avoid having
cross loaders in the initial model. The structural CFA models when
run yielded the following fit statistics for the white family sample: fit
criterion = .4852, Pr > Chi-Square < .0003, RMSEA = .0656, and
NFI = .8294; for the black family sample: fit criterion = .4903, Pr >
Chi-Square = .0506, RMSEA = .0578, and NFI = .7918. Based on
assessment of fit statistics for each group, we decided to analyze
the data further to see if improved models could be specified. The
results are presented in Table 3.

Table 3: Fit improvement statistics
Test statistic Numeric value Chi-square (df)

White family sample
γ(F1*F2) .06715 12.591 (9)
γ(F1*F3) .05649 10.592 (9)
γ(F2*F3) .09088 17.040 (9)*

γ(F1*(F2*F3)) -
γ(F1*F2) - γ(F1*F3)

.04491 8.330* (3)

γ(F2*(F1*F3))) -
γ(F1*F2) - γ(F2*F3)

.02360 4.378 (3)

γ(F3*(F1*F2)) -
γ(F1*F3) - γ(F2*F3)

.03482 6.459 (3)

Black family sample
γ(F1*F2) .02575 2.884 (6)
γ(F1*F3) .04668 5.204 (9)
γ(F2*F3) .07147 8.004 (6)

γ(F1*(F2*F3)) -
γ(F1*F2) - γ(F1*F3)

.03964 4.360 (3)

γ(F2*(F1*F3))) -
γ(F1*F2) - γ(F2*F3)

.02546 2.800 (2)

γ(F3*(F1*F2)) -
γ(F1*F3) - γ(F2*F3)

.10976 12.073 **(3)

* Significant at .05 level.
** Significant at .01 level.

The tabular results suggest that the initial fit of the white family
model may be improved by allowing for correlated errors between
measurement model variables for f2 and f3 and cross loaders
between f1 manifest variables and factors f2 and/or f3. For the black
family sample, one or more f3 measurement variables may be
expected to cross load on factors f1 and/or f2.

Examination of the modification output for the white family sample
did not show any significant correlated errors between f2 and f3
measurement model variables as might be expected from the fit
improvement statistics. However, V2 (neighborhood problems) was
revealed to be significantly cross loaded on f2 and f3. For the black
family model, V7 (peer expectations) was shown to be cross loaded
on f2, as would be expected from the fit improvement results.
Consequently, the white model was revised by allowing variable V2
to cross load on factors f2 and f3, and when rerun yielded fit criterion
= .4121, Pr > Chi Square = .0041, RMSEA = .0566, and NFI =
.8551. The black family model was revised by allowing V7 to cross
load on f2. The revised model when run produced fit criterion =
.3938, Pr > Chi Square = .2480, RMSEA = .0350, and NF1 = .8328.
In that these models were derived using an explicit inductive



procedure grounded in statistical and structural modeling theory, we
consider them to be superior to those that may be derived by a pure
ad hoc approach.

The associative factor network for white family groups is shown
below:

f1

f2

f3

.096

.445

.095

White family sample

and for the black family group

f1

f2

f3

-.213

.093

-.196

Black family sample

DISCUSSION
Associated Structural Networks in the Context of Academic
Performance.
The idea that African American and Caucasian parents and their
children can be segmented differentially as geo-psychological and –
sociological, behaviorally unique entities using underlying construct
analysis suggests the utility of alternate approaches to defining and
capturing methodologically user and customer sub-populations as
systems.  In the context of academic achievement, what is evident
are two different societal levels of group experience.  At this level of
structural analysis, what is evident empirically are conceptually
similar spheres of context, yet strikingly different sets of
synchronous patterns of social, psychological, and behavioral
outcomes at group levels of performance. For Caucasians, the
associated networks are functionally enabling and mutually
reinforcing.  For African Americans, the network responds
differentially, both negatively and positively. Further examination at
the component level highlights these distinctions.

Neighborhood Context
The neighborhood context drives consistent patterns of positive and
negative recurring observed experiences for both groups, and similar
dominant concerns for economic and social problems among their
families. However, among the lesser dominant concerns,
neighborhood social norms and global evaluations show a reversal in
order. For the African Americans, neighborhood norms of social
isolation and apathy appear as more problematic
(-.6221 versus -.4553). Whereas, for Caucasians, the third order of

placement is occupied by global evaluations of their neighborhoods
as a positive place to raise their children (.5877). Second, for
Caucasian parents all induced effects are consistently less
problematic than those that occur among African American families.

Family Educational Experiences
This family structure underlies sets of conceptually similar observed
experiences for both groups. Again, the differences are fundamental,
occurring in two ways. First, for African Americans, parental
educational aspirations as an observed recurring pattern is not
evident as among Caucasians (.7006). Educational expectancies of
African American peers (.5255)  replace parental educational
aspirations. As discussed in the next section, this is consistent with
interpretations of "isolation." The second of the two obvious
differences show the relative dominance magnitudes of "parental"
effects among those who are Caucasian. For African American
students, the aspirations of the students themselves (.6388) make
the dominant contribution.

External Influences
Examination of the external influences on academic achievement
reveals the greatest group disparities. For African American youth
the existence of peers that expect to continue their education (.4020)
is important. This is in contrast to Caucasian students.  The lack of
its occurrence might suggest that education expectancies, among
their peers, is, not an issue. In its place is a level of normative peer
delinquency (.7951). For these youth, this delinquency norm is also
not expressed as a disabling experience.
Its dominant status in absolute magnitude as an observed effect is
evident, along with constancy of positive association with its other
companion effects (maternal respect, .3408; school safety, .6178;
school practices, .4215).

Another salient difference between the two groups is that the
patterns for African American youth appear conflictual. For these
youth, external influences drive simultaneously both positive and
negative impressions of psychological capital (maternal support,
enabling, .5866 versus family norms, disabling, -.6230). Recurring
patterns of school experiences also occur as neither safe nor
personal (-.3460), and contrast strongly to that of Caucasian
students. When interpreted in the context of related induced
companion effects, what is highly suggested is an academic
experience of isolation. On the other hand, for Caucasians, external
influences are not only not negative (.6178), but are co-existent with
a personal sense of connectivity to the learning environment. School
practice perceptions, although negatively induced (-.4215), are
associated with positive patterns occurring across family and peer
dimensions (.3408, .7951).

In this example, Underlying Construct Analysis reveals how
academic experiences are not only differentially experienced by
African American and Caucasian students, but the underlying
supportive structure that likely drives the effects. On one level, the
construct "group" is a part of the underlying supportive factor
structure for Caucasians, whereas the same is not supportive for
African Americans. What is derived from this exploration, clearly, is
that "one model" of performance does not fit all.

CONCLUSION
The utility of data mining procedures is maximized when analyses
explore both observed factors, such as in principle components
analysis, and underlying constructs as we propose. Conducting data
exploration at the level of underlying structure has many advantages
over traditional data mining approaches including, but not limited to,
the increased potential for the development of not only of new theory,
but newer approaches to leverage benefit by alternate definitions of
consumer or user markets.

Using a specific example from the social sciences, we demonstrated
the relative ease of use of the SAS procedures
to data mine and data mining applications to support the notion user
and customer populations as unique geo-psychological,



-social, and -behavioral entities, as systems, rather that simply
aggregates of individuals.  Level of analysis extends the analytical
framework, from the individual level, as the unit of analysis, to larger
spheres of performance, particularly the nature and scope of induce
outcomes (i.e., multidimensionality), along with the scope of causally
related underlying structures and mechanisms that convey them as
effects.

Our example demonstrated the depth of understanding that can be
derived from exploring the driving forces that influence variables to
covary, as synchronous units, in both similar and dissimilar fashions.
We hope that this article has significantly advanced the utility of data
mining and visualization techniques, especially UCA, for the average
researcher.
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APPENDIX
The following program was used as is to test equality of covariance
matrices as reported in this paper.

/*Program to test equality of multiple
covariance matrices*/
/*Ref: Anderson,Introduction to Multivariate
Statistical Analysis, 1984, pp. 419-422*/
/*Assumes that SAS covariance matries have
been created using proc corr with COV and
NOCORR options and are located in designated
library*/
/*p - number of variables*/
/*q - number of samples*/
/*chi_sq - chi square statistic*/
/*prob - portion of chi-square distribution
to right of chi-sq value*/

/*Type I error is set at .05 level*/
libname in "your libref”;
proc iml;
start get_q;
        file log;

        put "Number of samples to be tested: ";
        infile cards;
        input q;
finish;
/*Replace number with value of q*/
run get_q;
2
;
start get_p;
        file log;
        put "Number of variables per sample:
";
        infile cards;
        input p;
finish;
/*Replace number with value of p*/
run get_p;
19
;
I=1:q;
fr=char(I,2,0);
M = {"Full filename of sample covariance
matrix"};
msg= concat(M,fr[5]);
D=J(2,q+1,0);
A=J(p,p,0);
sq_mat=J(p,p,0);
start gt_names;
        infile cards;
        dsname="11111111111111111";
        create name_ds var{dsname};
        do data;
                input dsname $;
                append;
        end;
finish;
/*Replace dataset names with yours, keeping
in unless changed in libref statement*/
run gt_names;
in.wht_cov2
in.blk_cov2
;
start flexible(filename);
        call execute("use ",filename,";");
finish;
start keep_it(matrix,k) global(D,A,p);
        sq_mat=matrix[1:p,1:p];
        D[1,k] = det(sq_mat);
        D[2,k] = matrix[p+3,1]-1;
        A=A+sq_mat#D[2,k];
finish;
g=1;
do data i=1 to q;
        read point i var _CHAR_ into temp1;
        run flexible(temp1);
        read all var _num_ into temp2 ;
        run keep_it(temp2,g);
        close;
        setin work.name_ds;
        g=g+1;
end;
tot_n=0;
do i=1 to q;
        tot_n=D[2,i]+tot_n;
end;
D[2,q+1]=tot_n;



A1=A/tot_n;
D[1,q+1]=det(A1);
wt_ln=0;
do i=1 to q;
        wt_ln=log(D[1,i])*(D[2,i]/2) +wt_ln;
end;
ts=log(D[1,q+1])*(D[2,q+1]/2)-wt_ln;
inv_n=0;
do i=1 to q;
        inv_n=(1/D[2,i])+inv_n;
end;
rho=1-(inv_n-1/D[2,q+1])*((2*p*p+3*p-
1)/(6*(p+1)*(q-1)));
chi_sq=rho*ts*2;
df=(q-1)*p*(p+1)/2;
prob=1-probchi(chi_sq,df);
print chi_sq;
print df;
print prob;
msg1="Null hypothesis of no difference
ACCEPTED.";
msg2="Null hypothesis of no difference
REJECTED.";
if prob>.05 then print msg1;
else print msg2;
quit;
run;
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