
Teaching SAS Web Publishing in a Web Environment
Roderick A. Rose, Jordan Institute for Families, UNC-Chapel Hill, North Carolina

Sally S. Muller, Jordan Institute for Families, UNC-Chapel Hill, North Carolina

ABSTRACT
Experienced SAS users gain a more comprehensive understanding
of static SAS web publishing when they are taught in an interactive
classroom setting with a web page as the primary instructional
device. Web-based instruction goes beyond conventional
instructional methods, such as overheads or computer-based slide
presentations, offering a full range of instructional materials and
references, and improved interactive demonstrations and self-
tutorials of SAS web publishing.

The authors developed a website, on which HTML, FTP, DATA
NULL, the HTML Formatting Macros and the Output Delivery
System (HTML destination) are all seamlessly integrated into one
interactive session. This website employs cascading style sheets
and client-side Javascript, providing the instructor with a set of
interactive elements using a fully portable instructional aid that
permits the instruction on any computer with an Internet connection
and browser. These elements include, but are not limited to: links
that open a new browser for additional resources during the lecture
and on subsequent review, examples of programs displayed side-by-
side with their output, and downloadable programs and data sets.
The instruction is based in program building, and not a reference.
The intended audience of this presentation includes prospective
SAS/IntrNet instructors.

CONCEPTS TO COVER
The process of developing static SAS-based output on the web
involves a background in the client/server application and several
iterative steps: HTML, SAS programming, uploading, and
debugging. These steps, and the concepts associated with them,
serve as the basis of our course.

THE CLIENT/SERVER APPLICATION
By introducing the SAS Web Formatting Tools, SAS has made it
practical to store all applications and data on a central server and
allow interaction with remote clients using a web browser. Thus, the
first concept that the instructors address is the client/server
application.

Client/servers applications encompass organization-wide Intranets
as well as the Internet, and provide the pipeline over which all web
pages are transmitted. Static web pages are created and stored on
a web server for distribution. Minimal user interactivity with the page
is possible - users can select links to move from one page to the
next, for instance - but all elements displayed on a web page must
be incorporated into the design of the page by the author before it is
published. Still, we tend to think of web pages as "on-the-fly"
creations, as authors can instantaneously and continuously update
the page.

HTML
SAS programmers no longer have to HTML-format output – as far
from “on-the-fly” as one can get – as it is now possible to create
SAS output in a completely web-ready format. Using a text editor to
draft a web page is still an essential skill. For this, one still needs a
basic knowledge of HTML.

There are two reasons for providing a basic HTML instruction:
• To give the programmer an appreciation for how a web page is

constructed.
• To provide some essential markup skills, which will

complement the DATA _NULL_ learned further on.

SAS PROGRAMMING
The only prerequisite of the course is basic SAS programming

knowledge. To the extent that this prerequisite is satisfied the
instruction can focus on the SAS HTML Formatting Tools and the
Output Delivery System:
• For the purpose of adding content like links and images to the

page, the programmer requires the DATA _NULL_ step and
PUT statements for writing HTML.

• The HTML Formatting Tools – macros - can display SAS data
sets and all SAS procedural output and are very simple to
invoke.

• The Output Delivery System is capable of producing all
procedural output in a formatted style.

UPLOADING THE STATIC APPLICATION
The applications that are developed must be uploaded from the local
(client) machine to the web server to be accessible on the Internet.
The students will need to gain familiarity with another widely-used
Internet protocol, the File Transfer Protocol (FTP).

FTP applications can differ widely. WS-FTP and the Windows
95/98 FTP Client are useful for general uploads. The SAS FTP
Access Method, wherein the file transfer protocol is written directly
into the SAS programs, is the preferred application, and is used in
the class.

DEBUGGING
SAS-generated Internet applications are comprised of SAS and
HTML-based components. Unfortunately, mistakes and bugs are
comprised of both SAS and HTML-based components as well. The
best method for debugging a SAS application is to study the log file;
the best method for debugging HTML is to study the output. Many
of the errors that can occur are specific to either SAS or HTML.
However, there are problems, like unclosed quotes, that occur
because of inherent incompatibilities. The trick is to approach the
programming in an iterative fashion – design the HTML first, then
build the SAS code around it. This does not prevent all problems
from arising, but it does reduce them. The authors thus chose to
emphasize the iterative approach to building static SAS applications.

CONSTRUCTING THE WEBSITE
The website consists of several layers of user interaction. The first,
and most important layer, consists of a series of sequential pages
that provide the foundation for the class. Additional layers allow the
students to learn more about the concepts of greatest important to
them, by providing demonstrations, links to other websites and
further instruction.

The first section begins with an introduction to SAS web publishing,
and tries to answer a basic question: What advantages accrue to the
SAS user who can publish static online content “on-the-fly”?

The second section is devoted to generating basic online output and
consists of three lessons:
• The first lesson is an instruction in basic HTML, in which

elements, attributes and tags are defined and reviewed. After
learning several simple but useful HTML elements, the
students author a simple web page.

• The second lesson combines HTML and SAS code by
showing the students how to construct a DATA _NULL_ step
with PUT statements with which the SAS System will author
the HTML for them. In particular, it will author the same page
that they wrote in the first lesson.

• The final lesson of the section describes the SAS FTP Access
Method. The students uploads their pages.

When the students complete this section, they have a home page
accessible online which was authored by using the SAS system.

Macros are the focus of the third section. First, since no
assumptions have been made about the students’ understanding of
macros, an introduction to macros is given. The remainder of the
section consists of three lessons, each one designed around one of
three HTML Formatting Macros:
• The Data Set Formatter is the first lesson. This is the easiest

of the macros to understand and utiliz.
• The Output Formatter is the second lesson. An exercise is

included, and the output is uploaded to the server.
• The Tabulate Formatter, is the third lesson and focuses on the

many options that the formatting macros provide.

The fourth section is an introduction to ODS. This includes a lesson
in the ODS HTML destination. An exercise is provided in which a
web page is developed and uploaded to the server automatically by
using the FTP Access Method.

When the student has completed these five sections, the student
should have three pages online, beginning with the home page
created by the DATA _NULL_ step in the first interactive demo.
This home page links to the pages created by the Output Formatter
and ODS in the subsequent two exercises. A review of the material
is presented in a final section.

FLOW, INTERACTIVITY AND FURTHER REVIEW
The website adheres to three principles that serve as useful
guidelines for any instructional website: flow, interactivity, and further
review.

FLOW
By its very nature a website allows students to take any “path” they
desire. They can take a short excursion into supplementary material,
they can back-up and review material, they can forge ahead and skip
material they already know. This is the beauty of the web and our
pages are designed to facilitate this behavior. However, as with any
instruction, the flow of topics sometimes needs to be linear. In our
case, we wanted the students first to learn basic HTML and then
how to upload files using FTP, before moving to producing web
output with a SAS DATA _NULL_ step. We accomplished this
simply by the sequence of the pages.

To facilitate this we employ three links. The first link takes the
student to the next lesson in the linear fashion as described above.
It is placed directly after the lesson and is clearly marked as “Next”.

The second and third links are in the address bar at the bottom of
the page. The second link takes the student to a site index that
allows the student to jump to any page on the website if they choose
to review a topic later. The third link takes the student to a
“Frequently Asked Questions” page. The FAQ extends the
interactivity between the instructor and the student by providing a
forum outside of the classroom for students to ask questions and
receive answers.

Just as the sequence of the pages facilitates flow, so does the use
of hyperlinks whenever there is a need for an example. The student
who has no need for an example can ignore the link and stay
focused on the lesson. But for the students who need an example, or
another reference, the link can make a significant difference in their
understanding of the material. A tip when creating such links is to
eliminate the need to navigate backwards through a maze of pages
to return to the lesson. To do this, add the attribute
target=”_noframes” to the hyperlink tag as follows:

<a href=”http://anotherwebsite.com/”
target="_noframes">

A new browser window will open when selected. If one has already
been opened and has not been closed, the linked page will load in
that window. Besides providing links to examples, we also found it

was useful to provide links to data files as an alternative to having
the students key in the data themselves.

INTERACTIVITY
A substantial body of research indicates that students learn more
when they interact in the classroom as opposed to listening to a
“talking head.” The authors heeded this research and designed the
website to maximize student interaction. For example, rather than
just showing the student the appropriate SAS program for the job,
the student has to write the SAS program, run it, and thereby
generate the HTML output themselves. The trade-off is that this
strategy takes more time, especially if some of the students are less
experienced.

To help alleviate this problem, we use web scripting. For instance, to
link to an example of code and the output it generates, we enhance
the hyperlink, by referencing a Javascript function:

<A onClick="this.href=’javascript:
openExample(\’splitscreen.html\’)’" href..>

“openExample” is a Javascript function which generates a full-
screen window (without toolbars or menu bars, etc.) when the link is
clicked. This full-screen window consists of three frames: a menu
from which several examples can be selected, and windows for the
SAS code and output, which appear side-by-side. Selecting one
item in the menu opens the SAS code and output windows. We
found that by displaying the code and output simultaneously the
student gets a better understanding of how the codes produces the
output.

In keeping with our efforts to maximize interactivity, we provide
another link on the menu that gives the student the option of
downloading the code and running it on their own computer. The
result is a significant time saving as the student need not download
any code nor run the code to see the output.

Another opportunity we discovered for enhancing interactivity using
web scripting techniques, involves the students acquiring server
permission for web publishing. On the University’s server students
and employees are allowed an online directory called “public_html”
for web publishing. They must register to receive the necessary
permission before the pages become accessible online. At UNC,
this process can take up to an hour.

Our instruction requires that the students use this directory for
storing their static web applications. To ensure that students have
the necessary permissions set -- before they need them – we use a
very simple Javascript-enhanced HTML form at the beginning of the
website:

<FORM ACTION="" NAME="myform" METHOD="GET"
NCTYPE="text/plain"
onSubmit="document.myform.action =
’http://www.unc.edu/~’ +
document.myform.userid.value" + ’/’>
<P>Your UserID:
<INPUT TYPE="TEXT" NAME="userid"> </P> </FORM>

This form allows students to check whether they already have
permission, and if not, allows them the opportunity to obtain the
permission. The form reappears on the site wherever such access
is required.

FURTHER REVIEW
The website concept empowers the student by encouraging them to
revisit the material for review and further development. The two-hour
class allows only an overview of several concepts and tools. In a
situation where copious note-taking is not worthwhile, this provides
the student with an opportunity to pick up what they can in class with
the reassurance that they can return to the material later.

CONTENT CONTROL AND PORTABILITY

A website must be planned and designed properly. First of all,
content and function, though inseparable to the end-user, are
different elements to the webmaster. On the authors’ site, the
content consists of (HTML) markup. Functionality, alternatively, is
augmented by cascading style sheets and Javascript source files.
The remainder of this section provides some insight into how we
were able to implement the user elements described above by
adhering to this principle.

Cascading style sheets are a web standard for providing uniformity
of formatting to a website. All of the fonts, their sizes, and their
appearance (bold, italics, etc.) can be controlled from one central
location. For instance, the following tells the browser that any text
following a paragraph tag (<P>) should be written, if available on the
computer, using Helvetica, Arial or Genevas fonts, in a ten-point font
size, and in black:

P {
font-family:Helvetica,Arial,Genevas;
font-size:10pt;
color:#000000;
}

Uniform formatting is pleasing to the eye, but the benefit goes
beyond simple aesthetics. Providing a central location to control the
font size means being able to make “on-the-fly” changes to the font
size of nearly all of the site’s content in seconds. Referring to the
paragraph formatting above, it would take only a moment to change
the font size from 10 to 16. This means it can be done during the
class, if needed. If a cascading style sheet were not used, then it
would be impossible to do this – there would be hundreds of font
size references spread throughout the website.

The Javascript source files, of which there are two, serve two
purposes: they provide a place for nearly all of the Javascript
functions on the site which give the site its interactivity, and they
provide a place for adding uniform content. Uniform content means
that content can be controlled from a specific location, much in the
way that uniform formatting is provided by CSS. If there is a header
or a footer that is on every page of the website, a Javascript source
file can provide it. In fact, on the instructional site, a header
consisting of a title block, some attractive images, the date and some
links are added, as is a footer consisting of a “last modified” date, e-
mail addresses, and links.

Uniform content was traditionally provided by Common Gateway
Interface (CGI) in the form of server side includes. There are many
problems and issues to resolve in implementing server side
includes. It requires access to CGI-BIN on the web server. Many
enterprises and organizations, the University included, have a policy
against issuing access to the CGI-BIN directory on the server for
security reasons. Second, it requires knowledge of PERL or other
CGI scripting. Third, it does not provide access to Javascript
functionality which allows for some variability to the content (see
below for more). Finally, in order for the include to work on a
webpage, the webpage must be retrieved from a server; if the
computer goes offline, it will not work.

The Javascript source files can be thought of as “client-side
includes” which are more easily implemented and functional than
server-side includes. Javascript source files allowed us to include
functions within our uniform content to provide for some variability.
Each page, for instance, has a uniform header block that contains
an image that tells the user which page of the lesson they are on.
The entire block, however, including this image – which changes on
each page of the lesson – is included as uniform content in the
Javascript source file. The reason the source file is able to write a
different image to each page accordingly is because a hidden
attribute called “IMAGE” is passed from the .html page to the source

file and interpreted by a Javascript function called “getImage”, which
tells the source file which image to write to the browser. The hidden
attribute is written to the .html page, along with two others, as
follows:

<form name="HIDE">
<input type="hidden" name="IMAGE" value="overview">
<input type="hidden" name="NEXT" value="htmlnotes">
<input type="hidden" name="PREVIOUS" value="home">
</hide>

The “NEXT” and “PREVIOUS” attributes tell the browser which
page is next in the lesson and which came before it. The “NEXT”
attribute is written to the next page link at the bottom of each lesson
page (using “getNext”), telling the browser what .html page should
be linked, and telling the browser what text to write to denote the link
(“getLink”). For instance, referring to the above form, the following
function in the Javascript source file

function getNext() {
return(document.HIDE.NEXT.value)
}

interprets the value “NEXT” from the form. Then it is written to the
.html file using

document.write('');
getLink()
document.write('');

(Note the HTML inside of the Javascript document.write methods.)
The getLink function determines what goes between the
and :

if(document.HIDE.NEXT.value == 'htmlnotes')
{document.write('Next: A Brief Introduction to HTML')}

The benefit of using the getLink function, is that if there is no
reference to a value, then it doesn’t write anything to the page.
When there is no next, sequential, page this is preferred.

The other use for “NEXT”, and the reason for including
“PREVIOUS”, is a keystrokes script that provides some protection
against distractions and provides both the student and instructor
with a simple method of navigation. Instead of using the mouse to
locate and select hyperlinks on the lesson pages, keystrokes have
been programmed to move forwards and backwards through the
pages. If the instructor or the student presses the “f” key, the
Javascript “KeyPress” interprets that to be a link to the next page.
Similarly, if “b” is pressed, then the function interprets it to be the
value of “PREVIOUS”.

COMPUTER BASED TRAINING
Although our website was not meant to compete with CMC
(Computer Mediated Communication) nor any other asynchronous or
dispersed means of computer-based instruction, we do share many
of the same goals. One such goal is the delivery of a platform-
independent means of instruction. The website is portable and non-
proprietary, as is true with most Internet applications. There is
modest platform dependence in the sense that some applications
perform well on certain browsers and poorly on others.

Another goal that website instruction shares with other methods of
computer-based instruction, is the opportunity for self-instruction.
Self-instruction when learning how to create static web pages seems
especially appropriate since the pages themselves serve as
examples of the desired results.

CONCLUSION
 This presentation covers many of the advantages of using website

instruction. Although our subjects, the use of the SAS Web
Formatting Tools and ODS, are particularly amenable to website
instruction, we believe other topics are equally appropriate for
website instruction.

The important thing is that the website incorporate the principles of
flow, interactivity, and review. If these guidelines are followed and
the web pages present a logical progression of ideas and materials,
the website can provide a powerful tool for instruction.

CONTACT INFORMATION
Your comments and questions are valued and encouraged. Contact
the authors at:

Roderick A. Rose
Jordan Institute for Families
CB 3550
301 Pittsboro St.
Chapel Hill, NC 27599
Email: rarose@email.unc.edu

Sally S. Muller
Jordan Institute for Families
CB 3550
301 Pittsboro St.
Chapel Hill, NC 27599
Email: sally@email.unc.edu
Work Phone: 919-843-7798

