Building Systems of Macros
The Print System and The Macro Reporting System (MRS)

John lwaniszek and George DeMuth — Stat-Tech Services, LLC. Chapel Hill, North Carolina

Abstract

The SAS/Macro facility can be used to create
complex open-ended reporting systems. Global
macro variables can be used to create SAS
PROC style interfaces by passing key summary
information within a system of macros. The
Print System and the Macro Reporting System
(MRS) provide two examples of systems, each
designed with a programming interface that
enables users to assemble statistical summary
tables from their primitive elements. In this
case, the primitives are the macros that
constitute the horizontal and vertical dimensions
of the table (independent and dependent
variables) and the types of summaries that
populate the cells (univariate statistics,
frequencies, test statistics). Different macros
serve to initialize the table, specify the rows, and
execute the table.

Introduction

This paper describes a method of constructing
complex applications in Base SAS. Two
systems that the authors have written for their
own use and for general distribution will serve as
examples.

The user interface in each application is
designed as an analog to the program’s final
product. Each macro represents a component
of the table or listing produced by the
application. In the Print System, the majority of
the macros captures output parameters and post
them to global macro variables. In MRS, global
summary parameters, such as treatment group,
are stored in global macro variables for
identification in individual summary macros. The
summary macros produce output in the form of
summary data sets that conforms to a standard
format. A final macro assembles the analysis
data sets and produces a final table.

Programs make much use of both macro
variable arrays and subscripting of macro
variables. These systems are easy to use, but
require some familiarity with higher level

programming concepts and the SAS macro
language.

Statistical Reporting in Clinical and Social
Research

The authors work in the field of clinical research
involving drug and device development and
have experience in other areas such as social
sciences and academics. The common element
in this experience is the need to produce
concise reports that include statistical tables,
listings, and individual subject (i.e. patient,
survey respondent, employee, or other unit of
analysis) profiles.

The authors have developed various
programming tools in Base SAS that use
relatively simple aspects of the SAS Macro
Facility. These tools are complex systems of
macros that minimize programming time and
produce custom and standard tables and
listings.

The Applications

The following discussion will use examples from
two applications, the Macro Reporting System
(MRS) and the Print System. These
applications are used to generate statistical
summaries and display results as printed text.
The applications are collections of macros that
initialize the system and collect parameter
settings to control features of the finished
product. The overall system has three classes
of macros: an initialization macro, several
different utility macros, and a driver macro.

The Print System

The print system is a set of macros that can be
used to produce ASCII listings from a SAS data
set. The system was created to generate output
features not generally available in a single SAS
procedure. For example, the macros can create
fully-hooded (box) style output, continuation
messages, header and footer lines, handle
pagination of BY columns, and produce mixed-
style footnotes. Further, the Print macros
handle column widths with less user input than
PROC REPORT.

The Print System is comprised of a set of
macros that initialize the system, identify which
SAS data set to print, what variables to include
in the listing, the formatting options for the
variables, and any spanning headers. All the
macros except for the last one in the system
collect parameter settings and store them in
global macros variables and global macro
variable arrays.

The %PRINT macro at the end is the driver
macro and employs the settings to produce the
finished listing. The generic structure for a print
system program is described below.

%initbox(data=, outstyle=, ...Initializes system
with user defined and default settings) ;

%column(var=, form=, label=, width=, j=
...Identifies the variables to be displayed and
sets their properties) ;

%span(text= ...Spanning header to apply to
following columns);

%column(var=, ...);

%span(text= NOTE: Spanning headers
may be nested and contain split characters.);
%column(var=, ...);
%column(var=, ...);
%spend;

%spend; (terminates the most recent spanning
header. This macro has no parameters.)

%print; (Collates the information entered through
the above macro calls and produces listing as
specified.)

As described above, the PRINT macro uses the
information captured in the previous macro calls
to generate a DATA _NULL_ program to
produce the final product. For further
operational details of the Print System.

The Macro Reporting System

The MRS is a system for capturing and printing
results from multiple SAS procedures or custom
user summaries. The MRS was created to
address the issue of generating common
descriptive summaries that constitute the
majority of statistical reports in the clinical trials
setting.

The system utilizes global macro variables to
pass parameters about the overall appearance

of the table: summary groups or sub-groups,
column widths, table format (boxed versus line),
and other parameters. Individual summary
macros generate successive rows for the final
table.

The actual output is assembled at the end of the
program and depending upon the assembly
macro used it can be in ASCII, RTF, or HTML
format. Hence, the MRS follows a more
complex strategy than the Print System because
it includes summary macros that do a data
processing job as well as simply collecting and
storing parameters.

Each of the summary macros performs a
categorical or numerical summary and places
the results in an intermediate data set built
according to a standard structure.

An MRS program has the following generic
structure.

%itab(data=, grp=, ...Initializes the table with
user defined and default settings);

%rowcount(var=, ...one of several MRS
macros that produce summary rows in the table);

%summary macro
%summary macro

(Other summary macros include categorical,
univariate, multi-response, and event
summaries.)

%ASSEMBLE(This macro collates output from
the summary macros into a table. Output can be
ASCII, RTF or HTML depending on how this
macro is implemented)

The User Interface — Analog to
Output

The user input via the macro parameters is the
primary means to get information into the
systems described above. Other means include
hardcoding global macro variables, creating
special intermediate data sets, and creating user
defined formats. The guiding principle in
developing the systems was to break the
components of the desired output into related
elements. The resulting systems present close
analogies to the expected output and the
programming standards SAS users expect when
using Base SAS.

Figure 1 below was generated with MRS and will
serve as an example for the following
discussion. Most displays of data listings and
statistical tables can be described as two-
dimensional objects containing row and column
elements.

In a basic table the input data set, the treatment
group variable (if any), and column labels are
examples of non-repeating entities. However
the row elements are repeating entities in that
there may be several different types of rows
included all with different entries into the same
classes of parameters. Repeating elements
include summary type, position in the table, and
summary label.

In Figure 1 below, the rows include two
categorical summaries and two univariate
summaries. The structure of the program that
produced this table is schematically similar to
those described in the section above. The non-
repeating elements (including the column
dimension) are initialized in %ITAB while the
repeating elements are initialized in the
summary macros requesting and generating the
row summaries.

The following program produced the table in
Figure 1

%sitab(all,grp=trt,grplbl=Treatment
Group,grpfmt=trt.,vwidth=30) ;

%* Standard summaries for all
patients ;

sunisum(var=age,label=%bquote (Age
(yrs))) ;

%scatsum(var=gender,fmt=$6.,label=Gen
der) ;

sunisum(var=wtkg,label=%bquote (Weigh
t (kg))) ;

%scatsum(var=race,fmt=$16.,label=Race

)

%stitlgen(progname=DEMOGO1,ref=L01,pr
intto=0ON) ; %* Get title and print

)

%sassemble (method=LINE) ;
%spageit (pp=ON) ;

Note that %TITLGEN and %PAGEIT are special
utility macros that access a database of project
tittes and paginate the final table, respectively.

All parameters are passed between macros via
individual global macro variables and arrays of
global macro variables. The following section
describes the simple techniques used to
accomplish this.

Summary of Demographic Characteristics

Treatment Group

Characteristic Placebo Active Total
Age (yrs)
N 100 86 186
Mean 45.3 44 .1 44.7
Std. Dev. 7.30 8.11 7.68
Median 45.0 44.0 45.0
Gender
Female 47 (45%) 39 (41%) 86 (43%)
Male 58 (55%) 56 (59%) 114 (57%)
Total 105 95 200
Weight (kg)
N 105 95 200
Mean 79.3 82.1 80.6
Std. Dev. 14.95 15.19 15.09
Median 80.5 80.7 80.6
Race
African American 16 (15%) 17 (18%) 33 (17%)
Asian 13 (12%) 15 (16%) 28 (14%)
Caucasian 23 (22%) 18 (19%) 41 (21%)
Hispanic 23 (22%) 19 (20%) 42 (22%)
Other 28 (27%) 23 (24%) 51 (26%)
Total 103 92 195

Figure 1: Example Table Generated by MRS.

Capturing User Input - %Global
Macro Variables and Repeated
Structures

The hallmark of this and other computer
applications is that it captures data from its
environment and uses them to guide its intended
process. SAS macro applications can receive
input through a variety of means including macro
parameters, global macro variables, local macro
variables, data sets in SAS or other formats, and
operating system settings.

The chief means by which users communicate
with the macros described above is via the
macro parameters. The macros also register
their position and other attributes in macro
variable arrays that are initialized in the opening
macro, updated by the various utility macros,
and used by the system driver to produce the f

final product. The following describes the
various means by which information is
accumulated and travels between the macros in
these systems.

Using Macros to Gather Input

Input to the macro systems (other than the
analysis data sets) is primarily via macro
parameters. These macro parameters are
transmitted to other parts of the system (most
prominently to the driver macro) by global macro
variables and arrays of global macro variables.

The unifying theme is that data are transmitted
via globalized macro variables which are
declared and initialized in the initialization
macro. The global macro variables are
populated from user input to the initialization and
utility macro parameters.

Sufficient documentation on global macro
variables is present in the SAS language manual
(see key word %GLOBAL). In short, the
contents of a global macro variable are available
to all parts of a SAS program following the
section of code that declares and populates it.
There is no native macro variable array in the
SAS macro language so macro variable arrays
are constructs that are built via programming to
be described below. Arrays are iterative
structures and require two components;
elements containing the data and indexes to
keep track of array elements’ relative position to
one another.

In the Print system described above, global
macro variable arrays are constructed by first
initializing a counter. The counter (& _pcoln in
this example) for the total number of columns is
a global macro variable that is set to zero in the
initialization macro (%INITBOX).

%global
_pcoln

%let _pcoln =0;

The variable & pcoln is used to keep track of
the number and order of calls to the %COLUMN
macro. Each additional call to %COLUMN
increments & pcoln by one, using the following
assignment statement:

%* Update count of total columns in the table ;
%let _pcoln = %eval(& pcoln + 1) ;

The %COLUMN macro also contains
assignment statements that add new elements
to various macro variable arrays that govern
appearance and content.

In the following example, the global macro
variables are populated by input from the
%COLUMN macro’s parameters. Note that
appending the current value of & pcoln forms
the index of each global macro variable element
in an array of global macro variables. This
results in the creation of a new global macro
variable called _var2 for the print variable
identified on the second %COLUMN macro calll
in a table program.

%macro column(
var=, [* variable name REQUIRED */
form=, /* format */

label=, /* label */

j=C, /* Justification values C L or R */

type=DISPLAY, /* type of variable DISPLAY
or BY are only valid types */

width=, [* Optional width */

wrapind=0, /* Indent for wrapped rows
(after 1st row) */

wrap=N /* request for overline when
OUTSTYLE=LINE */

)

%* Update count of total columns in the table ;
%let _pcoln = %eval(& pcoln + 1) ;

%* create global variables ;
%global _var&_pcoln _frm&_pcoln _lab& pcoln
_typ&_pcoln

_wid& pcoln _wrpé&_pcoln _jst&_pcoln
_wrpi&_pcoln ;

%* set values ;

%let _var& pcoln = &var ;

%let _frm&_pcoln = &form ;

%let _lab&_ pcoln = &label ;

%let _jst& pcoln = %upcase(%substr(&j,1,1)) ;
%let _typ&_pcoln = %upcase(&type) ;

%let _wid&_pcoln = &width ;

%let _wrp&_pcoln = &wrap ;

%let _wrpi&_pcoln = &wrapind ;

Collating Parameters and Building
the Final Table from its Components

A driver macro collates the parameters stored in
the various macro variables and macro variable
array and generates the final product.

The following example shows how a series of
SAS data sets can be concatenated using a
macro %do loop and a subscript (& _i) built into
the data set name. The global macro variable
& varcnt contains the number of summary rows
requested in an MRS table program. In the
MRS, each summary macro creates a data set
called _iset#. Here, # in an index value
corresponding to the order the summary macro
was called. E.g.the it summary macro creates
a data set with name _isetl. The special data
sets conform to an application standard that is
named according to a preset convention.
Temporary files _isetl to _iset& varcnt are
concatenated in the loop

data_null_;
set %do _i =1 %to & varcnt ;
_iset& i (keep=_col)
%end ;

The following shows another example of a
macro variable array. The MRS allows upto 5
additional user created columns to be added to
a standard table via the parameter ADDSET1=
to ADDSET5=.

The code below is used to sort the additional
data sets. The array consists of elements
named &addsetl to &&addset& addc where

& addc is the number of elements in the macro
variable array addset. The individual elements
of the array are resolved in two passes so that
the first element (&&addset&_addc) is resolved
as &addsetlon the first pass, and then resolved
to whatever its contents (as text) are on the
second pass.

%do _i =1 %to & addc;
%if &&addset& i ne %then %do ;
proc sort data=_add& i ;
by & pg & by morder _varcnt _rorder

run ;
%end;

The following shows a more complex example
where the elements of macro variable arrays are
macro variables themselves. This code is used
in the MRS to print a message the user if
formats are being taken from an input data set.
The macro variables _pg, by, grp, and _sgrp
are global variables that correspond to user
input for summary modifiers of a page-by
variable, a by-variable, a group variable, and a
sub-group variable. For each of the variables,
the user has the option of specifying a format or
letting the macros obtain the formats from the
input data set.

%letivars= _pg _by _grp _sgrp;
%let iforms= _pgfmt _byfmt _grpf _sgrpf;

%do i=1 %to 4;

%let ivar=%scan(&ivars, &i);
%let iform=%scan(&iforms, &i);

%if &&&ivar> and &&&iform= %then %do;
%put NOTE: Format is not specified for
variable &&&ivar;
%sput NOTE: Format

will be taken from format on input
data set;

%send;
%send;

The lists assigned to &ivars and &iforms are
macro variables containing the names of
variables and their associated formats. The list
is parsed from left to right and the macro
variables are resolved in two passes. In this
process &&&ivar becomes &_pg in the first pass
and in the second resolves to its ultimate value,
which in this application is a SAS variable name.

Programming and debugging
programs that use these systems

Programming with the systems presented above
is straightforward if the programmer internalizes
the heuristic that the table program is analogous
to the final table or listing. Knowledge and
experience using the SAS macro language is
necessary to take advantage of the advanced
features of these systems. Thorough
understanding of SAS programming in general
and data step programming in particular greatly
enhance the utility of these systems.

Debugging any macro system is can be tricky
and is made more difficult by the cryptic error
messages and lack of line numbers in the SAS
log. Attention to a few details can improve the
probability of successful program execution.

The program schematics above provide an
illustration of the basic structure of programs
using the systems. The interface is made up of
classes of macros that are analogous to the
components of the finished product. The
initialization macros govern basic table
formatting, input data sets, by variables,
treatment groupings, and other parameters that
are non-repeating entities. The utility macros
set up repeating entities like summary rows (in
the case of MRS) and variables for listing
columns (in the case of The Print System). The
driver macros collate all the information into a
single package and generate the final display.

The user should have a good understanding of
basic SAS macro programming and some idea
of how SAS macros are processed. Correct
syntax is very important because of the cryptic
nature of the error messages and the lack of line
numbering in the portion of the SAS program log
that contains the macro code execution. Simply
dropping a parenthesis in a utility macro call can
result in laborious debugging. Obviously, careful
attention to details such as parentheses,
semicolons and other standard syntax is very
important. Familiarity with macro quoting is also

very important. Any character in a label, for
example, that could be construed as an operator
(*, and, or, etc.) or reserved word might result in
a difficult to detect syntax error and should be
guoted with whatever quoting function that is
appropriate.

Conclusion

The paper demonstrates how using global
macros and simple indexing can be used to
create extended systems using only SAS/Base.
This approach allowed the authors to build
useful systems of macros capable to addressing
a large percent of production programming work.
These systems have reduced programming
time, despite the additional run time the
programs require to execute when compared to
native SAS procedures. Finally, the systems
have improved standardization of the
programming process, appearance of outpult,
and quality of output. By implementing these
strategies, the programmer can obtain additional
power by achieving more open-ended
specification of parameters and more expansive
systems.

