
Enterprise Integration Technologies

What is it and what can it do for me?
Scott Vodicka, SAS, Cary, NC

ABSTRACT
Today, businesses are faced with many challenges such as
increased competition, acquisitions and mergers, new worldwide
markets, and changing hardware and software environments. To
survive under these conditions companies must integrate their
applications throughout the enterprise. Enterprise Integration
Technologies provides the ability to integrate your SAS ®
applications in the diverse information systems arena.

Enterprise Integration Technologies (EIT) is a new bundle of
products from SAS that include SAS/CONNECT® software,
SAS/IntrNet® software, and SAS Integration Technologies. SAS
Integration Technologies is a new product with Version 8 of the
SAS System. The products in this bundle support application
integration and access to a SAS server for SAS clients, Web
clients, and other thin clients. These products may be licensed
individually. To fully enable your SAS server you may license all
three products as the Enterprise Integration Technologies bundle.

Our business intelligence, data warehousing, data mining, and
decision support applications are enabled through the
technologies in EIT. In the past, these applications have relied
on SAS/CONNECT software to provide client/server capabilities
between a SAS client and server. SAS/IntrNet software opened
them up to the world of Web based clients. Now, with the
introduction of SAS Integration Technologies a new generation of
SAS applications can be delivered, achieving the business
requirements for supporting more data, more users, and more
questions with fewer resources. The Enterprise Integration
Technologies bundle allows you to fully enable your server
platform to integrate with other applications, opens The SAS
System on your server to all clients, and lets you proactively
deliver information.

INTRODUCTION
SAS is known for its award winning solutions; at the core of these
solutions are the technologies from SAS that can now be
licensed as a product bundle in Enterprise Integration
Technologies. SAS/CONNECT and SAS/IntrNet software
provided a foundation on which successful SAS solutions are
built. SAS Integration Technologies adds to the foundation by
providing additional opportunities to create open client access to
SAS software.

Each of these products can be licensed independently but if you
need to fully enable your SAS server then they may also be
licensed as part of the Enterprise Integration Technologies
bundle.

This paper will explain the capabilities of SAS/CONNECT,
SAS/IntrNet, and SAS Integration Technologies. The sections on
SAS/CONNECT and SAS/IntrNet will be overviews of these
technologies, and the sections on Integration Technologies will
explain what Integration Technologies is and what these
technologies can do for you.

SAS/CONNECT
SAS/CONNECT software provides the essential tools for sharing
data and applications across multiple computing environments. It
extends the power of the SAS System's MultiVendor Architecture
by giving you control over where and how to execute each part of
a SAS application.

SAS/CONNECT software provides middleware connectivity for
transparent access to enterprise-wide data in virtually any format
or location. Local SAS clients can connect to multiple data
sources on different platforms and can even combine diverse
data types. With SAS/CONNECT software, data can be extracted
for local processing or accessed interactively on a remote
platform.

SAS/CONNECT software's unique Remote Computing Services
provide dynamic relocation of applications logic. Applications
developed on one system can be easily moved or even divided
for execution on multiple diverse systems. Because the SAS
System's unique MultiVendor Architecture ensures the same
robust functionality across all computing platforms, the same
capabilities available on a client system are also available on any
server

When do you use SAS/CONNECT software? When you have
SAS applications that need to access data on other systems, that
want to partition the logic in the application so that sections of the
program execute on another system, or that need to transfer data
from the remote system to the local system or vice versa.
SAS/CONNECT can provide all of these capabilities for your SAS
applications.

SAS/CONNECT software provides the core connectivity between
a SAS client and a SAS server.

SAS/IntrNet
SAS/IntrNet software extends SAS software's powerful data
retrieval and analysis functionality to the Web. SAS customers
now have more flexibility to deploy SAS applications throughout
their organization. These applications, powered by SAS/lntrNet
software, will enable customers to deliver core SAS functionality
to desktops worldwide. Whether you're building internet, intranet
or extranet applications, SAS/IntrNet software can assist you in
delivering business critical information to users all over the world.

SAS/IntrNet software helps organizations with:
Report Distribution - Share reports generated by SAS
applications to anyone within and outside the organization who
has a Web browser. It also allows for the provision of ad-hoc
reporting applications to those audiences. Organizations can
therefore extend their applications' user base quickly and at
minimal cost since all the user needs is a Web browser.

Application Distribution - Build and distribute applications via the
Internet. This offers reduction in applications maintenance costs
since the application needs to be updated only once on the
server as opposed to on multiple user machines running multiple
operating systems. Also, users can Web-enable existing SAS
applications without needing to know CGI programming
(commonly used for building dynamic Web applications).

Thin Clients - Deploy sophisticated applications across the Web,
reducing the need for additional desktop disk space. SAS/IntrNet
software eliminates the necessity of physically deploying an
application in order to make it available on each desktop.
One of the distinct advantages of SAS/IntrNet software is the
ability to quickly build and deploy powerful decision support
applications without having to do any CGI programming. In
addition, SAS/IntrNet software provides robust Java tools for

building thin client interfaces to SAS. Since SAS applications are
used for such a wide range of functions, SAS/IntrNet software
reduces the development time and costs that are normally
associated with Web enablement

When do you use SAS/IntrNet software? When you need Web
based thin-client interfaces for the computing and data services
provided by the SAS System.

SAS Integration Technologies
SAS Integration Technologies is a great name for the new
product released with SAS Version 8. The name says it all. SAS
Integration Technologies gives you new ways to integrate your
open client applications with the SAS server, and new ways to
integrate your SAS applications and solutions with other
applications and systems. SAS Integration Technologies does
this by supporting industry standard technologies and with a new
framework for proactively delivering information.

The industry standard technologies are:
• Standard component models: COM/DCOM, CORBA
• Third party messaging software. IBM’s MQSeries and

Microsoft’s MSMQ
• Open Network Directory standard. Light Weight

Directory Access Protocol (LDAP)

The new framework with Integration Technologies is the
Publishing Framework.

Standard Component Models
Seeing the need to support more and different types of clients the
SAS System has evolved from supporting SAS based clients, to
Web based clients, and now with the introduction of SAS
Integration Technologies the support for “Open Clients” – client
applications that support the distributed object model standards
of DCOM or CORBA – is available. The SAS System’s rich set of
features and its ability to access a wide variety of data can now
be leveraged by applications developed in languages such as
C++, Java, Microsoft’s Visual Basic, and other languages that
support distributed object programming.

The problem can be defined as follows. You have a large
knowledge base in your employees that develop applications in
component-based languages. You have the SAS System on a
server platform near your data. You know that the SAS System
gives you the capability to access this data seamlessly and gives
you a rich set of data analysis capabilities. But, you do not know
how to let your application developers communicate with the SAS
System, how to use it to provide your client application with
access to the wide range of data sources, and how your client
application can take advantage of SAS processing on the server
near the data and displaying the results in your client application.

The answer to this problem is SAS Integration Technologies and
the Integrated Object Model, referred to as IOM. IOM is a
distributed object model that provides application developers a
set of objects they can script in their client application and have
the distributed object provide the requested services on the SAS
Server. IOM provides your client application developers open
access to the wide range of features that are a part of the SAS
system.

IOM consists of a hierarchy of objects depicted in Figure 1. The
object at the top of the hierarchy is the SAS Workspace. From
the SAS Workspace object the application can create the
following objects:

• Data Service object - to access SAS Library
information and access data via standard API’s such
as ADO, OLE DB, and JDBC.

• File Service object - provides access to the files and
filerefs defined to the SAS System

• Language Service object - provides the interface for
executing SAS Systems 4GL language programs on
the SAS server. The SAS programs may either reside
in the client side source code or as a stored SAS
program on the server that is callable by name.

• Utility Service object - provides a number of services
that control various utility features with the SAS
Workspace. These features include result packages,
formats, informats, and options.

Figure 1 - IOM Object Hierarchy

Lets take a look at a sample VB program that connects to the
SAS Server, runs a sample SAS program, and displays the
results.

To start the SAS session you create the SAS Workspace object.
Since the server name has not been specified a local SAS
session will be started.

Set sWorkspace = New SAS.Workspace

Now lets create the language service object that will be used to
submit our SAS program.

Set sLangServ = sWorkspace.LanguageService

Using the language service object submit the SAS program.
sLangServ.Submit ("proc univariate
data=sashelp.retail; run;”)

Using the language service object loop through and write each
line of the output to the textbox.

tbOutput.text = tbOutput.text + vbCrLf + "***
Printing LIST for UNIVARIATE ***" + vbCrLf
more = True
While (more)
 sLangServ.FlushListLines 18, cc, lt,
lines
 n = UBound(lines)
 If n < 0 Then
 more = False
 Else
 For i = 0 To UBound(lines)
 tbOutput.text = tbOutput.text +
lines(i) + vbCrLf
 Next i
 End If
Wend

tbOutput.text = tbOutput.text + "*** End of
LIST for UNIVARIATE ***" + vbCrLf

Display the closing message, end the SAS session, and delete
the Workspace object.

tbOutput.text = tbOutput.text + "*** Closing
SAS Session ***" + vbCrLf

sWorkspace.Close
sWorkspace = Nothing

End Sub

This is a simple example that only utilizes a couple of the objects
in IOM. In a production application you would take advantage of
many of the features presented in the other object’s properties
and methods. Most importantly would be to take advantage of
the strong output formatting capabilities of the Output Delivery
System in your SAS programs on the server and using the Result
Package features of the Utility Service object to retrieve these
results for display on the client.

This example utilizes a local version of the SAS System but it
could very easily be changed to use SAS Software on a remote
Windows NT server, a UNIX server, or a OS\390 session on the
mainframe. To change this program from using the local SAS
System to using the SAS System on a server only the one line
where the Workspace object is created would have to be
changed. This is powerful. A client application can be written
that is driving the SAS system on a remote server, even the
mainframe! Let your client application do what it does best:
manage the user interaction, and let the powerful servers and the
SAS System do their job of analyzing the often-large sets of data.

Third Party Messaging software
Messaging software is another form of middleware technology
used to integrate disparate applications throughout your
enterprise. It is often referred to as MQM – Message Queuing
Middleware, or MOM – Message Oriented Middleware.

Messaging software provides the infrastructure to support
sending messages between applications spread across your
organization. It provides the ability to set up queues for an
application to receive messages from any other application that
has the capability of interfacing with the MQM software. Part of
the infrastructure of messaging software is the messaging server
software, the messaging client software, the message queues,
and the management of delivering the message from the client
application to the defined queue. Messaging software
guarantees that once it is given a message to deliver to a queue,
it will get there. The message delivery mechanism is often
referred to as store and forward message delivery where
Intermediate queues are used to guarantee delivery of the
message to the destination queue.

An important property of messaging software is the ability for an
application to send a message to another application without
having to create a direct or synchronous connection between
each other. Many times these direct, or point-to-point
connections are impossible due to the distributed nature of the
applications.

Messaging software relies on asynchronous communications
between the communicating applications. The application
receiving the messages does not have to be available in order for
messages to be sent to it. When it comes online all of the
messages will be waiting in the message queue for it to process.
This is also important for the application sending the message. It
can continue with other processing since it does not have to wait
on the response for each request. The application can post
requests, continue on with other processing, and respond to the
replies later on when they are received.

A driving force for the popularity of messaging software is the
ability for applications on diverse platforms to communicate with
each other. Many applications that require services from other
applications in your enterprise were written at different times,
using different languages, and running on different platforms. All
three of these can serve as barriers to integrating your

applications that messaging software can solve. The older
legacy applications that were written years ago, yet still have a
significant value in your organization may be written in languages
that do not support distributed object technology, such DCOM
and CORBA, but can take advantage of messaging software to
request services from other, perhaps newer, applications.

An example is illustrated in Figure 2 below. Your organization
may have applications running in different areas of your
organizations. These applications could even be spread across
subsidiaries yet require a common set of services.

Figure 2 below is a diagram of applications spread throughout
your network and organizations. A message queuing system and
message queues have been set up to allow these applications to
communicate. The Supply Chain, Transportation, Finance, and
Marketing applications all run in different departments or
subsidiaries and on a variety of platforms. The Transportation
application written in COBOL runs in the shipping subsidiary on a
UNIX platform in Denver, CO. The brand new Supply Chain
application written in C++ runs at the corporate headquarters in
Raleigh, NC on a Windows NT server. Both of these applications
need to know the availability of products from the mainframe
Availability application written in COBOL that is in Raleigh.
Immediately you can see the issues you are faced with: different
platforms, distant locations, different applications. Messaging
software provides the way to integrate applications like these.
The Transportation application posts a message to the
Availability applications message queue requesting the number of
available products for the current order being filled and continue
on with other processing while the request is being processed. It
is not held up waiting on the one requests. At the same time the
Supply Chain application can post a request to the Availability
application. The Availability application can provide services to
many applications in this manner. The power of messaging
software is in its abilities to allow applications like these to
overcome the barriers to integration.

Figure 2 - Integrating Applications with Message
Queues

Your SAS applications can now integrate with your enterprise
applications. SAS Integration Technologies provides support for
two commercial messaging systems: IBM’s MQSeries and
Microsoft’s MSMQ. The support for MQSeries and MSMQ are via
three API’s. One API that mimics the MQI API for MQSeries, one
API that mimics Microsoft’s Message Queuing Services API, and
the final API that is generic to be used for either system. Using
these API’s your SAS applications can both send and receive
requests via message queues giving them the capability to
integrate with and provide services to your enterprise
applications.

Open Network Directory support

In today's complicated networking environment, even relatively

small intranets can quickly become cluttered, making it difficult to
find useful or necessary resources. Administration also becomes
problematic as users access those resources from multiple
platforms. Security must be administered in multiple places in
disparate ways. Directory services provide a repository for user
data, resource data, and security data that can be administered in
one place using one interface. LDAP (Lightweight Directory
Access Protocol) is the protocol used to communicate with
Enterprise Directory Servers.

The Enterprise Directory servers provide a common location
accessible to all applications throughout the distributed
enterprise. Since many languages have interfaces for accessing
Directory Servers using the LDAP protocol, the information in the
server is accessible to applications written in a variety of
languages running on various platforms.

Information is stored in an Enterprise Directory Server in a
hierarchical tree format. For example: The entries for several of
the departments in SAS are depicted in Figure 3. At the root of
the tree is an entry for the country. The country entry is specified
as c=US. The company entry is specified as o=SAS, c=US.
As you can see as you proceed down the levels of the tree you in
order to specify an entry name you append the levels from above
to the name. A name that specifies an entry is called a
Distinguished Name. So the Distinguished Name for the
Marketing Department (MKT) is: ou=MKT, o=SAS, c=US.
The abbreviations on the left side of the equal signs are defined
as:

c= Country
O= Organization
Ou= Organizational Unit

Figure 3 - Sample Directory Structure

Entries in an Enterprise Directory server have a defined set of
required information. Each entry type is an object that is defined
by the Directory Schema. An important feature of the entries is
that they may have other information associated them by name-
value pairs. This gives applications the flexibility to define the
information it needs associated with each entry.

For a user entry you would normally keep track of typical data
such as name, office number, phone numbers, email address,
etc. along with any other information that applications may need
for each user. A sample entry for a person would be:

cn=John Doe,o=SAS,c=US
sn=Doe
objectclass=top
objectclass=person
objectclass=sasPerson
l=Cary
title=SR SYST DEV
ou=CNT
ou=IDB
mail=John.Doe@sas.com
telephonenumber=5555
roomnumber=4411 - 123

uid=SASABC

Enterprise Directory Servers are gaining in popularity so
applications that truly integrate into the enterprise architecture
must have the ability to search, read, and update information in
these servers. To that end SAS Integration Technologies
provides a set of interfaces for the SAS 4GL and SCL languages.
Additionally the SAS Publishing Framework relies on a LDAP
server to store information such as users, channels, and data
source information.

Using the LDAP interfaces your SAS applications may search,
read, and update information in the Enterprise Directory server.
This opens even more integration options for your SAS programs
to allow them to access the enterprise information available in the
Enterprise Directory server.

Publishing Framework
In the business world you have people and processes that
generate information called information producers, and you have
people and processes that consume information called
information consumers. How do the information producers
deliver information to the information consumers making sure that
the consumers who need the information are actually the ones
who receive it? On the other hand how do the information
consumers make sure they are using the correct information? Is
the report they are looking at the most recent? Is the set of data
they are using for their analysis the correct version? These
questions are what the Publishing Framework answers.

The Publishing Framework provided by SAS Integration
Technologies lets information producers proactively deliver
information to users in the format that they need it when they
need it. We all publish information just about everyday using
email. When we publish information we have to know exactly
who is interested in the information we are publishing. Yes, we
have personal distribution lists, but as users interests change we
have to add or remove users from the distribution list ourselves.
The Publishing Framework lets you leave these manual
requirements behind by letting your SAS applications dynamically
generate the publishing content and letting the end users
subscribe to a channel where the information is published. When
a user is no longer interested in the information delivered via the
channel they unsubscribe from the channel without having to
involve the owner of the channel.

What can the Publishing Framework publish to?
• To email addresses
• To message queues
• To a channel
• To an archive

How is the publish content generated?
• SAS programs that generate reports and data
• Desktop applications such as spreadsheets, word

processors, etc.
• Warehouse processes
• SAS Publish Window

What can be published?
• Text Notification messages – event, data update

messages
• URL’s – web page address along with descriptive text
• HTML & HTML Framesets
• SAS Data – relational tables, structured data stores
• MIME-associated data stores – PDF, DOC, XLS, PPT,

BMP, GIF,…

The text notification messages are email messages that you

generate via the SAS Publish Window, or by your SAS
applications. These email messages may be either strictly a text
based format or formatted HTML text. You chose the format of
the message that is supported by your email viewers. Figure 4
contains two HTML formatted emails that were published by a
SAS program to the Business Reports channel. All subscribers
to this channel received these reports as soon as they were
published enabling them to make informed timely decisions.

Figure 4 - Published HTML

To send the other types of file based content (data, MIME
documents, etc.) with a published email you create a SAS
package file and insert all the items to be delivered into your
package. The package is delivered as an attachment to your
email. You can think of the package file as a similar file construct
to a zip file. The package file is simply a container for the items
to be delivered to the end users along with descriptive
information.

The text and HTML email are viewable as delivered, but how do I
view the attached package files? The SAS Package Reader
application, downloadable from SAS’s web site, lets users view
SAS Package Files (referred to as SPK files). Once installed on
a users computer the user simply double clicks the attached SPK
file and the SPK Reader application opens displaying the
contents of the package. The user may then browse the items in
the package. Figure 5 is a sample displaying the SPK Reader
application.

Figure 5 - SAS Package Reader Application

What is a channel? In the context of SAS Integration
Technologies Publishing Framework it is a construct used to
track the users, queues, or archives for published content to be
sent. In Figure 6, a report is published to the Executive
Information channel and in this example it only has one
subscriber. The other channel publishes both data and a report

to the Business Reports channel. Since two people are
subscribed to the channel they both receive the data and the
report. This channel construct frees you from having to keep the
list of information consumers in your application. Instead you just
publish to one location, the Business Channel in this example,
and the publish framework takes care of publishing to the list of
subscribers. Ten more subscribers could be added tomorrow
and you would not have to change a thing!

Figure 6 - Publishing to Channels

Why would I want to publish to a message queue? Publishing to
a message queue gives you the capability of publishing to an
application or process that is monitoring the queue, whether it is a
SAS application or other applications using asynchronous
communications. This allows you to automate processes or
applications in response to messages published from other
applications or users.

For example, you could have a data warehouse with distributed
datamarts in a wide area network. When the main warehouse
update is completed you want the distributed datamarts to
automatically update. One way to implement this is to update
your warehouse processes that refresh the warehouse by adding
a section that upon successful completion publishes a message
to a notification channel. The message queues that are
subscribed to the channel subsequently receive the message on
their queue and the corresponding jobs start the datamart update
processes on each server. This combination of the Publishing
Framework and the support for Messaging Software is very
powerful. In this scenario in order to add another distributed
datamart to this configuration that automatically gets updated. All
I have to do is replicate the environments, setup a queue for the
datamart server, subscribe it to the notification channel, and it will
start receiving the update messages so it will know when to
refresh its datamart.

SAS Publish Window
One way to publish information that has been discussed thus far
is by writing SAS programs to generate the content or packages
to publish. Another way to publish information is using the new
Publish command available with the desktop interface for SAS.
By typing “publish” on the SAS command line, in a Display
Manager Session, the SAS Publish Window interface will start.
Using this interface you can easily point and click to select the
items to publish, where to publish the items, and how you would
like to publish them. When you have completed making your
selections pressing the OK button will run the job to immediately
publish your selections.

Publishing from your Warehouse
Seeing the wide range of opportunities that the Publishing
Framework can provide to the SAS Data Warehousing solution
SAS has enhanced the SAS Warehouse Administrator
application with support for the Publish Framework. Four new
addins have been added to support the publish framework.

• Publisher: Create Channel – creates a channel
associated with the current item

• Publisher: Define Package to Publish – uses the SAS
Publish Window with the current item as the default
item to publish to define a package to publish

• Publisher: Show Subscribers – queries the channel
associated with the current item to display the list of
subscribers.

• IT Administrator: Link to launch the Integration
Technologies Administrator application directly.

These addins simplify the process for creating the channel where
the item(s) from your warehouse jobs will be published. They
help you define the items that will be published, save this
information to the Warehouse Metadata, and provide the logic to
generate the SAS program to publish the information.
The Show Subscribers addin is a very useful tool when
maintaining your warehouse. When you are at the point of
maintaining your warehouse, somehow you have to decide which
job to fix first. This is where the Show Subscribers addin can
help. Use it to query the channel information and using the list of
subscribers for each item you can make a more informed
decision on which item to fix. If you see the CEO is subscribed to
one of the reports being generated by the warehouse processes,
then that is the one to consider fixing first.

Integration Technologies Administrator
The Publishing Framework maintains the information on
Channels, Subscribers, SAS User ID’s, and Archive definitions in
a LDAP server. The Integration Technologies Administrator,
a.k.a. IT Admin, application is provided for you to maintain all of
this information being stored in the LDAP server. This application
lets you create SAS Users, create SAS Channels, associate
Archive paths with Channels, and add users to your channels.

 A common way to operate would be for standard channels to be
created and the default set of users added to the channel using
IT Admin. As users decide to add or drop from the channel then
they can use the Subscription Manager application to do this on
their own.

Subscription Manager
The SAS Subscription Manager is a Java applet that runs in a
Web browser enabling you to subscribe to and unsubscribe from
channels and to specify how information is delivered to you.
Managing subscription services is like managing other resources
that you may already be familiar with, such as e-mail alias lists, or
Internet listservs.

During installation the Subscription Manager is configured to
point to the LDAP server containing the channel and user
information. The Subscription Manager prompts you for your
user ID and password and based on these the initial window will
be your subscribed channels. To subscribe yourself to another
channel you press the subscribe button to display the list of
available channels, pick the channel you would like to subscribe
to, press OK and you will be subscribed to the channel.

The Subscription Manager also lets you maintain your personal
information kept in the LDAP server on your email format and
other information. Additionally it will let you search all channels
available to you for key information to help you find the
appropriate channel.

CONCLUSION
The Enterprise Integration Technologies (EIT) product bundle
fully enables the SAS System to integrate with the variety of
clients and systems in your enterprise. The SAS System now
supports non-SAS clients and applications through both
Distributed Object Technology support and through Messaging
Software support. IT can take advantage of enterprise
information stored in Directory Systems based on LDAP.

Utilizing these technologies the power, scalability, and rich
feature set of the SAS System can be leveraged throughout your
organization.

REFERENCES
SAS Integration Technologies Library
http://www.sas.com/rnd/itech/library/index.html

SAS Integration Technologies Overview White paper
Steve Jenisch
Manager, Distributed Technologies Development
SAS Inc.
http://www.sas.com/rnd/itech/papers/oviewSUGI24.html

SAS/IntrNet Product Web pages
http://www.sas.com/web

Microsoft MSMQ Web Site
http://www.microsoft.com/ntserver/appservice/default.asp

DCOM: A Business Overview
Microsoft Web Site Library
http://msdn.microsoft.com/library

Microsoft Component Services
Microsoft Web Site Library
http://msdn.microsoft.com/library

MQSeries: Message Oriented Middleware
IBM MQSeries Web Site
http://www.software.ibm.com/ts/mqseries/index.html

Directory Services Overview
Gary Williams
SAS Inc

Scherberger, Karen, Gartner Group, Getting the message across,
IBM MQSeries Web Site: Library & Articles

ACKNOWLEDGMENTS
SAS Staff who contributed to the completion of this paper:

Terri Angeli Ellen Kunkel
Steve Jenisch Aaron Hill
Dan Tamburro Renee Harper
Don Hatcher
Distributed Technologies Department – SAS Inc.

CONTACT INFORMATION
Your comments and questions are valued and encouraged.
Contact the author at:

Scott Vodicka
SAS Inc.
SAS Campus Dr.
Cary, NC 27513
Work Phone: 919-677-8000
Fax: 919-677-4444
Email: Scott.Vodicka@sas.com

 Web: http://www.sas.com

Trademarks

SAS is a registered trademark or trademark of SAS Institute Inc.
in the USA and other countries. ® indicates USA registration.

Other brand and product names are registered trademarks of

their respective companies.

MQSeries is a registered trademark of International Business
Machines Corporation.

Visual Basic, Windows, Windows NT, and Microsoft Windows are
registered trademarks of Microsoft Corporation.

Java and all Java-based trademarks and logos are trademarks or
registered trademarks of Sun Microsystems, Inc. in the United
States and other countries.

