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Abstract

Three examples of time series will be illustrated. One
is the classical aitline passenger demand data with
definite seasonal variation. The other two will be daily
closing price data from a steady growth series
(CSCO) and an accelerated growth series (CIEN).

Introduction

Among the many new enhancements to JMP in the
version 4 release is the ability to do time series
forecasting. The procedures include smoothing
models, a seasonal smoothing method (Winter's
method), and ARIMA (Autoregressive Integrated
Moving Average) modeling. In this paper we will arrive
at final forecast from:

e highly seasonal airline passenger data
e a steady growth stock (CSCO)
e an accelerated growth stock (CIEN)

Data Sources and Data Cleansing

A good free source of daily close stock data for CSCO
and CIEN is provided via the Internet at:

http://moneycentral.msn.com/investor/charts/charting.
asp?Symbol=csco and
http://moneycentral.msn.com/investor/charts/charting.

asp?Symbol=cien.

You can export a year's worth of daily data directly

into Microsoft ~ Excel by choosing "Export Data".
Once in Excel, strip off the first 4 rows and Save as
with the default .csv file extension. Then within JMP
choose Import from the File platform and the text file
can be directly into JMP. Once within JMP we resort
with the earliest dates appearing first and eliminate
the holidays that have missing stock data. We will use
only the daily close value, CLOSE, and not use HIGH,
LOW or VOLUME. For the airline passenger data we
use the Seriesg.jmp dataset supplied in the Time
Series folder found in the Sample Data that comes
with JMP4.

Smoothing and ARIMA Methods

Simple forecasting using smoothing models is based
on the premise that reliable forecasts can be realized
by modeling patterns in the data that are visible in a
time series and/or spectral density plot. We in fact will
use this approach to try our first forecasts of the
Seriesg data. ARIMA modeling uses additional
pattern information including differencing,
autocorrelation and partial autocorrelation, and plots
of AR coefficients to help identify the model. The
advantage of ARIMA over smoothing methods is that

they are more flexible in fitting the data. However the
iterative approach of fitting several ARIMA models,
checking adequacy, and comparing results is more
demanding. This approach is alleviated somewhat by
using JMP’s Model Comparison Table. This table
summarizes the fit statistics for each model under
consideration. Included in the table output are three
criteria useful for model selection. They are:

e AIC (Akaike’s Information Criterion)

e SBC (Schwartz’'s Bayesian Criterion)

e 2| ogLikelihood

Smaller values of each of these criteria indicate better
fits.

Example 1: Forecasting Airline Passenger
Volume

An analyst at a major international airline wants to
forecast passenger demand for the next 15 months.
Excessive demand in any of these months cold
impact the flight schedule and/or the number of flights
offered. Seriesg has 12 years of data on a monthly
basis and wants to forecast monthly demand as input
to projecting seating capacity and number and type of
flights. The last 15 months will be contrasted with the
forecasted values to understand incremental changes
forecasted by month. (This actually is a classic
seasonal time series from Box and Jenkins (1) page
531). The time series variable is international airline
passengers in thousands, Passengers, and the time
ID is Time in months. The last two years of the
Seriesg passenger time series data is depicted in
Figure 1a, and default graphs of the complete time
series together with acf (autocorrelation function) and
pacf (partial autocorrelation function) charts are
depicted in Figure 1b. To assess that periodicity=12
we produce a Spectral Density plot in Figure 1c and
as a “screening” forecast we attempt a seasonal
Winter's Method forecast in Figure 1d. After realizing
that the residuals are increasing in time from the
residual plot we continue our iterative forecasting with
Log Passengers as the dependent time series
variable. We note also that Winter's method produces
a non-invertible forecast.

Results:

On Logqo(Passengers) we iteratively fit a seasonal
Winters, a seasonal ARIMA(1,1,1)(1,1,1)12, and two
ARIMA(0,1,1)(0,1,1)12 models. Finally a reduced
model with the lowest AIC and SBC emerged as best:
Seasonal ARIMA(0,1,1)(0,1,1)12 No Intercept. Look
at the Model Comparison table in Figure 1e. By
saving results and creating a subset comparing the
next 15 months predicted with the last 15 months of
actual passengers we find there are two months,
March and August of the first year, where we expect
passenger demand in excess of 60,000 in Figure 1f.



Example 2: Forecasting Stock Prices for a
steady grower (CSCO)

An investor buys 100 shares of CSCO stock on
5/25/00 and decides to sell a short term call option
that expires 15 trading days in the future on 6/16/00.
What call option should he write to be reasonably
certain that the stock will not be called away? For this
problem, which is characteristic to short term options
traders, what is needed is a short term forecast with a
confidence interval. We could either do this with
regression or time series methods. For purposes of
this paper we will only look at time series estimates.
Using the same techniques as in Example 2 we find
from the residuals and using the ace plot and the AR
coefficients plot that Log (Log (CSCO) (Log = Log1g)
modeled with a simple AR1 process gives us a stable
and invertible series with excellent fit Square= .99 and
smallest values for AIC and SBC with several model
contenders (Figure 2a). Figure 2b shows the short-
term forecast, 95% confidence limits and a good-
looking residual pattern. Figure 2c indicates what call
option we would have sold (the June 70) if we wanted
to 95% confident of not being exercised. By saving
the results and generating predicted values for the
upper 95% confidence limit and comparing it with
actual close values we see the stock ended up at
67.813 and we were close but not in jeopardy of
having the call exercised.

Example 3: Forecasting Stock Prices for a
volatile stock (CIEN)

We repeat the same scenario as Example 2 but with
an even more volatile response, Log( Log(CIEN).
Again an AR1 model fits best and even though the
stock rises 40% within the 15 day period we do not
come close to exercising either a June 165 or June
170 option!

Summary

We have shown several instances of forecasting
using time series techniques. In the passenger
demand example using various tools and graphs led
us to a seasonal ARIMA model. Here we introduced
the useful Model Comparison report. And iteratively
used reports about stability and invertibilty and
residuals to converge on a “best” candidate.

Whereas the Spectral Density plot confirmed the
annual cyclical nature of passenger demand the acf
plot confirmed the autoregressive nature of the
response for the Log(Log) of the two stocks

Notation
(1) and (2) are good references for a discussion of
ARIMA modeling

B is the lag operator By; = y; — yi.1

p is the order of the Autoregressive polynomial ®(B)
d is the differencing order

q is the order of the Moving Ave. polynomial ©O(B)

where: ®(B)(w; — ) = O(B)a;

and where wy= (1 — B)d yt is the response series after
differencing and a; are a sequence of random shocks.

The ARIMA model is described as ARIMA(p.d,q) and
the seasonal as ARIMA(p.d,q) (P,D, Q) s

where: s is the number of periods per season.
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Figure 1a: In this table Passengers is the number of international airline passengers (in thousands) who flew each month. Time is
the cumulative month number (only the last 24 months depicted), Season is month if the year and Log Passengers is

log g(Passengers). For many time series a log transformation together with differencing will produce stationary series with
sensible forecasts.
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Figure 1b: Default plot of the time series and the acf and pacf functions. Even without a model and residual plot we see the
series in increasing in variation as we increase in time.
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Figurelc: There is a definite periodicity of 12.
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Figure 1d: Generating a Winter's method seasonal forecast produces a non-invertible result (unreliable forecast)
and a residual pattern calling for a log transformation for the response
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Figure 1e: Final model of Seasonal ARIMA(O, 1, 1)(0, 1, 1)12 No Intercept . It has the lowest AIC and SBC, is stable
and invertible, and has good-looking forecasts and residuals
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Figure 1f: Our airline analyst concludes that there are two months, March and August of the first year where we
expect passenger demand in excess of 60,000
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Figure2a: Showing a simple AR1 (ARIMA (1,0,0) process as being best from the Model Comparison Table and
invertible and stable from the Model Summary.
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Figure 2b: The final AR1 forecast is shown together with its residuals.
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Figure 2c: The choice of selling the June 70 call for CSCO based on the predicted confidence limit ending at 68.36
resulted in profit since the call would not have been exercised.
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Figure 3: Similarly, the June 170 call for CIEN was not exercised.



