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ABSTRACT

Exact logistic regression has become an important
analytical technique, especially in the pharmaceuti-
cal industry, since the usual asymptotic methods for
analyzing small, skewed, or sparse data sets are un-
reliable. Inference based on enumerating the ex-
act distributions of sufficient statistics for parameters
of interest in a logistic regression model, conditional
on the remaining parameters, is computationally in-
feasible for many problems. Hirji, Mehta, and Patel
(1987) developed an efficient algorithm for generat-
ing the required conditional distributions, thus mak-
ing these methods computationally available. This
paper discusses the theory and methods for exact
logistic regression and illustrates their application in
Version 8 of the SAS®System with new facilities in
the LOGISTIC procedure.

INTRODUCTION

Many clinical trials deal with the comparison of pop-
ulations of subjects with categorical responses. His-
torically, statistical inference for such studies involve
large-sample approximations, and fitting logistic re-
gression models to such data is performed through
the unconditional likelihood function. However,
asymptotic methods may be inadequate when sam-
ple sizes are small or the data are sparse, skewed, or
heavily tied. Exact conditional inference remains valid
in such situations.

The LOGISTIC, GENMOD, PROBIT, and CATMOD
procedures perform unconditional likelihood inference
for logit models, and the PHREG procedure can per-
form asymptotic conditional likelihood inference for
logit models. SAS users have requested the ability
to perform exact tests for logistic regression model-
ing. Many exact statistical tests have already been
added to the FREQ and NPAR1WAY procedures, and
in Release 8.1, SAS/STAT®software includes exact
logistic regression for binary (dichotomous) response
variables in the LOGISTIC procedure.

The “METHODOLOGY” section in this paper presents
the logistic regression model and the different likeli-
hoods, then explains how the exact analysis algorithm
implemented in PROC LOGISTIC works; details on
the reported statistics are available in the appendix.
The “SYNTAX” section describes the new statements
and options in the LOGISTIC procedure for the exact
methods. The “EXAMPLES” section provides several
examples to illustrate the syntax and the usefulness
of the method.

Dose-Response Study

First, consider a small dose-response study to moti-
vate the usefulness of exact logistic regression. Re-
searchers are interested in analyzing how mortality
rates change with respect to dosage of a drug. The
dose data set contains life/death outcomes for six lev-
els of drug dosage (0 to 5). Three subjects are given
each specific dose of the drug, and the number of
deaths are recorded.

data dose;
input Dose Deaths Total @@;
datalines;
003 103 2 03 303
4 1 3 523
r

un;

All of the cells have counts that are less than 5, which
makes the applicability of large sample theory ques-
tionable. For each subject i receiving dosage u;,
i =1,...,18,letY; = 1 if the subject died, Y; = 0 other-
wise, and m; = Pr(Y; = 1|z;). Then the linear logistic

model for this problem is logit (r;) = log( L ) =

1—m;
a + x; 3, which fits a common intercept and slope for
the i subjects. In the PROC LOGISTIC invocation be-
low, the EXACT statement requests an exact analysis
and the ESTIMATE option produces exact parameter
estimates.

proc logistic data=dose descending;
model Deaths/Total = Dose;
exact Dose / estimate=both;

run;



Figure 1 displays some of the unconditional asymp-
totic results that are produced by default. The like-
lihood ratio and score tests reject the null hypothe-
sis that 3 is zero. However, the Wald test does not
reject this null hypothesis. The seemingly conflicting
conclusions of these tests are a telltale sign that the
large-sample approximation is unreliable. The esti-
mates for the intercept a and the slope 5 both have
p-values greater than 0.05, indicating marginal influ-
ence. The confidence limits for the odds ratio of the
dose parameter contains the value 1, from which you
could conclude, if you accept the model, that there is
no change in mortality with a change in dosage.

Exact Conditional Analysis
Exact Odds Ratios

95% Confidence
Parameter Estimate Limits p-Value

Dose 6.049 1.123 353.000 0.0245

Testing Global Null Hypothesis: BETA=0

Test Chi-Square DF Pr > Chisqg
Likelihood Ratio 8.1478 1 0.0043
Score 5.7943 1 0.0161
Wald 2.7249 1 0.0988

Analysis of Maximum Likelihood Estimates

Standard

Parameter DF Estimate Error Chi-Square Pr > Chisqg
Intercept 1 -9.4745 5.5677 2.8958 0.0888
Dose 1 2.0804 1.2603 2.7249 0.0988
Odds Ratio Estimates
Point 95% Wald
Effect Estimate Confidence Limits
Dose 8.007 0.677 94.679

Figure 1. Output from Asymptotic Analysis

Figure 2 shows the results from the EXACT state-
ment. The p-values in the “Conditional Exact Tests”
table lead to rejecting the null hypothesis that /5 is zero
(no conclusions can be made about « since it is “con-
ditioned” away). Note that the p-values for the asymp-
totic estimates are larger than those for the exact es-
timates; however, Stokes, Davis, and Koch (1995) ob-
serve that, in general, the exact methods tend to pro-
duce more conservative results. The “Exact Param-
eter Estimates” table shows that the slope 3 is esti-
mated to be 3 = 1.8, and since the 95% confidence
interval for the odds ratio of E does not contain 1, the
odds of death increase significantly with dosage. Note
that the exact tests do not produce standard errors for
the estimates.

Exact Conditional Analysis
Conditional Exact Tests

--- p-Value ---
Effect Test Statistic Exact Mid

Dose Score 5.4724 0.0245 0.0190
Probability 0.0110 0.0245 0.0190
Exact Parameter Estimates
95% Confidence
Parameter Estimate Limits p-Value
Dose 1.8000 0.1157 5.8665 0.0245

Figure 2. Output from EXACT Analysis

Figure 2. (continued)

The unconditional asymptotic and conditional exact
results produce somewhat conflicting conclusions for
this example. Stokes, Davis, and Koch (1995) recom-
mend looking at the exact results when sample sizes
are small and the approximate p-values are less than
0.10. For this example, the small sample size and the
conflicting results for the asymptotic hypothesis tests
indicate that an exact analysis would be more appro-
priate.

METHODOLOGY

The theory of exact conditional logistic regression
analysis was originally laid out by Cox (1970), and the
computational method employed in PROC LOGISTIC
is described in Hirji, Mehta, and Patel (1987). Other
references that provide useful summaries of the
derivations include Cox and Snell (1989), Agresti
(1990), and Mehta and Patel (1995).

This section summarizes the methodology behind
logistic regression and explains how the algorithm for
exact computations works.

Logistic Regression

Consider n independent Bernoulli random variables
1,.-, Yy having observed values y, = (yo1, --., Yon)'-
For each observation ¢ = 1,..,n, let z; =
(Ti1yoes Tipy Tipt1, - Tiprq) DE @ p+ g vector of ex-
planatory variables, and denote X = (1, ..., x,)’. Let
m; = w(x;) = Pr(Y; = 1|x;) be the event probability for
each i = 1,...,n, and denote w = (7, ...,m,)". Then
the logistic regression model is logit(w) = X3, or

logit (r;) = log (1 i > =3
-

where 3 = (f1,..., Bp+q)" is the unknown parameter
vector.

The joint probability of the observed y, is a product of
n Bernoulli functions:

L@ = [[=@-myw

exp(yo X B)
[Tis [1 + exp(:B)]




Unconditional likelihood inference is based on max-
imizing this likelihood function, and several asymp-
totic statistics (likelihood ratio, score, and Wald) can
be used to perform hypothesis tests.

To perform conditional inference, first observe that the
sufficient statistics for the ; in the unconditional likeli-
hood function are the corresponding T = E?Zl Yiij,
where y; is a realization of Y;. To create the probability
density function (pdf) for T' = (11, ..., Tp4+4)’, SUM over
all binary sequences y that generate an observable ¢

C(t) exp(t'B)
[Tizi [1 + exp(z}3)]

PrC=t)=

where C(t) = ||[{y : y'X = t'}|| is the number of
sequences y that generate t. Suppose the p param-
eters 8, = (b1, ..., Bp)' are nuisance parameters; that
is, the current analysis is geared toward the last ¢ pa-
rameters B,. Denote the sufficient statistics for the
nuisance parameters as Ty = (T4, ..., T}), the corre-
sponding observed values as ty, and the correspond-
ing columns of X as X,. Similarly, define T, ¢,
and X, for the parameters of interest. The nuisance
parameters can be removed from the analysis by con-
ditioning on their sufficient statistics to create the con-
ditional likelihood

Pr" =t
PrTy =t|To =1ty) = r=9

n PI'(TO = to)
_ Chexp(t;By)
2w C(u,to) exp(u'B,)

where C(u,t) is the number of vectors y such that
y’Xl =wu and yIXO =1y.

Conditional asymptotic inference is performed by
maximizing the conditional likelihood and producing
conditional statistics similar to the unconditional likeli-
hood case.

Conditional exact inference is based on generating
the conditional distribution for the parameters of in-
terest. This distribution is called the permutation or
exact conditional distribution. The conditional pdf
Pr(T, = t1|To = to) is denoted as fg, (ti|to). The
following section describes the generation of this dis-
tribution, and details about the tests and inferences
are provided in the appendix.

Exact Conditional Distribution

The goal of the exact conditional analysis is to de-
termine how likely the observed response y, is with
respect to all 2™ possible responses y = (y1, ..., yn)"-
One way to proceed is to generate every y vector for
which ¢y’ Xy = ty, and count the number of vectors y
for which y’ X ; is equal to each unique ;.

Suppose you have the following data, and you want to
find the permutation distribution of the sufficient statis-
tics for x1 conditional on those for xO.

Observation 0 xi

1

x

- O = O|<

_
ON = =

2
3
4

Here, the observed data are y, = (0,1,0,1)', X, =
(1,1,1,1), and X; = (1,1,2,0)". The observed t is
computed as (tg,t1) = 0 x (1,1) + 1 x (1,1) + 0 x
(1,2) +1 x (1,0) = (2,1), so you are conditioning on
to = 2. Tabulate the 16 possible y = (y1,y2,y3,94)’
vectors and their resulting ¢t = (¢o, 1) vectors:

Y1 Y2 Y3z ya | to U
1 0 0 0 0 0 0
2 0 0 0 1 1 0
3 0 0 1 0 1 2
4 0 0 1 1 2 2
5 0 1 0 0 1 1
6 0 1 0 1 2 1
7 0 1 1 0 2 3
8 0 1 1 1 3 3
9 1 0 0 0 1 1
10 1 0 0 1 2 1
11 1 0 1 0 2 3
12 1 0 1 1 3 3
13 1 1 0 0 2 2
14 1 1 0 1 3 2
15 1 1 1 0 3 4
16 1 1 1 1 4 4

The conditional distribution is derived from this joint
distribution by extracting every vector with ¢, = 2:

to t1 | Frequency Probability

2 1 2 2/6

2 2 2 2/6

2 3 2 2/6
total 6 1

Generating the conditional distribution from complete
enumeration of the joint distribution is conceptually
simple; however, this method becomes computation-
ally infeasible very quickly. For example, if you had
only 30 observations, you'd have to scan through 23°
different y vectors—more than a billion! You can re-
duce the number of vectors to look at if you are condi-

tioning on the intercept by processing <Z30 > vec-
i Y0,i
tors, but this does not improve the situation much.

The multivariate shift algorithm developed by Hirji,
Mehta, and Patel (1987) is a faster method of gen-
erating and counting the y vectors for larger prob-
lems. The algorithm is based on the following ob-

servation. Given any y = (y1,...,yn) and a de-

sign X = (z1,..,®,)", let y, = (y1,...,y:)" and
T11 - Tlpigq

X(z) = (x1,...,x;) = be the
Ti1 - Tipiq



first i rows of each matrix. Write the sufficient statistic
based on these i rows as t’(l.) = y'(,-)X(i)- A recursion

relation results: £; 1) = t(;) + yir1Tit1-

The previous example is used to illustrate how this
relation is exploited.

Figure 3 displays a tree diagram where each row (af-
ter the first) corresponds to an observation i, and
each node of the tree is denoted by a pair of digits
representing the value of ¢(;). The top node in the
tree is initially set to 00, and indicates that ¢ o = 0
and t(g) 1 = 0, or tp) = (0,0). Each row of the tree
is numbered; these numbers represent the stages of
the algorithm. To move down the branches, add y
times the next value of (x0,x1) to the current value
of (to,t1), for y = 0 and 1. For example, start-
ing at the zeroth stage with t,) = (0,0) =00, take
to) +yx1 = (0,0)+0(1,1) = (0,0) as the value of the
left branch of the first stage, and (0,0)+1(1,1) = (1,1)
for the right branch.

0: 00

/\
1: 00 11
2: }o\/\n 11/\/22\
3: 000 12 117 23 117 23 22" 34
4: 0010 1222 1121 2333 1121 2333 2232 34 44

Figure 3. Stages of the Multivariate Shift Algorithm

The following table displays the distribution created
from the frequency table of the 2* = 16 possible ¢
vectors from the final stage of Figure 3.

to t1 | Frequency  Probability
0 O 1 1/16
1 0 1 1/16
1 1 2 2/16
1 2 1 116
2 1 2 2/16
2 2 2 2/16
2 3 2 2/16
3 2 1 116
3 3 2 2/16
3 4 1 116
4 4 1 1/16
total 16 1

The conditional distribution obtained for the observed
to = 2 is the same as previously generated.

There are five shortcuts you can observe from the ex-
ample:

e There are two (1, 1) nodes in the second stage
of Figure 3, and the branches below those
two values are identical. Computation time is
significantly reduced if you process an entire
stage and combine identical nodes; however,

the trade-off is that a list of all valid nodes in
a stage must be saved, increasing memory us-
age.

Note that, in order to obtain the correct distribu-
tion, each node descended from this combined
(1,1) node must count as 2 outcomes.

e In the third stage, there is no way to get from
(0,0) to (2, 1) in one step by adding 0 or 1 times
(1,0); similarly, if the value of ¢ in the third stage
is 3, it cannot be reduced to the necessary value
of 2. These illustrate what Hirji, Mehta, and Pa-
tel (1987) call infeasibility criteria.

e The infeasibility criterion is more effective when
the larger covariate values are processed first.
For example, if the value of X0 for the fourth
observation was 2 instead of 1, then you could
obtain a (2,¢1) from the (0,0) third stage node,
and hence you would have to process the extra
nodes.

¢ Since the first two observations have the same
covariate values, you can jump from stage 0 to
stage 2 by combining the first two observations,
incrementing the values in stage 0 along three
branches with i x (1,1) for i = 0, 1,2, and mod-

ifying the counts by (f This saves search

time at the expense of computing binomial coef-
ficients.

e Once a distribution is computed for a set of ef-
fects, a distribution for any subset of these ef-
fects can be produced by scanning the larger
distribution. In the example, the conditional dis-
tribution for f,(¢1|to = 2) was produced from the
joint distribution fo(to,t1) by extracting mem-
bers having tg = 2.

PROC LOGISTIC’s implementation of the multivariate
shift algorithm automatically utilizes these shortcuts
to improve performance. The bulk of the computa-
tion time and memory is consumed by the creation of
the exact joint distribution. After the joint distribution
for a set of effects is created, the computational effort
required to produce hypothesis tests and parameter
estimates for any subset of the effects is (relatively)
trivial.

EXACT CAPABILITIES OF PROC LOGISTIC

The exact conditional logistic regression analysis in
PROC LOGISTIC provides

¢ two tests for the null hypothesis that the parame-
ters for the effects specified in the EXACT state-
ment are zero: the exact probability test and the
exact conditional scores test. For each test, the
“Conditional Exact Tests” table displays



— a test statistic

— an exact p-value, which is the probability of
obtaining a more extreme statistic than the
observed, assuming the null hypothesis

— a mid p-value, which adjusts for the dis-
creteness of the distribution

e parameter estimates and odds ratios for each
effect in the EXACT statement conditional on
the values of all the other parameters in the
model. For each estimate, the “Exact Param-
eter Estimates” and “Exact Odds Ratios” tables
display

— the exact conditional maximum likelihood
estimate (CMLE), or, in cases where the
CMLE does not exist, the median unbiased
estimate

— one- or two-sided confidence limits

— a one- or two-sided p-value for testing that
the parameter estimate is zero or the odds
ratio is one

e optionally, output data sets containing the de-
rived distributions and summary statistics

Note that hypothesis tests can be generated for each
individual effect in an EXACT statement or for all ef-
fects simultaneously. See the appendix for more de-
tailed information about the reported tests and statis-
tics.

SYNTAX

The following statements control the exact analyses
in the LOGISTIC procedure. Items within the <> are
optional.

PROC LOGISTIC <EXACTONLY>
<EXACTOPTIONS(options)>;
EXACT <’label ’>effects </options>;

Several EXACT statements may be specified in any
program, but they must follow the MODEL state-
ment. The new EXACTOPTIONS option in the PROC
LOGISTIC statement affects every exact analysis re-
quested, whereas options in an EXACT statement
are local to that statement. For each EXACT state-
ment, you can include an identifying label enclosed in
quotes, and specify any effects in the MODEL state-
ment or the keyword “intercept”. The analysis condi-
tions on any other effects (possibly including the inter-
cept) not specified in the EXACT statement.

PROC LOGISTIC Options

The EXACTONLY option suppresses the uncondi-
tional likelihood analyses that PROC LOGISTIC usu-
ally performs, and only the exact analyses are ex-
ecuted. Input data sets can be in single-trial or

events/trials form, but the response variable must
have at most two levels. Options specified in paren-
theses after the EXACTOPTIONS option apply to ev-
ery EXACT statement in the program. The following
options are available:

MAXTIME=seconds
STATUSTIME=seconds

The MAXTIME= option specifies the maximum clock
time (in seconds) that PROC LOGISTIC can use to
calculate the permutation distributions. If the limit is
exceeded, the procedure halts all computations and
prints a note to the SAS LOG. The default maximum
clock time is seven days.

The STATUSTIME= option specifies a time interval (in
seconds) for printing a status line in the SAS LOG.
You can use this status line to track the progress of
the computation of the exact conditional distributions.
The time interval you specify is approximate; the ac-
tual time intervals may vary for larger problems. By
default, no status reports are produced.

EXACT Options

Several options can be specified in each EXACT
statement. The available options are

ALPHA=value
ESTIMATE<=keyword>
JOINT

JOINTONLY
ONESIDED
OUTDIST=SAS data set

The ALPHA= option specifies the significance level for
the confidence limits for the parameters; the (default)
value of 0.05 results in 95% confidence limits.

The ESTIMATE option requests parameter estimates,
confidence intervals, and tests for each individual pa-
rameter (conditional on all other parameters) speci-
fied in the EXACT statement. Optional keywords can
be specified; the default ESTIMATE=PARM option re-
quests parameter estimates, ESTIMATE=ODDS re-
quests the odds ratios, and ESTIMATE=BOTH re-
quests both parameter estimates and the odds ratios.

The JOINT option requests a test that all the param-
eters for the EXACT statement are simultaneously
equal to zero in addition to the tests of the individual
parameters, while the JOINTONLY option suppresses
the default individual tests. The test is indicated in the
“Conditional Exact Tests” table by the label “Joint.”

The ONESIDED option requests one-sided confi-
dence intervals and p-values for the individual param-
eter estimates and odds ratios. Note that the two-
sided p-values are twice the one-sided p-values.



The OUTDIST= data set contains all of the exact con-
ditional distributions requested in its EXACT state-
ment. This data set contains the possible sufficient
statistics for the effects specified in the EXACT state-
ment, the counts derived from the multivariate shift al-
gorithm, the probability of occurrence, and the score
value for each sufficient statistic. When you request
an OUTDIST= data set, the observed sufficient statis-
tics are displayed in the “Sufficient Statistics” table.

Use with Other Statements and Options

Several existing options can be used in conjunction
with the EXACT statement. You can define classifi-
cation effects and strata using the CLASS statement,
you can process the data using BY groups, and you
can include a frequency variable with the FREQ state-
ment. The NOINT option in the MODEL statement
suppresses the intercept term.

If you receive messages indicating that the Newton-
Raphson iterations for the parameter estimates or
confidence intervals did not converge, specifying the
ABSFCONV=, FCONV=, XCONV=, or MAXITER=
options in the MODEL statement may help.

Exact analyses are not performed when you specify
a WEIGHT statement, a non-logit link, an offset vari-
able, the NOFIT option, or a model-selection method.

Output

PROC LOGISTIC presents the exact conditional anal-
ysis results in several tables:

e The “Conditional Exact Tests” table displays the
score and probability statistics for testing that all
parameters for the specified effects are zero. By
default, tests for a single-effect model are pro-
duced, but tests for multiple-effect models can
also be requested. Exact and mid p-values are
also generated.

e The “Exact Parameter Estimates” table displays
the individual parameter estimates (conditional
on all other parameters in the model), confi-
dence limits, and a p-value for testing that the
parameter is zero.

e The “Exact Odds Ratios” table displays odds ra-
tios for individual parameters, confidence limits,
and a p-value for testing that the odds ratio is 1.

e The “Sufficient Statistics” table displays the suf-
ficient statistic for each parameter in the model.
This table is only generated when you also
specify the OUTDIST= option to output the dis-
tribution to a SAS data set. The information is
useful for certain further analyses.

As with all SAS procedure output, you can use ODS
(Output Delivery System) to create output data sets
of the values included in these tables by specifying a
statement such as the following:

ods output SuffStats=suff ExactTests=test
ExactParmEst=est ExactOddsRatio=odds;

Note that, at this writing, the exact facilities are still
under development and the syntax and listing format
may change.

EXAMPLES

The following examples illustrate different types of ex-
act analysis. The data in these examples were con-
structed solely for illustrative purposes. The “Sparse
Data” example illustrates that the MLE for the uncon-
ditional likelihood analysis may not exist, rendering
the asymptotic inference impossible, while the exact
conditional inference is still plausible. The “Stratified
Analyses” example demonstrates how to use exact
conditional analysis to adjust for within-strata correla-
tion. The “Crossover Clinical Trial” example is a pop-
ular phase Il analysis for the pharmaceutical industry.

Sparse Data

There are several types of data for which uncondi-
tional maximum likelihood estimates fail to exist, or
for which the theory is not applicable. For data with
small cell counts, tests based on the asymptotic nor-
mality of the maximum likelihood estimates may not
be valid. For other data, the maximum likelihood es-
timates may not exist and the estimated dispersion
matrix may be unbounded. In this example, the data
set separate contains variables which perfectly pre-
dict the response, yielding a complete separation of
data points.

data separate;
input A B Response count @@;
datalines;

0011 0102 1018 11121

7

The following statements fit the logistic regression
model:

logit (r;) = o + ABy + Bps

The JOINT option tests the joint hypothesis that 3, =
B2 = 0 and the ESTIMATE option produces the in-
dividual parameter estimates of 3, and (3,. The
OUTDIST= option creates a data set containing all
permutation distributions required for this analysis.



proc logistic data=separate;
freq count;
model Response=A B;
exact A B / joint estimate
outdist=dist;
proc print data=dist;
run;

Figure 4 shows that the usual asymptotic analysis in-
dicates that complete separation has occurred. You
can see that the parameter estimates do not converge
if you specify both the ITPRINT and NOCHECK op-
tions in the MODEL statement. However, exact tests
and estimates for the conditional analysis can still be
computed and are displayed in Figure 5.

Model Convergence Status

Complete separation of data points detected.

Figure 4. Convergence Status

In Figure 5, the joint exact test of A and B is signifi-
cant, but the B parameter appears insignificant. The
median unbiased estimate is created instead of the
CMLE because the value of the observed sufficient
statistic lies at an extreme of the derived distribution,
implying that the CMLE does not exist. Even though
the asymptotic results are unreliable, the exact anal-
ysis allows you to conclude that there is a significant
effect due to A.

to identify the row that contains the observed values.
You can see that it is (intercept, A, B) = (2,0, 2), cor-
responding to the second, ninth, and thirteenth rows
in Figure 6. Note that only the joint distribution for the
A and B variables was computed from the multivari-
ate shift algorithm; the univariate conditional distribu-
tions were extracted from the joint distribution to save
CPU time. The OUTDIST= data set has three values
in the distribution for the A variable and two for the
B variable. If the permutation distribution is degener-
ate (has only one value), then the procedure does not
produce any statistics and does not output the distri-
bution. However, for small distributions, you have to
decide whether there is enough information on which
to base the estimates; in this simple example, there is
probably too little information contained in the condi-
tional distribution for the B variable.

Obs A B Count Score Prob
1 0 1 2 20.2622 0.00403
2 0 2 1 21.1153 0.00202
3 1 0 8 8.9654 0.01613
4 1 1 37 4.4055 0.07460
5 1 2 42 4.9644 0.08468
6 2 0 28 5.5822 0.05645
7 2 1 168 0.7281 0.33871
8 2 2 210 0.9929 0.42339
9 0 . 1 22.0000 0.00395

10 1 42 4.5023 0.16601
11 2 210 0.1995 0.83004
12 . 1 2 0.5000 0.66667
13 2 1 2.0000 0.33333

Exact Conditional Analysis

Sufficient Statistics

Parameter Value
Intercept 2
A 0
B 2

Conditional Exact Tests

--- p-Value ---

Effect Test Statistic Exact Mid

Joint Score 21.1153 0.0020 0.0010

Probability 0.00202 0.0020 0.0010

A Score 22.0000 0.0040 0.0020

Probability 0.00395 0.0040 0.0020

B Score 2.0000 0.3333 0.1667

Probability 0.3333 0.3333 0.1667

Exact Parameter Estimates
95% Confidence

Parameter Estimate Limits p-Value
A -3.8398%* -Infinity -1.0718 0.0079
B 0.6931* -2.9704 Infinity 0.6667

NOTE: * indicates a median unbiased estimate.

Figure 5. Output from EXACT Analysis

Figure 6 displays the three permutation distributions
created with the OUTDIST= option; the joint distribu-
tion of A and B conditional on the intercept is con-
tained in observations 1 through 8, the distribution for
A conditional on the intercept and B is in observations
9 through 11, and the distribution for B conditional
on the intercept and A is in observations 12 and 13.
The “Sufficient Statistics” table in Figure 5 allows you

Figure 6. OUTDIST= Data Set

Stratified Analyses

If your data are collected from different hospitals or
different families, you can perform a stratified anal-
ysis to control for the within group correlation. The
strata are treated as nuisance parameters and a con-
ditional likelihood removes them from the analysis.
Your model contains a different intercept term for each
stratum:

logit (mhi) = an + ThiB

where h indexes the strata, «; are the strata inter-
cepts, and i indexes the subjects within the strata.

With PROC LOGISTIC, you can specify a stratification
variable by including it in the CLASS statement. For
example, a stratification variable that has three levels
can be parameterized as

Stratum | Level1 Level 2
1 1 0
2 0 1
3 0 0

where the usual intercept term represents the last
strata level, and the other strata levels are a com-
bination of the intercept and the appropriate level
term. This is defined in the CLASS statement with
the PARAM=REF option. Alternatively, you can pa-




rameterize the stratum variable as

Stratum | Level 1 Level2 Level 3
1 1 0 0
2 0 1 0
3 0 0 1

This is defined in the CLASS statement with the
PARAM=GLM option. Since strata and intercepts are
conditioned out of this analysis, either form is reason-
able.

The stratified data set includes a response variable
Y, two explanatory variables X1 and X2, and a strati-
fication variable. The Z variable will be used in a later
analysis.

data stratified;
input Stratum Y X1 X2 count @@;

Z =2 - Y;

datalines;
10111 20123 30102
10211 20223 30211
11101 21201 311001
11201 21312 31222
11302 31321

In the following statements, the stratification variable,
which is defined in the CLASS statement, is included
in the MODEL statement but left out of the EXACT
statement, implying that it is a nuisance effect to be
conditioned on for the analysis of the X1 and X2 ef-
fects of interest.

proc logistic descending exactonly;
freq count;
class Stratum / param=ref;
model Y=Stratum X1 X2;
exact X1 X2 / jointonly estimate;
run;

In Figure 7, the joint exact test for the X1 and X2
parameters rejects the null hypothesis. However, the
X2 parameter appears insignificant.

Z to be 1 if the response is an event and 2 if the re-
sponse is a nonevent. This variable is used as the
time variable as well as the censoring indicator (with
2 as the censored value) in the MODEL statement
of PROC PHREG. Also specify the TIES=DISCRETE
option to request the discrete logistic model, and the
STRATA statement to specify the strata to be condi-
tioned on.

proc phreg;

freqg count;

strata Stratum;

model Z*Z(2)=X1 X2 / ties=discrete;
run;

The output of PROC PHREG is shown in Figure 8.

Testing Global Null Hypothesis: BETA=0

Test

Likelihood Ratio
Score
Wald

Chi-Square DF

9.6425
7.9291
4.6510

[SENEN)

Pr > Chisqg

0.0081
0.0190
0.0977

Analysis of Maximum Likelihood Estimates

Parameter Standard Hazard
Variable DF Estimate Error Chi-Square Pr > Chisq Ratio
X1 1 2.32474 1.11585 4.3404 0.0372 10.224
X2 1 -1.11430 0.72917 2.3353 0.1265 0.328

Exact Conditional Analysis
Conditional Exact Tests

--- p-Value ---
Effect Test Statistic Exact Mid

Joint Score 7.9291 0.0165 0.0162
Probability 0.000612 0.0077 0.0074
Exact Parameter Estimates
95% Confidence
Parameter Estimate Limits p-Value
X1 1.9979 0.3140 5.2012 0.0126
X2 -1.0097 -2.9152 0.4142 0.1931

Figure 7. Exact Results

This exact analysis should be compared to an asymp-
totic conditional likelihood analysis, which is available
with the PHREG procedure. First, define a variable

Figure 8. PROC PHREG Results

Comparing Figure 7 with Figure 8, you can see that
the value of the conditional score statistic for testing
the overall null hypothesis 5, = 2 = 0 is 7.9291
for both the asymptotic conditional analysis in PROC
PHREG and the exact analysis in PROC LOGISTIC.
However, PROC PHREG computes a p-value of 0.019
by comparing the value of the conditional score statis-
tic to a chi-squared distribution with 2 degrees of free-
dom (since there are two parameters), while PROC
LOGISTIC derives a p-value of 0.0165 from the ex-
act conditional distribution. Inference on individual pa-
rameters is often not the same between the exact con-
ditional analysis and the asymptotic conditional likeli-
hood results.

Crossover Clinical Trial

One common use of conditional logistic regression is
in a crossover clinical trial. In this example, the sub-
jects are given a sequence of drugs, and their re-
sponse to each drug is recorded. Each subject is
considered to be a separate stratum. The goal is to
determine if the drugs have the same effect, adjust-
ing for period and carryover effects. In this example,
researchers give 15 different subjects three different
drugs (A,B,P=placebo) in three consecutive periods
(P1,P2,P3), and their response in each period is 1 for
improvement and 0 for no improvement. The carry-
over effect is a classification variable indicating which
drug was given in the preceding period.




data Crossover (drop=P1l P2 P3);

input Subject P1$ P2$ P3$ Improve @@;
Period=1; Drug=Pl; Carry='0’; output;
input Improve @@;

Period=2; Drug=P2; Carry=Pl; output;
input Improve @@;

Period=3; Drug=P3; Carry=P2; output;
datalines;

1 ABPOOO 8 BPAOOL1
2 ABP11O 9 BPA1O1
3 ABPO11 10BPAO10
4 APB1O01 11 PABO1O0
5 APB10O 12 PBA1O01
6 BAPOOO 13 PBAOOL1
7 BAP11O 14 PBAO1O

15 PBAO11

The model to be fit is

logit (mp;) = ap + I(Drug = A)p;

+I(Drug = B)j,
+I(i=1)Bs +1(i =2)p4

where h indexes the subject, «;, are the subject inter-
cepts, ¢ indexes the period, and the I(-) are indicator
variables taking the value 1 when the condition is true.
Note that this model ignores carryover effects.

proc logistic descending exactonly;
class Subject Drug Period/ param=ref;
model Improve=Subject Drug Period;
exact ’‘one’ Drug Period/ jointonly;
exact ’two’ Drug / jointonly;
exact ’three’ Period / jointonly;
run;

Even though three EXACT statements are invoked in
this example, PROC LOGISTIC only computes the
permutation distribution for the joint test of the drug
and period parameters; the other two distributions are
derived from the joint distribution.

The exact conditional score p-value for the test of sig-
nificance of all the parameters is 0.1835; hence, you
cannot reject the null hypothesis. However, the exact
conditional score p-value for the test of no drug ef-
fects, 81 = B> = 0, is 0.0583, while the p-value for the
test of no period effects, 33 = 3, = 0, is 0.8605, which
suggests that the period term should be dropped from
this model.

APPENDIX
Hypothesis Tests

Using the same notation as in the “METHODOLOGY”
section, consider testing the null hypothesis
Hy:8, =0 against the alternative Hy:8, #0,
conditional on Ty = t,. Under the null hypothesis,
the test statistic for the exact probability test is just

fs,=o(t1|to), while the corresponding p-value is the
probability of getting a less likely (more extreme)
statistic,

pltilto) = Y folulto)

u€R,

where Q, = {u: there exist y with ¥’ X = u, y' X, =
to, and fo(ulty) < fo(tilto)}.

For the exact conditional scores test, the conditional
mean p, and variance matrix ¥, of the T'; (condi-

tional on Ty = tg) are calculated, and the score statis-
tic for the observed value,

s=(t — M1)121_1(t1 — )

is compared to the score for each member of the dis-
tribution

S(Ty) = (Ty — py)' S, (T — py)

The resulting p-value is

pltilte) = Pr(S > s) = Y fo(ulto)

ueQ,

where Q, = {u: there exist y with y' X = u, y' X =
to, and S(u) > s}.

The mid-p statistic, defined as

pltilto) — 5 foltilto)

was proposed by Lancaster (1961) to compensate for
the discreteness of a distribution. Refer to Agresti
(1992) for more information.

Inference for a Single Parameter

Exact parameter estimates are derived for a single
parameter §; by regarding all the other parameters
Bo = By Bic1s Bit1, - Bprq)' @S NUisance param-
eters. The appropriate sufficient statistics are T', = T;
and Ty = (Th, ..., Ti—1,Tis1, .., Tptq)', With their ob-
served values denoted by the lowercase t. Hence, the
conditional pdf used to create the parameter estimate
for 3; is

C(ti,to) exp(t;5;)
> ueca Clu, to) exp(up;)

fa:(tilto) =

for Q = {u: there existy with T; = w and Ty = ¢o}.

The maximum exact conditional likelihood estimate is
the quantity 5; which maximizes the conditional pdf.



A Newton-Raphson algorithm is used to perform this
search. However, if the observed ¢; attains either its
minimum or maximum value in the permutation dis-
tribution (that is, either ¢; = min{u : v € Q} or
t; = max{u : u € Q}), then the conditional pdf is
monotonically increasing in 3; and cannot be max-
imized. In this case, a median unbiased estimate
(Hirji, Tsiatis, and Mehta 1989; Hirji and Tang 1998)
B; is produced that satisfies f5.(tilto) = 1, and a
Newton-Raphson-type algorithm is used to perform
the search.

Likelihood ratio tests based on the conditional pdf are
used to test the null Hy: 5; = 0 against various alter-
natives. For testing against the alternative H4: 3; > 0,
the critical region for the UMP test consists of the up-
per tail of values for T; in the permutation distribution.
Thus, the one-sided significance level p(t;;0) is the
probability of a more extreme (greater) value:

pa(ti;0) = Y folulte)

u>t;

The one-sided significance level py(¢;;0) against
Hy:6; <0is

pr(t;0) = Y folulto)

u<t;

The minimum of these one-sided levels is reported
when the ONESIDED option is specified. The two-
sided significance level p(¢;;0) against H4:5; # 0 is
calculated as

p(ti;0) = 2minfpg (¢;;0), pa(ti;0)]

An upper 100(1 — 2¢)% confidence limit for BZ corre-
sponding to the observed ¢; is the solution 3y (¢;) of
e = pr(ti, Bu(t;)), while the lower confidence limit is
the solution 51,(t;) of € = pg(ti, fr(t:)). A Newton-
Raphson procedure is used to search for the solu-
tions.
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