
T h e J o i n t C o n f e r e n c e
o f t h e

South East and South Central
S A S ® U s e r s G r o u p s

August 19-22, 2001

Hotel Inter-Continental
New Orleans, Louisiana

C o n f e r e n c e C o - C h a i r s

Deborah B. Buck
S. David Riba

P r o c e e d i n g s

SSU
S p i c e

U p
Y o u r
S A S ®

S k i l l s !

SSU2001
CONFERENCE PROCEEDINGS

These Conference Proceedings are a permanent record of the 2001 Conference
of the Southern SAS Users Group (SSU), a combined conference of the
SouthEast SAS Users Group, Inc. (SESUG) and the South Central SAS Users
Group, Inc. (SCSUG) Neither SSU, SESUG, SCSUG, or SAS can take
responsibility for the accuracy or originality of the contents included herein.

The correct bibliographic citation of these Proceedings is as follows:

SSU 2001, Proceedings of the Southern SAS Users Group Conference
New Orleans, LA , 2001 948 pages

Copyright© 2001 by SSU2001

The SSU 2001 Conference Co-chairs, Deborah Babcock Buck and S. David
Riba, developed these Proceedings. F. Joseph Kelley, our Proceedings
Coordinator, prepared the final version, including the Table of Contents, and the
Keyword and Author Indices, for publication. SAS Institute graciously printed,
assembled, and delivered the final product as a permanent record of the 2001
Conference of the Southern SAS Users Group (SSU)

TO ORDER COPIES of the printed Proceedings or the companion CD (if
available), CONTACT:

S. David Riba
JADE Tech, Inc.
P O Box 4517

Clearwater, FL 33758
Phone: (727) 726-6099

Email: dave@jadetek.com

About the Artwork and Cover

The cover was created by Kimberly Riddell of JCouch Design. It is based on
input from Debbie and Dave but Jessie took the original concept and transformed
it using her graphics artist’s magic. Thanks, Jessie!

SAS® and all other SAS Institute Inc. product or service names are registered trademarks
or trademarks of SAS,Inc. in the USA and other countries.

Other brand and product names are registered trademarks or trademarks of their
respective companies.

Printed in the USA

FOREWORD

FOREWORD

In your possession you have the most enduring tangible product of SSU 2001: the Proceedings of the
Conference for Southern SAS Users. Inside, you will find 140 papers by over 100 authors. A lot of SAS
expertise, blood, sweat and tears went into the writing, editing, formatting, compiling, printing and shipping of
this book to make it available to you when you picked up your registration materials.
We hope you get much use from these Proceedings.

Over four years ago, informal discussions began among members of the SouthEast SAS Users Group
(SESUG) and the South-Central SAS Users Group (SCSUG) on the possibility of a one-time joint regional
conference to be held in New Orleans, Louisiana. Why New Orleans? New Orleans is in the eastern-most
portion of the South-Central region, but adjoins the western edge of the SouthEast region – and it’s a fun
city! Both groups felt that a New Orleans conference, utilizing the combined talents of SESUG and SCSUG,
would result in an exceptional SAS conference in a world-renowned city. Approximately three years ago a
Steering Committee was formed consisting of three members of the SESUG Executive Committee (EC) –
Frank DiIorio, Andrew T. Kuligowski and S. David Riba – and three members of the SCSUG EC – Deborah
Babcock Buck, Clarence Wm. Jackson and Thomas Winn – to develop a plan for this unique conference
which would combine the strengths of both regional groups. Shortly after the official plan was approved by
both the SESUG and SCSUG ECs, the Steering Committee was finalized with Randy C. Finch replacing
Frank (who had to step aside due to work commitments), the Conference Co-chairs were selected, and the
Hotel Inter-Continental was chosen as the conference site . Two years ago, a contest was held to decide on
a name for this joint conference of two regional SAS User Groups, and “SSU 2001 – the Conference for
Southern SAS Users” was officially named. The conference logo was designed, incorporating traditional
New Orleans colors, the official Conference name and a cornet issuing forth some of the best known SAS
keywords. From the inception until now, the six person Steering Committee has been active behind the
scenes in all aspects of the conference.

As Conference Co-Chairs, we were responsible for all aspects of SSU 2001, from its initial development
through the Closing Session. However, we did not do this by ourselves. We had a team of very dedicated,
very hard working individuals who helped turn our ideas into the reality that became SSU 2001.

The selection of Section Chairs was a challenging task which involved the input of the entire Steering
Committee. Our goal was to include representatives from both regions in each section, and to team
experienced Section Chairs with those new to conference planning. Satisfying this goal was not always
easily accomplished, but we tried hard to make it happen. This year, we introduced a new concept that has
never been tried at a regional SAS conference before, a section called Introduction to SAS. For this new
section, a team of experienced Section Chairs, who were also long-time SAS users, was selected to design
and organize a one-day series of presentations which would guide new SAS users through a step-by-step
approach to using SAS.

The Presentation Section Chairs had very important tasks, including recruiting top-notch presenters,
reviewing and selecting papers, keeping presenters informed of deadlines (and enforcing these deadlines
when necessary), and making sure the all-important papers which appear in this Proceedings arrived in time
for publication. In addition to the Presentation Section Chairs, who are generally associated with the most
visible portion of a conference, our Administrative Section Chairs oversaw the “behind-the-scenes”
operations such as AV, food service, guest programs, sponsorship, publications, proceedings and
registration. We deeply appreciate the outstanding job done by all of the SSU Section Chairs. Their names
are listed elsewhere in this Proceedings.

A very, very special thanks goes to SAS for its many and varied contributions to the success of SSU 2001.
Without their help, the SESUG and SCSUG regional conferences would either not exist or would cost the
attendees considerably more than they do now. This year for SSU, SAS provided even more assistance
because of the larger 2 ½ day combined conference, and the unique nature of this conference. Some of the
support provided by SAS included printing and mailing the Call for Participation brochures, Registration
Booklets, and the SAS User Group Conference brochures at their own expense. They also printed and
shipped the Proceedings to the conference (this book). SAS also provided the services of our graphic artist,
Kimberly Riddell, whose assistance was invaluable in designing our logo and the covers for these
Proceedings. They also offered tremendous support at the conference itself by providing the Keynote
Speaker, various section presenters, a Demo Room, prizes at the closing session, and much more.

FOREWORD

ii

We would particularly like to thank Michael Smith, our SAS liaison, who has been a real pleasure to work
with and has gone the extra mile for us a number of times. Our thanks also to Lisa Brugh, who was our SAS
liaison earlier in this process and was also delightful to work with. We are thrilled that our longtime friend,
Rick Langston, Manager, Core Systems Dept., Base Systems Research Division at SAS, agreed to be our
Keynote Speaker, as well as host our Iron SAS gameshow and present several papers. Rick brings exactly
the right mix of SAS expertise and humor to this conference. Finally, our thanks to all of the staff at SAS
who have contributed to the success of SSU.

Our thanks to Marcella Moresco, Convention Services Manager, and the entire staff at the Hotel Inter-
Continental for their patience and support over the many months that it took to bring this conference to
fruition. Their willingness to work with us and to accommodate our requests has been one of the critical
factors in the success of this conference.

We are grateful to those corporations who chose to participate in our “Corporate Sponsorship” program.
They provided considerable, and appreciated, financial assistance to SSU. Their support enabled us to
provide a number of additional benefits to the SSU attendees.

Our personal thanks go to both Andy Kuligowski and Joe Kelley for serving as our unofficial “sounding
boards” throughout this process. Their “ear”, and expert counsel, over the many months it took to plan and
organize this conference helped both of us tremendously. While both Andy and Joe need to be recognized
for their official roles in this conference, their unofficial roles were equally important and worth noting.

Debbie would like to thank her family and friends for all their invaluable support. She also appreciates Kayla
and Stormy’s patience (even if it was somewhat begrudgingly given) when she worked on SSU matters
rather than spending time with them. Sincere thanks to Dave for his many creative and innovative ideas that
helped make this such a unique conference and for his boundless energy in attaining our goals.

Dave, too, would like to thank his family and friends for their support and patience over the many months he
has devoted to SSU. He would particularly like to thank Abby for her patience, sage counsel, and expert
suggestions. Finally, he would be remiss in not thanking Debbie for putting up with the myriad “crazy idea
du jour” emails and suggestions, and for providing the perfect balance necessary for success.

As SSU 2001 becomes a fondly remembered past conference, plans are underway for SESUG 2002 and
SCSUG 2002. Let’s start making our plans to attend either (or both) of the conferences. SESUG 2002 will
be hosted by Heidi Markovitz and Dave Maddox in Savannah, GA. Your hosts for SCSUG 2002 will be
Clarence Wm. Jackson and Dr. Neil Fleming in Richardson, TX. We hope you’ve had a “hot” time in New
Orleans at SSU 2001 with plenty of opportunity to “spice up your SAS skills”, and we hope to see you next
year!

 Deborah Babcock Buck S. David Riba
 Presentations Chair Administrative Chair

CONFERENCE LEADERS

iii

CONFERENCE LEADERS

Conference Co-Chairs

 Deborah Babcock Buck S. David Riba
 D. B. & P. Associates JADE Tech, Inc.

 Houston, TX Clearwater, FL

Section Chairs

Data Warehousing Tom Mannigel, Insyst,Inc.
Bob Woods, Bank of America Corporation

Emerging Technologies Jack Shoemaker, Statprobe Technologies
Clara Waterman, Maxim Group

Hands-On Workshops &
Volunteer Coordinator

Heidi Markovitz, Simply Systems

Internet, Intranet & the Web Caroline Bahler, Meridian Software, Inc.
Jimmy DeFoor, Brierley and Partners

Introduction to SAS Imelda Go, Lexington County School District One
Andrew T. Kuligowski, Nielsen Media Research
Thomas J. Winn, Jr., Texas State Auditor’s Office

Posters Philip d’Almada, EDS
Eric Brinsfield, Meridian Software, Inc.

Training & Weekend Workshops John Bentley, First Union National Bank
SAS Solutions & Vertical
Products

Matt Becker, PharmaNet, Inc.
E. Barry Moser, Louisiana State University
Kasi Peek, Blue Cross Blue Shield of Tennessee

Serendipity Derek Nguyen, DataLogic Consulting, Inc.
Ian Whitlock, Westat

Statistics & Data Analysis Maribeth Johnson, Medical College of Georgia
Lita Rosario, Marquee Associates

Student Coordinator Sally Muller, University of North Carolina
Tutorials Keith Cranford, Marquee Associates

Carla Mast, Transmedia Network, Inc
Joy M. Smith, NCSU, Dept of Statistics

AV & Food Service Andrew T. Kuligowski, Nielsen Media Research
City Coordinator & Guest
Program

Hester Johnson, Hibernia National Bank
Robert Sigle, Entergy Services Corp.

Corporate Sponsorship Randy Finch, Tennessee Valley Authority
Clarence Wm. Jackson, City of Dallas

Publications & Proceedings Dan Bruns, Tennessee Valley Authority
Francis J. Kelley, University of Georgia

Registration Elizabeth Hamilton, University of North Carolina
Becky Peek, Independent Contractor
Ann Stephan, Texas State Comptroller’s Office

ORGANIZATIONS

iv

ORGANIZATIONS

SOUTH-CENTRAL SAS USERS GROUP
EXECUTIVE COMMITTEE

Deborah Buck
Jimmy DeFoor
Clarence W. Jackson, Vice President
Mark MacMullen
Tom Mannigel
Rich Priem
Ann Stephan
Thomas J. Winn, Jr., President

SOUTHEAST SAS USERS GROUP
EXECUTIVE COUNCIL

Greg Barnes Nelson
Dan Bruns, Vice President
Philip d’Almada
Frank C. DiIorio
Randy Finch, Treasurer
Maribeth Johnson
F. Joseph Kelley, President
Andrew T. Kuligowski
David Maddox
Heidi Markovitz
George Matthews
S. David Riba

Emeritus Members:

Melissa Garreans
Grace Lossman
Andrew Parks
Deborah Skinner

Tamara Fischell (dec.)

SSU 2001 STEERING COMMITTEE

Deborah Babcock Buck
Clarence William Jackson
Thomas J. Winn, Jr.

Randy Finch
Andrew T. Kuligowski
S. David Riba

TABLE OF CONTENTS

v

SSU 2001
THE CONFERENCE FOR SOUTHERN SAS USERS

TABLE OF CONTENTS

PAPER
NUMBER

PAGE
NUMBER

FOREWORD i

CONFERENCE LEADERS iii

ORGANIZATIONS iv

DATA WAREHOUSING

Producing Multipurpose Metadata for Data Quality, Trending,
and a Data Dictionary
John Bentley, First Union National Bank

 P101 3

Simplified Software Project Management for the Rest of Us
Or a Twelve Step Program for the Chronically Overworked
Programmer, Project Leader or Manager
Tom Mannigel, Insyst, Inc.

 P102 4

A Scorecard Approach to Improving Data Quality
Robert Phelps, PricewaterhouseCoopers LLP
Phil Nousak, PricewaterhouseCoopers LLP

 P103 8

Data Warehousing - Lessons Learned
Fran Akridge, VerizonWireless, Inc.

 P104 17

Biotech Warehouse - Stretching the Limit of Columns
Larry Bramblett, Data Warehouse Solutions, LLC

 P105 18

Use of SAS/ETS and the BLS-Census Data Ferret for
the Comprehensive Everglades Restoration Program
Dr. Richard March, South Florida Water Management District

 P106 20

TABLE OF CONTENTS
 PAPER PAGE

NUMBER NUMBER

vi

Data Quality -- Spinning Straw into Gold
Bob Brauer, DataFlux

 P107 27

Using the SAS ACCESS Engine for DB2 OS/390 to Bulk Load
Tables
Robert Maitland Jr., BlueCross BlueShield of Florida
Tom Weber, SAS Institute
George Bischoff, Bank of America

 P108 32

Using the SAS/Access Libname Technology to Get Improvements
in Performance and Optimizations in SAS/SQL Queries
Fred Levine, SAS

 P109 36

EMERGING TECHNOLOGIES

All I Really Want... A Wish List for New SAS Software
Enhancements
Peter Parker, US Dept. of Commerce

 P151 47

Version 9: Scaling the Future
Diane Olson, SAS
Robert Ray, SAS

 P152 54

Avoiding eOverload: Personalizing Web Content through
Security, eIntelligence and Data Mining
Greg Barnes Nelson, STATPROBE Technologies

 P153 59

Knowledge Management Using an Expert System Written in SAS
Anthony Dymond, Dymond and Associates, LLC

 P154 69

SAS and Electronic Mail: Send e-mail Faster, and DEFINITELY
More Efficiently
Roy Fleischer, Sodexho Marriott Services

 P155 76

Advantages and Disadvantages of Using MDDBs, HOLAP, EIS,
and SAS/IntrNet in the Development of an Interactive System
Lori Guido, US Census Bureau
Richard Denby, US Census Bureau

 P156 81

Integrating SAS/Connect with Java
John LaBore, Eli Lilly and Company
Randy Curnutt, Solutions Plus, Inc.
Michael J. Pell, Solutions Plus, Inc.

 P157 86

TABLE OF CONTENTS

PAPER PAGE
NUMBER NUMBER

vii

HANDS ON WORKSHOPS

All Hands On Workshops are presented by Destiny Corporation

Who Needs To Know Program Syntax When You
Have Enterprise Guide?

 P201 97

Basic Macro Processing P202 103

Version 8 ODS (Output Delivery System) P203 109

SQL Processing P204 117

Running SAS Applications on the Web P205 122

Creating Java Based Applications P206 126

Reading and Writing Data from Microsoft Excel/Word
Using DDE

 P207 136

Interactive PROC Report P208 142

Graphing in SAS Software P209 172

INTERNET, INTRANET AND THE WEB

HTML for the SAS Programmer
Lauren Haworth, Genentech, Inc.

 P301 193

Delivering Information Everywhere using JSP and SAS
Pat Herbert, SAS
Bryan Boone, SAS

 P302 202

Using SAS/INTRNET Software
Kevin Davidson, FSD Data Services, Inc.

 P303 204

Building a SAS Intranet Site
Tim Williams, PRA International

 P304 211

Sounds Like a Good Idea, But What’s the ROI?
John Bentley, First Union National Bank

 P305 216

TABLE OF CONTENTS
 PAPER PAGE

NUMBER NUMBER

viii

Web-Intelligence: A Primer
Don Henderson, PricewaterhouseCoopers LLP
Ralph Mittl, PricewaterhouseCoopers LLP

 P306 221

Case Studies in Data Management on the Web
Carol Martell, UNC Highway Safety Research Center

 P307 231

Using the SOCKET Access Method to Invoke SAS Programs
Rick Langston, SAS

 P308 241

Obtaining and Using Euro Currency Rates in SAS Programs
Rick Langston, SAS

 P309 242

A SAS-Based Approach to WEB-Based Surveys
Bernard Poisson, STATPROBE Technologies

 P310 249

Avoiding Entanglements - Migrating Applications to the Web
Eric Brinsfield, Meridian Software, Inc.

 P311 258

Delivering OLAP Solutions to the Web
Tammy Gagliano, SAS
Tony Prier, SAS

 P312 264

WebHound: Your Best Friend for Web Traffic Analysis
Dean Duncan, School of Social Work, UNC - Chapel Hill
Frank Lieble, SAS
Sally Muller, UNC-Chapel Hill
Carol Martell, UNC Highway Safety Research Center

 P313 277

Energizing End Users with a Slice of SAS and a Cup of Java
John LaBore, Eli Lilly and Company
Randy Curnutt, Solutions Plus, Inc.
Michael J. Pell, Solutions Plus, Inc.

 P314 287

The Role of SAS/Intrnet in a Web-Enabled Database System
John Copeland, CDC
David W. King, CDC
Paul C. Gangarosa, CDC

 P315 292

The Beauty of OUT2HTM with Proc Report
David Steves, Suntrust Banks, Inc.

 P316 298

Web Based Report Ordering Combined with Base/SAS
Mainframe Batch Processing
Andre Brainard, System Engineering Services Corp.

 P317 303

TABLE OF CONTENTS

PAPER PAGE
NUMBER NUMBER

ix

A Generic Solution to Running the SAS System on the Web
without SAS/Intrnet
David Ward, InterNext, Inc.

 P318 308

INTRODUCTION TO SAS

Introduction to the SAS Programming Language
Thomas Winn, Texas State Auditor’s Office

 P351 319

The INPUT Statement: Where It's @
Ron Cody, R.W. Johnson Medical School, Dept of ECM

 P352 322

Manipulating Data: Elements of the DATA Step Language
Paul Dorfman, CitiCorp ATT Universal Card

 P353 332

Passing Along SAS Data – SET, MERGE, and UPDATE
Andrew T. Kuligowski, Nielsen Media Research

 P354 342

Understanding and Using Functions
Frank DiIorio, Advanced Integrated Manufacturing Solutions Corp.

 P355 351

Basic SAS PROCedures for Generating Quick Results
Kirk Lafler, Software Intelligence Corporation

 P356 359

Formats, Informats and How to Program with Them
Ian Whitlock, Westat

 P357 369

What's Next?
Thomas J. Winn, Texas State Auditor's Office

 P358 378

POSTERS

Cubes on the Cheap
Jimmy DeFoor, Brierley and Partners

 P401 383

Transforming Single Record Spreadsheet Data into
Multiple Observations
Glenda Garner, Wake Forest University

 P402 389

Generating Matched Case Data Using PROC SQL
Imelda Go, Lexington County School District One

 P403 391

TABLE OF CONTENTS
 PAPER PAGE

NUMBER NUMBER

x

Overcoming the Challenges of Longitudinal Data Collection
Imelda Go, Lexington County School District One

 P404 394

Defining Test Data Using Population Analysis
Clarence Wm. Jackson, CQA, City of Dallas

 P405 398

Web-Application Bar Charts without SAS/GRAPH®
Steve James, Centers for Disease Control and Prevention

 P406 404

Bootstrapping a Multidimensional Preference Analysis
E. Barry Moser, Louisiana State University Agricultural Center
Xiaoming Liang, Louisiana State University Agricultural Center

 P407 409

Detecting Anomalies in Your Data Using Benford’s Law
Curtis Smith, Defense Contract Audit Agency

 P408 413

How American Express Saved $1M in CPU charges
Hermes Villalobos, American Express

 P409 418

Avoiding a (Graphic) Identity Crisis with ODS HTML Styles
Jaclyn Whitehorn, The University of Alabama

 P410 423

Implementing Digital Analysis Using SAS
Thomas J. Winn, Jr., Texas State Auditor's Office

 P411 428

SAS SOLUTIONS AND VERTICAL PRODUCTS

OLAP Best Practices: What You Need to Consider When
Building and Deploying an OLAP Application
Greg Henderson, SAS

 P501 435

Use of SAS/AF V8e to Compare Death Certificate Data with P502 442
Health Survey Data from the National Center for Health Statistics
Gretchen Jones, NOVA Research Company
Sandra T. Rothwell, National Center for Health Statistics
Christine S. Cox, National Center for Health Statistics

Creating Visit Specific CRF Checklists for a Longitudinal Study
Using a SAS/AF Application
Emily Mixon, UAB Department of Pediatrics
Karen B. Fowler, UAB Department of Pediatrics

 P503 447

TABLE OF CONTENTS

PAPER PAGE
NUMBER NUMBER

xi

Supplier Management with SAS Supply Chain Solutions
Ed Hughes, SAS

 P504 451

Florida Community College System - Putting Minds to Work
Jeanette Humphrey, Tallahassee Community College
Howard Campbell, Dept. of Education, State of Florida
Brian Walsh, Dept. of Education, State of Florida

 P505 455

Using Recursion in the SAS System
David Ward, InterNext, Inc.

 P506 463

Creating Student Academic Profiles
Janice McBee, Virginia Tech

 P507 465

Sending E-mail From a Mainframe Using SAS in an MVS
Environment
Michelle Gillespie, Louisiana State University
Douglas A. Pacas, Louisiana State University

 P508 469

Using SAS to Create Presentation Quality Spreadsheets in Excel
Joyce Hartley, Infineon Technologies - Richmond

 P509 472

V6 to V8 Applications: To Web or Not to Web?
Sharon Muha, SAS
Elizabeth Malcom, SAS

 P510 477

Point and Click Web Pages with Design-Time Controls and
SAS/IntrNet Software
Vincent DelGobbo, SAS
John Leveille, iBiomatics LLC

 P511 481

AppDev Studio Release 2.0
Carl LaChapelle, SAS

 P512 488

A Modular Approach to Portable Programming
Michael Litzsinger, Quintiles Inc.
Lisa Brooks, Quintiles Inc.

 P513 489

OOP Needs OOA and OOD
Andrew Ratcliffe, Ratcliffe Technical Services Ltd

 P514 497

Optimizing Data Extraction from Oracle Tables
Caroline Bahler, Meridian Software

 P515 502

TABLE OF CONTENTS
 PAPER PAGE

NUMBER NUMBER

xii

SERENDIPITY

Elegant Tables: Dressing up your TABULATE Results
Lauren Haworth, Genentech, Inc.

 P601 513

Creating Adobe PDF Files From SAS Graph Output
Patrick McGown, FSD Data Services, Inc.

 P602 522

Behind the Scenes at SAS-L
Francis J. Kelley, University of Georgia

 P603 527

Dynamically Instantiating Widgets on SAS Frames – Why,
How, and When
David Ward, DZS Software Solutions, Inc.

 P604 528

Proc Format, a Speedy Alternative to Sort/Merge
Jenine Eason, Autotrader.com

 P605 531

Using the SAS Annotate Facility for Creating Custom Graphs
Patrick McGown, FSD Data Services, Inc.

 P606 535

An Assembler Written in SAS
Ed Heaton, Westat

 P607 543

A Couple of Tasty SAS Programming Tunes
Paul Dorfman, CitiCorp ATT Universal Card

 P608 553

Problem Solving Techniques with SQL
Kirk Lafler, Software Intelligence Corporation

 P609 562

Functional Functions
Gary McQuown, Data and Analytic Solutions, Inc.
Dorothy Brown, Independent Consultant, Matthews, NC

 P610 566

Creating Regional Maps with Drill-Down Capabilities
Deb Cassidy, Cardinal Distribution

 P611 571

Structuring Base SAS for Easy Maintenance
Gary Schlegelmilch, Dept. of Commerce, Bureau of the Census

 P612 577

Taming the Chaos: Managing Large SAS/AF Applications
Using Programming Standards and the Source Control
Manager of Version 8 of the SAS System
C. Michael Whitney, Motorola SPS

 P613 583

TABLE OF CONTENTS

PAPER PAGE
NUMBER NUMBER

xiii

Debugging Made Easy
Andrew Ratcliffe, Ratcliffe Technical Services Ltd

 P614 591

STATISTICS AND DATA ANALYSIS

Modeling Data with Nonparametric Methods Using SAS Software
Robert Cohen, SAS
Dong Xiang, SAS

 P701 601

Individual Growth Analysis Using PROC MIXED
Maribeth Johnson, Medical College of Georgia

 P702 602

Power and Sample Size Determination for Linear Models
John Castelloe, SAS
Ralph G. O’Brien, Cleveland Clinic Foundation, Cleveland, OH

 P703 609

Using the SAS System to Estimate Sample Size Requirements
for Small Sample Confidence Intervals
Jim Penny, Center for Creative Leadership

 P704 622

Optimal Solution of Discrete Resource Allocation Problems with
SAS/OR Software
LTC Douglas McAllaster, US Army Logistics Management College

 P705 627

A Confidence Interval Approach to Gene Chip Analysis
Jennifer Waller, Medical College of Georgia
Mark G. Anderson, Medical College of Georgia

 P706 637

The Output Delivery System for Data Analysis
Randy Tobias, SAS

 P707 643

Customizing Statistical Reports Using ODS and Proc Template
Joy Munk Smith, North Carolina State University
Sandra B. Donaghy, North Carolina State University

 P708 644

Getting Started with PROC LOGISTIC
Andrew Karp, Sierra Information Services, Inc.

 P709 645

Ideas on Variable Selection and Alternative Links in
Procedure CATMOD
Kimberly DeJarnatt, John Brown University
James E. Dunn, University of Arkansas

 P710 650

TABLE OF CONTENTS
 PAPER PAGE

NUMBER NUMBER

xiv

Using the SAS System to Study the Gender and Level
Measurement Equivalence of a Multi-rater Survey
Jim Penny, Center for Creative Leadership

 P711 654

Using the SAS System to Demonstrate the Equivalence of On-line
and On-paper Survey Administration across Levels of Raters
Jim Penny, Center for Creative Leadership

 P712 660

Using SAS to Control Multistream Binomial Pocesses
Peter Wludyka, University of North Florida / Mathematics -Stat
Sheri Jacobs, Vistakon, Inc

 P713 665

2001: A SAS/STAT Odyssey
Maura Stokes, SAS

 P714 673

A Simulation Study to Compare the Performance of Permutation P715 674
Tests for Time by Group Interaction in an Unbalanced
Repeated-Measures Design, Using Two Permutation Schemes
Mark Litaker, Medical College of Georgia
Bernard Gutin, Medical College of Georgia

Heel Ultrasound As A Predictor of Appendicular Bone Mineral
Density
Rebecca Frederick, Louisiana State University
E. Barry Moser, Louisiana State University
Ellen R. Brooks, Womans Hospital

 P716 679

Survey Estimates and Variance Estimation Using the
SURVEYMEANS Procedure
Hossein Yarandi, University of Florida
Shawn J. Kneipp, University of Florida

 P717 684

Bootstrapping the Levene Test for Equality of Variances
Robert Stewart, East Tennessee State University

 P718 689

TUTORIALS

Conversion of SUDAAN Output into Publication-Quality
Tables--A Simplified Approach
Charlotte Gard, Research Triangle Institute

 P801 693

TABLE OF CONTENTS

PAPER PAGE
NUMBER NUMBER

xv

ODS, YES! Odious, NO! - An Intro to the SAS Output
Delivery System.
Lara Bryant, UNC - Chapel Hill
Sally Muller, UNC - Chapel Hill
Ray Pass, Ray Pass Consulting

 P802 699

Changes & Enhancements for ODS by Example
(through Version 8.2)
Sandy McNeill, SAS
David Kelley, SAS

 P803 709

SAS on the Web: How do I get There from Here?
Carol Martell, UNC Highway Safety Research Center
Ruth Marinshaw, UNC - Chapel Hill
Eric A. Rodgman, UNC Highway Safety Research Center

 P804 716

XML and SAS: An Advanced Tutorial
Greg Barnes Nelson, STATPROBE Technologies

 P805 721

Multiprocessing with Version 8 of the SAS System
Cheryl Doninger, SAS

 P806 731

The Metamorphosis of a Study Design
Marge Scerbo, CHPDM/UMBC
Craig Dickstein, Intellicisions Data, Inc.

 P807 741

Introduction to the SAS Macro Language
Thomas J. Winn, Texas State Auditor's Office

 P808 750

A Beginners Tour of a Project using SAS® Macros Led
by SAS-L's Macro Maven
Ronald Fehd, Centers for Disease Control

 P809 754

Are Strings Tying You in Knots?
Deb Cassidy, Cardinal Distribution

 P810 763

INVALID: a Data Review Macro Using Proc FORMAT Option
Other=INVALID to Identify and List Outliers
Ronald Fehd, Centers for Disease Control

 P811 773

Advanced Macro Topics
Steve First, Systems Seminar Consultants

 P812 784

TABLE OF CONTENTS
 PAPER PAGE

NUMBER NUMBER

xvi

Top-Down Programming with SAS Macros
Ed Heaton, Westat

 P813 792

The Power of PROC DATASETS
Lisa Davis, Blue Cross Blue Shield of Florida

 P814 801

Evaluating the Use of Enterprise Guide in Introductory
Statistics Classes
Sandra B. Donaghy, North Carolina State University
Joy Munk Smith, North Carolina State University

 P815 811

Fuzzy Key Linkage: Robust Data Mining Methods for Real
Databases
Sigurd Hermansen, Westat

 P816 819

Point, Set, Match (Merge) - A Beginners Lesson
Jennifer Hoff Lindquist, VA Medical Center

 P817 829

Data Cleaning and Base SAS Functions
Caroline Bahler, Meridian Software

 P818 837

PROC REPORT: How to Get Started
Malachy Foley, Univ. of North Carolina at Chapel Hill

 P819 843

Direct Addressing Techniques of Table Look-Up
Paul Dorfman, CitiCorp AT&T Universal Card

I Key-Indexing and Bitmapping P820 853

II Hashing P821 855

Advanced Methods to Introduce External Data into the SAS
System
Andrew T. Kuligowski, Nielsen Media Research

 P822 863

Rev Up Your Spreadsheets With Some V8 Power
Peter Eberhardt, Fernwood Consulting Group

 P823 873

Using Functions and Arrays in the SAS System to Manage
and Manipulate Data
Ben Cochran, The Bedford Group

 P824 881

TABLE OF CONTENTS

PAPER PAGE
NUMBER NUMBER

xvii

Changes and Enhancements to PROC MEANS in Version 8
of the SAS System
Andrew H. Karp, Sierra Information Services, Inc.

 P825 887

Anyone Can Learn PROC TABULATE
Lauren Haworth, Genentech, Inc.

 P826 893

The Utter Simplicity? of the TABULATE Procedure - The Final
Chapter?
Dan Bruns, Tennessee Valley Authority

 P827 902

ODS for PRINT, REPORT, and TABULATE
Lauren Haworth, Genentech, Inc.

 P828 910

PROC SQL - Is it a Required Tool for Good SAS Programming?
Ian Whitlock, Westat

 P829 919

To Annotate or Not to Annotate, There Should Be No Question!
Keith Cranford, Marquee Associates, LLC

 P830 925

How Fast Can You Type *or* Go Ahead and Get Snippity
John Gober, U.S. Bureau of the Census

 P831 930

AUTHOR INDEX 937

KEYWORD INDEX 943

xviii

SECTION CHAIRS

Tom Mannigel
 Insyst,Inc.

Bob Woods
Bank of America Corporation

D

A
T

A
 W

A
R

E
H

O
U

S
IN

G

DATA WAREHOUSING

Producing Multipurpose Metadata for Data Quality, Trending, and a
Data Dictionary

John E Bentley , First Union National Bank, Charlotte, NC

Abstract: A data warehouse provides a single version of the truth. The "truth",
unfortunately, is often difficult to understand and is only as accurate as the data it is based
on. The truth can change quickly and it’s important to know just as soon as that happens.
Metadata is critical for helping users understand their data, and specific elements are
important for assessing data quality and useful for trend analysis. SAS Software provides
the tools for generating, tracking, comparing, and reporting metadata. This paper presents
an application that generates metadata in the form of one-way frequencies (for categorical
fields) and descriptive statistics (for numeric fields) from newly loaded data warehouse
tables, compares the current metadata to metadata produced in the previous load, and then
reports major changes and anomalies. It also produces a series of html files containing
frequencies and descriptive statistics linked to the data warehouse’s data dictionary. SAS
products used include BASE, Macro Language, AF/FRAME, SAS/CONNECT and Multi-Process
Connect, and the Output Delivery System. The application was developed under UNIX, but
can be ported to any operating system. All levels of SAS users will find something useful in
the presentation.

Simplified Software Project Management for the Rest of Us
Or a Twelve Step Program for the Chronically Overworked

Programmer, Project Leader or Manager
Tom Mannigel , Insyst,Inc.

Abstract
Many SAS systems such as Data Warehouses are build by
one programmer or a single team who are looking for all
the help they can get. Unfortunately the so called “Rapid
Development Techniques” designed to help quicken
software projects are for the most part for huge teams
spending millions of dollars or software that’s sold by the
millions. For that reason these approaches are very
complex and require a lot of resources. Something-
smaller projects don’t have. There’s a big difference in
the support and resources for a project that the president
has bet the company’s success on and a “whatever’s
needed” custom SAS system for a small group of very
impatient end users. It’s like trying to build a custom
home using the same approach you’d use to build a
skyscraper. Unhappily you’re probable going to waste and
not save time. There must be a simpler way. There is.
“Simplified Software Project Management For the Rest of
US”, describes a 12 step approach I’ve developed over the
last couple of decades to help speed software projects for
the rest of us who don’t have the luxury of infinite
resources and time.

Introduction
The goal of this approach is to save time and increase
your value. There may appear to be addition unneeded
steps. But let me assure you every step is important and
design to save time in the long run.

The twelve steps are with approximately percentage of the
total project:
1. Do a preliminary design and estimate 2.5%
2. What’s it’s worth? 3%
3. What are the risks? 2%
4. Do a very detailed design and schedule. 15%
5. Build the system. 45%
6. Have weekly progress reports. 5%
7. Do systematic testing. 5%
8. Do transaction level testing. 10%
9. Do user testing. 5%
10. Document it quickly. 5%
11. Have a Party. 0%
12. Was it worth it? 2.5%

Now let’s go over each step in detail:

Step 1. Do a preliminary design and estimate.

What you do.
This is a step that must be done for all projects now
matter how large or small. For this step create a quick
generalize view of what the system would look like at a
high level. Something like: a reporting system that reads x
number of files and creates y number of reports. Based on
the size and number of reports you make a quess as to
how long it should take to do the project. Remember that
this is a quick and dirty estimate. A more detail estimate
will come later.

How long should you spend.
This step should take from five minutes to a few days
based on the size of the project. For this and all the
following examples, a small project is 1 programmer for
six weeks and projects at the high end is a team of seven
for 6 months.

How this step saves time.
This step eliminates requests that are not worth doing
without a lot of effort on your part. Note if you eliminate
on average 1 out of 40 projects at this step you’ve save
time. However be honesty in your evaluation because you
don’t want to exclude a high value project because you
grossly over estimate it.

Step 2. What’s it’s worth?

 What you do.
This is a step that is usually only done on large project
but, as I will show it needs to be done on all projects.
Given your design from the previous step what is the
value of the new system directly in dollars and indirectly
in intangible benefits. Take the time to ask some simple
question like: What are the benefits of new system?
Will be increase sales or cut cost?
Will it save time, make someone job easier or less boring?
Will it help to get a product to market sooner or just get
information quicker?
Having taken a look at its look at its benefits then ask the
question does the benefits far out weigh the cost. I’ve
emphasized far because we are in a resource scarce

business and if this project does not “obviously” create
massive benefits then you need to move to something that
will. Our goal here is to maximize your value and one
obvious why is to make sure that your involve in only the
best highest value projects.

How long should you spend.
This step should take from a few hours to a couple of
weeks for the range of projects we are considering here.
Sometimes this step can be a project in itself. But is
important to note that you don’t have to know down to the
last dollar the value of the new system because we are
looking to do only high value system with an obvious
benefit. If your value estimates are off a little, we still
should be able to identify high value projects.

How this step saves time.
Even though this is probably an addition step for most
people. It is one of the most important. It will save time
by eliminate low or no value projects very early. The last
thing you want to do is build a system that has no value.
At this point you’ve spent 5% of the project time if you
eliminate 1 out of 20 your time ahead.

Step 3. What are the risks?

 What you do.
At this point in the project you need to determine the
chances of success. There are three factors that determine
the probability that a project will succeed they are:
1. The complexity of the technology involved
2. The expertise of the people doing the work
3. The support the project has.

Give each of these categories a number from 0 10 based
on the following:
Category 1 0 is leading edge technology that
 Has never been tried
 10 for twenty year old proven
 Technology.
Category 2 0 for novices
 10 for experts.
Category 3 0 for no support
 10 for the a managers support for
 the small project or the president
 of the company for the large
 project.

Add the three numbers together.
The projects with a these total have the following chance
of success.
 25 to 30 Excellent
 18.to 24 Good
 13 to 17 Fair
 below 12 Poor.

Given these ratings wait the potential return versus the
risks. High risk should have a corresponding high return.

If not you may need to beef up the category that is low
either a less technologically difficult design, more
expertise or more support.

How long should you spend.
The amount of time for this step should not be very much
if you use the simplified approach I’ve outlined here.

How this step saves time.
 The function of this step is twofold. One this gives the
client at an earlier point in the project a sense of the risks
involved. And secondly to eliminate or correct at the
projects start possible factors that can cause failure later
on
which is major time and value waster.

Step 4. Do A Very Detail Design and
Schedule.

 What you do.
This is the step where real work begins. Sometime this
step is skip and the programming step begins using the
preliminary step design to go by. My experience is that
this is were a lot project get into big trouble. First of all
because it is a rough estimate and the design is not tied
down clearly, the estimate can be off by a factor of 10
which usually makes for a very unhappy client. I’m
recommend that you do the detail design at this point in
the project because it’s the best time to do it. At some
point your going to have to nail down every detail to
deliver the system why not do it at a point that it does you
the most good and at a point where changes have the least
impact.
 One question is how detailed a design do you do. I
suggest that you have enough detail that a programmer
can do their job without needing any more information.
Doing the design at a programmer level or data flow is
too inefficient. It’s like programming the system twice.
Normally I build process flow diagrams and have all the
supporting information such as data dictionaries, file
definitions and report layouts that a programmer would
needs to their job. I also create an estimate and schedule
of how long each step should take.

 How long should you spend
This is a major step for the project and should take from
10% to 20% of the total project time.

How this step saves time.
This is a very important step and should not be skip. It
saves time by determining the exact cost and resources
required build the system. If the ballpark estimate is really
off then the client needs to know now so they can cancel
the project if its not worth it or resoucres are not
available. Most projects get into trouble because of bad
estimates. The better the design the better the estimate the
better the project will go. Also I’ve found that the clearer

the design the less time you’ll spend on programming step
which the largest step of the project.

Step 5. Build the System.

What you do.
For this step I like a “code to the max” approach. If
you’ve done the previous steps properly this step which
requires the most work should go smoothly and rapidly. If
it’s not going smoothly then you need to revisit the
design, expertise or your support.

 How long should you spend
This step is where most of the work is done and should
take from 40% to 60% of the project. To little time here
and value of the project will suffer. Too much time and
you’re not at max effectiveness.

How this step saves time.
This is the step that everyone must do. Again if you’ve
done the work leading to this step you should truly be
able to build a system rapidly that you know is high value
and not a waste of time because its never used.

Step 6. Have weekly progress reports.

What you do.
Based on the progress to make weekly reports to all the
people that involve in the project. Include in the report
should be a weekly summary of progress which includes
an estimate of the number of days the project is either
ahead or behind based on the estimate in step 4. I also
include the following files:
1. Open issues file.
2. Unexpected problems file.
3. A changed to original design.
4. A suggested enhancement file.

How long should you spend
This again is a very important step that is usually skip or
done occasionally. You should spend from 4 hours/week
to 2 days a week.

How this step saves time.
The value of this step is that there are no surprises at the
end of the project. You’re building critibility during the
whole project and if the project is over budget you’ve got
justification for it. The time save is that the project is not
canned at the last minute because it over runs and you
don’t get enough time to fix it.

Step 7. Do systematic testing.

What you do.

 This is the first of three testing steps. I’ve divided testing
into three steps to emphasis its importance.
In this step the programmer checks for obvious problems.
I call system bugs those that effect the whole system.
There usually are very obvious and can be found by
asking: Do the results make sense? Or by doing a ballpark
estimate of what results should be.

How long should you spend
 This step should spend from 2 of days to a couple of
weeks.

How this step saves time.
Since this is a rather quick first crack at testing you
should get a sense of how well the program is structure
and programmed.
If you find a lot of problems you can easily go back and
do some restructuring. The intent here is to get the
system bug free before it goes into production. Fixing
bugs after the system is in production takes four to ten
times more time then at this point.

Step 8. Do transaction level testing.

What you do.
For the second level of testing you manually trace several
transactions or the lowest level of data through the system
to make sure every step is correct. This step will check
every detail of the system.

How long should you spend
 This step should spend from 1 week to a man month.

How this step saves time.
No system is complete until it is 100% bug free if you
face that at this point and do the testing now you save a
ton of time later. You going to spend at least 15% of the
time fixing bugs you need to do it where you the most
effective and now is the time.

Step 9. Do End-User testing.

What you do.
 The last level of testing has two purposes, I ‘ve found
that users are the most effective testers. They are the
fastest bug finders available. For this step have an end-
users take a look at the results and see if they can detect
any problems.

How long should you spend
 This step should spend from 2 days to a week.

How this step saves time.
This step saves time because it starts the transition
process and end-users are the best tester going. They can
find bugs like no other and in less time than no other can.
But be careful not to over use them.

Step 10. Document it quickly.

What you do.
 This step is only important from a standpoint of
supporting and enhancing the system once it done. I
recommend the following be done. All programs should
be self-documented and be done as you build the
program. Included also should be the final process flow
diagrams. User documentation should be minimal if any
at all.

How long should you spend
This step should spend from 2 or three days to a week.

How this step saves time.
Everyone wants lots of documentation but no one uses it.
So don’t spend a lot of time doing it. You should provide
enough documentation that a new knowledgeable
programmer can make changes to the system. If the
system requires a lot of user documentation’s the system
is in trouble.

Step 11. Have a party.

What you do.
 This is a very consequential step that I learned from a Six
6 company. They always have a party at the end of every
project for a lot of substantial reasons. One is it fortifies
the project as being a big success. It also gives everyone
something to look forward to. To have a party you have to
have an end date and get user acceptance. The end date is
important because it forces the project to a conclusion.
Some projects go on forever, wasting a lot of time. And
some projects never really get accepted by the end-users
creating lots of problems. I say have a party.

How long should you spend
One Lunch hour.

How this step saves time.
It is very important from a success and value standpoint
that the system be used by the end-user. This step
encourages the end-users to use the system and also not to
let it drag on.

Step 12. What is the final value of the system?

What you do.
 After you’ve had the party and the systems been in use
for a while determine the true value of the system.

How long should you spend
A few days.

How this step saves time .
To be honest this is a step that is rarely done but I believe
is the most meaningful.
This is the step where you learn what you did right and
what you did wrong and what it was worth. So that the
next time you can do a better faster job with more value.

Tom Mannigel is President of Insyst, Inc. a Houston
based SAS Institute Quality Partner and has been a SAS
system developer since 1981. His company has built over
hundred different systems with a 97% success rate. He
can be contact at tmannigel@aol.com.

Paper P103

A Scorecard approach to improving Data Quality
Rob Phelps, Phil Nousak, PricewaterhouseCoopers LLP, Chapel Hill, NC

ABSTRACT
An ever-increasing number of strategic and tactical
business decisions are being made from analyzing data
gathered in Data Warehouses and Data Marts. Bad
decisions, poorly performing predictive models and
monetary losses result when data quality is not monitored.
What you think you know about your organization, your
customers, or your suppliers may be distorted by
undependable data.

Data quality cannot be improved independently of the
process producing the data or the context in which the
data is to be used. Technology-only approaches are not
sufficient to provide sustained data quality improvements.
The road to data quality improvement involves several
factors. These include a technical understanding of the
data and data gathering processes. It also includes the
establishment of a reporting process to monitor changes
in data quality as well as people with well-defined roles,
responsibilities, and authority to develop a culture that
supports data quality improvement.

This paper will describe a scorecard-based approach to
identify, measure and monitor data quality problems. It
will cover the people and processes needed to sustain
such an effort, as well as an implementation using SAS
software to build the technical infrastructure. Although the
focus for the paper is on data quality assessment in a
data warehouse, much of the approach can also be
implemented outside of a formal system.

INTRODUCTION
DATA QUALITY BUSINESS ISSUES
The PricewaterhouseCoopers LLP Global Risk
Management Solutions Data Management Survey 2001
sampled a broad mix of major ‘Top 500’ corporations,
middle-market businesses, and companies primarily
engaged in e-business.

Results from this survey show that over 75% of Chief
Information Officers, IT directors or equivalent executives
at 600 companies across the US, Australia and UK
reported having experienced significant problems
because of defective data.

The survey also shows that poor data quality causes hard
dollar loss, failed securities deliveries, missed corporate
actions, or erroneous trading decisions. Data quality
issues often result in the following:

� Extra costs to prepare reconciliations
� A delay or scrapping of a new system

implementation
� A failure to bill or collect receivables
� Inability to deliver orders or lost sales because of

incorrect stock records

� Failure to meet a significant contractual
requirement or service level performance

The following are some of the areas related to Human
Resource (HR) systems that are adversely affected by
poor data quality.

� ERP Conversion
� Outsourced HR programs such as Pension Plan

Administration
� Employee Workforce Planning
� Globalization and /or Integration of Business

Operations
� Mergers, Acquisitions, Divestitures and

Reorganizations
� Government Reporting
� Labor Negotiations

As e-business becomes more pervasive, the rising
exposure to poor data quality increases the risk of
incurring greater internal costs as well as costs to on-line
commercial relationships. Investors are becoming
increasingly sensitive to data problems as a sign of a
deep malaise at the core of any organization. As
reporting methods expand across non-financial areas in
support of strategic balanced scorecard management
models, the reliability of all kinds of data will come under
growing scrutiny.

DATA QUALITY BUSINESS STRATEGY
Companies must take a strategic view of insuring quality
data. This includes a process for monitoring and
correction of data quality issues supported by sound and
demonstrable data metrics.

This paper represents a holistic approach to the ongoing
issues related to organizational data management. It
begins with an overview of a fundamental process as the
basis for the establishment of a program for improving
data quality over time. Next, an approach for the
establishment of a Data Quality Program (DQP) is
presented with a discussion of the types of errors found in
any collection of information and a primer describing the
process for quantifying systematic errors. A description of
the metrics and reports needed to systematize the DQP
follow, as well as a section describing the roles and
responsibilities for people to support a data quality effort.
The final section includes a technical framework with
consideration for implementation using SAS software.

OVERVIEW OF A DATA QUALITY
PROGRAM
The Data Quality Program (DQP) is a single point of
reference for addressing all issues affecting data quality in
an organization or business unit. It provides a forum
representing all points of view within the Information

Systems community in defining, identifying, measuring,
analyzing, and resolving data quality issues. The DQP
provides a foundation for making decisions and provides
direction throughout the quality management process.
Figure 1 provides an overview of the data quality program
process.

FIGURE 1
DATA QUALITY PROGRAM PROCESS

RESOLVE
• Identify/Confirm Root Cause
• Define/Re-define Correction Process
• Develop/Revise Improvement Plan
• Implement Resolution

MEASURE
• Assess Data
• Interpret & Translate Results
• Develop Reports, Charts,

& Summaries

IDENTIFY
• Identify Data Quality Initiative
• Develop Business Rules
• Define Data Quality Requirements

IDENTIFICATION
The first step is to identify data quality improvement
opportunities and define business rules and data quality
requirements. It is important to re-visit the identification
phase, as often as new data quality measurement needs
are determined.

In the Identify phase, the DQP analysis files are built from
extracts of source system data or from the Operational
Data Store (ODS) in a data warehouse. These data,
including tables, records and elements, are extracted in
their “native” form and are made available to a reporting
tool before any transformation process has occurred.
Business rules are used to monitor and report data quality
problems. In the DQP, these rules are called filters.
Examples of business rules that can be verified with filters
include:

� A salary change date that cannot be earlier than
the hire date

� A salary that cannot be less than the minimum
wage

� An employee who must be 15 years old before
his/her date of hire

� Social Security numbers that are not numeric
� A last shipped date that is less that the last

ordered date

Suspect records that do not meet these data quality
requirements (e.g., consistent, valid and complete) are
then identified. The records are presented in detailed
reports and used to provide the information to point to the
root cause of the DQ issues.

MEASURE
This step involves the application of data quality metrics to
data attributes or records from data loaded into a data
warehouse or other system. These metrics are translated
into business terminology. The measures are
communicated by the creation of detailed reports,
summaries, trend analyses, and scorecards that portray

data quality levels and present recommendations.

RESOLVE
Understanding of the root cause of these quality problems
are needed before resolution can occur. After identifying
and measuring quality issues the next step is to formulate
a correction process with business case justifications.
This involves the development of a task schedule and
assigning responsibility to execute the correction process.

The correction steps provide the ability to confirm (or
modify) the root cause, re-define the correction process,
and incorporate modifications into an improvement plan. It
will be necessary to repeat the measurement and
resolution phases for the data quality improvement
process to ensure quality maintenance.

The resolution part of a Data Quality Program depends on
the coordination of the individuals responsible for the
data quality review. Described in a latter section are the
roles and responsibilities for staffing such a program.

In the resolution phase, the DQP Business Analyst
collects the DQ detail reports and distributes them to the
source data owners as appropriate. The automation of
this process happens in the latter stages of deployment.

After reviewing the reports, the source data owner can:

� Correct the data in the source system, or
� Recommend modifications or additions to the

filter list, or
� Confirm that the suspect data is acceptable and

document its occurrence
.

AN APPROACH TO MANAGING DATA
QUALITY
TYPE OF ERRORS
Problems or errors in data can occur either randomly or
systematically. Systematic errors often occur as a result
of a misapplication or misinterpretation of business rules.
Systematic errors can be dealt with in a number of ways,
including modifying the data collection process,
introducing a systematic correction method, or simply
reporting the inconsistencies. Random errors, in contrast,
require direct review of input records and are not
resolvable by systematic means.

CHECKING FOR ERRORS
One way to check for problems in data is to use filters to
identify suspect records. The records are suspect for
identification and classification purposes. Later steps are
taken to either correct the information identified by filters
or to document any discrepancy.

Filters represent simple conditions that identify a single
issue with the data analyzed. The types of filters range
from the simplest checks of the domain or range of a
single variable, through comparisons of one or more fields
within or between records in a table, to a complex review
of multiple fields across multiple tables and source
systems.

The following outline presents types of filters that may be
prepared for a database. The outline presents the filters
in order of increasing complexity, from simpler within-
record checks to the more complex between-table and
between-system checks. The key to building a sound
DQP is to begin with the simpler filters within a system
and build to the more complex filters among systems.

Within variable
� value in domain (e.g., categorical variable

matches reference list; numeric variable in
range)

� test for missing value when appropriate (e.g.,
table key, required variable)

� valid date

Between variables
� cross-check in domain (e.g., salary increase

matches compensation transaction code)
� test for logical relationships

Between records
� unique key when appropriate
� proper sequence (e.g., employment activity only

before termination)
� missing records (e.g., apparent pay change

record not in table)
� proper transaction variable assignment (e.g.,

comparison of selected variables between
records meets business rules requirements for
transaction)

� comparison of values consistent (e.g.,
comparison of base rate between records does
not match indicated pay change)

Between tables
� check key relationship across tables (e.g., list of

expected employ ids matches appropriately
across tables with employee data)

� cross-check in domain (similar to within table
check)

� test for logical relationships (e.g., observation in
separate evaluation table matches employee
work history sequence)

� valid date relationships (e.g., separate work
history tables join to produce acceptable
representation of employee’s work history)

Between systems
� check key relationships across tables between

systems
� cross-check in domain
� test for logical relationships
� valid date relationships

DATA QUALITY ACTIVITIES AND
PROCESSES
The DQP activities identify where quality problems exist,

ascertain the magnitude of the problems, and propose
solutions. These activities require the DQP to regularly
measure data quality levels, provide mechanisms to share
data quality information, and maintain organizational
accountability for data quality. The activities identified in
this section occur throughout the development,
enhancement, and maintenance of the DQP life cycle.

PROCESSES
The following is an outline of the process steps necessary
for the establishment of a DQP:

� Develop detailed procedures that provide a
logical, organized approach to addressing and
resolving data quality issues using the high-level
process depicted in Figure 1. The DQ process
must be scaleable for use on small or large
quality problems.

� Develop data quality metrics that measures the
level of data quality in information systems
monitored.

� Define procedures that apply the quality metrics
to the data for each information system in order
to monitor its data quality level over time.

� Identify procedures for communicating DQP
activities.

� Develop a Data Ownership Policy and define
procedures for data owners to perform data
quality functions. Clear identification of data and
process owners and definition of their
responsibilities will facilitate an effective DQP.

ACTIVITIES
The following are the activities needed to establish the
DQP processes:

� Identify or verify the authoritative sources of data
and assign the necessary data ownership
responsibilities.

� Define data quality measurement criteria.
� Propose recommendations to improve the level

of data quality based on results of data reviews.
� Develop goals, objectives, plans, and tasks for

data quality improvement activities.
� Maintain data quality for current Information

Systems by establishing and communicating
procedures to personnel whose job function it is
to create, update, and delete data .

� Maintain data quality for current Information
Systems by developing edit and validation rules
that filter the data before storing it in the
database, if applicable.

� Report the status and results of data quality
improvement activities to the necessary
personnel, e.g., Upper Management, Information
Systems Management, application support
personnel.

� Regularly publish data quality level information
for identified Information Systems to audiences
at the necessary organizational levels.

� Manage and control DQP work products.
� Coordinate the necessary data quality

improvement tasks with the appropriate data and
process owners and application support teams.

DATA QUALITY METRICS
Data quality metrics are defined and categorized into two
groups. Generic metrics apply to all columns and/or all
tables (e.g., a record count metric, such as the number of
records in the tables). Specific metrics apply to specific
columns, or combinations of columns, in specific tables
(e.g., an accuracy metric, such as the number of valid
values in a table).

DEFINING DQ METRICS
The following are principles to consider when defining
data quality metrics:

� Metrics should be insensitive to changes in the
number of records in the warehouse;

� Metrics should accurately reflect the degree to
which the data meets the associated data quality
need;

� Metrics should be independent of each other, so
that no two metrics are actually measuring the
same effect; and

� The number of metrics chosen should be kept to
a reasonable number, as too many metrics can
often confuse rather than clarify.

DATA QUALITY CATEGORIES
We classify Data quality metrics into categories that
describe the methods used to analyze quality of data. A
data value is generally accepted as having high quality if it
meets the appropriate combination of the categories that
are applicable to the element. Following in Figure 2 are
the categories used to group the measures of data quality.

DATA QUALITY REPORTING
The Data Element Quality Scorecard contains the
measured level of quality for each data element in the
DQP. The scorecard lists data quality categories as
columns and data elements as rows. Single summary
statistics are created for four types of cells on the
worksheet:

� Data element and data quality category
combination (e.g., Field1/Valid);

� Quality category across all data elements (e.g.,
Valid for Field1 –> Field4);

� Data element for all quality categories scored
(e.g., Field1: Valid, Unique, Complete etc. - some
categories may not be scored); and

� Overall data quality including all data elements
and quality categories scored.

FIGURE 2
Name Description Example

Valid Data element passes
all edits for
acceptability

A Person record
has a Name that
contains
numbers

Complete Data element is (1)
always required or (2)
required based on the
condition of another
data element

A Payroll record
misses a value
for Person

Consistent Data element is free
from variation and
contradiction based on
the condition of
another data element

A New Hire
record has a
Hire Date before
their birth date
Leave of
Absence is
checked, but the
employee is at
work

Unique Data element is
unique—there are no
duplicate values

Two Person
records have the
same Social
Security Number

Timely Data element
represents the most
current information
resulting from the
output of a business
event

A New Hire
record
references an
Organization that
has been sold

Accurate Data element values
are properly assigned

An HR
Organization
record has an
inaccurate or
invalid hierarchy

Precise Data element is used
only for its intended
purpose, i.e., the
degree to which the
data characteristics
are well understood
and correctly utilized

HR Organization
Department
codes are used
for different
organizational
entities between
different records

The summary statistics calculation uses mathematical
principles and formulas that allow for uniquely
categorizing data quality problems. Both row and column
totals in all cases are equal to or less than the individual
cell totals. This is because any one record may have
encountered multiple filters that identified suspect
information. Filters must not encounter any suspect fields
in order for the record to have complete quality data. The
formula for calculating cell total is described in a latter
section.

DATA QUALITY REPORTS
The DQP produces a set of reports for different purposes.

Detail Field Suspect Report. The report lists records
that are of suspect for each filter. It is created to help the
Information System representatives or service centers to
examine the suspect records and make corrections when
appropriate.

Summary Filter Suspect Report. The report lists the
description and summary of suspect records by filter in
the current run of the DQP. It is useful for the application
developers to examine the appropriateness of the filters
they have implemented.

Summary Field Suspect Report. The Summary Field
Report presents the number of suspect records in two
dimensions: data elements in row and data quality
categories in column. A data element is a collection of
one or more source fields in the system. For example,
employee’s date of birth is a data element, while the

employee’s name may contain three fields in the source
system, the first name, the last name and the middle
name initial. Individual cells in the report contain the count
of suspect records that fall into the data element and data
quality category.

Since a data element may contain more than one source
field, and a data quality category may contain more than
one filter, a cell in the report may contain multiple filters.
The DQP incorporates an algorithm that prevents a
multiple count of the same record for each cell, including
the row and column totals. Therefore, a row total is the
number of records that do not meet one or more data
quality criteria for the data element. On the other hand,
the column total is the number of records for which one or
more data elements do not meet the data quality criteria in
that data quality category.

Finally, the total at the lower right corner is the total
number of records that do not meet DQP criteria in at
least one of the data elements that are audited. As for the
Trend Analysis, the total number of a row or a column or
the whole table is the number of suspect records, not the
number of errors by filter or field. Therefore, the total is
not the simple arithmetic sum of its elements. This report
is illustrated in Figure 3a.

Figure 3a
DW Data Quality Field Report

Records Processed: 9,999

Element
Data Element Quality Category (# Suspect Records)

Total

Name
Valid Unique Complete Consistent T.. A.. P..

Field1 0 0 0 N/A N/A N/A N/A 0

Field2 259 N/A 176 N/A 260
Field3 0 2 228 N/A 228
Field4 720 N/A 604 4 720

Total 720 2 1000 4 1000

Data Quality Scorecard.
The DQP scorecard converts the Summary Field Suspect
Report into a percentage of records that pass all the data
criteria set in the DQP, i.e., cell percentages are
calculated according to the following formula:

Percentage = [1 – (Cell count in the worksheet) / (Total
number of records)] � 100%.

An example of a Data Quality Scorecard is shown in
Figure 3b.

Figure 3b
HRDW Data Quality Scorecard

Records Processed: 9,999

Element
Data Element Quality Category (% Quality Data)

Total

Name
Valid Unique Complete Consistent T.. A.. P..

Field1 100.00% 100.00% 100.00% N/A N/A N/A N/A 100.00%

Field2 97.40% N/A 98.24% N/A 97.40%
Field3 100.00% 99.99% 97.72% N/A 97.72%
Field4 92.80% N/A 93.95% 99.96% 92.80%

Total 92.80% 99.99% 90.00% 99.96% 90.00%

Trend Analysis. The report presents the number of
suspect records by field for the current and previous runs

of the DQP. It presents to the Information System
representatives or service centers the progress of the
quality of the data for which they are responsible.

DATA QUALITY STAFFING
Collectively, the members of the DQP are responsible for
both the data quality management process and data
integrity in the core systems. The job descriptions that
follow are not necessarily full time positions but represent
the roles and responsibilities for various aspects of a
DQP. As the number of systems monitored increase and
the DQP is better established, the time commitment for
these activities will vary.

The members of the DQP must have well-defined roles,
responsibilities, and authority to successfully improve the
quality of the data in the organization. The DQP may
have individuals serving one or many roles. It is important
to understand that the creation of a separate DQP group
is an option, but not required.

Each member of the DQP is assigned to at least one of
the roles listed below:

� Data Warehouse Data Quality Manager
� Information Systems Manager
� Data Warehouse Data Quality Personnel
� Application Developers
� Data Users / Data Producers
� Business Unit Functional Experts

The following section contains a description of each role
and defines the function or purpose of the role in the
following two scenarios: day-to-day data quality
operations; and DQP meetings, forums, or activities. The
responsibility description attaches accountability and
authority to a role. Each role will list the skills required of
an individual to perform the job on the DQP.

DATA WAREHOUSE DATA QUALITY MANAGER

Daily Data Quality Role: Gains economic support for the
data quality management process, defines the budget,
and monitors the development and maintenance
schedules.

DQP Role: Serves as a full-time member by participating
in every DQP meeting in the capacity of ensuring
adequate resources and funding for performing data
quality improvement and maintenance activities.

Skills: Project management, data quality concepts, and
knowledge about the Business processes that produce
the data.

Responsibility: Keeps the data quality management
initiatives on-track by being on schedule and within
budget. Data Quality Personnel and Developers should
receive direction form the Data Quality Manager as the
scope and focus of the DQP evolves.

INFORMATION SYSTEMS MANAGER

Daily Data Quality Role: Gains economic support for
system projects, defines the budget, and monitors system
development / maintenance schedules. Implements data
administration policies, procedures, criteria and standards
for information systems data. Reviews and reconciles
Information Systems data models at logical levels of
detail, if applicable. Implements procedures for
communicating data requirements and resolution activities
among all relevant personnel.

DQP Role: Serves as a part-time member by participating
in selective DQP meetings in the capacity of ensuring
adequate resources and funding are available to support
data quality improvement and maintenance activities.

Skills: Project management, systems life-cycle
development, systems integration, and knowledge about
the Business processes that produce the data.

Responsibility: Ensures data quality improvement and
maintenance tasks are included and tracked in the DQP
project plans.

DATA WAREHOUSE DATA QUALITY PERSONNEL

Daily Data Quality Role: Ensures all data quality
management tasks are performed in sequence and in an
expeditious manner. Identifies or captures data quality
problems, defines data quality requirements, assesses the
specified data, and develops reports, charts, and
summaries that depict the data quality status of the Data
Warehouse. Designs automated components and
manual processes that will identify, measure and
communicate the quality of the data from the source
systems in the data warehouse. Supports the analysis of
source data, extract/transform. Measures the data quality
levels at regular intervals to monitor data improvement
activities.

DQP Role: Serve as full-time members by participating in
every DQP meeting in the capacity of providing
information both on the status of data quality issues and
specifics about each data quality issue. Presents the root
cause of poor data quality and recommends methods to
improve the data quality levels.

One member is responsible for facilitating every DQP
meeting to ensure that the meeting objectives are met and
manages data quality improvement and maintenance
activities.

Searches for the causes of poor data quality and resolves
incompatibilities between the systems.

Skills: Business area process knowledge, database
management, system life-cycle development, data quality
metrics, and basic programming logic.

Responsibility: Institutionalize the data quality
management process and knowledgeable about data
quality issues.

APPLICATION DEVELOPER

Daily Data Quality Role: The role is typically a role
performed by those who develop and maintain the data
warehouse and system(s) that capture data that feed the
data warehouse. A system analyst or programmer
manages the physical database of his/her respective
system.

DQP Role: A system analyst or programmer from each
project team serves as an invited member to participate in
DQP meetings or activities depending on the data quality
issue or the type of information that is planned to be
improved. Communicates information about the data
structure and content in their respective system.

Skills: Business process knowledge, database
management, systems life-cycle development, structured
programming.

Responsibility: Accountable for the integrity of the
physical data structures and the extent that the physical
database structure reflects the requirements provided by
the business units. Uses standard data definitions when
creating or modifying the system’s database.
Responsible for communicating system modifications to
the DQP that affects the format or content of the data.

DATA USERS/DATA PRODUCERS

Daily Data Quality Role: A role played by every
information system user who interacts with data in the
selected Information Systems as part of their job function.
This role includes Managers who are accountable for the
business process, but may not directly interact with data
in the systems. The personnel identify data quality issues
and may participate in the data correction processes.

DQP Role: Serves as an invited member to participate in
DQP meetings or activities depending on the data quality
issue or the type of information that is to be improved,
thereby representing their perspective of data usage.
Understands the business process and how data are
captured and maintained in the source system.
Considered the customer of the data warehouse or source
systems. These individuals set quality expectations for
the DQP by defining requirements for data quality. They
are involved in the data quality review and cleanup
activities.

Skills: Knowledgeable about the business function and
processes that produce the data.

Responsibility: Responsible for using data as originally
intended and for notifying the DQP of data quality
problems. Additionally, they are accountable for integrity
of data within their job function.

FUNCTIONAL EXPERTS

Daily Data Quality Role: A role played by people who are

considered expert in a particular business function.
Provides the knowledge and expertise essential to
developing and validating data checks, filters and
business solutions.

DQP Role: Serves as an invited member to participate in
DQP meetings or activities depending on the data quality
issue or the type of information planned for improvement.
Understands the Data Users’/ Data Producers’ data
quality requirements. Also, provides solutions that enable
data to be captured in a way that satisfies both the
operational data quality requirements and the Data
Users’/Data Producers’ requirements. Collects and
verifies business rules that ensure quality data and
resolve issues or conflicts concerning data usage or
interpretation.

Skills: Knowledgeable about the business environment,
business function, and technology and processes that
produce the data.

Responsibility: Responsible for defining and validating
the names and definitions of data elements within their
subject of expertise to meet the Data Users’/Data
Producers’ needs. Accountable for the integrity of data
definitions and ensuring that the Data Users’/Data
Producers’ maintain data values that are in accordance
with the definitions.

DQP TECHNICAL FRAMEWORK

SYSTEM REQUIREMENTS
A system for reporting Data Quality is incorporated into a
production stream or used as a stand alone system to do
periodic ‘ad-hoc’ reporting. The best approach is a
modular one that allows for relatively easy modification
and expansion to suit the needs of the warehouse
developers, data owners, and other members of an
organization that need to monitor data quality.

The following are key features of an application for Data
Quality Reporting:

� Modular programming that is easy to maintain
and is extendable.

� Portability and scalability to other platforms with
access to extensive data preparation and
analytic tools.

� Easily maintained support files that that can be
modified to build the DQP database as well as
activate or de-activate new filters.

� Self-documenting support files for identifying
data quality issues and preparing the data for
analysis.

DQP PROCESS FLOW
Figure 4 is a high-level diagram showing the process
needed to evaluate data for Data Quality purposes. The
preliminary analysis represents a profile of the
characteristics of the data prior to applying ‘business
rules’ for accessing data quality. The DQ Audit with filters
represents a detailed reporting process that produces a
scorecard and detailed reports for measuring and

resolving data quality issues.

Figure 4

Program
Setup

Data
Import
Build

Preliminary
Analysis

DQ
Audit

w/filters

DQP
Reporting

DQP DATA FLOW
Figure 5 is an example diagram showing the data flow in
an automated system written using Base SAS� and
Macro control language. Customization of this application
occurs through entries in tables or l spreadsheets. These
tables specify the format of the input data and the SAS
statements used to establish the filter conditions.

Figure 5
Data Quality Program
Data Flow Diagram

Transform Subsystem
RDS/DDSODS

DQP
Data Sets

Build
ProcessExtract

File

Formats
xls

Assessment
Process

Build
Process

Read Extract
Process

(Optional)
DQP Reports

Notes:
A seperate Build process and Assesment Process is needed for each table analysed
The prefered method of building DQP data sets is to read the Oracle tables in the ODS and DDS directly instead of using an aditional extract process
DQP data sets will reside on the application server or desktop used to run the process
DQP reports can be produce in several formats including (spreadsheets, text files, and Html files) - HTML format is the recommended option

Filter
Control Table

FILTER CREATION/REFINEMENT
Filters represent the ‘Business Rules’ used to measure the
quality of the data in the DQP. These ‘rules’ form the
basis of communication about the details of measuring
quality data. A robust solution would include a central
repository of these filters and an easy way to document
and modify them. It should also provide the following:
� Easy to add, activate, or de-activate filters.
� Ability to implement a wide range of filters without

having to create customized programming logic.
� Flexibility to include filters that are more complex if

the user is familiar with a programming language.
� Ability to point to a diverse set of lookup tables for

consistency and completeness checks.

� Easy documentation of the filters that are active in the
DQP at any time.

Most filters, in our experience, can be implemented with
one or two SAS statements. Filters that are more
complex may be implemented using macros. This allows
the actual SAS code used in the system to serve as
documentation when discussing filter criteria with the
business specialist involved in the DQP.

Filters may be thought of as program statements that
result in logical binary fields (0,1). These fields are
summed in order to determine the number of unique
records with suspect data, and allow the creation of a
Data Quality Scorecard. There can be multiple filters
(with the same DQ category) applied to a single column of
data. The presence of any condition that triggers a filter
acts as a unique counter for identifying which records
contain suspect data. The summation of these fields
allows the calculation of overall data quality for the entire
table.

Following are excerpts from a set of filters used to
measure data quality. Included in Figure 6 is an example
of fields contained in a filter control table. It is listed to
demonstrate the functionally and flexibility of an
automated solution.

Filters for Field=SSN Type=Character
Description Cat SAS Code
N1 Missing value Com If ssn=’ ‘
N1 SSN is Invalid Val MACRO SSNCheck(substr(ssn,2,9))

Filters for Field=EMPLID Type=Character
Description Cat SAS Code
S1 Missing value Com if emplid=''
S2

Not unique
Uni if not (first.emplid and

last.emplid)
S3 Invalid - Length is

not 6 or not in the
range (0 - 999999)

Val
if length(emplid)^=6 or not
(0<input(emplid,7.)<=999999)

Filters for Field=Hire Date Type=Date
Description Cat SAS Code
D1 Invalid - Hire date after

May 1, 2001 or
before Jan 1, 1930 Val

if hire_dt >mdy(5,1,2001) or
hire_dt < mdy(1,1,30)

D2 Missing value Com if hire_dt=.
D3 Hire date after

termination date, if
available Con

if termination_dt^=. and
 hire_dt > termination_dt

D4 Employment Hire date
not consistent with Job
date Con

if hire_dt ^=
PS_JOB.HIR_EFFDT

Filters for Field=Referral Source Type=Character
Description Cat SAS Code
R1 Value not in lookup

table Val SD7: sample.LOOKUP
R2 Missing value Com if Referral Source=’ ‘

Figure 6
Specifications for FILTERS control

Field Specification
System System that the filter audits.
Table Table that the filter audits.
Field Field that the filter audits i.e. Character,

Numeric, Date.
Type Type of the field.
Filter CD
 (#)

Code together with System, Table and Field
to uniquely identify the filter.

Filter
Description

A text description of the filter

DQ
Category

Data quality category of the filter. The
categories include: Valid, Complete,
Unique, Consistent etc. (See Figure 2)

Active Indicates whether to include the filter in the
current auditing process. Default: No

SAS Code SAS codes used to define the filter. Code
must be provided DQ categories other than
Complete or Valid. The code can be one or
more lines of SAS statements, or begin with
following key words:
For DQ category Valid,
LIST: the list of valid codes, or
SD7 : a named SASFILE with valid codes,
or
EXCEL: a named Excel file with valid
codes.
For any DQ category,
MACRO: the name of a SAS macro with its
parameters.

IMPLEMENTATION PLANNING
Two major streams require coordination in the
establishment of a Data Quality Program. These include
the establishment of the staffing and process to carry out
the DQP, and the technology for the implementation of an
automated reporting environment.

A Data Quality Program, like a Data Warehouse, is never
completely finished, but changes over time. The best
practice for successful implementation includes IT acting
as the custodians of the data, with the business units and
the organization serving as the owners of quality and
accuracy. With upper management attention, this creates
a ‘hands-on’ focus where measuring and improving data
quality is a corporate strategy. The DQP then functions to
proactively diagnoses and resolves data management
issues before they have an adverse effect.

The following are some of the pre-requisite steps needed
to establish and sustain a Data Quality Program.

STAFFING AND PROCESS

� Confirm roles and responsibilities for DQP
personnel

� Clarify role of DQP Application Support
� Identify personnel who will fill these roles.
� Confirm scope of information (tables and fields)

to be included in 1st iteration of DQP
� Establish business rules and define initial filters

for major data sources
� Decide on Reporting Frequency
� Perform initial assessment of these elements
� Refine business rules and filters and re-measure
� Establish Reporting Distribution Process

TECHNICAL CONSIDERATIONS

� Confirm Technical Options
� Obtain necessary software components
� Determine Size of Platform for Initial DQP
� Obtain Hardware platform if necessary or identify

existing equipment for use
� Configure connectivity for data source access
� Configure programs and options for anticipated

environment
� Initiate DQP Processes

CONCLUSION
Many companies are beginning to understand the value of
data and the knowledge that it creates as one of their
most fundamental assets. The greater prevalence of Data
Warehousing is making data available for analysis for
more areas of the organization. Few organizations have
taken the initiative for making complete data management
and quality control of information a strategic initiative.

Organizations need actionable metrics that allow them to
quantify improvements for the systems that supply

essential information. A Data Quality Scorecard used by
all levels of management and the establishment of a Data
Quality Program are the best approach to effect change
and focus on the issues related to improving the value of
information.

Organizations that make data management and improving
data quality a strategic initiative benefit in several ways.
These include reducing processing costs due to fewer
reconciliation activities. Improved data quality provides
for increasing sales through better prediction techniques
and winning significant contracts through better analysis
of data. Greater employee and customer satisfaction
through careful and accurate attention to reliable sources
of information benefits all levels of an organization.

REFERENCES
PricewaterhouseCoopers LLP, Global Data Management
Survey 2001 The new economy is the data economy.
2001.
PricewaterhouseCoopers LLP, Human Resources Data
Quality Program – Partner Briefing, March 2001.

ACKNOWLEDGMENTS
Information from PwC internally published documents
provided by Mark Miller and Steven Yan was used in the
preparation of this paper. Renee Hansen provided
additional input and assisted with editing.

CONTACT INFORMATION
Your comments and questions are valued and
encouraged. Contact the author at:

Rob Phelps – Robert.W.Phelps@us.pwcglobal.com
Phil Nousak – Phil.Nousak@us.pwcglobal.com

Data Warehousing - Lessons Learned
Fran Akridge , VerizonWireless

Abstract: The panel will outline, in a coordinated effort, lessons learned in starting,
growing, and improving data warehouses - both from the IT perspective and from the end
user perspective, as well as from management and non-management perspectives. Not
surprisingly, lessons learned fifteen or more years ago, when we were calling the warehouse
we were trying to design a database, and lessons learned on ongoing basis apply across
time. Some lessons are obvious, such as, “Partner, don’t compete,” and “Give everyone
credit.” Some are not, such as “Foster broadly based advisory teams and listen, listen,
listen.” Some are controversial, like “Something is better than nothing.” And some are
heretical, such as, “SAS won’t do it all.” The panel is likely to reference SAS ACCESS, PROC
SQL, and PROC DBLOAD. It also is likely to address UNIX, Microsoft WINDOWS, and
mainframe operating systems. The SAS and the database skill levels addressed range from
beginning to advanced, but the lessons are especially addressed to those with leadership
and team-member roles in making the warehouse work.

Biotech Warehouse – Stretching the Limits of Columns
Larry Bramblett, Data Warehouse Solutions, LLC

San Ramon, California

Data Warehouse development is often focused on
specific data marts that support data analysis for
revenue reasons. For most businesses, the ultimate
goal is to maximize revenue gain with the focus on
the customer as a revenue generator. Companies that
have a manufacturing component know that while the
customer is important, the improvement of a process
that cuts the costs of manufacturing the product also
impacts the revenue bottom line. Instead of target
marketing, or credit management, process
improvement and results analyses are the goals of the
manufacturing warehouse. This paper outlines a case
study of a Bioengineering company and the journey
to create a Metadata driven SAS data warehouse.

The scientists in bioengineering are moving from
manual processes and systems to highly automated
processes and systems. They are driven by a goal to
improve both quality and quantity of products.
Currently, there is a mix of both types of systems
found. While the intent and design of the new,
automated systems was to support the existing
process, reality drives the process and the analysis of
those systems to produce similar but non-conforming
information.

Quality is the key concern which mandates that a
"single vision of the data" supports the evaluation and
analysis of both manual and automated processes
within a single application.

SAS was chosen to manage the collection,
conforming and transformation of the data into a
single data platform. The vision for the project was
to create a data model of the bio engineering process
that is independent of the type of process and its
location. The goal of the model was also to support
US government regulations and the FDA SN88
model. While this project was highly directed around
a specific model, the metadata driven process design
would support other manufacturing process systems
as well.

A considerable amount of time was devoted to the
process data model design. Team members that

represented various process areas worked together to
build the model. The result came from extensive

discussion of each process and each system. The SAS
team worked with the client team to provide data as
the model was being created, testing each assumption
of the model. SAS/Warehouse Administrator
provided the platform to extract, transform and create
a view of the model that the team could evaluate.
During this process it became clear that traditional
column and row tables would fail to provide the
analysis the end-users, the bioengineering scientists,
needed.

The metadata model focused on a specific product
and it data collection points. Linkage of the metadata
describes the exact point in the manufacturing
process that a measurement is collected. In the
prototype product the metadata defined over five
thousand data point of collected data.

The creation of the metadata driven process drove a
view that has many repeating rows with only the
lowest level metadata changing along the
manufacturing process. They found data types for
data points that were random along the product
process. Finally, there was a need to analyze at the
cell level rather than the column heading. Standard
data warehouse table views did not satisfy the need to
view the data as a metadata string with its associated
collected value. SAS Proc Transpose provided a
means to transpose the data from a traditional point
of view to one that supported column headings
created from the cell level data. This transpose
process produced unusable tables of values and
associated metadata strings that contained over 5
thousand columns! Created columns headings were
less that satisfactory since only 32 bytes could
support the transpose and collected data values were
still in a ‘text’ state.

The manufacturing model contained metadata that
describes each collection point data type in terms of
readings, units, date, date time, and so on. Using the
metadata data types, actual values could be

transformed but column headings still present a
problem.

Multiple levels using SAS Proc Transpose, Arrays
and Macros provided the solution. By creating tables
that were half metadata string and half transposed,
various levels of the manufacturing process could be
created and reported on. In the end, a single row that
represented the product manufacturing process was
created with the correct data type for each collected
data point value.

SAS Warehouse Administrator provides the process
tool to document, load and transform the metadata
and collected data values. Using both generated code
and custom SAS procedures; SAS Warehouse
Administrator provides the platform that socializes
the manufacturing process into a “single vision of the
data”.

Larry Bramblett, Data Warehouse Architect
Data Warehouse Solutions, LLC
San Ramon, California

USE OF SAS-ETS AND THE BLS-CENSUS DATA FERRETT FOR
THE COMPREHENSIVE EVERGLADES RESTORATION PROGRAM

Richard A. March, South Florida Water Management District, West Palm
Beach, Florida

ABSTRACT

This paper describes the proposed use of SAS/ACCESS,
the BLS-Census Data FERRETT and SAS/ETS in the
analysis of socioeconomic and environmental justice data
for the Comprehensive Everglades Restoration Plan
http://www.evergladesplan.org,
a co-operative plan between the South Florida Water
District and the Jacksonville District of the U. S. Army
Corps of Engineers. Particular attention will be paid to the
use of the DataFerrett developed jointly by the U. S.
Bureau of the Census and the U. S. Bureau of Labor
Statistics http://ferret.bls.census.gov
The data ferret is an electronic data review and extraction
tool designed to facilitate review and extraction of
socioeconomic data from massive BLS and Census
Bureau databases. The latest release of the DataFerrett is
available in a Beta release in JAVA for use on the World
Wide Web. One form in which the DataFerret can output
data is as a SAS data set. A SAS data set will be
extracted and analyzed using crosstabs and frequencies.
An additional analysis relating shrimp harvest data from
National Marine Fisheries Service to South Florida Water
Management District operational policies using PROC
PDLREG in SAS/ETS will also be presented

INTRODUCTION
In this paper, four major subject areas will be discussed:
(1) an overview of the Federal statistical resources
available online including the Census-BLS Data FERRETT
and other resources available online; (2) an overview of
data warehousing, with particular emphasis on data
warehousing at the South Florida Water Management
District and SAS applications at the District ; (3) an
overview of the Comprehensive Everglades Restoration
Program (CERP) and how SAS is being and will be used
in the CERP; (4)an application of SAS-ETS using PROC
PDLREG; and (5) summary and conclusions.

FEDERAL STATISTICAL DATA
RESOURCES AVAILABLE ONLINE
The BLS-Census Data FERRETT (Federal Electronic
Review Retrieval Extraction and Tabulation Tool) is one of
a set of data extraction tools available over the Internet for
accessing data from large Federal statistical databases.
Major participants involved in the Data FERRETT include:
(1) the Bureau of Labor Statistics of the U. S. Department
of Labor: (2) the Demographic Surveys Division of the

Survey Modernization Programming Branch of the Bureau
of the Census of the U. S. Department of Commerce; and
(3) the Division of Public Health, Surveillance, and
Informatics of the Centers for Disease Control.
At the present time, data from the following data sets are
available on the FERRETT system:

Current Population Survey (CPS)
 Basic Monthly Survey, January 1994 to present;
 1992-2000 March Supplement;
 1996, 1998 and 2000 February Displaced Worker
Supplement;
 1996, 1998 and 2000 February Job Tenure
Supplement;
 1995 May Race and Ethnicity Supplement;
 1995, 1997, and 1999 February Contingent Worker
Supplement;
 1994-1998 October School Enrollment Supplement;
 1994, 1996 and 1998 November Voting and
Registration Supplement;
 1999 April Food Security Supplement;
 1998 August Food Security Supplement;
 1997 April Food Security Supplement;
 1996 September Food Security Supplement;
 1995 April Food Security Supplement;
 2000 August and 1998 December Internet and
Computer Use Supplement;
 1997 October Computer Ownership/Internet
Supplement;
 1994 October Computer Ownership/Uses Supplement;
 1998 June Fertility and Birth Expectations Supplement;
 1995 June Fertility and Marital History Supplement;
 1997 May Work Schedules Supplement;
 1995, 1997, 1999 Veterans Supplement;
1997, 1999 American Housing Survey (AHS) - National
Survey
1998 American Housing Survey (AHS) - Metropolitan
Sample
Survey of Income and Program Participation (SIPP)
 1992 10 wave longitudinal;
 1993 9 wave longitudinal;
 1996 Panel Waves 1-12 Core;
 1996 Panel Wave 1 Topical Modules;
 1996 Panel Wave 2 Topical Modules;
 1996 Panel Wave 3 Topical Modules;
 1996 Panel Wave 11 Adult Disability Topical Module
(FTP only);
1997 Survey of Program Dynamics (SPD);
1993 National Health Interview Survey (NHIS from the
National Center for Health Statistics).
1988-1994 National Health and Nutrition Examination
Survey III (NHANES from the National Center for Health
Statistics).

1994 Mortality - Underlying Cause-of-Death (from the
National Center for Health Statistics).
1996 National Ambulatory Care Survey (NAMCS from the
National Center for Health Statistics).
1996 National Hospital Ambulatory Care Survey
(NHAMCS from the National Center for Health Statistics).

Future data to be placed on the Data FERRETT include:

Population Estimates
County Level Poverty estimates
Economic Census
Fedstats Quick Facts/Mapstats Database
-EPA Data -Crime Data
-Labor Data -U. S. Statistical Abstract
FBI Uniform Crime Data by County
Economic Census
National Hospital Discharge Survey
Multicause of Mortality

The data release schedule for Census 2000 data products
is presented at the web site below:
http://www.census.gov/population/www/censusdata/c2kproducts.
html
In general, first Census 2000 data, Congressional
redistricting data, were released in March, 2001 Place and
census tract data, including selected population and
housing characteristics, is scheduled for release in May
and June, 2001. Other Census 2000 data will be released
between now and 2003. There is an increasing reliance on
the Internet and CD-ROM and DVD media for
disseminating Census data. Data not yet on the FERRETT
system can be extracted through the Census Quickfacts
(http://quickfacts.census.gov/qfd/) system.
Other Census data access tools include: Censtats, Map
Stats, TIGER Maps , US Gazetteer, 1990 Decennial
Lookup, and Data Extraction System. MAPSTATS is an
interactive tool which links the Census Quickfacts
database to State and County maps.
Quickfacts also has a non-graphic link that allows the user
to extract historic census counts for all counties within an
individual state. These data can be downloaded to ASCII
files for import into SAS. Another site with a good link
between its graphical data and its time-series tabular data
is the CLIMVIS (Climatic Visualization) site maintained by
the National Climatic Data Center (NCDC) of the National
Oceanic and Atmospheric Administration
(http://www.ncdc.noaa.gov/onlineprod/drought/
xmgr. html) Although the South Florida Water
Management District has access to the NCDC data
through DBHYDRO, for online acquisition of data for a
single climatic region, it is generally just as easy to access
that data from the web-site above, unless one requires
greater temporal resolution than one-month or greater
spatial resolution than the NCDC climate division (there
are seven in Florida).
The Census Bureau Website indicates that: “QuickFacts
includes Census 2000 counts for all persons plus race
groups, Hispanic origin, and persons under 18. Other
characteristics asked of everyone will be added later in the
summer of 2001. Characteristics asked of a sample of
households, like income and education, will become
available in 2002. New statistics will appear in American
FactFinder shortly before they appear in QuickFacts.“
http://quickfacts.census.gov/qfd/faq.html

An example Census Quickfacts extraction using Florida
State totals and Broward County totals is given in Table I
below:

Table I : Sample Florida and Broward County Census
Data Extracted using Census Quickfacts

People QuickFacts
Broward
County Florida

Population, 2000 1,623,018 15,982,378
Population, percent change, 1990 to
2000 29.3% 23.5%
White persons, percent, 2000 (a) 70.6% 78.0%
Black or African American persons,
percent, 2000 (a) 20.5% 14.6%
American Indian and Alaska Native
persons, percent, 2000 (a) 0.2% 0.3%
Asian persons, percent, 2000 (a) 2.3% 1.7%
Native Hawaiian and Other Pacific
Islander, percent, 2000 (a) 0.1% 0.1%
Persons reporting some other race,
percent, 2000 (a) 3.0% 3.0%
Persons reporting two or more races,
percent, 2000 3.4% 2.4%
Persons under 18 years old, percent,
2000 23.6% 22.8%
Persons of Hispanic or Latino origin,
percent, 2000 (b) 16.7% 16.8%
High school graduates, persons 25
years and over, 1990 690,696 6,616,094
College graduates, persons 25 years
and over, 1990 168,799 1,624,405
Homeownership rate, 1990 68.0% 67.2%
Single family homes, number 1990 277,639 3,368,567
Households, 1990 527,860 5,138,360
Persons per household, 1990 2.35 2.46
Family households, 1990 337,284 3,541,308
Median household money income,
1997 model-based estimate $37,832 $32,877
Persons below poverty, percent, 1997
model-based estimate 11.7% 14.4%
Children below poverty, percent, 1997
model-based estimate 17.5% 21.8%

Similar data down to the census tract level is available
through American Factfinder.
(http://factfinder.census.gov/servlet/)
In a press release dated May 29, 1997 the Census Bureau
and the Bureau of Labor Statistics announced the release
of the Federal Electronic Research and Review Extraction
Tool or FERRET. Cavan Capps of the Bureau of the
Census and John Bosley of the Bureau of Labor Statistics,
along with their staffs are the primary developers of the
Data FERRETT. The second t in FERRETT was added
when the FERRETT system was integrated into the Data
Web (http://www.thedataweb.org/)
On July 31,2000 SAS announced that it had entered into
an agreement with the Census Bureau giving the Bureau
unlimited access to SAS technology solutions, including
any new products created by SAS during the five-year
term of the contract. The SAS news release stated,
“Besides strengthening the existing relationship between
SAS and the Census Bureau, the contract is also the first
of its kind for the Census Bureau that is broad enough to
include any and all products from a technology vendor.”
Data can be accessed directly from the Census Bureau’s
web site using the 1990 Decennial Lookup, Data
Extraction System, and the FERRETT system. The sas
transport dataset that comes from FERRETT is created
with the export engine and proc copy. Since the sas
transport dataset from FERRETT is created with the xport
engine and proc copy, only xport & proc copy can be used
to convert the transport dataset to a regular SAS dataset.
Listed below is the SAS code needed to convert the
transport dataset to a regular SAS dataset.

libname trans xport "c:\temp\q16363.trn";
libname new "c:\temp";
proc copy in=trans out=new;
run;

(The directory and filename listed in the SAS code above
are used for example; the above code and description are
drawn from the FERRET FAQ website,
http://ferret.bls.census.gov/ferret_faq.html).

Other Social Science Data Extraction Tools

A number of other Data Extraction Tools are currently
available for accessing 1990 Census of Population Data
and other Census Reports. A fairly complete list of “Social
Science Data Extractors” is available from the Center for
Demography and Ecology at the University of Wisconsin-
Madison (http://www.ssc.wisc.edu/cde/datalib/extract.htm)
One of the best of these is the Basic Tables: 1990
Demographic Profile Generator from the Missouri State
Census Data Center
http://mcdc2.missouri.edu/websas/xtabs3menus/mo/

“This application is entirely menu driven and requires no
code input from the user. The reports generated by this
application are all done "on the fly" using a SAS(r)
program which is dynamically invoked. This application
generates a single 1990 "Basic Tables" (demographic
profile) report for any of the supported geographic units,
including census tract, block group, city (no size limit), 5-
digit ZIP code, state, county or metro area for anywhere in
the United States.”

Another useful Website for Federal statistical data is
Fedstats (http://www.fedstats.gov/). FedStats provides
information for Federal agencies reporting expenditures of
at least $500,000 per year in one or more statistical
activities including:
 1.planning of statistical surveys and studies, including
project design, sample design and selection, and design of
questionnaires, forms, or other techniques of observation
and data collection
 2.training of statisticians, interviewers, or processing
personnel
 3.collection, processing, or tabulation of statistical data
for publication, dissemination, research, analysis, or
program management and evaluation
 4.publication or dissemination of statistical data and
studies
 5.methodological testing or statistical research
 6.data analysis
 7.forecasts or projections that are published or otherwise
made available for government-wide or public use
 8.statistical tabulation, dissemination, or publication of
data collected by others
 9.construction of secondary data series or development
of models that are an integral part of generating statistical
series or forecasts
 10.management or coordination of statistical operations
 11.statistical consulting or training
Among the major Federal Agencies with data retrievable
on-line through FEDSTATS are:
Bureau of Economic Analysis
Bureau of Justice Statistics
Bureau of Labor Statistics
Bureau of the Census
Bureau of Transportation Statistics
Energy Information Administration
Economic Research Service in the Department of
Agriculture
Environmental Protection Agency
Internal Revenue Service, Statistics of Income Division
National Agricultural Statistics Service, U. S. Department
of Agriculture
National Center for Education Statistics
National Center for Health Statistics
Science Resources Studies, National Science Foundation
Social Security Administration, Office of Research,
Evaluation, and Statistics
Office of Management and Budget

Although not listed as principal statistical agencies by
Fedstats, Federal Agencies producing statistical data
important in the Comprehensive Everglades Plan include
the National Marine Fisheries Service, the U. S.
Geological Survey, and the U. S. Army Corps of
Engineers, the South Florida Water Management District’s
principal Federal partner on the Comprehensive
Everglades Restoration Plan. The statistical data
produced by these agencies are of less interest to the lay
user but are critical to the success of the Comprehensive
Everglades Restoration Plan. An example using the data
extraction capabilities of the NOAA Fisheries Economics
website http://www.st.nmfs.gov/st1/commercial/index.html)
and SAS/ETS is presented in a later section of this paper.
A useful source of historical census information is the
United States Historical Census Browser., maintained at
the Fisher Library at the University of Virginia .

(http://fisher.lib.virginia.edu/census/) This site is
maintained in co-operation with the Inter-University
Consortium for Political and Social Research, a unit of the
Institute for Social Research at the University of Michigan.
(http://www.icpsr.umich.edu/) Commercial
websites, such as Economagic
(http://www.economagic.com), offer a variety of
time-series data sets for downloading. This site is
described: “This page is meant to be a comprehensive site
of free, easily available economic time series data useful
for economic research,in particular economic forecasting.
This site (set of web pages) was started in 1996 to help
students in an Applied Forecasting class. The idea was to
give students easy access to large amounts of data, and
to be able to quickly get charts of that data. This
is also useful during class, so that when we use the
computer and overhead projector facility in class, we can
quickly retrieve series and do manipulations in class.
At this time, there are more than 100,000 time series for
which data and custom charts can be retrieved.

Data Warehouses and Data
Warehousing Tools Used at the South
Florida Water Management District
According to Webopedia (http://www.webopedia.com/) a
Data Warehouse is “A collection of data designed to
support management decision making. Data warehouses
contain a wide variety of data that present a coherent
picture of business conditions at a single point in time.
Development of a data warehouse includes development
of systems to extract data from operating systems plus
installation of a warehouse database system that provides
managers flexible access to the data. The term data
warehousing generally refers to combine (sic.) many
different databases across an entire enterprise.”
Bill Inmon, in Building the Data Warehouse , defines a
data warehouse as: “. . . a subject-oriented, integrated
non-volatile, time-variant collection of data in support of
management decisions.” (Bill Inmon, quoted in Marc
Demarest, “A Data Warehouse Evaluation Model,”
reprinted from. Oracle Technical Journal, October, 1995,
v. 1, No. 1, p. 29)
http://www.hevanet.com/demarest/marc/oracle7.html).
Recently, Inmon has suggested the need to move beyond
the data warehouse to what he calls “the exploration
warehouse.” An exploration warehouse is a copy of some
or all of the enterprise data warehouse designed
specifically for exploration. The exploration warehouse
contains detailed data and historical data copied from the
enterprise data warehouse. The exploration warehouse is
created directly from the enterprise data warehouse.
The exploration warehouse can be created and recreated
very quickly should the data miner decide that data is
needed in a different manner or that different data is
needed. The data miner can use the exploration
warehouse as seen fit with no consideration for the
performance impact on other users. The data miner is the
sole user of the exploration warehouse so there is no
conflict with resource utilization with other warehouse
analysts.
Cavan Capps of the U. S. Bureau of the Census, one of
the primary developers of the Data FERRETT and the
Data Web has stated: “In the past, data have been
system-specific. Data sets have been inextricably bound

to the hardware and software systems that house them,
and to the agencies that administer them. Access to data
has depended upon access to the machines or the
software systems that house the data. Recent
technological developments make it possible to break this
bind and allow for wider access to data, regardless of
differences in underlying hardware and software, and
regardless of organizational boundaries.”(Cavan Capps
U.S. Bureau of the Census The Data Web and FERRETT:
Innovations in Integrating Distributed Federal, State, and
Local Data,”)
http://www.spc.uchicago.edu/datalib/ia2000/prog/capps.txt
The South Florida Water Management District answered
the question, “What is a Data Warehouse?” as follows:
“Data Warehouse describes a collection of operational
data from many sources that has been summarized and
reconciled and is presented to the decision-maker in
insightful ways. The stored information derives from day-
to-day operational data and has been combined, formatted
and optimized in ways conducive to analytical thinking with
the purpose of providing organizational decision-makers
with timely information necessary to effectively make
critical business solutions. The decision-maker looks at
the gathered information in many ways in order to
understand the critical underlying issues and trends facing
the business. Analytical thinking happens through
spontaneous probing, by asking questions until a problem
is understood. The benefit of the Data Warehouse comes
in the ability to make effective decisions from it. Cost of
the Data Warehouse is reflected in its design,
implementation, execution, refinement and maintenance.
What end users notice most is both the quality and
reliability of the data and the usefulness of the tools used
to view it.”
http://cobweb2.sfwmd.gov/iwebB501/pln/proj/
warehouse/warehouse.htm
The data warehouse, as envisioned by District staff and
management would include, but not be limited to, Projects,
GIS Data , Surface Water Modeling Data , Groundwater
Modeling Data, Census Data , Budget Information, and
Personnel Information. Each of these areas has its own
set of independent data management, modeling, analysis,
and presentation tools. One of the major concepts being
advanced in the CERP Data Management Plan (DMP),
currently under development is a “data model.” The CERP
team in the kick-off statement for development of the DMP
stated: “Our goal is to create a Data Model. Data
modeling is the process of defining the grammar,
vocabulary, and content to be used to represent
information in a database system.” DataModel.org has
defined a Data Model as: “Basically, a datamodel is any
method of visualizing the informational needs of a system
and typically takes the form of an ERD (Entity Relationship
Diagram).” (http://www.datamodel.org) The SAS/EIS
software and SAS/MDDB Data Server software have not
yet been implemented at SFWMD.
At the present time, the primary “corporate” hydrologic and
water database in use at the South Florida Water
Management District is an ORACLE database known as
DBHYDRO. A menu-driven Oracle Forms 4.5 application
HYDRO_PREP is used to define the data to be retrieved
from DBHYDRO. Separate databases are maintained by
different organizational units within the agency for GIS
Data (in ARC-INFO), Real Estate Data (Land Acquisition
Management Information System (LAMIS) in ORACLE),

Permit Data Regulatory Database ((REGDB) in ORACLE),
ROSS Human Resources and Payroll System. Recently,
the Water Management and the Corps of Engineers made
the decision to use the Oracle 8i System as the Central
CERP Data Warehouse (the CERP Zone),
“In the 1990s SAS caught up with the rest of the computer
world going from a programming style language, to a
graphic and menu oriented, user friendly package. The
program was also rewritten in C. (Presentation by R.
Thomas James to South Florida Water Management
District Unix Users’ Group, August 28, 1995).” In
March, 1999 the South Florida Water Management District
completed its IT Strategic Plan, FY 2000-2003. The
District IT Strategic Plan has several Key Findings
relating to Data Warehousing and Integration, including:
 “The District lacks an organized information structure that
permits easy access to all District data, information, and
knowledge and provides integrated tools to analyze and
synthesize data. Currently District data is housed in
isolated systems that are generally not accessible to one
another or by end users. Many different tools on many
different platforms are used to analyze and synthesize
these data. The resulting reports are often generated in
incompatible formats that cannot be easily distributed.
“Information in each operational system is often not readily
available to District Employees, as well as to the public. As
a consequence, data is often duplicated and extra
systems are created. System users must know and use
multiple processes to access and update the same data . .
.. “It is acknowledged that a certain level of compatibility is
necessary to ensure that each tool can meet the needs of
all District users. However, needs also exist that must be
met by very specific solutions. Therefore, a level of
‘service utility’ needs to be defined. These utilities include
network interfaces/protocols, database systems, operating
systems and platform standards. Beyond that point,
customization can occur to meet the specific needs
without diverging from the standards that allow for the
integration. Significant evidence of integration includes
Ease of data sharing
Compatibility with the defined service utility layers of the
infrastructure.
Web interface. . . .
 District employees constantly deal with integration
issues when they exchange information with other
organizations. Integration issues occur when the District
or the other agency:
Have a different version of the software
Utilize a different vendor’s software
Utilize different media types
Utilize different data standards”

(South Florida Water Management District, I. T. Strategic
Plan, pp. Key Findings-6-11).

The I. T. Strategic Plan has identified a strategy,
“Encourage adherence to industry standard software,
utilize a lowest common denominator standard when using
dissimilar types for exchanging, and develop a knowledge
base of exchange methodologies among organizations
and publish it on the District’s Web (South Florida Water
Management District, I. T. Strategic Plan, p. Key Findings-
11). Even though the main Data Warehouse for CERP will
be an Oracle 9i System much of the data will be
exchanged with SAS applications. Through SAS/ACCESS
Interface to Relational Databases.

The Comprehensive Everglades
Restoration Program
The Comprehensive Everglades Restoration Program is a
joint program between the U./// S. Army Corps of
Engineers and the South Florida Water Management
District. The Comprehensive Everglades Restoration
Program is authorized under Section 601 of the Water
Resources Development Act of 2000 (WRDA 2000). This
act provides, in part,
“(A) IN GENERAL- Except as modified by this section, the
Plan is approved as a framework for modifications and
operational changes to the Central and Southern Florida
Project that are needed to restore, preserve, and protect
the South Florida ecosystem while providing for other
water-related needs of the region, including water supply
and flood protection. The Plan shall be implemented to
ensure the protection of water quality in, the reduction of
the loss of fresh water from, and the improvement of the
environment of the South Florida ecosystem and to
achieve and maintain the benefits to the natural
system and human environment described in the Plan,
and required pursuant to this section, for as long as the
project is authorized.”

On May 12, 2000 a Design Agreement between the
Department of the Army and the South Florida Water
Management District for the Design of Elements of the
Comprehensive Plan for the Everglades and South Florida
Ecosystem Restoration Project (CERP) was signed. This
Design Agreement, among other things, mandates the
preparation of a Master Program Management Plan
(MPMP). This Master Program Management Plan contains
an Appendix F, discussing Programmatic Activities.
Programmatic activities are defined as “ . . . activities and
tasks that are not linked to a specific project, but involve or
affect more than one project or the entire restoration
program. These activities include Restoration
Coordination and Verification (RECOVER), public
outreach, socioeconomic and environmental justice
studies, program management and technical co-ordination
activities.” (Master Program Management Plan
(http://www.evergladesplan.org/pm/docs/mpmp_08182000
/MPMP%20Appendix%20F%20-
%20Final%20000818.pdf))
Environmental justice, a particular concern of the CERP, is
mandated by Executive Order 12898 signed by President
Clinton on February 11,1994. This Order states, in part,
“To the greatest extent practicable and permitted by law,
and consistent with the principles set forth In the report on
the National Performance Review, each Federal agency
shall make achieving environmental justice part of its
mission by identifying and addressing, as appropriate,
disproportionately high and adverse human health or
environmental effects of its programs, policies, and
activities on minority populations and low-income
populations.” Census data, particularly small-area studies,
play an important part in targeting CERP-related activities
to identify and address environmental justice issues.

The Water Resources Development Act of 2000, the
Federal Legislation authorizing much of the work under
the CERP specifically addresses environmental justice
concerns as shown below.
OUTREACH AND ASSISTANCE-

(1) SMALL BUSINESS CONCERNS OWNED
AND OPERATED BY SOCIALLY AND
ECONOMICALLY DISADVANTAGED INDIVIDUALS- In
executing the Plan, the Secretary shall ensure that small
business concerns owned and controlled by socially and
economically disadvantaged individuals are provided
opportunities to participate under section 15(g) of the
Small Business Act (15 U.S.C. 644(g)).

 (2) COMMUNITY OUTREACH AND EDUCATION-

(A) IN GENERAL- The Secretary shall ensure
that impacts on socially and economically disadvantaged
individuals, including individuals with limited English
proficiency, and communities are considered during
 implementation of the Plan, and that such individuals
have opportunities to review and comment on its
implementation.

 (B) PROVISION OF OPPORTUNITIES- The
Secretary shall ensure, to the maximum extent
practicable,that public outreach and educational
opportunities are provided, during implementation of the
Plan, to the individuals of South Florida, including
individuals with limited English proficiency, and in
particular for socially and economically disadvantaged
communities”

.
Example Using SAS/ETS and NMFS
Data-

 Data on monthly West Coast of Florida pink shrimp
landings were obtained as an ASCII file from Guy
Davenport of the National Marine Fisheries Service Miami
Office. Data covering the period May, 1966 to August,
1998 was analyzed. The NMFS data extraction tool could
not be used to generate the data set because monthly
landings before 1990 are not on the system. The NMFS
ASCII file was imported, using the import Wizard into SAS,
and a SAS data set “shrimppounds.sas” was set up.
The NMFS data was augmented with monthly flow data
(maximum flow and average flow data for the Taylor
Slough Bridge located at the mouth of the Caloosahatchee
River, near Fort Myers) from the District’s DBHYDRO
database. Harvest data was obtained by water bodies;
however, for the purposes of this presentation only the
aggregate West Coast of Florida data is presented.
A polynomial distributed lag model using the iterated Yule-
Walker (method= ITYW) autocorrelation correction
method is estimated. The iterated Yule _Walker method is
described as: follows:

Let ���������represent the vector of autoregressive parameters
���� = (�1,, �2, �3, . . ., �m)’
and let the variance matrix of the error vector
�=(�1,. . . , � N))’ be ����
E(��’) = ���� =�2V.

If the vector of autoregressive parameters � is known, the
matrix V can be computed from the autoregressive
parameters. ���� is then �

2V. Given ���� , the efficient
estimates of regression parameters can be computed
using generalized least squares(GLS). The GLS estimates
then yield the unbiased estimate of the variance , �2.

The Yule-Walker method alternates estimation of � using
generalized least squares with estimation of � using the
Yule-Walker equations applied to the sample
autocorrelation function. The YW method starts by forming
the OLS estimate of �
 . Next, � is estimated from the sample autocorrelation
function of the OLS residuals using the Yule-Walker
equations. Then V is estimated from the estimate of � ,
and is estimated from V and the OLS estimate of �2. The
autocorrelation corrected estimates of the regression
parameters � are then computed by GLS using the
estimated ���� matrix. These are the Yule-Walker
estimates.
If the ITER option is specified, the Yule-Walker residuals
are used to form a new sample autocorrelation function,
the new autocorrelation function is used to form a new
estimate of � and V, and the GLS estimates are
recomputed using the new variance matrix. This
alternation of estimates continues until either the
maximum change in the �-hat estimate between iterations
is less than the value specified by the CONVERGE=
option or the maximum number of allowed iterations is
reached. This produces the Iterated Yule-Walker
estimates. Iteration of the estimates may not yield much
improvement.
The Yule-Walker equations, solved to obtain �-hat and a
preliminary estimate of �2, are R �-hat=-r.

This discussion, along with a discussion of alternative
autocorrelation correction methods, is in the on-line
SAS/ETS User’s Manual at the link below.
http://calcul.si.uji.es/Programes/SAS/ets/chap8/sect21.htm

Because pink shrimp harvest is, by definition, non-
negative, the regression was forced though the origin
using the noint option, as shown in the SAS code below.

 proc pdlreg data=shrimppounds;
 model all=sinterm costerm real_price
aveflow(12,2,1) maxflow(12,2,1)/noint NLAG=12
METHOD=ITYW;
output out=shrimp P=predict R=resid;
run;

The variables included in the above model statement are:
All = monthly pink shrimp landings in the West Coast of
Florida (Gulf) region, pounds;
Time= a time-trend variable equal to 1 in May, 1966 and
increasing one unit per month thereafter;
Sinterm= SINE((2�/12)*Time);
Costerm =COSINE((2���	
*Time);
Real_price = (Pink shrimp revenue/Pink shrimp
landings)/CPI(1982-84 base), ($/pound)
The CPI data was retrieved from the BLS web site:
http://stats.bls.gov/cpihome.htm

Aveflow= average monthly flow (cfs) through the S-79
water control structure, as reported by the South Florida
Water Management District;
Maxflow= peak flow (cfs) during a particular month through
the S-79 water control structure, as reported by the South
Florida Water Management District

The pink shrimp landings and revenue data will
periodically be updated from the NMFS web site:
http://www.st.nmfs.gov/st1/commercial/landings/monthly_l
andings.html

“Florida is divided into three areas (East coast, West
coast, and inland waters) in our surveys. Florida east
coast and inland water landings are summarized with
South Atlantic states and Florida west coast landings are
summarized when Gulf landings are requested.”
http://www.st.nmfs.gov/webplcomm/plsql/webst1.ft.
help.species_

The terms sinterm and costerm are included to capture the
seasonality of pink shrimp landings. The underlying theory
is based on spectral analysis, which is explained in the
SAS/ETS User’s Guide under PROC SPECTRA at the link
below.
http://calcul.si.uji.es/Programes/SAS/ets/chap17/sect1.htm
The model estimation results are shown below.

The SAS System 13:29 Thursday, April 12, 2001

 The PDLREG Procedure

 Dependent Variable All

 Ordinary Least Squares Estimates

 SSE 3.67472E14 DFE 367
 MSE 1.00129E12 Root MSE 1000643
 SBC 11501.0457 AIC 11465.6794
Regress R-Square 0.8199 Total R-Square 0.8199
Durbin-Watson 0.6403

 NOTE: No intercept term is used. R-squares are redefined.

 Standard Approx
 Variable DF Estimate Error t Value Pr |t|

 sinterm 1 618053 86585 7.14 <.0001
 costerm 1 -1079908 85167 -12.68 <.0001
 real_price 1 301966 43690 6.91 <.0001
 Aveflow**0 1 -182.6894 41.9764 -4.35 <.0001
 Aveflow**1 1 -140.5207 47.8809 -2.93 0.0035
 Aveflow**2 1 -5.4397 47.4891-0.11 0.9089
 Maxflow**0 1 146.7356 23.3197 6.29 <.0001
 Maxflow**1 1 70.6262 30.1774 2.34 0.0198
 Maxflow**2 1 16.9913 30.4533 0.56 0.5772

Yule-Walker Estimates

 SSE 1.65816E14 DFE 355
 MSE 4.67087E11 Root MSE 683438
 SBC 11280.5936 AIC 11194.1427
 Regress R-Square 0.3123 Total R-Square 0.9187

 NOTE: No intercept term is used. R-squares are
redefined.

 Autoregressive parameters assumed given.

 Standard Approx
 Variable DF Estimate Error t Value Pr >|t|

 TIME 1 7070 1606 4.40 <.0001

 costerm 1 -1040981 122991 -8.46 <.0001
 sinterm 1 619130 125400 4.94 <.0001
 real_price 1 47085 81588 0.58 0.5642
 Aveflow**0 1 8.5493 61.0774 0.14 0.8888
 Aveflow**1 1 -97.2570 45.5037 -2.14 0.0333
 Aveflow**2 0 0 . . .
 Maxflow**0 1 4.2912 36.5003 0.12 0.9065
 Maxflow**1 1 53.0982 28.0952 1.89 0.0596
 Maxflow**2 1 6.5254 13.3478 0.49 0.6252

 Additional output from PROC PDLREG and simulated
and forecast values are available from the author upon
request.

 The model estimated above can be used to model
simulated impacts to West Coast of Florida pink shrimp
landings from changes in exogenous variables including
water flows, real price, and seasonality. A number of the
scenarios being examined for the Comprehensive
Everglades Restoration Plan will alter flows through the S-
79 water control structure. The results show that there is a
strong seasonal pattern to pink shrimp landings, and that
increases in average flows tend to increase pink shrimp
landings, while increases in maximum daily flows,
representing flushes of fresh water, tend to decrease
landings. All of these effects take place with a lagged
effect. It is hypothesized that this reflects the spawning
and growth cycles cycle of pink shrimp. Increases in
real prices are associated with increased landings; this
relationship needs to be further investigated through an
econometric model that examines both supply-related
factors and demand-related factors.

Conclusions
The BLS and Census Bureau Data FERRETT system and
other data extraction tools are useful in generating SAS
data sets (and ASCII files for import into SAS and other
statistical applications) for statistical and econometric
analysis. The Data FERRETT is better suited, at the
present time, to extracting cross-sectional and recent data;
BLS and the Census Bureau have other data extraction
tools better suited to generating long-time series (pre-
1990). Other Federal, state, and regional agencies, such
as NMFS and the South Florida Water Management
District, generally have usable databases, although these
agencies, particularly the Water Management District,
have made less progress in making their data readily
accessible than have BLS and the Census Bureau.
A major challenge to all agencies in building data
warehouses will be appropriately integrating spatially
disaggregated data (such as TIGER) files and time-series
data sets with a long period of record and/or a short time-
step. A number of sites, including National Climatic Data
Center, are developing point-and-click data access tools,
like MAPSTATS, which are integrated with a geographical
information system.

Data Quality – Spinning Straw Into Gold
Bob Brauer, DataFlux Corporation™, Cary, NC

DATA QUALITY TODAY
The issue of data quality is a simple one. As IT spending
soars and organizations continue to spend a large portion
of their IT budgets on Business Intelligence applications
such as data warehousing, customer-relationship
management, data mining, marketing automation, and
sales force automation, the importance of the underlying
source of data that feeds these applications has become
increasingly higher. After all, well into the Information Age,
organizations have become entirely data-driven. Rare is
the employee who does not come into daily contact with
an element of information originating from a company’s
various databases. Critical business decisions and
allocation of resources are made based upon what is
found in the data. Prices are changed, marketing
campaigns created, customers are communicated with,
and daily operations evolve around whatever data points
are churned out by an organization’s various systems. In
other words, companies are living and dying as a result of
the information contained within their data.

THE ISSUE OF DATA QUALITY
This is hardly a distressing affair. After all, what we yearn
for from our information systems is more efficiency and
increased effectiveness in every facet of the organization,
and that is precisely what these business intelligence
systems can deliver, with one small catch. The data that
serves as the foundation of these systems must be good
data. Otherwise, we fail before we ever begin. It doesn’t
matter how pretty the screens are, how intuitive the
interfaces are, how high the performance rockets, how
automated the processes are, how innovative the
methodology is and how far-reaching the access to the
system is, if the data is bad - the systems fail. Period. And
if the systems fail, or at the very least provide inaccurate
information, every process, decision, resource allocation,
communication, or interaction with the system will have a
damaging, if not disastrous, impact on the business itself.
Worst of all, all the money and resources spent within IT
on the development and deployment of these Business
Intelligence systems will go down the proverbial toilet, and
can negatively effect, sometimes severely, the operations
and success of the company we all dedicate our lives to
on a daily basis.

WHY ARE DATA QUALITY ISSUES SO
RAMPANT?
Nothing discussed up to this point falls short of obvious.
While it is certainly true that data quality is often
overlooked in the race for glory and on-time delivery
during the development of information systems, rare is the
individual who claims that data quality is not an important
issue and should be addressed. However, rarer still
seems to be the individual who strives to actually make it
a high priority issue during systems development, and

something that is part of the agenda of every status
meeting that discusses the success of a particular
information system. This can be quantified by a report
from the META Group indicating that 75% of companies in
the United States have yet to implement any kind of data
quality procedures to their systems development
lifecycles. Of those that have, the majority report that the
current implementations fall far short of what the
organization requires. This is a phenomenon worth
considering closely.

There are several reasons why the issue of data quality
often gets swept under the carpet during the design,
development, and deployment of information systems.
While there are certainly others, three primary reasons will
be discussed here. They are attractiveness of the subject
matter, the cost and difficulty in implementing data quality,
and the inability to demonstrate ROI.

The first reason to tackle is attractiveness of the subject
matter. Data Quality is right up there in frequency with
Cobol performance-tuning and fax-machine maintenance
as a career objective among today’s IT professionals.
Most engineers are interested in the latest and greatest
hot technologies and areas such as graphical interface
and screen development and all the aesthetic arts
involved. They also tend to have an interest in
applications programming and all of the latest
technologies surrounding it such as Java, Visual Basic,
Cold Fusion, and all of the algorithmic challenges that
solutions development offers. And of course, the Internet
and its many flavors of technological know-how also tend
to seduce the more ambitious among us engineers from
what we consider to be the mundane tasks of data quality.
After all, it is a safe bet that most IT professionals can
count the number of people who consider themselves to
be a “data quality engineer” on one hand. This is an
unfortunate circumstance as some of the most
challenging algorithms that the art of computer science
has to offer can be found in the practice and
implementation of data quality to a problem set that is
more often than not unique from organization to
organization. Also, as more and more exciting
technologies begin to emerge in this area as we are
seeing now, the momentum of the science should also
increase.

Perhaps it is the word “quality” that causes many to cringe
when the term is discussed, and another term ought to be
interchanged with it to broaden its appeal. “Director of
Data Management”, “Data Effectiveness Researcher”, and
“Data Infrastructure Engineer” would be among the list of
candidates that executive management may want to
consider when assigning titles to what we all agree is a
very important issue within the organization.

Data Warehousing and Solutions

A second major reason that Data Quality is often ignored
is because of the general consensus that the
implementation of data quality procedures and tools is a
costly and resource-intensive undertaking. While it is
certainly not disputed that the science of data quality can
and should extend beyond software technology, there are
a great deal of software solutions that are available in the
industry that will take an organization a long way in
overcoming their data quality challenges, and enable it to
enjoy the fruits and savor the success that these
applications can deliver. Unfortunately, these solutions
have traditionally been very expensive (in the six and
seven figure ranges), very difficult to work with (engineers
from the vendor as customization consultants long-term
are the norm), encumbering to implement (data typically
has been required to be exported off-line before even
simple quality analysis and other various data quality
functions can occur), and therefore have had very long
implementation cycles (often 18 months). Doing the math
clearly demonstrates that these kinds of solutions have
traditionally been well out of reach financially from all but
a very select few, and even more so for those of us who
do not have the luxury of multi-year development
schedules.

Fortunately, this is dramatically changing, and data quality
technologies are emerging that eliminate practically all of
the aforementioned barriers to introducing data quality
into the development life cycle, as well as practically
anywhere else along the information technology
landscape. It is important to point out that since barriers
such as high cost of entry, usability, lack of piece-wise
availability, and time of implementation are being
eliminated, the idea of high Data Quality is permeating out
of the enterprise IT departments. It is now found
departmentally, on a project-by-project basis, and even in
non-IT departments such as marketing, sales, and
operations. This has allowed the technology to be utilized
not only on the largest DB2 driven mainframe-oriented
systems, but all the way down to Microsoft Access
databases and at every platform step along the way. In
fact, there are now free data quality analysis tools
available to any organization that can be implemented in
minutes on practically every platform. This can help an
organization ascertain to what extent they may be facing
data quality issues. Giving these free-of-charge analysis
tools an opportunity to provide an information system a
thorough data quality checkup is a no-brainer. Vendors
have discovered that demonstrating data quality issues
easily and quickly via technology are a pre-cursor to a
customer acquiring further technology from the vendor
that can resolve many of these same issues. SAS® and
DataFlux have pioneered a great deal in this area and
these innovations are now currently available.

This is a good lead-in to the third primary reason that data
quality is often overlooked, and that is the inability to
demonstrate clearly the return-on-investment of data
quality technologies. Since there are many different
flavors and aspects of data quality, there are differing
degrees to the extent of this situation. For example,
undoubtedly one can easily calculate postage saved in a
marketing database that has a duplicate record level of

30% of the records (the same individual or organization
appearing multiple times within a dataset under different
variations of their name and address) if those duplicates
can be discovered and removed. However, it is often not
so clear what dollar amount can be placed on data that is
inaccurate or otherwise missing from a dataset, or to what
degree data inconsistency within a dataset can affect the
results of queries and reports that are used as the basis of
decision-making, and what the financial impact is of poor
decisions that are made as a result of faulty or inaccurate
information. Since this is often the case and ROI analysis
of data quality procedures are far from a science,
persuasion of management and spending authorities can
be a difficult challenge when resources are doled out from
the top of the mountain.

Interestingly enough, data quality lends credence to the
phenomenon that the most obvious and blatant solutions
are often those most overlooked. Sometimes exercises in
data quality impact analysis produce ROI figures that are
so astronomical that they are simply dismissed as absurd.

To demonstrate this, let’s consider the example of a
typical banking institution.

Research has shown that the average banking customer
contributes $3000 per year to his or her bank (the
culmination of mortgage interest, auto loans, banking
fees, securities management, etc.), or $15,000 over a
five-year period. Suppose a bank with a million customers
implements data quality technology across the enterprise
enabling a greater success in all data-driven activities
such as customer interaction, marketing personalization,
cross-selling, and accurate business analysis results in an
increase of a mere 2% of new business. The resulting
impact numbers can be astounding. This would be the
equivalent of adding 20,000 new customers, multiplied by
$15,000 over a five-year period, or $300 million dollars.
And that is at a paltry 2%. It should be clear that while this
is a simplified analysis, similar more-detailed analysis
numbers that produce similar results often leave
executives scratching their heads and thinking, “What
have I missed here?” Usually, the answer is nothing.

THE RISKS AND COSTS OF NON-QUALITY
DATA
The previous example is indicative of some of the
processes that can reap huge benefits to an organization
via data quality technology. However, inattention to data
quality does not just result in missed opportunities, it can
leave broad risk exposure and countless shortfalls from a
data quality perspective, including lost dollars, lost
customers, and even legal ramifications. The following are
some examples that demonstrate the great pains that can
be suffered if we continue to avoid data quality as a
management priority.

• In a conservative estimate, more than 175,000
IRS and state tax refund checks were marked as
‘undeliverable’ by the post office last year.

• Three zeros inadvertently added and reported as
a trade volume amount of an inside executive of
a public company in Atlanta caused its stock to
plummet over 30% in one day.

Data Warehousing and Solutions

• After an audit, it was estimated that 15-20% of
voters on voter registration lists have either
moved or are deceased when compared to data
gathered from post office relocation data.

• An acquiring company learned long after the deal
was closed that their new consumer business
only had ½ the customers as they thought
because of the large presence of duplicate data
in the customer database.

• A fiber-optics company lost $500,000 after a
mislabeled shipment caused the wrong cable to
be laid at the bottom of a lake.

• A mailing order company faced massive litigation
because it was unable to catch bogus, insulting
names from being entered into the catalog
request section of their website that were
ultimately mailed to unsuspecting and then
humiliated receivers of the catalog.

• The US government estimates that billions of
dollars are lost annually due to poor data quality.

It is staggering. Estimates have shown that 15-20% of
data within an organization’s databases can be erroneous
or otherwise unusable, leading to an enormous effect on
the bottom line.

The issue is compounding to a greater extent in the age of
the Internet. We now have less control over the data
collection mechanisms that feed our information systems
such as website forms or B2B XML channels. These
external data suppliers are growing more common by the
day. Also, we have a much higher level of access to
corporate data via the Internet by our customers,
demanding a greater degree of accuracy still.

A CLOSER LOOK AT ACTUAL DATA
QUALITY ISSUES
So far, we have discussed data quality and its
ramifications in broad strokes. Now, the discussion turns
to the kinds of basic data quality issues that IT
professionals run into regularly, and how these can affect
the results of the business intelligence applications that
we rely on daily.

INCONSISTENTLY REPRESENTED DATA
Unfortunately, data can be ambiguously represented. This
fact often is positioned at the very root of an
organization’s data quality issues. If multiple permutations
of a piece of data exist within a dataset, then every query
or summation report generated by the dataset must
account for each and every instance of these multiple
permutations. Otherwise, important data points can be
missed and can severely impact the output of these
processes.

For example, a company name can be represented a
multitude of ways:

IBM, Int. Business Machines, I.B.M., ibm, Intl Bus
Machines

As can a business title:

VP Sales, Vice President Sales, V.P. Sales, Director of
Sales, VP SALES

Or an operating system:

Windows NT, WINDOWS, WIN NT, Windows NT 5, Win
NT 5.0

They all have the same meaning, but are represented
very differently. It is obvious to surmise what kinds of
analytical problems can and will arise if the same data is
dissimilarly represented within a dataset as these
examples demonstrate.

Imagine a life insurance company wanting to determine
the top ten companies that their policyholders work for in
a given geographic region in order to tailor policies to
those specific companies. Inaccurate aggregation results
are likely because of all the permutations of data for a
given company name will be difficult to account for.

Imagine a marketing campaign that personalizes its
communication based upon the business title of the
prospect. Variations in business titles can have a
nightmare effect on these types of focused campaigns,
and can cause improper personalization or too many
generic communication pieces to be generated, wasting
dollars on both material production and creative efforts of
the group.

User base platform analysis by a software company could
produce improper results if the data looks like it does in
the platform example cited.

While these are simple data inconsistency examples,
these and other similar situations are endemic to
databases worldwide. Fortunately, data quality technology
now exists that identifies these various permutations of
data and can rectify the situation a number of ways,
including physically standardizing the data within the
dataset, creating synonym tables/filters, or correcting
undesired permutations before they enter the dataset in
the first place.

DUPLICATE DATA
Another common example of a data quality issue is
duplicate/redundant data. Again, because data can be
ambiguously represented, the same customer, prospect,
part, item for sale, transaction, or other important data
could be occurring multiple times. In cases like these, the
redundancy can only be determined by looking across
multiple fields.

The following are examples of duplicate data that cannot
be caught without some form of data quality technology
(or else long, endless hours of human inspection, unlikely
to catch as high of a percentage, and impossible with
anything more than small volumes):

Robert Smith, 100 E Johnson Street

Data Warehousing and Solutions

Bob Smythe, 100 East Johnson
Dr. Robert J. Smith, 100 E. Johnston St.

Ms. Kathleen Anderson, Box 12 – 9 Canary Street
Katie Andersen, 9 Canary St. #12

Large Camping Knife
Knife, Camping Lg.

The Briggs Corporation, Saint Louis
Brigs Corp, St. Louis

Problems that can arise from redundant data within a
dataset include inaccurate analysis, increased
marketing/mailing costs, customer annoyance, and
relationship breakdown across a relational system. Again,
as data such as this serves as the foundation and
infrastructure of our business intelligence systems, it is
imperative that these situations be identified and snuffed
out in order to achieve success.

DATA INTEGRATION
One of the close sisters of duplicate data is the issue of
data integration. This becomes a data quality issue when
the columns that constitute the join fields between multiple
datasets may contain data that is inconsistently
represented. For example, trying to combine a customer
table with an outside demographic data source will have
undesirable results if the join column is a column
commonly containing ambiguous representations of data
such as company name:

Data Source A (Customer Dataset)
Columns: Customer Name, Contact
Data: First Bank of Denver, Joe Snow

Data Source B (Demographics)
Columns: Company Key, Num Employees, Business
Type, Annual Sales
Data: The 1st Bank of Denver, 850, Financial, $62 million

Obviously a standard SQL join statement would not
recognize that these two banks are the same and
therefore the demographic data would not be joined to the
customer data.

One way to achieve a join that would indeed succeed in
this scenario is by using a match code that
unambiguously represents the company name. Data
quality algorithms can be used to generate this
unambiguous code. The code itself might be represented
by something covert, such as RX19E4, however the same
code will be generated when any permutation of the “First
Bank of Denver” is passed through the match code
generation algorithm. This unambiguous code then
becomes the basis of the match between data sources,
and can be constructed using any number and
combination of columns. These codes can be stored as
an extra column in each data source, stored in a
temporary table or file, or generated solely at runtime.

While data integration may not be considered a “quality”
problem by some, the same types of algorithms and

procedures apply that can achieve much higher match
rates and therefore much better success when combining
data from multiple sources. Often, these integrated
datasets form the basis from which many business
intelligence applications thrive.

DATA VERIFICATION AND AUGMENTATION
One final area of data quality that will be discussed here
concerns the area of resolving missing and/or inaccurate
data by using an external data reference. This includes
not only filling in missing values and replacing inaccurate
values, but also adding additional data values to a record
or data observation that provides a more complete picture
of the entity that is being stored in the dataset. A common
example of this is using the United States Postal Service’s
master address database to verify and/or correct existing
addresses within a database, as well as append other
useful demographic postal data such as Zip+4, carrier
routes, congressional districts, counties, delivery points,
etc. This can greatly increase address integrity, as well as
provide a basis for additional applications such as
geocoding, mapping, and other visualization technologies
that require a valid address as a starting point. Obviously,
technology such as this can go a long way as an integral
part of a business intelligence application.

OTHER DATA QUALITY ISSUES
In addition to the data quality issues discussed here, there
are many others that should be given careful
consideration by any organization who has invested in
business intelligence applications. These include but are
not limited to data structural incompatibilities, missing
values, numerical data quality issues (can be identified
using techniques of statistical analysis), cross-column-
based correctness analysis (such as determination of
correct gender from name data), and a whole lot more. In
the aggregate, all of these issues if overlooked can
become extremely hazardous to the health of a data-
driven information system.

THE IMPERATIVE OF ASSESSING DATA
QUALITY
Now that we have established a firm understanding of
what Data Quality is, as well as its impact, it is now time to
turn our thoughts to what can be done about it. As the old
adage declares, every great journey begins with the first
step. In the case of data quality, this first step is data
quality assessment. The fact that a data quality
assessment step is missing from the development plans
of many project leaders is not only dumbfounding, it truly
ought to be grounds for dismissal. Every system that has
data relies on that data heavily (or else the data wouldn’t
be there) for its success, and anybody who eliminates
data quality from the development process is acting
irresponsibly. This may have been understandable in the
past as analysis tools were not readily available to assess
data quality, but now not only are they available, they are
often available for free and require very little time to
utilize. Now that we understand the impact of poor data
quality, inattention to it is inexcusable.
In addition to the analysis and exception-finding tools
available for this purpose, data quality assessment should
at the very least consist of the following questions:

Data Warehousing and Solutions

• How do we know our data isn’t bad?
• What would constitute “bad data” from our

perspective?
• If it were bad, what kind of effects might it have

on our various systems?
• What points of data collection might cause data

quality issues to occur?
• If we had a more accurate data foundation, what

could we then accomplish?
• Where specifically are our costs of data

imperfections high?
• What non-technology processes could be

introduced to increase our level of data quality?
• What technology is available to assist us in our

efforts?
• What quantifiable ways can we demonstrate ROI

to executive management?

Attention to these questions as well as ones that pertain
specifically to a certain type of system or business
intelligence application will shed much light on how these
issues can be contained if not resolved entirely. A
meticulous data quality assessment will undoubtedly
provide the blueprint for a solid data quality solution.

WHAT SAS AND DATAFLUX ARE DOING
ABOUT DATA QUALITY
On June 9, 2000 SAS acquired the DataFlux Corporation
in an effort to enhance the data infrastructure solutions
currently offered to its customers, and underscore the
importance of data quality as a cornerstone of any data-
driven initiative.

DataFlux has developed many award-winning data quality
technologies that are used throughout multiple industries
today. These technologies tackle many of the issues that
were discussed throughout this paper and many of those
not discussed here, as well as providing easy to
implement, cost-free data quality assessment as also
emphasized herein. SAS has integrated some of these
technologies currently, and will continue to integrate many
more into SAS products such as the Data Warehouse
Administrator, as well continuing to offer the DataFlux
product line to the market.

More specifically, the DataFlux offering includes a suite of
data quality and data integration tools that can assist
significantly in the development of a bulletproof data
foundation integral to any data-driven business
intelligence endeavor. dfPowerTM Studio 4.0 is a
comprehensive data quality and data integration solution
that focuses on many data quality issues such as
standardization, matching, data verification, de-
duplication, data integration, accuracy, and data quality
business rule management. These technologies are
delivered via an intuitive interface, and are packaged with
many other enabling technologies such as database
access, providing an easy-to-use and easy-to-implement
multi-faceted data quality solution.

For developers, DataFlux also provides its Blue FusionTM

SDK, a series of functional libraries that contain many of
the algorithms that comprise the core of dfPower Studio
4.0. The covers have been taken off and the algorithms
delivered as components, allowing developers to build
data quality directly into any application.

The two offerings also work very well together as a
completely integrated solution, providing the ability to
include data quality and better data integration at
practically every point within the organization.

A GOLDEN OPPORTUNITY
In conclusion, it is very clear that data quality processes
can have tremendous impact on the bottom line of an
organization. Now that the available technologies in this
area are gaining momentum and improving immensely
with every new release date, the effects of poor data
quality are no longer inescapable. Well thought-out data
quality assessment combined with state-of-the-art data
quality technology will take an organization a long way in
achieving its goals of accuracy, consistency, usability, and
completeness of all of its electronic data assets. An
understanding and facilitation of these concepts will
continue to be a bellwether for business intelligence
success.

REFERENCES

English, Larry P. 1999. Improving Data Warehouse and
Business Information Quality – Methods for reducing
costs and increasing profits. Jon Wiley and Sons, Inc.
New York, NY.

META Group, Inc. Stamford, CT

The author may be contacted at:

Bob Brauer
 DataFlux Corporation
 4001 Weston Parkway, Suite 300
 Cary, North Carolina 27513
 (919) 674-2153
 Fax: (919) 678-8330
 Email: bobb@dataflux.com
 Web: www.dataflux.com

Data Warehousing and Solutions

Paper #P108

Using the SAS ACCESS Engine for DB2 OS/390 to Bulk Load Tables
Robert E. Maitland Jr., BlueCross BlueShield of Florida, Jacksonville, Florida

Tom Weber, SAS Institute, Cary, North Carolina
George Bischoff, Bank of America, Richmond, Virginia

ABSTRACT

The Bank of America Enterprise Data Warehouse
resides in a DB2 OS/390 environment. The optimal
method for joining a SAS data set with a DB2 table is to
convert the SAS data set to a DB2 table. SAS version
8.2 supports bulk loading capabilities (within the SAS
ACCESS engine for DB2 OS/390) by utilizing the IBM
stored procedure DSNUTILS. Normally, data is inserted
into a DB2 table one row at a time. Now, data can be
bulk loaded into the table in a fraction of CPU time.
Furthermore, this utility provides additional functionality.
For example, DB2 tables can now be runstat from within
SAS.

INTRODUCTION
The primary sources of data for many SAS users reside
in data warehouses and data marts. Many of these data
warehouses and data marts are built in relational data
base management systems (rdbms) that are not SAS.
SAS ACCESS provides a link for SAS users to utilize the
power of the rdbms to process their data before using
SAS to analyze it. With version 8, SAS has enhanced
this power through the SAS ACCESS LIBNAME engines.
This paper will focus on using the SAS bulk load
capability to load a SAS data set into a DB2 table on
OS/390 via the SAS ACCESS LIBNAME DB2 engine.
First, we will provide a brief discussion of why users
need to create tables in the rdbms and some of the
factors they must take into consideration. Then, we will
compare the methodology between the bulk load and
non-bulk load technique. Next, we will provide an
example using the bulk load.

USER TABLES IN AN RDBMS

Data warehouses tend to be large. Data marts are built
from data warehouses to provide a higher level of
performance for a line of business(s). They have fewer
columns and may have business rules/processing
applied before loading. The data mart can be on a
platform or an rdbms structure different from the
warehouse. Users can do a high percentage of their
work via the data mart but not all. Therefore, they have a
need to go back to the warehouse to obtain information
not provided in the data mart. Furthermore, there is still a
need to be able to handle data from external sources.
The tables in the warehouse tend to be large versus the
data sets that users need to join to them. Therefore, the
optimal method of joining a SAS data set to an rdbms
table is to convert the SAS table to an rdbms table.

When creating tables in an rdbms, there are some
performance considerations users need to be
aware of. First, the index/keys of the table(s) in the
rdbms should be duplicated on the user table.
They do not have to have the same name, but the
same columns should be on both tables. These
columns must be stored in the same format For
example, if one of the keys on the rdbms table is in
small integer, then the corresponding column on
the user table needs to be in small integer.
Creating that column in decimal will degrade
performance. Next, the user needs to create an
index on the table with the columns that replicate
the index/keys on the rdbms table(s). The user
then needs to run the program that calculates the
statistics for the user table and index. These steps
are required for the rdbms to use the index(s) of
the tables in the rdbms.

THE ADVANTAGES OF BULK LOAD

In version 6, SAS provided the DBLOAD
procedure to load tables in DB2. With version 8,
users can create tables using the LIBNAME
ACCESS ENGINE DB2. Both of these methods
use SQL in the background to create the tables in
DB2 and load the tables with SQL inserts. That is,
the tables are loaded one row at a time. (Of course
users can always use pass through SQL to
generate the create table and SQL insert
statements themselves.) This process is slow.
Furthermore, DB2 writes a line to the log for each
row inserted. This can cause the log file to over
flow. System performance can be degraded. Also,
users have to leave SAS to run the DB2 utility that
computes the statistics on the user table.

Version 6 of DB2 provides the capability of calling
a utility through a stored procedure. SAS version
8.2 calls the DSNUTILS procedure to perform the
bulk load. Large amounts of data can then be
loaded in the user table in a fraction of CPU time.
Furthermore, DSNUTILS has a great deal of
functionality. Users have access to that
functionality through SAS. They now have more
control over the parameters. For example, they
can turn the log off. More importantly, the runstats
utility can be called through DSNUTILS. Users no
longer have to leave SAS to call the runstats utility.

THE DSNUTILS STORED PROCEDURE

When the DSNUTILS procedure is called, SAS
generates the files needed for the utility:

� SYSIN

� SYSREC

� SYSPRINT.

The control statement is generated in the SYSIN file.
This file contains the instructions on how to load the table
and the structure of the physical sequential file used to
load the table: the SYSREC file. The SYSPRINT file
stores the results of the utility. By default, the SYSPRINT
file is also written to the SAS LOG.

There are a number of ways and options available when
calling DSNUTILS via SAS (see Weber). For this paper,
we are going to focus on the process of:

� Creating the table

� Creating the files needed to load the table.

� Creating the index.

� Loading the table.

� Doing the runstats.

The data can be found in the SASHELP library. It is the
company data.

CREATING THE TABLE

The DB2 table is created using a SAS data step and
specifying a LIBNAME statement with the DB2 engine.
This is the part of the data step that generates the DB2
table:

LIBNAME MYTABLE DB2 IN =
‘DATABASE.TABLESPACE’;

DATA MYTABLE.TEST_TABLE(
DBTYPE=(DEPTHEAD='CHAR(15)'
 JOB1='CHAR(15)'
 LEVEL1='CHAR(16)'
 LEVEL2='CHAR(13)'
 LEVEL3='CHAR(20)'
 LEVEL4='CHAR(30)'
 LEVEL5='CHAR(30)'
 N='SMALLINT')
.
.
SET TEST_DATA;
RUN;

The LIBNAME statement invokes the DB2 engine.
Table’s created/read will have the same owner/creator

as the user id. To access different tables use the
AUTHID option (see SAS OnLine Documentation).

The DB2 data base and table space that the table
will be loaded in are contained in the IN option.

The column names and types for the DB2 table will
match the variable names and types in SAS data
set found in the SET statement (TEST_DATA).
The DB2 default for character variables is VCHAR.
The default for numeric values is FLOAT. Using
the DBTYPE option can overwrite the default
values. For example, N will be created as
SMALLINT in the DB2 table.

INVOKING DSNUTILS AND CREATING THE
FILES NEEDED TO LOAD THE TABLE

Now we will add the options to the data step
statement that will invoke the DSNUTILS utility and
create the files it needs. However, we are not
ready to load the table because we have not
created an index. We need to runstat the table and
the index. The only way of creating the index in
DB2 is through the SQL pass through. We cannot
create the index until we have created the table.
Parameters are available which allow us to create
the files and run them later.
LIBNAME MYTABLE DB2 IN =
‘DATABASE.TABLESPACE’;

DATA MYTABLE.TEST_TABLE(
DBTYPE=(DEPTHEAD='CHAR(15)'
 JOB1='CHAR(15)'
 LEVEL1='CHAR(16)'
 LEVEL2='CHAR(13)'
 LEVEL3='CHAR(20)'
 LEVEL4='CHAR(30)'
 LEVEL5='CHAR(30)'
 N='SMALLINT')
DB2LDUTIL=YES DB2LDEXT=GENONLY
DB2LDCT1='RESUME NO
 LOG NO
 STATISTICS TABLE(ALL)
 INDEX(ALL)'
DB2IN='USERID.NAME.SYSIN'
DB2REC='USERID.NAME.SYSREC'
DB2RECSP=1000 DB2SPC1=1000 DB2SPC2=1000);
SET TEST_DATA;
RUN;

The DB2LDUTIL option calls the DSNUTILS
procedure. The default is no.

The DB2LDEXT=GENONLY causes the files to be
created but keeps the utility from being invoked.
The default value is GENRUN, where the files are
created and the utility is invoked.

 The DB2LDCT1='RESUME NO
 LOG NO
 STATISTICS TABLE(ALL)
 INDEX(ALL) ‘

statement passes these DB2 options to the SYSIN file.
An alternative to RESUME NO is REPLACE; but, be
careful. The REPLACE parameter causes everything in
the DB2 database/tablespace to be replaced. The LOG
NO turns off the log. The STATISTICS TABLE(ALL)
INDEX(ALL) parameters call the runstats utility.

The DB2IN and DB2REC options are used to give
names to the SYSIN and SYSREC files. If names are not
given then the files are generated using the user id as
the first node and system generated information for
subsequent nodes. Since we need to call these files in a
later step, we passed the system data set names.

The next three parameters are used to increase the file
space:

� DB2RECSP=1000
� DB2SPC1=1000
� DB2SPC2=1000

CREATING THE INDEX

The index is created using pass through SQL and DB2
parameters.

PROC SQL;
 CONNECT TO DB2(SSID=XXXX);
 EXECUTE(
 CREATE INDEX TEST ON USERID.TEST_TABLE
(LEVEL1,LEVEL2)
 USING STOGROUP SMSSG1
 PRIQTY 72000
 SECQTY 18000
 ERASE NO
 FREEPAGE 0
 PCTFREE 0
 BUFFERPOOL BP2
 CLOSE NO)
 BY DB2;
 %PUT &SQLXMSG;
 DISCONNECT FROM DB2;
QUIT;

LOADING THE TABLE AND INVOKING RUNSTATS

Now we will use the files created in the first step to load
the table and invoke the run stats utility.

DATA MYTABLE.TEST_TABLE(DB2LDUTIL=YES
DB2TBLXST=YES
DB2LDEXT=USERUN
DB2IN='USERID.NAME.SYSIN'
DB2REC='USERID.NAME.SYSREC');
 V=0;
RUN;

The DB2TBLXST=YES option tells SAS that the table
already exists. The default is NO. DSNUTILS loads an
existing table. It does not matter when the table is
created.

The DB2LDEXT is now set to USERUN. This tells
SAS to invoke the load utility and use files
previously created. These files are specified with
the DB2IN and DB2REC parameters. The call to
RUNSTATS is in the SYSIN file.

Note, there is no set statement. All the information
we need to load the table is in the DATA
statement. However, we need something to prime
the pump. Therefore, we use the assignment
statement: V=0. Since V is not a column in the
table, it is ignored in the processing.

SUMMARY

Version 6 of DB2 provides the capability of calling
a utility through a stored procedure. SAS version
8.2 calls the DSNUTILS procedure. DSNUTILS
has a great deal of functionality. We have provided
an example that utilizes some of that functionality
to bulk load a SAS data set into a DB2 table and
do the run stats through SAS.

REFERENCES

IBM Inc. (1999), DB2 UDB for OS/390 V6 Utility Guide and
Reference, IBM Inc.

SAS Institute Inc. (1999), “SAS ACCESS Engine DB2”, SAS
Version 8 Online Documentation, Cary, NC: SAS Institute Inc.

Weber, Tom, Load Utility Interface,Unpublished White Paper,
SAS Institute Inc. (2000), Cary, NC: SAS Institute Inc.

SAS is a registered trademark or trademark of the SAS
Institute Inc. in the USA and other countries. � indicates USA
registration.

ACKNOWLEDGMENTS
Special thanks to Hoang Le for assistance.

CONTACT INFORMATION
Your comments and questions are valued and encouraged.
Contact the author at:
Robert E. Maitland Jr.
BlueCross BlueShield of Florida
Enterprise Business Intelligence Tools Support
4800 Deerwood Campus Parkway DCC3-2
Jacksonville, Fl. 32246

Phone: 904-905-1401
EMAIL: bob.maitland@bcbsfl.com

APPENDIX
FILENAME OUT1 'C:\SSU Paper\SASHELP_COMPANY_DATA';
DATA TEST_DATA;
 INFILE OUT1;
 INPUT
 DEPTHEAD $Char15.
 JOB1 $Char15.
 LEVEL1 $Char16.
 LEVEL2 $Char13.
 LEVEL3 $Char20.
 LEVEL4 $Char30.
 LEVEL5 $Char30.
 N $2.;
RUN;
LIBNAME MYTABLE DB2 IN = ‘DATABASE.TABLESPACE’;
DATA MYTABLE.TEST_TABLE(DBTYPE=(DEPTHEAD='CHAR(15)'
 JOB1='CHAR(15)'
 LEVEL1='CHAR(16)'
 LEVEL2='CHAR(13)'
 LEVEL3='CHAR(20)'
 LEVEL4='CHAR(30)'
 LEVEL5='CHAR(30)'
 N='SMALLINT')
 DB2LDUTIL=YES DB2LDEXT=GENONLY
 DB2LDCT1='RESUME NO
 LOG NO
 STATISTICS TABLE(ALL)
 INDEX(ALL)'
 DB2IN='USERID.NAME.SYSIN'
 DB2REC='USERID.NAME.SYSREC'
 DB2RECSP=1000 DB2SPC1=1000 DB2SPC2=1000);
 SET TEST_DATA;
RUN;
PROC SQL;
 CONNECT TO DB2(SSID=XXXX);
 EXECUTE(
 CREATE INDEX TEST ON USERID.TEST_TABLE (LEVEL1,LEVEL2)
 USING STOGROUP SMSSG1
 PRIQTY 72000
 SECQTY 18000
 ERASE NO
 FREEPAGE 0
 PCTFREE 0
 BUFFERPOOL BP2
 CLOSE NO)
 BY DB2;
 %PUT &SQLXMSG;
 DISCONNECT FROM DB2;
QUIT;
DATA MYTABLE.TEST_TABLE(DB2LDUTIL=YES DB2TBLXST=YES
 DB2LDEXT=USERUN

 DB2IN='USERID.NAME.SYSIN'
 DB2REC='USERID.NAME.SYSREC');
 V=0;
RUN;

 Using the SAS/ACCESS® Libname Technology to Get Improvements in Performance and
Optimizations in SAS/SQL Queries

Fred Levine, SAS® Institute, Cary NC

ABSTRACT
This paper highlights the new features in the SAS/ACCESS
libname engines that, when used judiciously, can improve overall
engine scalability in the areas of loading/extraction, ASYNC I/O,
and SQL-based query optimizations.

The new loading/extraction engine features are:
• Multi-row reads
• DBKEY
• Bulk loading
• Multi-row writes

The new ASYNC I/O features are:
• PreFetch
• SAS server task switching

The new SQL-based query optimization features are:
• Implicit SQL-Passthru
• WHERE clause optimizations

Some of the above features are new in 8.2 whereas others
existed in prior releases but have been enhanced in 8.2.

INTRODUCTION
All of the SAS/ACCESS libname features discussed in this paper
are designed to improve scalability in specific processing
environments that warrant such improvements. The more
knowledge you have of your underlying data and how your DBMS
server and network are tuned to process that data, the more
knowledge you will have to be able to make wise decisions about
when to use these features to your advantage.

The examples used in this paper come from various
SAS/ACCESS libname engines. Not all features have been
implemented in all SAS/ACCESS engines. Please see the
SAS/ACCESS documentation for engine-specific information
where applicable.

Loading/extraction features
The features described below are designed to improve engine
performance in the area of loading and extracting data. They are
implemented as libname and/or dataset options and are easy to
use.

MULTI-ROW READS
The ability to extract your data as fast as possible is of
paramount importance. SAS/ACCESS libname engines
accomplish this internally by exploiting native API-controlled
multi-row read capabilities of the underlying DBMS. To activate
this feature, you specify the number of rows returned in a single
read operation via libname and/or dataset options. The following
example uses SAS/ACCESS to Oracle to specify 1000 rows per
read operation using the READBUFF dataset option:

libname myora oracle user=scott pw=tiger
readbuff=1000;

All tables from the schema defined by the above libname
statement will be read in 1000 row blocks. This feature can
improve performance for very large tables when your DBMS
server and network are optimally tuned (it should be noted that
setting the TCP Packet size on your network can make a big
difference in performance.)

The SAS/ACCESS libname engines that support API-controlled
multi-row reads are Oracle, Oracle Rdb, DB2/Unix, Sybase,
ODBC, and OLE/DB. Please note that not all DBMSs support
API-controlled multi-row reads although they often provide this
feature transparently. For further engine-specific information
about multi-row reads, please see the SAS/ACCESS
documentation.

DBKEY
The DBKEY data set option is used to improve performance
when joining a very small SAS data set to a large DBMS table.
Please note that if this feature is not used prudently it will not
improve performance, and in some cases can actually degrade
performance. The following conditions must be met to see
performance improvements with DBKEY:

• a very small transaction SAS data set
• a large master DBMS table

In addition, performance is often improved when DBKEY is used
in conjunction with the DBNULLKEYS data set option (see the
DBNULLKEYS section below for details).

HOW DBKEY WORKS
When you join a large DBMS table and a small SAS data set, the
DBKEY option enables you to retrieve only the required subset of
the DBMS data into SAS for the join. If you do not specify this
option, SAS reads the entire DBMS data into SAS and then
processes the join.

Using DBKEY can decrease performance when the SAS data set
is too large. This is because DBKEY causes each value in the
SAS transaction data set to generate a new result set (or open
cursor) from the DBMS table. For example, if your SAS data set
has 100 rows with unique key values, you request 100 result sets
from the DBMS which can be very expensive. You must
determine whether using this option is appropriate, or whether
you can achieve better performance by reading the entire DBMS
table (or creating a subset of that table).

Internally, the SAS/ACCESS libname engine generates a
WHERE clause of the form:

where column = host-variable

Note that ‘column’ is what was specified on the DBKEY= option.
The host-variable takes the value of ‘column’ from each row in
the SAS data set and generates a separate DBMS result set for
each of these values. As a result, only rows in the DBMS table
that match this WHERE clause are retrieved. Without DBKEY,
the above WHERE clause would not get internally generated

forcing SAS to read all the rows from the DBMS table before
processing the join.

USING THE DBNULLKEYS OPTION WITH DBKEY
The DBNULLKEYS data set option is used in conjunction with
DBKEY and has a direct effect on the internally generated
WHERE clause described above. If there is NULL data in your
DBMS table, then the generated WHERE clause will account for
NULLs as follows:

where ((column = host-variable)
OR ((column IS NULL) AND (? IS NULL)))

This WHERE clause generated the extra NULL conditions in
response to DBNULLKEYS=YES which tells the SAS/ACCESS
libname engine that the DBKEY column from the DBMS table
contains NULL data. However, when your DBKEY column from
the DBMS table does not contain NULL data, you should specify
DBNULLKEYS=NO which causes the SAS/ACCESS libname
engine to generate a simpler form of the WHERE clause without
the check for NULLs:

where ((column = host-variable)

It should be noted that when DBNULLKEYS=YES, the more
complicated WHERE clause that checks for NULLs has the
potential to be much less efficient than the simpler form of the
WHERE clause. This is why DBKEY works best for DBMS tables
that do not contain NULL data. Consider the following example:

/* SMALL SAS DATA SET */
5? data saslib.small;
6? do id=1 to 1000000 by 100000;

smalltext='Fra small'; output; end;
run;

7?
NOTE: The data set SASLIB.SMALL has 10

observations and 2 variables.

/* LARGE ORACLE TABLE */
33? data oralib.master;
34? do id=1 to 200000;

text='Master table';output; end;run;
35?
NOTE: The data set ORALIB.MASTER has 200000
observations and 2 variables.

Neither the SAS table nor the Oracle table contain NULL data.

The following data step join uses DBKEY with
DBNULLKEYS=YES :

11? data temp;
set saslib.small;
set oralib.master (dbkey=id

dbnullkeys=yes) key=dbkey ;
run;

NOTE: There were 10 observations read from
the data set SASLIB.SMALL.
NOTE: There were 10 observations read from
the data set ORALIB.MASTER.
NOTE: The data set WORK.TEMP has 10
observations and 3 variables.
NOTE: DATA statement used:

real time 20.55 seconds
cpu time 0.03 seconds

The following data step join uses DBKEY with
DBNULLKEYS=NO:

38? data temp;
set saslib.small;
set oralib.master (dbkey=id dbnullkeys=no)

key=dbkey ;run;
40?
NOTE: There were 10 observations read from
the data set SASLIB.SMALL.
NOTE: There were 10 observations read from
the data set ORALIB.MASTER.
NOTE: The data set WORK.TEMP has 10
observations and 3 variables.
NOTE: DATA statement used:

real time 0.03 seconds
cpu time 0.03 seconds

Notice the difference in real time. When DBNULLKEYS=YES the
extra NULL conditions on the generated WHERE clause caused
this job to take 20.55 seconds. When DBNULLKEYS=NO,
yielding the simpler WHERE clause, the real time dropped to a
mere .03 seconds.

The SAS/ACCESS libname engines will also check to see if a
DBKEY column is NON-nullable, and if so, generate the simpler,
more efficient WHERE clause regardless of the DBNULLKEYS
value. However, if the DBKEY column was not originally declared
as NON-nullable but you do not have any NULL data for that
column, then you will need to set DBNULLKEYS=NO to reap the
maximum performance benefits of DBKEY.

Please see the SAS/ACCESS documentation for further
information about DBKEY.

BULK LOADING
The purpose of bulk loading is to provide the highest possible
load performance utilizing native DBMS load utilities. The ability
to exploit native load utilities has huge performance implications
when loading a large data warehouse. The SAS/ACCESS
libname engines allow you to easily invoke these native load
extensions via libname and/or dataset options.

Below is an example of bulk load syntax using SAS/ACCESS to
Teradata:

libname mytera teradata database=john
user=john pw=doe bulkload=yes;

The above syntax tells the Teradata engine to use the native
FastLoad to insert rows into tables scoped to the connection
defined by the above libname statement. There are many other
options that are used in conjunction with BULKLOAD=YES. See
the SAS/ACCESS documentation for further information on
BULKLOAD options.

Note that DBMS-specific bulk load facilities are not transactional
in that they do not use programmatic SQL insert statements to
load data. Rather, they cause the data from the input data set to
be bulk copied as a unit to the DBMS table. As a result, error
conditions behave differently under bulk load, i.e., no rollbacks
are issued.

In addition to bulk copying to empty DBMS tables, some bulk
loaders also allow appending rows to existing DBMS tables.

We have compared loading a modest size 32,000 row SAS
dataset into an Oracle table using both the native Oracle
SQL*Loader and standard SQL inserts. We have observed that
Oracle’s SQL*Loader was 3 times faster than using conventional
SQL inserts. If a modest size table can produce these

performance improvements, you could expect to see much
greater performance gains with a very large table.

It should be noted that using a DBMS’s native bulk loader can
also impede performance for very small tables due to the
processing overhead of setting up the loader. It is therefore
recommended that bulk loading be reserved for larger tables. You
may need to experiment using bulk load with different size tables
to determine how many rows are required to yield meaningful
performance gains.

The SAS/ACCESS engines that support native bulk loading are
Oracle, DB2/Unix, DB2/MVS, Sybase, Teradata, ODBC, and
OLE/DB.

Please see the SAS/ACCESS documentation for further
information about bulk loading.

MULTI-ROW WRITES
Although native bulk loading provides the fastest possible load
performance, it is also possible to get faster load performance
using conventional transactional processing. SAS/ACCESS
libname engines allow you to do this by exploiting native API-
controlled multi-row write capabilities of the underlying DBMS. To
activate this feature, you specify the number of rows to be
inserted for a single write operation via libname and/or dataset
options. These options allow you to insert multiple rows at a time
by specifying the number of rows to be inserted as a unit. The
following example uses SAS/ACCESS to DB2/Unix to specify 100
rows per write operation using the INSERTBUFF dataset option:

libname mydb2 db2 database=sample user=john
using=doe insertbuff=100;

The above syntax instructs the DB2/Unix engine to insert 100
rows at a time when loading data into tables scoped to the
connection defined by the above libname statement.

It should be noted that multi-row writes have an impact on error
handling since errors are associated with buffers rather than with
individual rows. Errors are therefore not discovered until a later
point in the processing.

The optimal value for multi-row write options such as
INSERTBUFF vary with factors such as network type and
available memory. You may need to experiment with different
values to determine the best value for your site.

The SAS/ACCESS libname engines that support API-controlled
multi-row writes are Oracle, DB2/Unix, ODBC, and Oracle Rdb.
Just like multi-row reads, not all DBMSs support API-controlled
multi-row writes.

For further information about multi-row writes see the
SAS/ACCESS documentation.

ASYNC I/O features
ASYNC I/O is the area of processing that allows SAS/ACCESS
libname engines to exploit asynchronous execution of calls into
the underlying DBMS for the purpose of improving performance
and optimizing client requests in a SAS server environment. In
general terms, asynchronous execution refers to events that are
not coordinated in time, such as starting the next operation before
the current one is completed.

PREFETCH
PreFetch is a SAS/ACCESS facility that can speed up a multi-

step SAS job by exploiting the asynchronous processing
capabilities of an underlying DBMS. The SAS job must be read-
only to use this facility, that is, any SAS statement that creates,
updates, or deletes DBMS tables would not be a candidate for
PreFetch. It should also be noted that at the time of this writing,
PreFetch is only supported by SAS/ACCESS to Teradata.

When reading tables, SAS/ACCESS programmatically submits
DBMS-specific SQL statements on your behalf to the DBMS.
Each of these SQL statements has an execution cost. When
PreFetch is enabled, the first time you run your SAS job
SAS/ACCESS will identify those SQL statements with a high
execution cost and store them in a DBMS-defined macro. On
subsequent runs of the SAS job, SAS/ACCESS will extract the
stored SQL statements from this macro and submit them in
advance to the DBMS which will “prefetch” the rows selected by
these stored SQL statements. It should be noted that PreFetch
improves elapsed time only on subsequent runs of a SAS job
since on the first run, SAS/ACCESS merely stores the selected
SQL statements for subsequent use. For this reason, PreFetch
should be used only for static SAS jobs that are run frequently.

Below is an example of using the SAS/ACCESS to Teradata
PreFetch facility:

libname mytera teradata database=john
user=john pw=doe prefetch=’tr_store1’;

proc print data=mytera.emp where emp.salary >
100000;

proc print data=mytera.sales where
sales.commission > 0;

proc print data=mytera.sales where
sales.product = ‘truck’;

proc print data=mytera.newsales;run;

The first time you submit the above job SAS/ACCESS to
Teradata will create a ‘tr_store1’ macro to store the SQL
statements associated with the above proc prints if it is
determined that they have a high execution cost.

For subsequent runs of this job, you need only specify:

libname mytera teradata database=john
user=john pw=doe prefetch=’tr_store1’;

SAS/ACCESS to Teradata will now “prefetch” the rows
associated with the stored SQL statements by utilizing the native
asynchronous processing capabilities of Teradata. PreFetch can
also be specified as a SAS global option.

For further information see the SAS/ACCESS to Teradata
documentation.

SAS SERVER TASK SWITCHING
SAS server task switching is a mechanism designed to maximize
multi-client throughput in a concurrent SAS server environment.
This SAS server environment can either be a SAS/SHARE server
or a SAS Integrated Object Model (IOM) server (please see SAS
documentation for more information on SAS/SHARE® and IOM).

The basic idea behind task switching in a SAS server
environment is that a SAS/ACCESS libname engine running on a
SAS server must not impede response time for other clients while
the engine waits for a lengthy DBMS operation to complete for a
specific client. By default, when the engine is processing a
request for a specific client other client requests are suspended
since the SAS server does not implement time-slicing.

To get around this potential problem, SAS/ACCESS has

implemented a SAS invocation option ‘DBSRVTP’ that enables a
SAS/ACCESS libname engine to voluntarily give up control of a
client task to another client task for targeted DBMS operations in
a SAS server environment. The primary benefit of this task-
switching mechanism is to allow the engine in the SAS server to
respond to many different clients more efficiently.

It should be noted that the individual DBMS operations that
enable task-switching may vary from engine to engine due to
DBMS-specific differences in the execution time of these
operations.

Below is an example of invoking SAS in a server environment
using the ‘DBSRVTP’ option to enable task-switching using
SAS/ACCESS to Sybase:

sas –dbsrvtp sybase

Multiple engines can also be specified. The example below
invokes SAS using the ‘DBSRVTP’ option to enable task-
switching using SAS/ACCESS to Sybase, ODBC, and Informix:

sas –dbsrvtp ‘(sybase ODBC informix)’

The SAS/ACCESS libname engines that support SAS server task
switching are DB2/Unix, Informix, ODBC, OLE/DB, Oracle,
Sybase, and Teradata. Please see the SAS/ACCESS
documentation for further information on the DBSRVTP option.

SQL-based query optimizations
SQL query optimizations is a performance improvement feature
that transparently offloads SQL processing that normally would
occur in SAS to the underlying DBMS. There are two contexts in
which these transparent SQL optimizations occur:

• Proc SQL
• WHERE clauses surfaced from any SAS procedure

The facility that allows this to happen in proc SQL is called
Implicit SQL Passthru. The facility that allows this to happen in
SAS WHERE clauses is referred to as the WHERE optimizer.

IMPLICIT SQL PASSTHRU
Implicit SQL Passthru (hereafter referred to as Implicit Passthru)
is a proc SQL feature that, for performance-sensitive SQL
operations, will transparently convert your proc SQL query into a
DBMS-specific SQL query and directly pass this converted query
to the DBMS for processing. This mechansim has several
advantages over traditional passthru:

1. You often get similar performance improvements to
traditional passthru while having your queries seamlessly
integrated into SAS.

2. If your site uses more than one SAS/ACCESS libname
engine, you need only be familiar with SAS SQL syntax to
get performance improvements for multiple DBMS engines.

3. Java and MFC-based thin client applications that submit
generated SAS SQL to a SAS server (such as Enterprise
Guide) will transparently get the performance benefits of
Implicit Passthru on the SAS server without having to be
cognizant of DBMS-specific SQL syntax.

For a proc SQL query to be a candidate for Implicit Passthru, it
must reference a single SAS/ACCESS engine libref and contain
one or more of the following:

• the DISTINCT keyword

• JOINS (inner and outer)
• SQL aggregate functions
• UNIONS

The above SQL operations have been targeted as key
performance-sensitive operations that can often be processed
faster by a DBMS.

It should also be noted that, beginning in release 8.2 of SAS (and
beyond), SAS/ACCESS libname engines support a subset of
SAS functions for which underlying DBMSs have equivalents.
This means that supported SAS functions in proc SQL queries
will get translated into their DBMS equivalents and will be passed
along with the query to the DBMS.

Note that SAS functions do not by themselves trigger a pass-
through. Instead, a query must be a candidate for pass-through
as listed in the above bulleted list. Once the query is a candidate,
then any supported SAS function for which the DBMS engine has
an equivalent will simply be passed along with the rest of the
query.

DISTINCT PROCESSING
The DISTINCT keyword triggers Implicit Passthru since in many
cases the result set will be much smaller than the initial size of
the table. By offloading this processing to a DBMS server, only
the result set rows get transmitted across the network back to
proc SQL, hence greatly reducing network time when the number
of rows in the result set is much smaller than the number of rows
in the table. Consider the following example using SAS/ACCESS
to Ingres:

proc sql;
libname ing ingres database=clifftop;
select distinct state from ing.creditcard;

In the above example, a user wants to determine how many
states are represented by a group of credit card customers. The
result set could have a maximum of 50 rows. If this table
contained 5 million rows, then you can quickly see the advantage
of passing this query to Ingres for processing. The advantage is
that transmitting a maximum of 50 rows across the network is
much faster than proc SQL having to read all 5 million rows into
SAS and then do its own DISTINCT processing.

PASSING DOWN JOINS
JOINS are another SQL operation that can normally be
processed more efficiently by the DBMS when the result sets are
much smaller than the input tables. Since in SAS SQL it is
possible to join as many as 32 tables, you can quickly see the
benefit of letting the DBMS do the processing since the
performance cost of transmitting all rows from all join tables into
SAS for processing can be formidable. Implicit Passthru can pass
both INNER and OUTER joins to the DBMS for processing.

INNER JOINS
Passing INNER join queries to a DBMS is straight forward since
all datasources support ANSI 1992 INNER join syntax.

The following INNER join query uses SAS/ACCESS to Informix
and will get passed to Informix for processing:

proc sql;
libname nfx informix user=john pw=doe

database=rockbridge server=server1;

select * from nfx.cust, nfx.sales,
nfx.orders where cust.custnum

= orders.ordernum and
sales.salesrep = ‘SMITH’;

OUTER JOINS
Passing down OUTER join queries is more complicated than
passing down INNER joins since some datasources do not
support ANSI 1992 OUTER join syntax. The datasources that
have non-standard OUTER join syntax are Oracle, Sybase,
Informix, and ODBC.

The Implicit Passthru facility has the capability to pass down
OUTER join queries for all SAS/ACCESS libname engines,
regardless of whether they support ANSI 1992 OUTER join
syntax. For ANSI-compliant data sources, passing down OUTER
join queries is straight forward with no restrictions. For those
engines whose underlying datasources support non-standard
OUTER join syntax, Implicit Passthru will convert SAS SQL
ANSI-compliant OUTER join syntax to the non-standard
datasource-specific OUTER join syntax, although with some
restrictions (see below).

The following OUTER join query exemplifies this conversion to
non-standard syntax using SAS/ACCESS to Oracle:

proc sql;
select * from eng.JOIN11 left join
eng.JOIN22 on JOIN11.x=JOIN22.x right join
eng.JOIN33 on JOIN11.x=JOIN33.x;

Implicit Passthru will convert the above SAS ANSI-compliant
OUTER join text to:

select JOIN11."X", JOIN22."X", JOIN33."X"
from JOIN11, JOIN22, JOIN33
where JOIN11."X" (+) = JOIN33."X"
and JOIN11."X" = JOIN22."X" (+)

in keeping with Oracle-specific OUTER join syntax which uses
the ‘ + ‘ operator in the WHERE clause to tag non-preserved
tables in OUTER join queries.

RESTRICTIONS ON NON-ANSI OUTER JOIN SYNTAX
Although Implicit Passthru can generate non-standard
datasource-specific OUTER join syntax for those datasources
that require it (Oracle, Sybase, Informix, and ODBC), there are
some restrictions.

1. For queries that use SAS/ACCESS to Sybase, any OUTER
join that references more than two tables AND contains a
WHERE clause will not get passed. Note that more than
two table OUTER joins will get passed without a WHERE
clause, as will a two table OUTER join with a WHERE
clause. This restriction exists since Sybase can return
different results than SAS when a WHERE clause is applied
to an OUTER join with more than two tables.

2. For queries that use SAS/ACCESS to Informix, only two
table OUTER joins will get passed. Informix uses a WHERE
clause in lieu of an ON clause which makes the integration
of ON clauses and WHERE clauses from a SAS SQL query
difficult to convert into an Informix-specific query.

3. For queries that use SAS/ACCESS to ODBC, more than two
table OUTER joins are supported as long as there are no
INNER joins specified in that same query. This restriction
exists due to limitations in ODBC OUTER join syntax.

4. Oracle, Sybase, and Informix do not support FULL OUTER
joins.

It should be noted that in spite of the restrictions listed above, in
many cases these restrictions will not be an issue and you should
often be able to reap performance benefits from these non-
standard datasources.

SQL AGGREGATE FUNCTIONS
SQL aggregate functions represent another area of SQL
operations that are processed more efficiently by a DBMS. This is
because typically, they search a table and perform behind-the-
scenes calculations, yielding a single row result set. These SQL
aggregate functions include:

• MIN
• MAX
• AVG
• SUM
• COUNT

Below is an example of passing down a query that contains an
SQL aggregate function using SAS/ACCESS to Oracle:

libname ora oracle user=john pw=doe;
proc sql;

select count(*) from ora.employees;

UNIONS
UNIONS will also get passed to the DBMS. Since typically a
UNION eliminates duplicate rows, this processing is more
efficient when passed to a DBMS.

Below is an example of a UNION using SAS/ACCESS to
DB2/Unix:

libname mydb2 db2 database=sample user=john
using=doe;

proc sql;
select * from mydb2.music_titles

union
select * from mydb2.discontinued_CDs;

PARTS OF A QUERY CAN GET PASSED DOWN
In the event that a query that gets passed down to a DBMS
results in a failure returned from the SAS/ACCESS engine, proc
SQL will attempt to pass down a simpler version of that query.
Any portions of the query that cannot be handled by the DBMS
are handled by proc SQL [Church 1999].

Below is an example of a part of a query getting passed down
using SAS/ACCESS to Sybase. It was mentioned above that
there is a restriction on Sybase queries where more than two
tables in an OUTER join cannot be specified with a WHERE
clause due to differences in the way Sybase evaluates these
queries. The query below contains a three table OUTER join with
a WHERE clause:

libname syb sybase user=john pw=doe;
proc sql;
select emplinfo.department, emplinfo.lastname
from syb.employees left join syb.emplinfo

on employees.empid=emplinfo.employee
left join syb.dept

on dept.deptno=emplinfo.department
where employees.empid > 100;

Based on the above query, Implicit Passthru will generate the
following to pass down to Sybase:

select emplinfo.department, emplinfo.lastname
from employees, emplinfo

where employees.EMPID *= emplinfo.employee
and (employees.EMPID > 100)

Note that Implicit Passthru generates Sybase-specific OUTER
join syntax which uses the ‘ * ‘ operator to tag preserved tables in
OUTER join queries.

In this example the first two tables in the OUTER join along with
the WHERE clause gets passed to Sybase since there is a
restriction of specifying more than two tables in an OUTER join
with a WHERE clause. After the result set of this query is
returned from Sybase, proc SQL processes the remaining join of
the ‘dept’ table from the original SAS query. So you can still get
perfomance benefits even when pass-down restrictions exist for
the non-standard datasources.

PASSING DOWN SAS FUNCTIONS
It was mentioned earlier that, starting in release 8.2 of SAS,
SAS/ACCESS libname engines support passing down a subset
of SAS functions for which the underlying datasource has
equivalents. Although the presence of SAS functions in proc SQL
queries do not trigger a pass-down by themselves, they will get
converted and passed down as part of queries that meet the
aforementioned Implicit Passthru criteria.

Below is an example of a query using SAS/ACCESS to Oracle
that contains the SAS function ‘UPCASE’ :

proc sql;
select distinct UPCASE(joinchar.name) from

ora.joinchar;

This query meets the Implicit Passthru criterion of DISTINCT
processing and is therefore a candidate for getting passed down.
It also contains the SAS function ‘UPCASE’. Since SAS/ACCESS
to Oracle supports Oracle’s equivalent function ‘UPPER’, the
SAS function ‘UPCASE’ gets converted to its Oracle equivalent
and gets passed along with the rest of the query. Below is the
generated query that gets passed to Oracle:

select distinct UPPER(joinchar."NAME")
from JOINCHAR

If a SAS function that is not supported by the DBMS engine
appears in the query, then the query (or possibly just the part of
the query that contains the SAS function) will not get passed.

It should be noted that the subset of SAS functions supported in
SAS/ACCESS libname engines varies for each engine. Please
see the SAS/ACCESS documentation for information about
which SAS functions are supported for a specific engine.

It should also be noted that the current list of supported SAS
functions will potentially be expanded in subsequent releases of
the SAS system.

WHAT DISQUALIFIES A QUERY FROM GETTING PASSED?
Any query that contains more than one SAS/ACCESS libref will
be disqualified since different librefs may refer to different DBMS
connections. For example, two different connections from the
same SAS/ACCESS libname engine could possibly point to two
different servers, hence precluding the passing of JOINS.

In addition, any query that contains one or more of the following
will be disqualified [Church 1999] :

• data set options
• the INTO clause
• the COALESCE function
• remerging
• SAS functions (prior to 8.2)

The above constructs are disqualified because they are either
SAS-specific or non-standard in an underlying DBMS.

For example, the COALESCE function is not supported in all
DBMSs.

Data set options are generally too SAS-specific to be usefully
converted, so they also preclude a pass-down. This includes the
DBCONDITION option which does not get processed for Implicit
Passthru.

As discussed above, the SAS function restriction has been lifted
for 8.2 since SAS functions often have DBMS equivalents.

WHERE CLAUSE OPTIMIZATIONS
The WHERE clause optimizer is the facility that passes down
SAS WHERE clauses. This facility has been in SAS/ACCESS
products since V6. SAS WHERE clauses can be surfaced in any
SAS procedure that operates on rectangular data, i.e.,

libname ing ingres database=musicalia;
proc print data=ing.orders;

where dateordered > ‘01jan1996’d;run;

SAS/ACCESS engines internally generate programmatic DBMS
SQL when accessing DBMS tables specified in SAS procs. The
SAS/ACCESS WHERE processor will parse through the SAS
WHERE clause, convert it to a DBMS-specific WHERE clause,
and append the converted WHERE clause to the programmatic
SQL statement. In the above example, the SAS DATE9. value
gets converted into an Ingres-specific date value before getting
passed to Ingres.

It should be noted that the SAS/ACCESS WHERE optimizer is a
different facility than Implicit Passthru, that is, any WHERE
clause that is part of an Implicit Passthru query gets processed
by Implicit Passthru. If a proc SQL query is not a candidate for
Implicit Passthru but nevertheless contains a WHERE clause,
then that WHERE clause will get passed to the SAS/ACCESS
WHERE optimizer. This is because in the NON-Implicit Passthru
context proc SQL is just another SAS procedure.

SAS FUNCTIONS GET PASSED IN THE WHERE OPTIMIZER
Beginning in 8.2, SAS functions will also get passed down in the
SAS WHERE clause (providing that the SAS/ACCESS engine
supports a DBMS-equivalent just like in Implicit Passthru).

So now you can specify:

proc print data=ora.joinchar;
where LOWCASE(name) = ‘Alison’;run;

and SAS/ACCESS to Oracle will generate the WHERE clause
with the Oracle equivalent function ‘LOWER’.

If a SAS function specified in the SAS WHERE clause is not
supported by the SAS/ACCESS engine, then the SAS/ACCESS
WHERE optimizer will return an error and SAS will evaluate the
WHERE clause.

DBCONDITION CAN BE USED WITH THE WHERE OPTIMIZER
It should also be noted that the DBCONDITION dataset option
(which lets you pass DBMS-specific SQL conditions to the
DBMS) works in concert with the WHERE processor. That is,
any DBCONDITION WHERE clause will be ANDed to the SAS
WHERE clause. All other DBCONDITION subsetting will be
appended to the SAS WHERE clause. Below is an example of
using DBCONDITION with a SAS WHERE clause using
SAS/ACCESS to Oracle:

proc print data=ora.join1(dbcondition="order
by x1"); where x1 > 0; run;

The following is what gets passed to Oracle:

SELECT "X1" FROM JOIN1 WHERE ("X1" > 0)
ORDER BY x1

HOW DO I KNOW MY QUERY IS GETTING
PASSED DOWN?
It is easy for you to determine if your query has been passed to
the underlying DBMS using the SASTRACE option. SASTRACE
is a SAS system option that has SAS/ACCESS specific behavior.
SASTRACE shows you the commands sent to your DBMS by the
SAS/ACCESS engine.

The SASTRACE syntax used for SAS/ACCESS engines is:

SASTRACE = ‘,,,d’;

The ‘,,,d’ gives information about SAS/ACCESS engine calls
to a relational DBMS. The following example shows how
SASTRACE can be used to determine that an Implicit Passthru
query got passed to the DBMS:

5? options sastrace=',,,d';
6? proc sql;
7? select distinct * from ora.join1;

DEBUG: Open Cursor - CDA=2059746056 0
979854457 orusti 299 SQL
DEBUG: PREPARE SQL statement: 1 979854458
orprep 63 SQL
SELECT * FROM JOIN1 2 979854458 orprep 64
SQL
Prepare stmt: select distinct join1."X1"
from JOIN1 3 979854463 prepare 671 SQL
DEBUG: Open Cursor - CDA=2062403848 4
979854463 orusti 299 SQL
DEBUG: PREPARE SQL statement: 5 979854463
orprep 63 SQL
select distinct join1."X1" from JOIN1 6

979854463 orprep 64 SQL
SQL Implicit Passthru stmt prepared is: 7
979854463 ip_util 378 SQL
select distinct join1."X1" from JOIN1 8

979854463 ip_util 379 SQL
DEBUG: Close Cursor - CDA=2059746056 9
979854463 orustt 370 SQL

In the SASTRACE example above you can see all statements
passed to the DBMS. Since individual tables in Implicit Passthru
are separately prepared before the query of which they are a part
get passed , we can see the programmatic SQL statement
‘SELECT * FROM JOIN1’ in the SASTRACE output. Note that
SASTRACE also tells you that a prepared statement comes from

Implicit Passthru with the statement “SQL Implicit Passthru stmt
prepared is:”. So we can see from this example that the proc SQL
query was passed to Oracle for processing.

For the WHERE processor, we would see the converted WHERE
clause as part of the prepared statement if it got passed to the
DBMS. Consider the following example:

16? proc print data=ora.joindate; where
dateval > '01jan1960'd; run;

DEBUG: Open Cursor - CDA=2058853128 21
979855721 orusti 299 PRINT
DEBUG: PREPARE SQL statement: 22 979855721
orprep 63 PRINT
SELECT * FROM JOINDATE 23 979855721 orprep
64 PRINT
DEBUG: PREPARE SQL statement: 24 979855721
orprep 63 PRINT

SELECT "DATEVAL" FROM JOINDATE WHERE
("DATEVAL"
>TO_DATE('01JAN1960','DDMONYYYY','NLS_DATE_LA
NGUAGE=American')) 25 979855721 orprep 64
PRINT

In this example, we first see the initial prepare of the table
followed by the prepare of the same table that now includes an
Oracle-specific WHERE clause that has converted the SAS date
to an Oracle-specific date. We now know from the SASTRACE
output that this WHERE clause was passed down to Oracle.

ENABLING AND DISABLING QUERY
OPTIMIZATIONS
SAS/ACCESS gives you the ability to enable and disable a range
of SQL-based query optimizations on a SAS/ACCESS libname
statement. The libname option to do this is called DIRECT_SQL
and specifies what types of generated SQL you wish to pass
down to the datasource. By default, all SQL query optimizations
are enabled.

Using this option, you can enable/disable the following types of
generated SQL:

• Implicit Passthru
• SAS functions (in SAS WHERE clauses and Implicit
 Passthru)
• OUTER joins involving more than two tables
• WHERE clauses (both SAS WHERE clauses AND Implicit
 Passthru WHERE clauses)
• ALL of the above or any combination of the above

For example:

libname mydb2 db2 database=sample user=john
using=doe DIRECT_SQL=(NONE);

will disable all generated SQL, including Implicit Passthru, SAS
functions, multi-table outer joins, and WHERE processing.

Another example:

libname mydb2 db2 database=sample user=john
using=doe DIRECT_SQL=(NOFUNCTIONS

NOMULTOUTJOINS);

will disable outer joins involving more than two tables and passing

down SAS functions in any context. This means that Implicit
Passthru queries that do not contain SAS functions or more than
two table outer joins will still get passed, as will WHERE
processor queries that do not contain SAS functions.

WHY DISABLE THESE OPTIMIZATIONS?
There are several reasons why at times you may want to disable
some or all of these optimizations:

1. NULL data is often processed differently in DBMSs than in
SAS. If your DBMS data contains NULLS, there may be
times when you need to disable Implicit Passthru and the
SAS/ACCESS WHERE clause optimizer. This is because
you can potentially get different results depending on
whether SAS or the DBMS is doing the processing.

2. There are times when specifying complex OUTER joins with
more than two tables can produce different results in SAS
and an underlying DBMS. You may wish to disable just this
feature without disabling other types of generated SQL. This
is not a common occurrence, but it is possible.

 For further information concerning 1. and 2., see the
 SAS/ACCESS white paper “Potential Result Set
 Differences between Relational DBMSs and the SAS
 System” on the SAS Data Warehousing Web page:
http://sasprod.unx.sas.com/service/news/feature/15jan01/access
v8.html

3. Some DBMS equivalents of SAS functions might produce
slightly different results than SAS in very specific cases.
Again, this is not common, but is possible.

4. In some cases, SAS can process the mathematical
functions more efficiently than the DBMS equivalents.

For further information on the DIRECT_SQL libname option,
please see the SAS/ACCESS documentation.

CONCLUSION
You have now seen some of the new performance features in the
SAS/ACCESS libname engines that, when used judiciously, can
improve overall engine scalability in the areas of
loading/extraction, ASYNC I/O, and SQL-based query
optimizations. Some of these features are already providing
benefits for the SAS/ACCESS user community, and we will
continue to focus on and improve scalability in our engines into
the future.

We welcome your feedback in all areas of SAS/ACCESS
development.

REFERENCES
Church, L. (1999). “Performance Enhancements to PROC SQL in
Version 7 of the SAS System”. Proceedings of the twenty-fourth
Annual SAS Users Group International Conference, 24.

ACKNOWLEDGMENTS
Thanks to Doug Sedlak and Brian Hess for their technical
contributions to the ASYNC I/O section of this paper.

Also thanks to Lewis Church who was my partner in
implementing SQL Implicit Passthru. Much of the sophistication
of Implicit Passthru can be credited to Lewis’s SQL expertise.

CONTACT INFORMATION

Your comments and questions are valued and encouraged.
Contact the author at:

Fred Levine
SAS Institute Inc.
100 SAS Campus Drive
Cary, NC 27513
Work Phone: (919) 531-6826
Fax: (919) 677-4444
Email: fred.levine@sas.com

SECTION CHAIRS

Jack Shoemaker
 STATPROBE Technologies

Clara Waterman
Maxim Group

E

M
E

R
G

IN
G

 T
E

C
H

N
O

L
O

G
IE

S

EMERGING TECHNOLOGIES

All I Really Want... A Wish List for New SAS���� Software
Enhancements

Peter Parker, US Dept. of Commerce

Abstract
Having used both SAS software and
computers for over 21 years, I've seen many
changes in both, almost always good. Major
improvements will continue to be made and
we'll look back five years from now, amused
at what we called state-of-the-art today.
Remember when a 486 PC with a 20 MHz
clock speed, 4 MB of RAM and a 300 MB
hard drive was considered the dream
machine? Remember when packing a
million transistors on a chip was a major
breakthrough? The latest computer chips
have over 42 million transistors.

In order to advance technology, we must
first determine what needs to be improved.
While SAS software has proven itself to be
adaptable, dependable, and robust, it, too,
will become better. Here is my wish list of
changes that I hope will become part of the
SAS software system soon:

System Enhancements

1. Run- time SAS applications
2. Multi-threaded processing

Application Development Enhancements

1. Import Wizard for most types of data
2. GUI code generator
3. Intelligent Printing
4. Merge Wizard
5. Coding Critique Wizard
6. SAS code templates
7. SAS macro window overhaul

Introduction

I’ve been using SAS Software for a long
time (20+ years) and I’ve used it on ancient
mainframes, keypunching out PROC
statements and submitting stacks of fragile
punch cards to computer operators. Now I
type my code on my recently state-of-the-art
PC and submit and review my computing
jobs in the privacy of my office. Much has
changed since then, quicker and easier
submission of number-crunching queries,
color-coded code, improved interfaces, and
tweaking of the software syntax. However,
much has not changed. You still have to
write code, use DATA steps and PROC
statements, and use logical, correct syntax.
There is still Base SAS software that can do
anything that lower level languages like
FORTRAN and COBOL can do, but with
much less typing and debugging. However,
if one wants to read directly non-SAS data
files like dBase, he either has to write a
dynamic data exchange program (DDE, not
a coffee break program) or buy another SAS
software product like SAS/ACCESS�. A lot
has changed, yet a lot has not.

This paper will focus on the backbone
product of SAS software, BASE SAS, and
how that product should evolve beyond
tweaking and more Windows-like graphical
user interfaces (GUI). It appears that most
of SAS software’s growth has been in
creating more software products. This
progression is desirable for those users who
have advanced econometric or graphics
needs, but BASE SAS is the only product
that most people need for number
crunching. They want to perform advanced
data manipulations without having to buy the
other SAS products like SAS/ACCESS,

which quickly add up the costs of running
SAS software.

I’ve examined the changes that need to be
made to the overall architecture of SAS
software (system enhancements) and to the
programmer interface (application
development enhancements). Every year,
the SASware Ballot� asks users what
changes that they want. This is my formal
response. This is my SAS software wish
list.

System Enhancements

Run- time SAS applications

Ever since running SAS software on PCs
became viable for serious data processing,
I’ve been requesting a run-time version. So
have many other SAS programmers. A run-
time version of a program is a compiled form
of that software that will enable any PC,
regardless of whether that software is
installed, to use that particular customized
application. For example, one can create a
Microsoft PowerPoint presentation, save it
as a run-time version, and distribute it to
other users, regardless if they have the
PowerPoint software on their PCs. As long
as they have the Windows operating
system, they can run that particular
PowerPoint presentation. However, they
would not have any other PowerPoint
capability, such as creating new
presentations or editing the current one.
Having this similar functionality with SAS
software could have many useful
applications.

Suppose with SAS software, I create an
program that reads a particular SAS data set
(e.g., Textile and Apparel Imports for 2001).
I can include SAS Macro Windows, so that
when the program is run, the user will be
able to generate a report, based on
parameters that he passes through the
screen prompts, such as what particular
textiles commodities he wants to see and
from what countries they were exported. If
one could compile this program in a run-time
version of SAS software, then he could copy
this runtime program and SAS data sets to a

CD-Rom and distribute it to clients. Then
the clients could run pre-made queries on
this textile and apparel data, limited only by
the scope of that run-time program. They
would not be able to run other SAS
applications or create other SAS programs.
They’d only be able to run that one SAS
program that the licensed SAS user has
created.

Obviously, the lack of run-time SAS software
is legal/business concern, rather than a
technological issue with the SAS Institute.
Having a run-time version of SAS software
may invite license abuse. Rather than
having several SAS software licenses within
a company, it would need only a few copies
for the programmers. The users,
themselves, could run runtime queries,
instead of relying upon the IT staff. Since
there is no run-time software, some
companies may buy the next closest thing,
SAS/IntrNet�, not only for running SAS
software on the Internet, but also for running
SAS software on the Intranet. They would
have to weigh the cost of SAS/IntrNet
software versus individual licenses. Another
option around the lack of runtime software is
to use an OBDC interface to the SAS
system. For example, our office has created
applications in Borland Delphi software that
interfaces with SAS software to read the
SAS data and produce reports.

Multi-threaded processing

Since many servers today have multiple
CPUs, it would advantageous to run
software that optimally uses all of these
processors. In theory, the application will
run faster, subject to bottlenecks such as
how fast the hard drives can deliver the data
to the CPUs to be processed. In order to
use all of these CPUs, the software must be
multi-threaded.

The SAS software is single-threaded. A
thread is a list of instructions to perform a
certain task. Multiple-threaded software can
perform several tasks simultaneously if the
resources are available. Only by running
multiple applications such as multiple SAS
jobs at the same time could SAS software
run faster on a multiple processor system.
Each SAS job would not run faster, but they

wouldn't have to share one processor
among them.

The Windows NT operating system uses
symmetrical multiprocessing where the
system can load multi-threaded applications
among the different processors, trying to
balance the computational load rather than
having certain processors always do specific
type of processes. Running multiple single-
threaded applications could also use these
multiple processors.

With SAS version 8 software, there is a new
product, SAS/MP CONNECT�, bundled
with SAS/CONNECT�. Besides having to
buy yet another SAS product, this new
product is not a solution for “easy to use”
and “true” multiprocessing. Additional
SAS/CONNECT coding is required,
emulating the concept of logging on to
different hosts (i.e., starting a remote SAS
session on each processor), where all the
hosts are on the same PC. As well, the
multi-processing only works when the tasks
are independent. One can merge two SAS
data sets, but cannot sort the newly
combined data set until that merge is
complete. The more desirable form of
processing, not yet provided by the SAS
Institute, is where the two processes are
dependent but the former one does not need
to be done completely before the latter one
can begin. In this example, the SORT
process wouldn’t need to wait on the
merging of two data sets before it can start
sorting the combined data. It could start the
process as soon as a few records have
been merged.

Ideally, the best case of multi-processing
involves these three elements:

1. Built into Base SAS software (so
one doesn’t have to buy yet another
SAS product).

2. Works transparently with all existing
SAS code (so one doesn’t have to
modify their current code).

3. Works for all tasks, regardless if
independent or dependent.

Application Development
Enhancements

Import Wizard for most types of
data-

Some people may consider the wide array of
software available as being an over
abundance of technological riches. We
have so many choices and so many ways of
doing things. We may have too many
choices, leading to confusion. Data can be
stored in several ways, spreadsheets (Lotus,
Quattro, Excel), rich text, ASCII text, binary,
dBase, Paradox, SAS software, SPSS, etc.
Often we need to read this information into a
SAS program for data manipulation. One
can use OBDC interfaces to read directly a
dBase file into SAS software or to write a
SAS data set into either dBase database
files or Quattro spreadsheets. The coding is
not difficult. However, for each type of data,
we have to write and debug SAS code to
handle it. Rather than having to write this
code, the SAS software should handle it for
you, or at least, attempt it. One should be
able to make a LIBNAME reference to a
spreadsheet and in the code, write-

LIBNAME ABCSPREAD
c:\mydata\spreadss.wk3;
.

.

.
DATA XYZdata;
INSERT abcspread;
.
.
Here a LIBNAME statement points to a
spreadsheet file on the c: drive
(c:\mydata\spreadss.wk3) and using an
“Insert” command (this keyword doesn’t
exist, but could be a name for this code),
SAS software would figure out how to insert
this spreadsheet into the temporary SAS
data set (XYZdata). One could have
parameters in the “Insert” statement that
could specify which ranges of columns and
which folders in the spreadsheet to use, and
any other relevant information to define how
the non-SAS file is to be converted into a
SAS file.

In Base SAS version 8 software, there is
already a limited import wizard that can read
in delimited, comma separated and tab
delimited files, all being different types of
ASCII text files. One can also read in
Microsoft Excel, Microsoft Access, Lotus
123, and dBase files, but he needs to
purchase yet another SAS product,
SAS/ACCESS. As noted elsewhere, this
import/export feature should be bundled with
Base SAS software and not be another
costly extra.

GUI code generator-

While easy to use, SAS software uses its
original paradigm of manually writing code,
be it DATA Steps or PROCS or system
options. Seasoned SAS users easily can
rattle off this code, rarely having to look up
the syntax in the many SAS manuals.
However, to reuse the popular tirade of the
90’s, the SAS Institute needs to have a
paradigm shift. An alternative Base SAS
software would use objects instead of code
to set up a program. However, the
programmer would be able to modify the
code behind the objects, when necessary.
As an analogy, when CompuServe started
to provide remote service, users had to
memorize keywords and literally type in “Go
Mail” or “Go Billing” to navigate around the
product. Then AOL 1.0 was released and
the user rarely had to type in commands,
instead clicking on a “Mail” or a “Billing” icon.
Other current software uses this object-
oriented look. In Lotus Notes, the
information database/email system software,
one can create database fields as objects on
the screen with a pick list containing all valid
responses. All of the Lotus Notes
components can be viewed as objects,
whether they be database fields, agents,
action buttons, forms, sub-forms, views,
pages, navigators, outlines, framesets,
folders or other Lotus Notes constructs.

Perhaps a SAS-Lite version could be
created for neophyte SAS programmers or
for experienced programmers to create
quick jobs. There could be SAS objects for
SAS data sets, non-SAS data sets, and SAS
work files, and they all can be dropped into
action boxes that filter, sort, and merge
these objects. The results of these actions
boxes can be connected to generator boxes

that print reports, create frequency tables,
run regressions and other SAS PROC
features. A programmer would have access
to an alternative view where he can see the
code generated and then change it, if
desired. Just like Netscape Composer may
create a web page, one could open the
generated html file with any ASCII editor and
make changes to it. As improvements are
made to the SAS-Lite interface, the
programmer will have less reason to edit the
actual code.

Since pictures are more intuitive than words,
one can look at a page of objects and
understand what a program does, rather
than having to read pages of code. This
concept is similar to creating a program
flowchart that is also the program.

Intelligent Printing

Printing is a problem for all software,
including SAS software, spreadsheets,
databases and word processing. Printing
should be as effortless as pressing the print
button and what’s on the screen will be
transferred perfectly to paper. It doesn’t
always work that way. Often, especially in
SAS software, you have to adjust the fonts
and page sizes and play with the code to
have the report fit correctly on the pages.
With some fine-tuning, page breaks will be
correct, instead of several lines later on the
next page. It becomes an art to have the
printer output suitable for distribution.

One solution suggested to me years ago by
a software representative (not from the SAS
Institute) is to go completely paperless. The
solution to printing is not to print. However,
in many ways, paper is better than a
computer screen. It has better resolution. It
can be marked up by hand and it is more
portable; you can fold it up and put in your
back pocket. I’m always annotating it,
underlining words and highlighting sections.
Shifting paradigms here is not a
recommended alternative.

The solution is to have the software,
operating system and printer all
communicate better, with minimal user
intervention necessary. The only
intervention suitable would be to tell the
printer to duplex (print on both sides of the

paper) or to decide which printer to use. All
other housekeeping duties should be done
by the computer, regardless of the fonts
used or of what type of report or table is
being used. One should be able to use SAS
options to determine page-size or line-size,
but I doubt many programmers would bother
if the software took care of it well. I only
change these options from the default when
my reports don’t print correctly.

Merge Wizard-

Perhaps the most confusing part of Base
SAS software is using the merge feature.
While it has the powerful function of
combining data sets together, it may cause
problems not discernable immediately to the
programmer. For instance, does he want to
merge two data sets only if they have
common values for a certain variable? Does
he want multiple records when there’s a
match or just one? What if the data sets
have common variables besides the
matching one? What value will the variable
then have, after the merge? It all depends
on how you define “merge”. A graphical
user interface (GUI)-based Merge wizard
might ask the right questions to the
programmer to determine what he really
wants. The merge wizard could illustrate the
different types of merges, whether it’s one-
to-one merging or match merging and then
show the results, using simple examples of
combining two small data sets.

This merge wizard could evolve into a more
advanced assistance to programmers. If
you just want to append one database to
another, the wizard may suggest that you
simply use a “SET” statement or some other
technique that is better suited. Eventually,
one won’t even need the many SAS
software manuals. One can have
assistance via the SAS wizard. The merge
wizard could become an artificial intelligence
agent for all SAS software features.

Coding Critique Wizard-

It’s not hard to write adequate code. You
sketch out the basic workflow logic, type the

code as you think it up, create some test
data, debug the program on the test data,
and then run it against real data. If it runs
within a reasonable amount of time, the
program is a success. The job is done and
it’s time to move on to other projects. Never
mind that the program may have some
wasteful sorts or inefficiently written DATA
steps. It may not matter at the time that the
code is so poorly written that a year from
now someone may have to spend long
hours attempting to decipher it.

Are you writing good SAS code? Is this
SAS code that you would want someone
else to read? Would you publish it in a
SUGI paper? We shouldn’t ask only
whether it works and what can we get away
with. While shame does have its place in
programming, among other aspects in life,
your current code also may not work in the
future. I found that some of my SAS 6.12
code did not work in SAS 8.0. I had to
tighten up the code. That means I had to be
more careful with coding syntax. The
message is basic. Do it right the first time,
especially if you plan to reuse it.

Artificial Intelligence software that reads
your program and critiques it may be a
unique approach to fixing clunky programs
while they’re still fresh. A similar idea is
used in checking out websites. You submit
your website address to one of these
services and it rates your page, based on
load time, browser compatibility, dead links,
spelling and HTML design. A SAS code
critique wizard could give warnings on
merges, inform you of inefficient coding, and
give examples of better coding. For
instance, if you don’t have a KEEP
statement and you don’t use all of the data
fields, it should remind you to use a KEEP
statement in a DATA step. If you have
included a KEEP statement but not use all of
the fields listed in it, the wizard should
inform you to trim down that KEEP
statement.

SAS code templates-

I’m always taking old programs and
recycling them. Why write a program from

scratch, spending a lot of time typing and
debugging, when I already have a similar
one? The SAS Institute should be able to
implement something on that order, creating
program templates that one can use to
quickly build a new program.

For example, Lotus Notes, the information
database and workflow software, provides
several database templates as a starting
point. They have templates for creating a
document library, a registration interface,
and a discussion database, among others.
The SAS Institute should be able to
implement similar templates. For instance,
you may have a template that reads in SAS
data sets, filters the records, and run reports
based on parameters passed through macro
windows. Another SAS template may read
in data, run validity checks and then run
certain statistical procedures. Another SAS
template may be set up to read in non-SAS
data sets, filter out the data, compute new
data fields and then create html output for a
web site. The SAS Institute could
determine, with market research, how most
people use SAS software, and create these
templates based on the most common
needs.

SAS macro window overhaul

SAS macro windows provide an interface for
users to pass parameters through simple
windows forms. If one wants to query the
textile and apparel import data for knit shirt
imports from China for the year 2000, one
may create a SAS report, by querying the
data using a simple macro window that may
look like this:

Textile and Apparel Query-

Textile and Apparel commodities-
 []

Country-
 []

Year- (select with “x”)
1998 _ 1999 _ 2000 _ 2001 _

However, this interface is only a “simple”
window, not much different than the clunky
front ends to DOS software that we stopped
using years ago. It needs more component
objects, such as check boxes, radio boxes
and dialog lists, to make it easier to use. In
the above example, one needs to type in the
first two parameters. For the type of
commodity, is it spelled “knit shirts” or “knit-
shirts”? Is the country “China” or “People’s
Republic of China”? What if it’s for a country
that hard to spell like “Madagascar” or has
changed its name several times, like
“Burma/Myanmar”? What if you have 20
years of data? How do you get it all on the
form? What if you select more than one
year? Can you have multiple commodities
and multiple countries? Obviously this
macro window has its limitations. Here is
an improved window:

Textile and Apparel Query- New
and Improved

Textile and Apparel commodities-

Country-

Year-
o 1998
o 1999
o 2000
o 2001

In order to be a “complete” interface, it
needs most of the work done by the
computer, minimizing errors such as the
user misspelling the country name or typing
in “swimsuits” when “swimwear” is the
appropriate term used in the database for
beach clothing. Instead of a “DOS”
approach, SAS software needs to emulate
the interface that Lotus Notes and Borland

� Knit Shirts
� Wool Trousers
� Oxford Cloth shirts
� .

�--Select a Country--

Delphi enables application developers to
create.

Conclusions
There’s always room for improvement.

But before you can make improvements,
you need to determine what needs to be
changed. You need a wish list. Most of the
changes listed here are for repairing existing
SAS software products (macro windows,
intelligent printing). Some are major
systems changes, such as making SAS
software a true multi-threading application.
Some are major transitions, such as
replacing written code with objects/symbols.
One should expect many of these changes
within the next five years, especially the
small fix-ups. However, I don’t anticipate
that the major changes may ever occur.
SAS software has been around for over 25
years, and it has a responsibility to support
legacy systems. SAS software versions 9,
10, and 11 will still need to support SAS
version 5 and 6 applications. While that
may be the responsible action to take, it also
limits how much the software can evolve.
Backward compatibility has that inherent
short-coming, just as Microsoft still has
some ties to running DOS applications,
although its Windows and Windows 2000
operating system are far beyond the simple
command line operating systems.

Will SAS software evolve like I’ve outlined in
this paper? Not likely, but after all, this is
only a wish list.

References

 Bentley, John E. (2001) “SAS� Multi-
Process Connect: What, When, Where,
How, and Why” in SUGI26 Conference
Proceedings. Cary, NC: SAS Institute.

Garner, Cheryl (2000) “Multiprocessing with
Version 8 of the SAS� System” in SUGI25
Conference Proceedings. Cary, NC: SAS
Institute

Parker, Peter (2000) “Optimizing SAS�
Software on Windows NT: A Guide to
Performance Tuning Your Applications

Server” in SUGI25 Conference Proceedings.
Cary, NC: SAS Institute

Parker, Peter (2000) “SAS� Software
Macros: You’re Only Limited By Your
Imagination” in SESUG Conference
Proceedings and NESUG Conference
Proceedings. Cary, NC: SAS Institute

SAS and all other SAS Institute Inc. product
or service names are registered trademarks
or trademarks of SAS Institute Inc. in the
USA and other countries. � indicates USA
registration

Other brand and product names are
registered trademarks or trademarks of their
respective companies.

Contact Information
Your comments and questions are valued
and encouraged. Contact the author at:

Peter Parker
US Dept. of Commerce
Room 3100
1401 Constitution Ave., NW
Washington D.C. 20230
202-482-1449
peter_parker@ita.doc.gov
http://otexa.ita.doc.gov

Version 9: Scaling the Future
Diane Olson, SAS® Institute Inc., Cary NC
Robert Ray, SAS® Institute Inc., Cary NC

Presented by Scott Mebust

ABSTRACT
In Version 6, SAS introduced the SPDS (Scalable
Performance Data Server) as a technology to exploit
SMP (Symmetric Multi-Processor) hardware for
speeding up data services. In Version 9, BASE SAS
introduces the SAS Scalable Architecture (SSA).
SSA makes parallel processing and partitioned I/O
constructs available to the entire SAS System for the
first time.

What does that mean to you? It means that some
elements of your jobs will take full advantage of SMP
architectures to reduce time-to-solution for critical
tasks. This paper presents an overview of this new
strategy to improve your compute and I/O bound
tasks, including specifics on how you may get a
significant performance increase for your SAS jobs.

INTRODUCTION
The data processing and warehousing industry is
bombarded with immense volumes of data from both
the “bricks and clicks” sides of the business; however,
the data processing time remains unchanged. In
response to this data onslaught, SAS has a strategy
that will be incorporated in an evolutionary manner
over the next several releases, starting with Version
9.

Changes in Version 9 include performance
enhancements for both I/O and compute-bound
problems. These performance enhancements are
realized by a combination of strategies:

� partitioned I/O
� multi-threaded I/O
� parallel multi-threaded computation

This paper begins with an overview of SSA and
enumerates the problems Version 9 starts to address.
Features to remedy these problems are explained,
along with how you can make use of the new
features. Preliminary performance benefits resulting
from these changes are included.

SAS SCALABLE ARCHITECTURE
Successfully scaled performance is not obtainable by
simply installing faster processors or I/O devices.
Achieving true scalability is a balancing act involving

the choice of scalable hardware and some choices
about the software that is specifically designed to
leverage it. For the Version 9 SAS user, these
choices include selecting optional enhanced
procedural algorithms, choosing the best SAS engine
to create and access data, how (or indeed, if) data
sets are partitioned, as well as the number of threads
launched to best process those partitions.

SSA combines the legacy strengths of SAS with the
ability to create a highly scalable solution in order to
meet the evolving market demands, taking advantage
of hardware advances. This involves embracing
elements of the classic MVA (Multi-Vendor
Architecture) server, SPDS data server, and
technologies for lightweight threading. Integration of
SPDS-like technology means employing threads to
distribute I/O requests across multiple controllers.
These threads may in turn create other threads to
manage the processing of blocks of data. Thus, SAS
flows from a mostly synchronous model to one that
allows I/O functions to run asynchronously across
multiple processors in an SMP environment. Properly
used, an SMP environment can employ the CPUs in
the system to process data simultaneously, avoiding
bottlenecks that slow the computation of results.

When trying to speed a single task or problem, there
are two types of scalability to consider - the inherent
scalability of the problem in question and the
scalability of the software solution for that problem.
Problem scalability can vary greatly. The problem of
sorting, for example, generally scales computationally
on the order of Nlog2N, where N is the number of
records to be sorted. However, if the I/O device
cannot keep pace with the CPU, then the scalability
will be linear with the size of the file (N). A full SQL
join will scale computationally as N*M, where N and
M are the table row counts. Therefore, doubling the
number of observations for both tables in a full join
could consume four times the CPU resources.
However, if the process were I/O bound, the actual
scalability would be linear with the combined size of
the tables (N+M). Therefore, reducing time-to-
solution is a complex problem involving both CPU and
I/O optimizations.

With software scalability, the goal is to apply
additional physical resources (CPUs or I/O channels)

and have the real time-to-solution be lowered by a
proportional amount. The real time is the focus here,
and not the combined CPU time. It is a foregone
conclusion that extra CPU cycles are consumed to
manage a set of process threads across multiple
CPUs. The portion of the original problem that can
actually be processed in parallel governs the amount
of scalability achieved from the software solution. For
instance, although a partitioned data set can be read
in parallel for SORT, the sorted data is written out in a
linear fashion to preserve the sorted state. If writing
the data takes 50% of the original time, then only
50% of the process is scalable; this represents the
limit of scalability for this problem. Further
improvements in time-to-solution can only be
achieved by increasing the speed of the output I/O
devices.

EVOLUTION
Rewriting the entire legacy MVA code to be thread-
safe (i.e. where the code runs with no side effects in a
threaded environment) much less thread-hot (i.e.
where the code is thread-safe and exploits the
threaded environment for faster execution) would be
a major undertaking. To avoid delays in delivering
releases to the customer, the move to thread-hot
code has been planned in evolutionary stages.

In Version 9, some shared code modules used by
selected high profile procedures are being reworked
to be thread-hot. In the I/O arena, a new subsystem
was created to enable reading blocks of data versus
record-by-record reading as in previous SAS
versions. Several multi-partitioned engines will allow
simultaneous block-mode reading of data from
multiple partitions in parallel. A small number of
procedures are being converted to exploit this new
subsystem in Version 9. These include SORT,
SUMMARY, DMREG and REG, with more procedures
expected to come aboard in following releases.

BASE SAS procedures have a set of incremental
goals for leveraging SMP architectures from the
traditional MVA development environment. First,

some key procedures’ algorithms are being modified
to decrease time-to-solution using the traditional
single-partition data set. In these cases, both parallel
and pipeline algorithms are being applied, as
appropriate for the application. The opportunity to
decrease the time-to-solution for single data partitions
exists when the problem is somewhat CPU bound; in
these cases, the procedure can use multiple threads,
and thereby CPUs, to match the data processing rate
with the I/O read rate. Once the read rate of a single
partition is matched, additional increases in speed
must be achieved by using either a faster single I/O
channel or partitioning the data so that multiple
partitions can be read simultaneously. Many BASE
SAS procedures exhibit this "fence straddling"
between being I/O and CPU bound, depending on the
nature of the data being processed and the procedure
options being used.

Not all procedures will be able to exploit the new
parallel I/O system, which is capable of reading
blocks of data across partitions simultaneously.
PROC PRINT, for example, expects to print the
observations of a data set from the first observation
through the last; reading the data set simultaneously
across threads does nothing to speed ordered
access. PROC SUMMARY, however, does not
necessarily depend on ordered access and so could
leverage parallel data access.

In Version 9, the new I/O subsystem will have
limitations that may prohibit parallel data access
under certain circumstances. These include BY
processing and some engine-dependent capabilities.
In addition, there will be no parallel data writing
capabilities. These exceptions will be addressed in
forthcoming releases. See Table 1 for a per-engine
description of factors that prohibit the use of the new
I/O subsystem. Note that this table is expected to
change in subsequent releases. This evolutionary
plan allows quick delivery of performance
enhancements to the customer as well as laying
groundwork for future advances.

FEATURE BASE ENGINE ACCESS ENGINE SPDS ENGINE

Compression No Yes Yes
Encryption No Yes Yes

BY processing No Yes Yes
CEDA No No No

Table 1 - Feature support per engine with new I/O subsystem
BENEFITS
The large data sets of today have changed
significantly from that of a decade ago. The size of

today’s large data sets would have been unthinkable
in the Version 6 timeframe; even so, results from
processing those gigabytes of data are still expected
to be obtainable in a reasonable amount of time.
Advances in hardware technology help improve
throughput, but without software advancements,
processing time can still be unacceptably slow. The
migration to a threaded SAS architecture will lead to
faster processing of not only today’s data sets, but
also those of the future.

Faster processing is possible because SSA provides
the tools necessary to exploit multiple CPUs
concurrently, to read data through multiple I/O
channels simultaneously, and to overlap I/O and data
processing. SAS applications will have the
opportunity to utilize these tools to increase the total
throughput of a single SAS server session. Of
course, the degree of time-to-solution improvement
gleaned is directly related to how CPU bound or I/O
bound the problem is. SSA works in tandem with the
MP-CONNECT technology; MP-CONNECT enables
parallelism via multiple concurrent SAS invocations.

PROBLEMS
There are several potential bottlenecks standing in
the way of a full solution. Which bottleneck that is
restricting your performance depends on both the
operation requested and the nature of the data itself.

Depending on the type of user request, some
applications will be I/O bound, that is CPU time to
actually process the data is negligible in comparison
to the time required to read the data. Data sets with
many variables and many observations are more
likely to create this situation, but it is still dependent to
a great extent on the operation requested. For
example, requesting the means of a numeric variable
is not
CPU intensive, and when run on a large data set the
process will be I/O bound.

Conversely, PROC REG of such a data set is likely to
be compute-bound since the CPU time to
process the observations is greater than the time to
read the observations.

The goal of adding threaded access is to alleviate
both types of bottlenecks, solving the problems of
� Speeding I/O
� Speeding Computation

Some procedures, like PROC SORT, are not solely
I/O bound or solely compute bound, but contain
processes that are. Some of these processes may be

I/O bound, while some may be compute bound.
These procedures benefit from a combination of the
solutions for speeding I/O and computation.

Of course, you are always going to have some
bottleneck, but the software developer’s ultimate goal
is to have it be the hardware that constrains the time-
to-solution.

SOLUTIONS
That ultimate goal is certainly a desirable one, but it
seems esoteric without a structured implementation
strategy. For Version 9, that strategy is enumerated
by attacking problems on three fronts, including those
applications that are I/O bound, those that are CPU
bound, and those that are a mixture of each.

SPEEDING I/O
For I/O bound processes, the goal is to read as
quickly as possible, keeping the computation process
supplied with data. The solution for increasing data
set access speed is two-fold; first, optimize the read
rate for each data partition, and second, allow
multiple partitions to be read simultaneously using
multiple I/O controllers.

Traditionally, SAS has always read data sets record-
by-record, a style that is extremely flexible and lends
itself to noting, pointing and indexing. However,
speed-reading is more important for I/O bound
applications. Thus, the new I/O subsystem reads
data sets a block at a time, resulting in lower function
call overhead. Delivering a block of data is somewhat
less flexible than record I/O, as it is not as easy to
address a particular record in the data set; however it
fulfills the need of the I/O bound problem – more data
in less time.

The second part of the I/O solution is to
simultaneously read partitioned data sets via multiple
threads. Partitioned data sets are data sets that are
located in different physical locations, but still
comprise a logical data set. With this strategy, not
only are the block reads done in parallel threads, but
processing of the data can also be done in separate
threads. Each thread reads and processes data
independently; when all partitions have been read
and processed, the application folds the result from
each partition (or set of partitions) into a final solution.
Note that more than one partition may be read and
then processed in a single thread.

The degree of increased throughput still depends
heavily on hardware considerations. If there is only
one I/O controller, for example, it does not matter how
many threads are launched; they would all serialize
waiting on the controller. Assuming no hardware
constraints, the limiting factor becomes the number of

partitions comprising the data set and the number of
threads launched to process those partitions.

There has never been an engine that processed
partitioned data sets shipped with BASE SAS.
Beginning with Version 9, however, it is planned that
the partitioning SASSPDS engine will be shipped with
BASE SAS, available on all platforms. ACCESS
users will also have the choice of Oracle, Sybase,
DB2 or Teradata as their partitioned engine. This
allows all SAS customers to employ partitioned data
sets if they so desire.

SPEEDING COMPUTATION
When I/O is not the only limiting factor, parallel
computation using modern thread constructs allows
further speedup to occur. The two basic models of
parallel computation are the boss-worker model and
the pipeline model. Both models allow a
computationally intensive task to be divided and
distributed to multiple CPUs within a shared memory
model using lightweight process threads (LWPs).
Each SAS procedure that is reworked to improve
scalability will use one or both of these techniques
along with parallel I/O where appropriate in order to
reach its scalability limit.

In order to utilize threads, the traditional SAS MVA
procedure will create process threads that essentially
run outside of the MVA environment, synchronizing
back to the MVA process once some portion of work
is complete. Since these new process threads do not
execute in the current SAS MVA process space, they
do not detract from and may even enhance the
interactivity of the SAS environment during the
execution of long-running procedures on SMP
machinery.

SCALING PROC SUMMARY
One BASE SAS procedure that can leverage both the
parallel and pipeline techniques is PROC SUMMARY.
When a CLASS statement is used with PROC
SUMMARY, the rate at which data can be classified,
sorted and aggregated is often not as fast as the
maximum data read rate. In order to keep pace with
input and minimize amount of redundant aggregate
groups in memory, we choose to pipeline this process
by dividing the summarization process into distinct
steps and assigning each step to a separate thread.
Data is processed in blocks by each stage and
passed on, much like an assembly line. Memory
resources required by each step are not duplicated;
there is only one thread per step. It is possible that
some stages in the pipeline may be able to make use
of multiple threads. In these cases, the memory
domain of the stage is divided and assigned to
separate threads, thus avoiding memory duplication
within a stage.

Once parity with the maximum read rate of a single
partition of data is achieved, the model must be
replicated across multiple partitions to achieve further
speed-up. If classification is performed from separate
input partitions, the elements of the pipeline could be
replicated for each partition. However, this could
result in a great expansion of memory required to
solve the problem, as each domain could contain
partial aggregation results for identical output levels.
If the aggregation space is shared across multiple
partitions/thread, excessive shared memory access
overhead is a possible result. Clearly there is a
tradeoff involved for parallel multi-partitioned
summarization.

When the CLASS statement is not used, only the
aggregation step of the summarization process is left;
this causes the problem to be I/O bound. In this case,
scalability is achieved by allowing parallel
aggregation across multiple partitions. The results of
each partition aggregation are merged together and
the input scan is complete.
RESULTS TO DATE – PROC SUMMARY
Thus far the work on PROC SUMMARY has focused
on summarizing from a single partition data set using
multiple CLASS variables. Using multiple CPUs, for
some cases the time-to-solution is within fifty percent
of the time it takes to simply read the data set and
write the results. This is approaching the best that can
be done with a single partition and represents a
significant improvement over the current summary
logic.

SCALING PROC SORT
Another BASE procedure that can benefit from multi-
threaded design is PROC SORT. Sorting is generally
I/O bound, but thread technology provides the
opportunity to overlap I/O and processing in some
steps. The boundness of internal sorting can be a
function of the ratio of the sort key length to the
record length, as this affects the number of CPU
cycles used per key comparison. Therefore, to
ensure that key processing keeps up with the
maximum read rate, a process pipeline with fan-out is
being used. When the size of the sort exceeds the
available memory, the sort must shift to an external
algorithm, spooling partially sorted results to one or
more utility files. These partial results are finally
merged together to produce the final result.

External sorting adds many complications, as well as
many opportunities for performance improvements.
By employing multiple threads in the V9 design, the
phases of multi-way merging can be isolated and
have dedicated threads for each phase. These
phases include runs creation, utility file read-ahead,
merging records and writing output. Effective utility
file read scheduling is critical to reduce head seeks

during external merging. Anyone sitting near a hard
drive during an external sort merge-back can attest to
the "weed whacker" sound produced by heavy disk
seeking. Seek elimination makes for more efficient
(and quieter) external sorting. By assigning this read-
ahead function to a separate thread, records flow
smoothly into main memory for a merging thread to
process.

RESULTS TO DATE – PROC SORT
Measurements thus far for Version 9 PROC SORT
have focused on internal sorting. For sorts where the
key size is less than fifty percent of the record length,
it is relatively easy to sort as fast as the I/O rate since
the job is primarily I/O bound. However, if the key
increases beyond eighty percent of the record length,
as many as four sorting threads can be effectively
employed in order to keep pace with the input rate.
The additional work comes from the fact that each
key comparison takes longer than the time to read
each record. Thus, as the I/O rates improve, the
multi-threaded sort on SMP machinery will keep pace;
this will provide the performance improvements the
customer expects from their hardware investment.

USER’S RESPONSIBILITIES
To scale performance using Version 9 SAS, the
customer’s input is of utmost importance. First and
foremost are the hardware decisions. Because some
processes serialize, the maximum throughput of any
given I/O device may become the limiting factor for
the time-to-completion. Lots of slow disk drives are
not necessarily equivalent to a couple of really fast
ones. However, having only one really fast disk drive
will not allow partitioning to decrease throughput time.
SMP hardware appropriate for your I/O bound and/or
CPU bound applications is necessary to SSA's
effectiveness.

Another user responsibility is the SAS engine choice.
If you wish to have multi-threaded access across
partitions, you must choose an engine that supports
partitioned data sets. It is planned that you will have
the choice of using the SASSPDS engine or one of
the partitioning ACCESS engines. The default BASE
engine will not partition files.

Certain engines or attributes of a particular data set
may limit your data to record I/O access. See Table 1
to determine if any of those limiting factors will affect
your application. For example, the BASE engine is
not planned to support block I/O reads when the data
set is encrypted. If encryption was less important
than performance, then the file could be rewritten
without encryption and block I/O reads could be used.

SUMMARY
Partitioned I/O, parallel I/O, parallel processing and
algorithm changes are all a part of the Version 9
strategy of speeding your time-to-solution. With these
evolutionary changes, expect to see performance
gains from selected applications using SMP
hardware. The gains seen in Version 9 are merely
the beginnings of the plan for scaled performance
increases across all applications.

Your comments and/or questions are very welcome.
Please contact the authors at:
Diane Olson - Diane.Olson@sas.com
Robert Ray - Robert.Ray@sas.com

SAS is a registered trademark or trademark of SAS
Institute Inc. in the USA and other countries. ®
indicates USA registration.

Paper #P153

Avoiding eOverload:

Personalizing Web Content through Security, eIntelligence and Data Mining

Gregory S. Barnes Nelson STATPROBE Technologies Cary, NC

ABSTRACT

Today, the worlds of high-tech with high-touch are quickly
converging. The landscape of this new frontier in business
intelligence and customized content has challenged the traditional
models of delivering knowledge to diverse constituents. To make the
most effective use of these delivery methods, business needs
detailed intelligence on how people use information from these
sources. In this paper, we will explore the analytical techniques,
technologies and tools used to answer real-world business
questions, accelerate knowledge transfer, and foster more profitable
relationships with customers, partners, employees and suppliers.

Specifically, we will explore the business and technology
underpinnings of personalization. Then we will examine the analytic
and technical approaches to understanding that data as delivered
through eIntelligence, click-stream and log analysis techniques.

INTRODUCTION

This paper tells the story of personalization and measuring business
value from a developer’s perspective – that is, as a pragmatist who
spends his time developing strategies for personalization and their
implementation through web technologies. Here we discuss the
concepts behind personalization and address some of the
challenges that people will find as they unearth the hidden mysteries
of web log and click-stream data.

According to a Forrester Research report, "As the general content of
the Web gets broader, individuals will cease aimless surfing activity
and gravitate toward sites that deliver products and services
customized to their needs. Sites must plan now to respond to this
expectation or risk being left behind as the Web changes to a
personal medium."

In the first part of this paper we will describe the business and
technology reasons for personalization. Although we will discuss this
concept in much more detail later, we can think of personalization as
an approach to delivering content dynamically, or “just-in-time”, so
that the content is specific to a user or group of users. Next we
explore how we can begin to understand how people use information
on our web sites through measurement. We will discuss various
factors about the web site experience – from the perspective of the
visitor as measured through web logs and click-stream analysis.

Although this paper is intended as a resource for people who have,
or are creating, personalization strategies, we recognize that many
questions go unanswered. Because the web has spawned
numerous approaches to solving some of the problems of a
stateless environment, it also creates problems as we attempt to
monitor its usage. That is to say, the technologies that we use to
make web sites more dynamic and personal often create
complexities when we try and figure out what people have done on
our site. So the story is really a story told from two perspectives –
one describes how information is delivered and the other, how we
describe or analyze patterns of activities when the content is
dynamic.

THE NEED FOR PERSONALIZATION

The need for personalization is paramount in the world of eOverload.
Information is coming at us from all fronts – radio, billboards, web
phones, wireless PDAs, the ever-looming Internet… all trying to vie
for our attention. Developers of web content, whether they are
marketing, technical, or hobby, all want their content to be noticed.

Site differentiation is key in the world of eOverload. One author
(Ramsey, 2001) has suggested the following as key to obtaining site
differentiation:

1. Value added information

2. Frequent, useful content updates

3. Interactivity

4. Information personalized for specific users or user groups.

The first two of these is likely the responsibility of the business side
of the house – or the content experts. Technology, however, can
play a significant role in making sure that the visitor is engaged once
they are on the site. Using client-side tools such as DHTML,
JavaScript, and Java, we can make the site extremely dynamic and
interactive. Finally, our last goal – personalization – allows us to
create a true one-to-one relationship with a visitor.

Web personalization allows you to have a Web site that tailors Web
content to a Web user's preferences and other profile information. In
addition, a personalization system logs every Web page displayed to
every user so you can develop a "clickstream" view of what they saw,
when they saw it, and for how long. Just imagine what you could
learn about your audience with a complete understanding of their
Web usage.

In our net-centric world, we have seen these in action – everyone
vying for your attention – sending invitations, gifts and even eCards.
In the early days of web, advertising banner ads were unusual and
effective. The thought of having 6 million people look at your ad
each time they logged on to check their email was fascinating. The
early marketers capitalized on this new media and found it very
profitable. Just by measuring click-throughs (whether a person
actually acted on the ad they saw), we could evaluate the
effectiveness of an ad campaign. But soon, like the advertising we
see on park benches and buses, the effect had diminished.

Unlike the simple site maps of even just a year or two ago, most
modern sites are not static. For example, it is not uncommon that
product taxonomies change regularly, marketing campaigns or new
service offerings for content updates and even segmentation of
content to different groups of users. Often content is personalized –
the way that information is presented, the method of delivery and

even commerce models have been impacted our expectations of
content (e.g., pricing models.1)

So what do we mean by personalization? Is it just adding the “Dear
Greg” on top of a web page? Personalization can mean a lot of
things in the high-tech, high-touch world of eCommerce, here we
adapt the following definition from Ramsey (2001):

Personalization means strategically targeting specific
users or groups with content relevant to them, delivered
at the time and manner most appropriate to them.

By delivering dynamic interfaces to information so that the right
people have access to the right information at the right time, we can
solve some of the key challenges that marketing faces.

The Business Need for Personalization

As we take inventory of the types of models that we have in the web
world, we can find at least four categories that describe our use of
personalization technologies. Examples of these exist both on
publicly available sites as well as in custom applications that sit
behind our corporate firewalls.

For example, we may find personalization being used for:

• Technical Benefits – Information may be stored in a data
repository, making updates more efficient and universal. In
addition, we may find it technically more feasible to create
content on demand, rather than having information stored in
static files.

• Security – one method of creating secure access to content is
referred to as conditional disclosure. Here sites provide
customized views of information resources that are specific to
a user or group of users. Information may be personalized to
prevent access to certain content based on the role that they
have been assigned to in the application.

• Localization – providing web content that is in the language of
the intended audience is critical – especially for global sites
catering to the needs of international audiences. We also think
of localization in the context of portals that provide content for a
specific geography or interest area (e.g., content
subscriptions.)

• “Relationship” Management – perhaps, the most widely held
reason for creating content on demand is so that information
can be customized for a specific audience to establish a
personal relationship with the organization (e.g., one-to-one
marketing.)

In another paper (Barnes Nelson, 2001), we discuss four major
“relationship” types in the web commerce world: customers,
suppliers, partners and employees. As we think about these
relationships, the rationale for using these dynamic interfaces seems
apparent.

1 “Amazon charging different prices on some DVDs”,
Rosencranz, L (2000)

Audience Buzz-word(s) Purpose

Customer/
Consumer

CRM – Customer
Relationship
Management

B2C – Business
to Consumer

Create a positive method of
interaction, including
recommendation engines,
secure access to project
information, cross-selling and
key customer/organization
information.

(amazon.com, dell.com)

Partner PRM – Partner
Relationship
Management

Extranet

Establish communication
methods, exchange of
information (e.g., customer
exchange standards),
specifications (documents,
CAD/CAM), inventory levels,
etc.

(ClinicalExchange.com)

Employee B2E – Business
to Employee

Intranet

Provide customized views for
the employee about his/her
worklife. Examples include
benefits information, expense/
payroll data, Knowledge
management, document
management and distributed
team communication.

(www.schedule.com)

Supplier(s) SRM – Supplier
Relationship
Management

EDI – Electronic
Data Interchange

Extranet

Building on the reengineering
efforts in the late 1980’s and
1990’s, just in time ordering,
business process mapping,
electronic data interchange
standards, etc. all can be
provided through
personalization engines.

(www.perfect.com)

Table 1. The landscape of personalization techniques
appropriate for types of business applications
they intend to serve.

This table (Table 1) illustrates compelling reasons for creating
interfaces that deliver information “just-in-time”. In all of the cases
cited here – on both sides of the firewall – content is being provided
on demand. That is, there are few static HTML files that sit idly by
waiting to be called. Instead there is usually some engine behind the
scenes waiting for content to be requested. Usually, it is stored in a
database or content repository so that information can be pulled
“just-in-time”. There are a number of vendors that provide content
management solutions (for example, Vignette and Xpedio.)

Technologies for Personalization

As mentioned previously, there are a variety of ways that we can
think about personalization. The diagram below examines this in the
context of the audiences that are served and the goal of the
interaction. As we move from Mass communication with web
audiences to more personalized forms of interaction, we see an

increase in the complexity of the underlying technologies. As we
move to one-to-one marketing approaches, a more robust
personalization and profiling engine is required.

Sources for Building PersonalizationSources for Building Personalization

One-to-One

Intelligent Agents

One-on-One
Communication

General Web /
Banner

Application Data

One-to-One

Mass/Targeted

General
Demographics

Targeted

Mass

Guest Book/
Site Registration

Profiling and
PersonalizationHTML

Session
Tracking

Cookies Profile
Info

Web-House

Forms

Customer
Database

Here, we show a continuum of interaction regarding a web site
visitor. As we move from the upper left around the circle to the upper
right, we find the following trends:

� General traffic patterns - Static or Dynamic HTML is used to
provide access to page views. The site may be used for
informational purposes and has little or no personal interaction
with the individual visitor. Gross analysis of patterns of traffic
can be reporting on using web log analysis.

� General demographics - Cookies/ JavaScript provides the
basic ability to monitor usage within a site (transient) and
across visits (persistent). Cookies are used to store basic
information about a visitor (computer – not a person) in order to
provide some basic personalization.

� Guest Book/ Registration - Forms used to collect information
in databases are a good source of gathering information about
a visitor but often don’t integrate well with web log data.
Technologies such as collaborative filtering2 can be used in
response to form submissions to build dynamic interfaces. An
example of this might include using collaborative filtering to
recommend book choices based on what others have
purchased in the past.

� Specific demographics/ usage - Specific utilization and
repeat visit tracking can be accomplished when the site
supports technologies such as session identification
techniques such as JavaServer Pages (Sun), Active Server
Pages (Microsoft) or SAS/IntrNet (SAS Institute). Here web
server logs and application server logs can be combined to
form a visitor profile. Repeat visits can be tracked as well as a
comprehensive view of what actions were taken while on the
site.

� Profiling / Membership - Customer provided authentication
(userid and/or password) and personal/ membership data can
be used in conjunction with intelligent agents to provide a
personalized view of a web site. Intelligent agents can be used

2 Systems that allow for the presentation of information based on
what others have chosen.

to filter information and provide the user with the content they
desire. They work on behalf of the user observing their
preferences and site interaction habits.

� Integrated 360°°°° View - Internal databases that collect
information from multiple touch-points such as call-center,
sales, web, etc. are combined to create a true view of the
visitor.

As you can see from this brief summary, there are a variety of
technologies hard at work for us that provide these personalized,
dynamic interfaces on the web. Now lets examine these
technologies from the perspective of its participant.

Active versus Passive Participation

Up to this point, we have talked about personalization as a general
concept. It may be helpful to understand it in the context of what the
user or visitor does or sees. We differentiate here between some
active participation in receiving dynamic information versus those
that are provided by the application “auto-magically”.

For anonymous users (based on IP address), we can simply
evaluate click-stream or web log data to understand macro-level
traffic patterns; for permission-based users (those providing
information via cookies or server-side session state management),
we can understand patterns of usage and repeat visits through more
advanced analytics; and finally, authenticated users – those that give
us some very specific information about who there are – we can
provide very rich scenarios of behavior. Let us now examine these in
turn.

Personalizing Content for the Anonymous User

For “un-authenticated user, we can indeed provide some form of
personalization. From a technical perspective, we can do this
through information provided from the browser, through cookies as
well as through the use of forms.

Browser Sniffing: Who is that computer behind the visitor?

Because the web is digital, it may seem obvious that we ought to be
able to get a lot of information from those that browse our sites. It is
true that as you traverse the web, we do leave a virtual trail. That is,
depending on how you access information on the web, what browser
you use, what technologies sites have for you and the ISP you use
all seem to leave our digital footprint – and in some cases, lead
directly back to you.

Common examples of how we might use this information can
include:

• Browser and Version (e.g., Internet Explorer, Netscape)

• E-mail address (if provided in your browser software)

• IP address (depending on how you connect, this may be
yours, your ISP or even your firewall)

These are just a sampling of the types of information that can be
obtained by using just standard, out of the box settings on a web
server. More sophisticated web servers can provide a much more
complete profile of who you are (as represented by your browser). A
complete listing of the information that is available to most web
servers can be found at Brian Lavoie’s site (Lavoie, 2001).

Cookies: Unsolicited Personalization

Cookies are simply a method of storing basic content about a visitor
to a specific web page (or site) such that the information can be
retrieved at a later time. Cookies are used to store information such
as the user’s name, the last time they visited the site or demographic
information (i.e., personal and technical information – such as the
browser). Cookies are usually stored on a user’s computer without
their explicit permission.

There are two types of cookies that can be used to store information
about a visitor, depending on how long you want to retain the
information about the visitor, transient and persistent.

Transient, or a session level cookie, is placed in the users browser
and lasts as long as the browser is open. This serves as a
temporary ID for the browser and to any application servers that
request the cookie. This method is used to associate data from
click-stream and application server log processing.

Persistent cookies are similar to transient cookies, except these can
be read by entire domain (e.g., sas.com) and can be used
throughout applications across an organization if common
conventions are used. Persistent cookies can be used to “persist”
information across multiple sessions or visits.

There are many issues surrounding the use of cookies, but these
are generally a safe and effective way to capture information about a
visitor (computer). The main advantage of using cookies is that
they are easy to program and can be implemented quickly.

Cookies also suffer from several disadvantages.

• There are issues about how and what information we collect
about people – that is, the social/ethical/perception issues
surrounding their use.

• Cookies have a limit to how much data they can hold.

• Most significantly, though, cookies lack portability: the
statefulness of cookie data is tied to an individual computer,
rather than an individual person. When that person visits your
site from a different computer, they have no access to their
personalization settings.

Transient cookies cannot be used to track multiple visits/ repeat
visits. In addition, Users may turn off or destroy cookies. From an
organizational perspective, enterprises that wish to use them across
all web touch-points should provide some standards and
management of cookie signatures. On some operating systems (e.g,
Windows ME and 2000) that allow for multiple users, a clear
understanding of who the user is and the interpretation of a visitor
versus a user versus a household should be clearly understood. In
addition, the same user may visit from multiple machines making it
impossible to really track a specific person.

Forms: Anonymous Solicitation

Forms, as you might suspect, gather specific information from
anonymous visitors, and give something back – usually a request for
information, a search or a subscription to content.

Many of us have seen this is action when we visit a web site to
request product information and find that they have seemed to
understand us by giving us recommendations of what others have
purchased/ liked.

These sites have probably used some form of collaborative filtering.
Collaborative filtering combines preferences and interactions of
similar users and applies it to a new user/ request. This approach
takes user built profiles in combination with system-generated
models of how other “like” users look. The content is then provided
to the user as part of their “personalized” view. There are at least
three different types of Collaborative Filtering in use today:

• Automatic Collaborative Filtering, where a system
modifies or customizes the interface and content offered
based on understanding the preferences and usage
patterns of other users within similar and behavioral
characteristics.

• Active Collaborative Filtering is based on voluntary inputs
from the community of users. ACF is based on
permission-based marketing and can help determine
which content is most relevant to users. As content is
based on what users actually say they want versus
modeled content.

• Expert/ rules based filtering is a highly sophisticated
technique that allows the system to make deductions or
inferences about a visitor based on built-in experiences
and knowledge (usually stored in a database.)

The screen shot below from Amazon.com shows an example of
collaborative filtering in action. Note the section displaying what
others have purchased.

Like Amazon, most of the e*tailors on the market make use of third
party application providers. Examples of vendors that provide
collaborative filtering software include: Net Perceptions, Broadvision
and Like Minds.

Anonymous Session Management

Because of the limitations of cookies for storage of data – either
within a session or across sessions – vendors have developed
server-side3 solutions to manage this problem. Server-side solutions
that allow for the persistence of information across multiple pages
within a web site are referred to as session ids or session
management solutions. Usually, these work in conjunction with
cookies or authenticated forms of permission. When the visitor first

3 Server side refers to the fact that the information about the session
or user visit is stored/ generated on the server, not on the client (as
in cookies).

visits a web site, the initial page sets a Session ID that allows the
server to track session “state” or persistence across multiple pages
or even multiple visits to a web site. Often these session ids are
included as hidden fields within a page. As the information is
requested from the server, the session id is validated and the page is
generated on demand using a server side technology such as
Micorosoft’s Active Server Pages or Sun Microsystem’s JavaServer
pages.

There are a few problems that developers may find when they wish
to utilize these approaches. Namely, users that “bookmark” pages
may find the page unusable at a later visit because it may have
contained a hidden variable (sessionID) that has expired. In
addition, caution must be taken to ensure that sessionIds can be
used between applications in an organization/ web farm. Since
many organizations use different tools and technologies – even
within their own external web pages – users may find that they are
not “remembered” even when directed from the customer service
area of the web site to technical support.

Understanding the Authenticated User

Authenticated users are those that provide some sort of validation or
verification of the individual. Authentication may be as simple as
extracting the userid from the host (for example, the Microsoft NT
userid is available to dynamic applications that request this
information.) These applications represent the most reliable method
for remembering users and providing content management services.
These applications are often most appropriate within the firewall
(intranet) or as secure connections between organizations (extranet).

Typically, authentication can come in several forms. We described
one scenario of obtaining the domain userid from the operating
system, but you may also have a custom logon screen, which
requires a userid and/or password. In addition, SSL (secure sockets
layer) can be used to authenticate a user to ensure that they are who
they say they are.

We think of these as user supplied authentication where the user
provides some level of information in order to receive content
appropriate to them. Examples of these include commercial portals
(myYahoo.com; myAOL.com); industry portals
(ClinicalExchange.com); or corporate portals (Plumtree, Viador,
Hummingbird). In each of these cases, the visitor is known and the
content is based on their preferences (content subscription) or
privilege (security). The screen shot bellows shows us an example
of an Intranet page that offers conditional disclosure based on
security roles.

Technologies for Authenticated Users

All of the approaches described earlier for managing and presenting
content to the anonymous user can be used for the known – or
authenticated user. For example, we can store information from
page to page or even from visit to visit through the use of both client-
side (browser, cookies) and server side (sessionID) solutions. In
addition, since we know something about these people, we have the
ability to store information about their likes, dislikes, demographic
information, purchase history, favorite reports, etc. As a result, the
possibilities for how we generate content for these audiences are
endless. Most often these solutions rely on enterprise database
management scenarios that allow for the integrated of corporate data
and web commerce data (e.g., web log and click-stream data).

EXAMPLES OF PERSONALIZATION

As we discussed, there are a variety of approaches to
personalization. In this section, we will examine these in the context
of SAS. We now take a complete example from beginning to end –
showing how we can use SAS to understand whom the user is –
from anonymous, permission based and authenticated.

First, we will show how you can get a variety of information about the
visitor just by using information cleaned from the browser. Second,
we will show how we can set a cookie so that we can use that within
a session (from page to page) and then again on a repeat visit.
Finally, we show an example of how we might authenticate a user
and then present information to them based on who they are.

Please note that these examples are simplified and are not
meant to show how SAS can be used fully to exploit
techniques for personalization.

Reading Browser Information

At its simplest form, understanding a visitor in terms of their
browser, gives us some really good information about who a user is
– as represented by their computer/ browser. In this example, we
set up a simple page that shows us some information like what
browser they are using and their name if available.

The goal of this paper is not to show users how to set up and
configure SAS/IntrNet. But a word about some of the variables that
are available to us through the broker is important. The broker – or
application dispatcher – is a CGI (common gateway interface)
program that allows us to communicate with SAS through a web
request. By default, many of these variables (about the browser) are
commented out. Lets take a look at some of the browser/ client
specific variables. This partial list is taken directly from the
broker.cfg file.

User's IP address
 Export REMOTE_ADDR _RMTADDR
Username if authenticated
 Export REMOTE_USER _RMTUSER
Browser name
 Export HTTP_USER_AGENT _HTUA
Referring page if known
Export HTTP_REFERER _HTREFER

The following screen displays the results of a simple program that
uses these variables in formatting the screen. Specifically, we have
identified the name of the remote user and their browser version.

Of course, we could accomplish the same effect through the use of
JavaScript:

<SCRIPT LANGUAGE="JavaScript">
document.writeln(parseInt(navigator.appVersion));
document.writeln(navigator.appName);
</SCRIPT>

However, in dynamic SAS applications, there may be situations
where getting this outside of the browser and passing it on
application logic/ code, would be useful. A good example of this is
for applications that might pull the current userid (from the Microsoft
Windows NT login) is pulled from the operating system environment
variable and identified in the first screen the user comes to.

In the following example, we show an example of personalization
based on what we know about the user instead of what the user tells
us. Here, we allow the user to save reports (a.k.a. My Favorites)
within the application – but not force them to logon with yet another
userid and password.

Forms, Cookies and JavaScript: Remembering People

In this next example, we want to provide some familiarity by setting a
cookie when they first come to our site. Once visited, upon return
visits, we either say Hello <name> (if the cookie exists) or simply
“Hello” if there is no cookie set. We also show how you set the color
of the background color and then remember that color when they
return.

As we discussed previously, cookies can be very useful – especially
when we combine it with more advanced techniques such as forms.
In this example, we will have a user fill out a form, then remember
this information so that it can be used the next time they visit. In this
case, we take advantage of JavaScript to check whether or not the
cookie is set, then depending up whether the value is available, we
display information relevant to them.

Server-Side Session Management

Up to this point, we have relied on the browser and its ability to
remember people from session to session by storing information on
the client. There may be times, however, when you either cannot or
do not wish to rely on the browser or cookies to store this
information. Recently there have been numerous technologies that
have been introduced that allow us to remember visitors from page
to page and even from visit to visit. We can do this through the use
of session management techniques.

Session management can be accomplished using a variety of
technologies – some of these include: Microsoft’s Active Server
Pages, Sun Microsystems JavaServer Pages, Haht Software’s
HahtSite. Indeed, all of these server-based solutions could even
exploit SAS data and compute services. For simplicity, we will focus
on two methods that are provided for with SAS technologies:
SAS/IntrNet sessionID and session management using Java
through SAS’ AppDev Studio. Note that with both of these
approaches, we could use either client side (cookies) or server side
(sessionID) – we have decided to limit our discussion here to just
server-side approaches.

SAS/IntrNet: Application Dispatcher Session Management

Like most web application servers, SAS/IntrNet affords us the luxury
of being able to manage state within a web application by persisting
information through a sessionID that resides on the server (or in
cookies). Sessions allow us to save information such as temporary

datasets and variables just as we would typically save data in
WORK libraries and in macro variables.

Macro variables can be saved for use in subsequent requests by
prefixing them with the word SAVE_. Similarly, datasets can be
persisted if you use the library SAVE instead of WORK.

Let’s explore an example. In the series of screens that follow we
perform the following actions:

1. The logon page passes the userid and password to the
SAS application dispatcher through a POST method.
(logon.sas)

2. The logon.sas program reads the userid and subsets the
sample dataset using the userid in the where clause. That
dataset is saved using the SAVE.* method – which
signifies to SAS that we want to save the data beyond this
page.

Data save.mydata;

set pdata.class;

where upcase(name)=upcase("&userid");

3. In that same step, we assign several macro variables
based on the values being read in. These macro
variables (SAVE_varname) are also available to
subsequent calls.

call symput('SAVE_NAME',name);

call symput('SAVE_SEX',sex);

call symput('SAVE_age',age);

call symput('SAVE_height',height);

call symput('SAVE_weight',weight);

4. Finally, we build two hyperlinks dynamically so that we
can see our sessionID in action. The sessionID is added
to the link so that we have access to the SAVE. Datasets
and the save. Macro variables.

And view the two subsequent pages where we pull the
information based on the session information (as passed
through the sessionID).

By take advantage of the server to manage session information, we
have reduced he potential problems usually associated with using
cookies. In addition, we have eliminated most of the effort in
constructing construct complex URL’s with parameters in order to
pass information from page to page.

In addition, we can now also take advantage of the session to store
information about what people have selected and/or saved through
by intercepting each REQUEST and programmatically processing
the information contained in the request – including writing the
session information to a log. We would do this by modifying our
appstart.sas program (the Application Dispatcher program that
provides the service for our SAS/IntrNet programs). Here we would
add a REQUEST statement – specifically an INIT program that
would run each time a request was made.

Active Server Pages, JavaServer Pages and AppDev Studio

JavaServer Pages was introduced by Sun Microsystems in response
to Microsoft’s Active Server Pages as a technology to allow for the
generation of HTML-based content in web applications from Java.
JavaServer Pages is a special type of servlet (Java server program)
that generates content on demand using the Java programming
language. Similarly, Active Server Pages is a server side language
that produces content from the server. Active Server Pages uses
VBScript primarily as it’s programming language. However, we can
also take advantage of COM/DCOM for storing program logic on the
server.

In each of these languages, we have the ability to maintain session
state or persistence, using the session object. The session object,
much like SAS/IntNet, allows us to persist information from page to
page. We do this by establishing a sessionID when we first start out
application. From there, we simply pass the sessionID from page to
page and it “remembers” information despite the “connection-less”
state that HTTP protocol provides.

THE PROBLEM WITH PERSONALIZATION

In the first part of this paper, we explored some of the business and
technical reasons that “personalization” is now part of our every day
vocabulary. Now we will discuss some of the challenges that we
face in measuring the effectiveness of these strategies.

Earlier we spoke of these technologies from two perspectives. The
first, our ability to generate content on demand so that visitors to our
web sites have a much more personalized experience. The second
is technologies that we use to understand what people do with that
information. So now we turn to from technologies and approaches
that deliver web content to those that help us understand its effect.
That is, did we accomplish our objective with this web site? Do

people buy more? Do they stay longer? Do they come back to the
same places? Will our servers survive the traffic?

The Need

Today’s business and technology landscape is replete with reasons
for personalizing content. In order to measure the effectiveness of
these approaches, a methodology is needed, which allows us to
determine the effectiveness of a site – in terms of the business
value. Today’s analysis techniques for reporting about site traffic,
such as the most popular pages – tell us little or nothing about
things that drive the bottom line. The business decision makers
want reporting against profitability, customer satisfaction and return
on investment.

e-Marketers who must make decisions about how to organize and
present content on the web need to know such things as: What
pattern of behavior by a web site visitor is followed by a high-margin
product purchase. And which changes to the web site facilitate
such behaviors.

Market for web activity analysis solutions, profiling data and auditing
services has exploded. The business need requires an intelligent
system capable of aggregating and analyzing activity on infinitely
variable content in a manner that is meaningful.

Behavioral Indicators

The question of why people buy the things that they do has been at
the forefront of the minds of researchers for decades. In the 1950’s,
folks like Louis Cheskin attributed the reasons to the way it made
people feel. However, others found that attitudes and behaviors
often are incongruent (see for example, Aizen & Fishbein, 1975). If
we can really measure what people are doing, rather than merely
getting their opinion on the subject, is much more reliable. So it may
be that we measure people’s traffic patterns through our web sites
because we can, but it is also that is gives us a tremendous amount
information about behavioral patterns which can then be used to
make business decisions that directly affect the bottom line.

Web Log Analysis

One of the most popular techniques for analyzing web activity
involves reporting on web logs. Web logs helped us understand
such things as: Where did people (visitors) come from? Where did
they jump off? Where did they go when they were there? How long
did they spend at each place? Did they come back?

Web activity reporting consists of:

� Basic traffic statistics (hits, page views, visits)

� Navigation patterns (referrers, next-click, entrance and exit
pages)

� Content requested (top pages, directories, images, downloaded
files, stickiness - measuring depth and persistence)

� Visitor information (domains, browsers, platforms, time of day)

� Fulfillment of the site’s objectives (purchases, downloads,
subscriptions)

Answering questions such as these are critical as companies are
pouring huge capital investments in the web-front experience. Help

with decision making about content activity – gives companies
quantifiable measurements as to the type of content that is being
requested.

Analysis tells an organization about their visitors – just like as
presenters, we try – as we may – to understand our audience so that
we can tailor content to the audience – tracking helps us understand
who is it that is requesting information. Questions like: audience
composition, how do they match our models of a customer, how
does it change over time, what improves visitor retention or session
depth?

e-Intelligence

One of the most common techniques for understanding how people
have interacted with a web site is through the use of web log
analysis. That is, web servers produce a tremendous amount of
data about who clicked on what, where. These techniques were
adopted early in order to unearth the hidden mysteries of
performance, traffic flow, on-ramps and off-ramps and buying
patterns. However, in this context, we must move beyond traditional
web log analysis and focus on how we can use the data coming from
our web sites when the content is continually changing through
personalization techniques. The holy grail of marketing is, after all,
delivering your message in a manner that is compelling enough to
create a personal relationship between an individual and the
organization providing the message.

With these technologies, comes a price. That is to say, the more
dynamic we make the content, the harder it is to track and monitor
what content is being viewed. For example, given a typical web site,
we are usually aware of the possible destinations.

Of course, the paths that one could take within this site could be
enormously complex. However, technologies that allow us to map
these pathways and make decisions about site design, buying
patterns and visitor information are fairly straightforward. For
example, WebHound (SAS Institute), provides compelling views
about our web site, allowing us to determine which areas are most
often visited, which areas lead to the purchase decision most often
as well as the ability to understand complex patterns of traffic flow
within our site.

Visualizing this content and the pathways are often the most useful
technique. Below, is a sample screen from one of these tools (Astra
Site Manager.)

These software tools are designed to aid their masters in the
visualization and management of large, complex web sites. More
often than not, however, these tools are designed to understand and
capture information about data that is slowly changing.

The Challenges

Most often, the first stop on our way to understanding what people
have done on our web sites begins with web log analysis. As it’s
root, web log analysis is a stream of data that is generated when a
user does something on your site.

If we examine a typical web log, we see that it is simply a trail of
activity. The unit of analysis of this data is a computer (represented
by an IP address) and a request (for an object such as a page or an
image).

There are several challenges that we face as we deliver dynamic
content to users. These include:

• The problem of the dynamic “path” – One of the challenges
that we face when we deliver personalized content to a user or
a group of users is that our notion about the “path” that they
have taken to get to a certain point has changed dramatically.
Each visitor may have a completely different path that makes
traditional analysis difficult, if not impossible.

• Making complex URLs Meaningful – You may have noticed
that while visiting a web page, the URL (the address of the
query string in your browser) that appears as a long string of
made-up numbers, letters and special characters. Often these
are used to pass critical information to the server as you
request specific information. An example of this can be found
in even the simplest web application (this one is from the SAS
Multidimensional Viewer.)

http://10.133.1.7/sascgi-
bin/broker?metabase=SASHELP.MBEIS&_program=sashelp.

webeis.mddbrpts.scl&_DEBUG=0&VMDOFF=y&_service=def
ault&mddb=SASHELP.PRDMDDB&css=%2Fsasweb%2FIntr
Net8%2FMRV%2Fcss%2Fdefault.css

As requests like these get made – no matter how similar – they
appear in the web log report as different pages even though
they may be the same request with a slight variation. For
example, in the following query, we are requesting a sales
report for the North East Region, sorted by County. In another
request, we ask for the same data, only sorted by State. As
these get processed by the web reporting tool, they are
reported on as two separate pages.

• Multi-source data integration – as data from multiple servers
are aggregated to provide a single, consistent view of the web
activity for an organization, several problems can arise. For
example, there are issues such as time-synchronization
(multiple time zones) or tracking session variables across
servers that may have different sessionId management
standards. In addition, because of the pure volume of data/
interactions, it may not be feasible to report on all of the data
that we would like.

• Integration of Application Server and Session logs –
Mapping what’s possible to what the user actually experiences
often mean combining web server information, session logs
and application server logs to create a logical mapping of the
user experience.

• IntraPage Analysis – In order to make a web page more
dynamic and interesting to users, we have adopted the use of
JavaScript, XML, Java applets, ActiveX controls and other
plug-ins. However, since non-HTTP protocols are not tracked
in the server logs we have no way of understanding these
client-side interactions.

• Changing Hierarchies and Product Taxonomies – Because
content on the web can be changed often and even for each
user, we have to take into account how we are going to report
on this data in reaction to changing requirements of the site
(movement and restructuring of pages, reorganization of
products and product categories, visual representation of
products, etc.)

Traditional web tracking and reporting tools are not prepared to deal
with these complexities. Web server logs are designed to track the
query string – not session or intra-page activity. Most often, web log
analysis tools use IP matching to report on web activity. IP Matching
consists of mapping time-contiguous server log entries from the
same host ID in a short period of time.

Since IP Matching can only provide gross statements about traffic
patterns, there are three major issues with this approach. (1) This
technique tends to be inaccurate with web sites that have a sizeable
number of visitors since IP address can be reused within a short
period of time. (2) IP addresses may be used by the same user
within the same session for the same user. (3) Firewall protection
yields single IP addresses for a group of users in an organization
(e.g., AOL).

These approaches are good for sites were there are few dynamic
components because we are analyzing information after the visitor
has left (i.e., web logs), there are no special requirements on the
web server or the browser (except that the web server can generate
the logs.)

Dynamic sites, on the other hand, have complex reporting
requirements if we want to understand the entire picture. For

example, we may find ourselves combining the information from a
web server with the application log to get a true picture about what
has happened.

CONSIDERATIONS FOR E-INTELLIGENCE

If we really want to understand what has happened on a web site, it
is critical that we understand several things.

First: We need to understand the difference between an object
requested, a page and a visit. We typically look at objects as
individual components that have been requested on a page (e.g.,
image, html). However, more meaningful content for analysis
includes both the “Page” and the “visit” or Session. For analysis of
site flow and pattern analysis, aggregating information at a page level
is key. Integrating information about the context in which a page is
viewed is critical for truly moving beyond the “river of clicks” and onto
descriptions of behavior. Here, we combine server log information
with application level content such as session state information.

Data must be mapped and aggregated at a level that is meaningful in
the context of the business: server typically logs clicks and
keystrokes (object level) – but basic analysis begins with page level
experiences – product experience.

Mapping what’s possible to what the user actually experiences often
mean combining web server information, session logs and
application server logs to create a logical mapping of the user
experience.

Sometimes, a group of pages should be aggregated to understand
the “super-ordinate” goal of a promotion or campaign.

Data Mining

From a technology perspective, data mining has certainly blossomed
in its relevance for helping us understand the vast amounts of click-
stream data. By applying data mining techniques such as market
basket analysis and other association techniques, marketers can
find a virtual gold mine in their data. Second generation mining
techniques, applied to the web, evaluate not only end of line tracking
– composed of tracking behaviors of a person in a store/ web site –
but also what to display next. Good examples of these include
Amazon.com’s recommendation engine. The movement from
traditional analysis (what happened) to “what’s going to happen next”
has taken eIntelligence to new way of thinking about the question
“why do people buy the things they do?”

CONCLUSION

In this paper, we have explored the world of personalization in terms
of its business drivers, the technologies for generation and
techniques for measurement. The world of dynamic applications –
where content is delivered to users based on who they are, what they
like and what they have access to – is quickly evolving. No doubt
this world will continue to change – both as a result of the technology
but also because of the social and political landscape that governs
its acceptance. As technologies such as XML and wireless
communication become commonplace, our ability to deal with the
information overload will become more important.

Equally as important is how we will deal with the measurement
issues as we see the heightened visibility of privacy. Clearly this
evolving landscape of politics, business processes and technologies
will continue to raise questions along the way. However,
personalization coupled with tracking provides us with a powerful

toolbox that allows us to understand people – not just the technology
– of our “webscape”. Personalization can help your find out what
makes your audience "click", what works and what doesn’t.

BIBLIOGRAPHY

Fishbein, M., & Ajzen, I. (1975). Belief, attitude, intention, and
behavior: An introduction to theory and research. Reading, MA:
Addison-Wesley.

Lavoie, B. (2001) “Web Characterization Project”,
http://wcp.oclc.org/

Ramsey, C. (1.15.2001) “Managing Web Sites as Dynamic
Business Applications” The Internet Industry Portal,
http://idm.internet.com/articles/200006/wm_d.html.

Rosencranz, L. (9.5.2000) “Amazon charging different prices on
some DVDs,” Computer World on-Line,
http://www.computerworld.com/cwi/story/0,1199,NAV47_STO4
9569,00.html.

Barnes-Nelson, G.S. (2001) " Collaborative Commerce: Portals for
Decision Support and Knowledge Management," Proceedings
of the Twenty-Sixth Annual SAS Users Group International
Conference, Long Beach, CA.

CONTACT INFORMATION

The authors may be contacted as follows:

Gregory S. Barnes Nelson
STATPROBE Technologies
117 Einburgh South, Suite 202
Cary, NC 27511
Internet: greg.barnesnelson@statprobe.com
Personal: gregbn@ix.netcom.com
Web: http://www.statprobetechnologies.com

For the latest version of this paper, please refer to:
http://www.statprobetechnologies.com/downloads

Knowledge Management Using an Expert System Written in SAS®

Anthony M. Dymond, Dymond and Associates, LLC, Concord, CA

ABSTRACT

Expert systems are a branch of artificial intelligence
that encode the knowledge and performance of a
subject matter expert. An expert system provides a
powerful approach to managing and applying
knowledge to the business. The paradigm here is to
encapsulate knowledge in an automated "expert"
who can utilize this knowledge for the company's
benefit.

An expert system can shield a company from
employees leaving with critical information. It can
help make knowledge available throughout the
enterprise and help solve the problem of "knowing
what we know." It can implement business rules to
bridge the gap between written policy and practical
application. It also allows importing automated
subject matter experts when needed.

This paper describes an expert system written in
SAS and reviews some of the major design
considerations. Several knowledge bases are
demonstrated to show how an expert's knowledge is
encapsulated in a knowledge base and applied at
run-time.

INTRODUCTION

Knowledge as an Asset

Companies have spent time and money discovering
important information about themselves, their
customers, and their competition. They have
invested in what SAS calls "The Power to Know."
Once this knowledge becomes available, it has to be
leveraged to affect the corporate bottom line. In a
sense, data warehousing and data mining are "mid-
game" activities. They help to make knowledge
available. Knowledge management, where
knowledge is applied to the company's business
activities to produce tangible results, is the "end-
game." This knowledge is more than an
accumulation of facts. It is also the rules and
procedures needed to make decisions.

One example is Customer Relationship
Management (CRM), which continuously acquires
information about customers and their behaviors.
Knowledge is analyzed and used to sell products
and services, often by tailoring offerings to individual
customers. Knowledge can also be embedded in

intelligent interfaces, allowing customers to be
guided through personalized product exploration and
customization.

It is also important to make some of this information
available to stakeholders such as suppliers. This
can improve supplier relationships by controlling
prices, inventories, and deliveries. In fact, there may
be many localized areas both within and outside the
company where information needs to be packaged
and presented.

There are many ways companies can utilize
knowledge. Knowledge can be summarized in
reports or procedures. It can be stored and utilized
through the expertise of employees. It can also be
captured in a computer program (Figure 1).

Each of these approaches presents problems.
Reports are filed and forgotten. Employees leave
and take the company's knowledge with them.
Procedures can be changed without adequate
documentation. Computer programs are often
incomprehensible and inherently lack flexibility.

It would be advantageous if this knowledge could be
stored in an automated system in a more flexible
and understandable form than conventional
programming. Some of the attempts to do this are
referred to as "business process management" or
"business rules." These rules are interpretable by
computer applications and directly drive
computation. They are also understandable by
nonprogrammers. In the ideal case, business units
themselves can mostly maintain these rules without
IT support. The business units become empowered
and are more responsive and adaptable. Efficiency
improves since there is less overhead spent on
complex code maintenance and documentation.

The next step after automating business rules might
be to capture the knowledge and behaviors of a
subject matter expert and place these into an
automated system. This is referred to as an “expert
system.” Interacting with the expert system provides
an experience similar to interacting with the human
expert. This approximates the human expert being
continuously available. This intelligent agent then
reflects the best expertise the company has in a
given subject area. This can offer a significant
competitive advantage when dealing with
customers, suppliers, or other business issues.
Automated experts can be made available

throughout the company as well as to suppliers and
customers. Additional expertise can be brought into
the company by acquiring expert systems from
external sources.

Knowledge today is viewed as one of a company’s
most valued assets (O'Dell and Grayson, 1998;
Stewart, 1997). It must be tended and enhanced
like any other asset. Knowledge management is
more than storing and exploring data. It requires
finding, deploying, and applying both facts and rules
to obtain competitive advantage. Embedding it in
intelligent systems can significantly leverage
knowledge.

Current Enterprise Computing

The current enterprise computing environment is not
particularly supportive of knowledge management.
Applications are comprised of focused commercial
packages, locally developed programs, and large
application suites covering entire areas such as
finance or manufacturing. Many of these
applications, whether in-house or commercial, are
basically procedural and provide a set of
predetermined interfaces to an underlying database.
They tend to be oriented to batch processes and are
often inflexible.

Isolated legacy systems continue to hide both data
and procedures behind a wall of incompatibility.
Corporate mergers have complicated the situation
with a mix of software and hardware that is difficult
for IT to manage and for the business units to utilize.
Many of these applications do not integrate well at
the corporate level.

At the same time, the size and complexity of projects
are increasing. Development teams charged with
these projects can have multiple subject matter
experts and may include members from foreign
offices who struggle with language and cultural
barriers. Traditional programming tools such as
system development life cycle design and
procedural code are proving to be inadequate.

Emerging Enterprise Computing

Corporations are beginning to look at their
applications from an enterprise-wide perspective,
rather than depending on a piecemeal approach.
They seek integrated systems that support data
interchange and common standards. They
recognize that software needs to be flexible to meet
changing business requirements. Software should
also provide both event-driven and batch-oriented
features.

There is a shift to object-oriented programming for
large or complex projects, especially projects that
need to be addressed by multiple task groups.
Object-oriented techniques effectively decompose a
subject or process into modular components. These
object modules can be designed to be compatible
with applications across the enterprise. They
improve reliability and maintainability. They support
reuse at both the object and method level.

Separate programs within the objects are contained
in labeled blocks of code called methods. Object-
oriented systems have other valuable features such
as abstraction and encapsulation that isolate object
internals from the rest of the system. Of particular
importance is method inheritance, which provides a
set of rules for sharing methods throughout a system
or the entire enterprise.

When built to be compatible with industry standards
such as CORBA, the object-oriented model provides
the means to execute methods in diverse
applications throughout the enterprise and to
support information interchange regardless of the
underlying data structures.

Use of object-oriented systems sets the stage for
intelligent systems. Intelligent applications drive
visual and conversational interfaces with embedded
intelligence, allowing the application to function as
an assistant. Intelligent agents provide a
semiautonomous application that acts on behalf of
the user.

INTELLIGENT SYSTEMS

Procedural programming separates program code
from data. Particular attention is placed on
developing a complex control structure. The control
structure code is intertwined with the knowledge and
rules contained in the program, making programs
difficult to maintain or modify. Procedural
programming focuses on how things should be
done, rather than what should be done.

Object-oriented systems decompose the problem to
modules called objects that combine both programs
and data. But object-oriented systems have little to
say about control structures and provide a
somewhat static view of a problem.

Intelligent systems today start with the object-
oriented model but add a separate control structure.
The advantages of the object-oriented model are
kept, but knowledge and expertise are now
separated from application control. The systems
become easier to understand and faster to construct
(Jackson, 1999).

A separate control structure encourages the use of a
declarative approach that focuses on what should be
done, rather than emphasizing the details of
program control. Stating rules and other knowledge
to the system accomplishes the programming. The
dynamic run-time interaction between objects is
determined by rules written into methods and by the
separate control structure. Rules are a natural way
to describe a decision process. We can say:

“IF the applicant has a good credit history AND the
applicant has the resources to repay a loan THEN it
is OK to give the applicant a loan.”

When the control structure can be represented
graphically, then the system becomes exposed and
comprehensible to staff who are not programmers.
By using templates and graphical tools, staff in the
business units can maintain these systems in the
field with minimal IT support. Intelligent systems
now begin to deliver integration at the corporate
level with adaptability and responsiveness in the
business units.

Building an Intelligent System in SAS

An intelligent system using an object design model
with a separate control system has been developed
in Base SAS and SAS Component Language (SCL)
(Dymond, 2000, 2001). This can be used as an
independent agent or embedded into applications
where it is transparent to an end user.

It uses a conventional expert system design with an
inference engine, multiple knowledge bases, and a
database (Figure 2). The inference engine provides
both development and run-time tools. It supports
the run-time environment, including the separate
control structure.

The knowledge bases serve a role similar to
separate applications and are executed under the
control of the inference engine. A subject matter
expert's knowledge is captured in the knowledge
base as objects in a graph. The graph provides a
mechanism to navigate between the objects, and it
is implemented in this intelligent system as a search
tree explored by well-known tree search algorithms
such as depth-first search.

Declaring objects into the tree and requesting one of
the tree search algorithms provides the designer
with program control. The control system contained
in the inference engine then has the information
necessary to automatically provide control services.
Some control fine tuning can be done through code
in the methods.

The tree is a dynamic system object and system
methods are available that allow detailed
programmer-level control should this be necessary.
Methods are available that allow one tree to load
and execute another tree, providing the capability of
chaining between multiple subject matter experts.
The tree is also extensible at run-time, forming the
infrastructure for an intelligent agent that can learn
and remember.

The memory-resident database contains the data
from a current session. This is a “blackboard
database” that is read-write accessible by all objects
in the intelligent system. Data is stored in an object-
attribute-value triplet, plus an index column. The
database is also a system object that can be
accessed by its own system methods.

The tree, objects, methods, and database can all be
saved to disk and reloaded at any time during a run.
This captures the complete state of the system at
any time and supports “what if” studies.

MakeLoan Knowledge Base

The MakeLoan knowledge base demonstrates the
intelligent system used to implement business rules.
Rules describe how a company processes a loan
application. The system encapsulates the
company’s procedures for making loans and also
embeds the best practices of a company expert.

The object decomposition and placement into a tree
is shown in Figure 3. The decomposition is based
on functions, and the tree is arranged based on
functional dependencies and on the order objects
should be encountered. The tree should be
processed with a depth-first search algorithm that
transverses the tree from top to bottom, and from left
to right. With this in mind, it is possible to “read” the
tree as follows:

Begin by gathering some information about the
customer, such as demographics and the nature of
the loan (StartConsultation). Decide if any loan will
be made (MakeLoan). This decision will depend on
the customer having satisfactory credit (CreditOK)
and adequate resources to repay the loan
(ResourcesOK). The resource requirement can be
met by the customer having adequate income to
repay the loan (IncomeOK) or by pledging sufficient
collateral against the loan (CollateralOK). Once a
decision has been made to make a loan, the amount
to be loaned can be determined (LoanAmount).
Finally, a report is prepared summarizing this loan
application (Report).

The object ResourcesOK could be coded using
Base SAS with system methods to read and write
the blackboard database, or it could be coded by
using one of the method proof templates available in
the system. A code fragment from a method proof
template would be:

*PROOF=ResourcesOKProof;
*;
*TARGET={ResourcesOK,resourcesScore};
*;
*ORCLS={IncomeOK,incomeScore} eq 'true' ;
* {CollateralOK,collateralScore} eq 'true' ;
*ENDCLS;
*;
*ENDPROOF;

which states that there is a method proof template
named “ResourcesOKProof” that will attempt to find
a value (either “true,” “false,” or “unknown”) for the
attribute resourcesScore in the object ResourcesOK.
It will accomplish this using a logical OR test on the
attribute incomeScore from the object IncomeOK,
and the attribute collateralScore from the object
CollateralOK.

One further programming issue should be
mentioned. If the applicant’s credit is not OK, then
MakeLoan,makeLoanScore = “false” and the object
MakeLoan and its descendents do not need to be
explored further. This is communicated to the
search engine by setting a search control flag
attribute in the object MakeLoan. This flag would be
set when the makeLoanScore attribute was set to
“false,” and the system would know not to further
examine the object MakeLoan or its descendents.

This system can be rapidly constructed, easily
understood, and maintained at least in part by
nonprogrammers in the business units. The objects
and their control are defined by declaring them into
the tree. Within the objects, much of the
programming can be replaced by filling out method
proof templates. Other system methods make it
easy to open pop-up windows to gather information
from users.

Mammal Knowledge Base

The Mammal knowledge base contains the
knowledge and behaviors of a subject matter expert
who knows how to classify mammals. It
demonstrates an intelligent system built by
successively subclassing from a general root node
(Mammal) to specific examples of animals in the leaf
nodes. The objects and tree shown in Figure 4
essentially reflect a hierarchical decomposition of
mammalian animals. The sense of the tree is as
follows:

Suppose that one encounters a medium-sized
brown animal with a marsupial pouch, hopping on
large hind legs and carrying the Australian flag. To
identify the animal, a search begins at the root node
of the Mammal knowledge base. The search
proceeds through successively lower levels in the
tree and seeks increasingly detailed information. As
information is gathered, some branches of the tree
are found to be unproductive. Control flags set from
the methods code block further unnecessary search
in these branches. The focus of the search would
soon be guided to the object Kangaroo.

Several points can be made about the tree and
search engine:

� These searches are very efficient. Only the
most relevant questions are asked in the
order needed to solve the problem.

� The process is scalable and works well for
trees with thousands of nodes.

� The tree can be entered at any node. For
example, if it is already known that the
animal is a marsupial, then a focused search
can begin at the node MarsupialMammal.

� It is easy to steer the search to prove a goal
node in the body of the tree or to allow it to
work down to individual leaf nodes. For
example, the goal might have been just to
determine if the animal is a mammal without
trying to identify the specific type.

� “Goal driven” or “backward chaining” search
proceeds from the top toward the bottom of
the tree. It is also possible to have “data
driven” or “forward chaining” where data is
placed into objects at the bottom of the tree
and the consequences allowed to flow
upward. For example, it could have been
initially stated that the animal is a Kangaroo
and this fact then allowed to prove
MarsupialMammal and Mammal.

MonitorOK Knowledge Base

The MonitorOK knowledge base encapsulates an
expert’s knowledge from a service call center
supporting monitors. The main point of presenting
this knowledge base is to show that its design and
construction is essentially the same as the Mammal
knowledge base. Both progress by subclassifying
from a general root node to specific instances at the
leaf nodes.

In fact, MonitorOK and Mammal are essentially the
same as MakeLoan in that they all demonstrate
search within a bound knowledge space. In all
cases, the answer is known to exist somewhere
within the knowledge base, and the problem is to
find it expeditiously.

The underlying commonality of seemingly diverse
problems is one of the most interesting and
important facts uncovered when remapping these
problems to the knowledge representation shown
here. They all belong to a family of similar problems,
and a generic tool, the intelligent system, can
address them all.

CONCLUSION

Gathering, retaining, transferring, and applying
knowledge are of great importance for a company
seeking competitive advantage. Knowledge
management is significantly leveraged by intelligent
systems, which can capture and implement business
rules and the expertise of subject matter experts.

The intelligent system presented here utilizes an
object-oriented programming model and adds a
separate control structure. This allows problems to
be entered in a declarative manner by using object
decomposition and then placing the objects as
nodes in a search tree. Methods in the objects can
easily communicate with the search engine to
provide a robust and simple control paradigm.
System methods supporting template proofs and
user query windows round out a system that is
understandable and supportable by
nonprogrammers in the business units.

A number of problems that seem to be very diverse
are in fact remappable as search within a bound
knowledge space. The intelligent system then
becomes a generic tool that can be used to address
these problems.

Building the system around object-oriented
techniques allows it to be integratable and to share
information with the emerging enterprise computing
infrastructure.

REFERENCES

Dymond, A.M. (2000), "An Object-Oriented Expert
System for the SAS Environment," Proceedings of
the Eighth Annual Western Users of SAS Software
Regional Users Group Conference, 8, 454-458.

Dymond, A.M. (2001), “Telling Aardvarks from
Zebras with an Expert System Written in SAS,”
Proceedings of the Twenty-Sixth Annual SAS Users
Group International Conference, Long Beach,
California. (CDROM paper 135-26).

Jackson, P. (1999), Introduction to Expert Systems,
Harlow, England: Addison Wesley Longman Limited.

O'Dell, C.S., and C.J. Grayson (1998), If Only We
Knew What We Know: The Transfer of Internal
Knowledge and Best Practice, Free Press.

Stewart, T.A. (1997), Intellectual Capital: The New
Wealth of Organizations, Doubleday.

ACKNOWLEDGEMENTS

Automated Consultant is a trademark of Dymond
and Associates, LLC.

SAS and all other SAS Institute Inc. product or
service names are registered trademarks or
trademarks of SAS Institute Inc. in the USA and
other countries. ® indicates USA registration.

Other brand and product names are registered
trademarks or trademarks of their respective
companies.

CONTACT INFORMATION

Anthony M. Dymond, Ph.D.
Dymond and Associates, LLC
4417 Catalpa Ct.
Concord, CA 94521

(925) 798-0129
(925) 680-1312 (FAX)
amdymond@dymondassoc.com

A SAS Institute Inc. Quality Partner

Tasks

• Solve problems

• Make decisions

• Produce products

• CRM

• Balanced scorecard

Knowledge

• Documents

• Databases

• Computer programs

• Employees

• Consultants

Mapping Tasks and
Knowledge in a Company

Figure 1: Knowledge used to solve enterprise tasks is stored in many forms.

• Development Tools
• Run-time Environment

Multiple
Knowledge
Bases

Database Inference Engine

Figure 2: The intelligent system is composed of an inference engine,
 multiple knowledge bases, and a database

Figure 3: Tree for the MakeLoan knowledge base.

Figure 4: Tree for the Mammal knowledge base. (The tree is shown sideways with the root at the left.)

Figure 5: Tree for a service call center supporting monitors.

SAS and Electronic Mail:
Send e-mail faster, and DEFINITELY more efficiently
Roy Fleischer, Sodexho Marriott Services, Gaithersburg, MD

Abstract

With every new software package I install, I look for
some application that will enable me to simplify or
improve the efficiency of my day to day processes.
After all, technology is supposed to make things better,
more able, and somehow remove manual processes.
This is exactly what happened when I was introduced to
SAS’ e-mail capabilities. I suddenly found I could,
when completing a task, e-mail out the resulting file with
the click of a button. I would not need to leave SAS to
open e-mail, find the name of the person(s), attach the
file(s) after searching for the correct subdirectory, then
hit send. Instead, I was able to replace a lengthy
administrative task with a single, repeatable one.

Introduction

Decision Support Systems (DSS), a division of Sodexho
Marriott Services is responsible for making all data in the
company useable. Because our use of SAS gives us the
ability to parse static reports and read multiple formats
(i.e., XLS, WK4, CSV, etc.), DSS is often called upon to
convert some format to one of the user’s preference.
These preferences include paper reports, spreadsheets,
text files, or converting data into SAS format to be
used/merged with additional data.

One of DSS’ primary objectives is to distribute financial
data for each fiscal period (Sodexho Marriott is on a 12
period/5-4-4 calendar) to approximately 85 people across
the company by 12:00 p.m. the Monday after financial
close. These individuals are located throughout the
United States and Canada, and their only common method
of receiving information is via voice mail and e-mail.
The people who receive the data are responsible for
different areas of the company, and the files they receive
include only those areas for which they are responsible.
For example, the Vice President of Finance for Education
Services receives all of the Education Services divisional
information, and a Regional Controller receives ONLY
data for his/her region.

The necessary tools required to accomplish this task
remain the same for either a manual or systematic
approach. The differences reside in the versions of SAS
and Lotus cc:Mail that are used. Today’s solution

includes SAS Version 8 and Lotus cc:Mail Version 8.2.
Previous versions of Lotus cc:Mail are not MAPI
compliant. Microsoft Excel 97 is also used to maintain
the specifics of the distribution list. SAS can read
versions of Excel back to Version 4. The last requirement
is an able body to submit the program.

Lotus cc:Mail Database Preparation

Lotus cc:Mail has a proprietary database format that
SAS cannot read. To make the database readable, Lotus
provides a utility. Figure 1 illustrates the cc:Mail utility
to create the necessary file.

Figure 1:

wmcheck localpo password database location dirinfo
>>path\ccmobile.csv

wmcheck - Lotus cc:Mail utility
localpo - keyword
password - users password
database location - local post office location
dirinfo - keyword
>>path\ccmobile.csv

- path and name of export file

Mailing List Preparation

DSS maintains a list of recipients and specifics about the
data they receive in an Excel workbook named
fastdist.xls. In this workbook, multiple worksheets are
defined for each division, change history, current period
changes, divisional totals, and a comprehensive list (Tab:
LIST) to import into the process. This list is updated
every period with any changes and then saved to the
designated place on the local area network (LAN).

Attachment Preparation

Every period, a process runs to create separate files
relating to different areas of responsibility. These files
are zipped, named FASTUPD.EXE, and attached to the
resulting emails. The FASTUPD.EXE files range in size
from <1 meg, for a region at period 1, to close to ~20

meg, for a full division at period 12 (year end). They are
located on a dedicated machine within subdirectories
designated by division (EUP=Education Services),
period number, reporting hierarchy (S=SVP, D=DVP,
R=RVP) and area of responsibility (051=Education
Southeast). Figure 2 is an example of the directory
structure after the process has been completed.

Figure 2:

c:\fsm$chgs\eup\pd10\d051\fastupd.exe

c: - Local drive
fsm$chgs - subdirectory
eup - division
pd10 - period number (1-12)
d051 - DVP 051
fastupd.exe - attachment

SAS Configuration

Figure 3 shows the lines that need to be added to the
bottom of the SAS configuration file, SASV8.CFG.

Figure 3:

-EMAILSYS MAPI
-EMAILID “id”
-EMAILPW “password”

MAPI - type of email
id - MAPI compliant mail id
password - MAPI compliant mail pw

SAS Program

The shaded boxes below illustrate the complete SAS
program used to import the two necessary databases,
merge the databases together, ensure the attachments and
their respective directory structure were created, and
finally mail the complete e-mail to the users.

---Period Assignment---

Assign period number to macro PD.

%let pd = 10;

---Lotus cc:Mail---

Read the complete name from the Lotus cc:Mail
database comma separated file created earlier in
Figure 1. Delete blank records. Create a new variable,
CCNAME, making all characters capital and left

justified. Now this file is almost ready to merge with the
distribution list. Make sure the attributes are the same in
the files that will be merged.

data work.ccMail;
 keep CCNAME NAME;
 attrib NAME informat=$77.

length=$77.
format=$77.

CCNAME length=$40.
format=$40.

 ;

 infile ‘path\ccmobile.csv’ delimeter=’,’
missover dsd firstobs=8;

 input NAME $;

 if NAME = “ “ then delete;
 CCNAME = upcase(trim(left(name)));
run;

The Lotus cc:Mail database created earlier in Figure 1
might have duplicate records. Sort data by CCNAME
and use NODUPLICATES option to remove like
records.

proc sort data=work.ccMail noduplicates;
 by ccname;
run;

---DSS Distribution---

Import the distribution list maintained in Excel. Using
the option RANGE, read only the single tab needed.

proc import out=work.distr
 datafile=”path\fastdist.xls”

 dbms=EXCEL2000 replace;
 range=”List$”;
 getnames=YES;
run;

Add the variable CCNAME to newly created
WORK.DISTR dataset with the same attributes that were
defined in WORK.CCMAIL.

data work.sasname;
 length CCNAME $40.;
 set work.distr;

 if NAME = ‘ ‘ then delete;
 CCNAME=upcase(trim(left(name)));
run;

Sort the dataset just created by CCNAME to assure data
are in the same order as WORK.CCMAIL.

proc sort data=work.sasname;
 by ccname;
run;

---Exception Reports---

Merge the two datasets, SASNAME and CCMAIL, to
check for exceptions. This ensures all names on the
distribution list are actually on the e-mail database. If
names don’t exist in both extracts they fall into
WORK.OOPSNAME.

data work.checkname
work.oopsname;

 drop CCNAME;

 merge work.sasname (in=sas)
work.ccMail (in=ccMail);

 by CCNAME;

 if SAS and CCMAIL then output
work.checkname;

 else if SAS then output work.oopsname;
run;

Print WORK.OOPSNAME in an exception report if any
observations from the distribution file were not in the
e-mail database. If any names are found on this report,
check the distribution file for typos, then check with the
individual for their correct email.

title1 ‘***ALERT***’;
title2 ‘NAME NOT IN CC:MAIL’;

proc print data=work.oopsname;
run;

Read the resulting dataset, CHECKNAME. Create the
directory structure for the attachments. If the directory
doesn’t exist, it falls into WORK.OOPSFILE. If a
directory wasn’t created for a specific area, it will fall
into WORK.OOPSFILE.

data work.ready
work.oopsfile;

 set work.checkname;

 fastupd = (compress(‘c:\fsm$chgs’||pl||’\pd’||&pd
||‘\’||level||’fastupd.exe’));

 rc=fileexist(FASTUPD);

 if rc then output work.ready;
 else output work.oopsfile;
run;

Note: (variables found in dataset)
pl - division (EUP)
level - reporting level and are (D051)

Print WORK.OOPSFILE in an exception report if the
correct directories weren’t created. If any directories
are found on this report, check the distribution file for
typos, then check with the individual for his/her correct
area of responsibility.

title1 ‘***ALERT***’;
title2 ‘FASTUPD NOT ON LAN’;

proc print data=work.oopsfile n noobs;
 var name fastupd;
run;

After the previous steps have run without any
exceptions, output, the mail portion of the program
can be executed. If exceptions occur and reports are
produced in the mail section, the system will mail all
records before the error and abort at the problem
point.

---Initializing Mail---

Create a file reference for e-mail using a FILENAME
statement. The EMAIL option is used as a keyword
indicating the use of electronic mail.

filename reports email “FSMFAST”;

---Mail Dataset---

Read the dataset, WORK.READY, created in the
previous step. Create WORK.MAIL to produce a
complete list that was mailed.

data work.mail;

 set work.ready;

 file reports;

---Mail Attributes---

SAS’ mail functionality requires certain attributes to be
assigned similar to those of any electronic mail package.
The following shows the attributes that are assigned both
through dataset variables and the body which is typed in
the way it would show in the e-mail. The SAS log will
contain all the e-mails sent.

 put ‘!EM_TO!’ name;

 put ‘!EM_SUBJECT! FSMFAST Period Updates’;

 /***** BEGIN TEXT IN BODY OF E-MAIL*****/
 put ‘BUSINESS AS USUAL / WHAT TO DO’;
 put / ‘Reminder:’;
 put / ‘ Users on LAN: Boot your machine as a
remote pc, NOT hooked to the LAN.’;
 put / ‘ (Some users have had problems, some have
NOT – just a sageguard.)’;
 put / ‘ Users with CD Rom Drives Attached: Have
a readable CD in the drive or’;
 put / ‘ unhook the CD drive before booting.’;
 put / ‘ ‘;
 put / ‘Processing Your Data:’;
 put / ‘ 1) Attached is your FASTUPD.EXE for
your Period updates. Copy this’;
 put / ‘ file to your FSM$FAST directory and
replace any previous versions.’;
 put / ‘ ‘;
 put / etc…
 /***** END TEXT IN BODY OF E-MAIL*****/

 put ‘!EM_ATTACH!’ fastupd;

 put ‘!EM_SEND!’;

 put ‘!EM_NEWMSG’!;

 put ‘!EM_ABORT!’;

run;

Note: (variables found in dataset)
name - name off distribution list
fastupd - location and attachment

---Mail Report---

After completing the datastep and processing all the
e-mails, WORK.MAIL is ready to produce a report
containing a complete distribution list.

Title 1 ‘MAIL LIST’;
Title 2;

proc print data=work.mail;
run;

Limitations

This version of SAS e-mail doesn’t have the ability to do
the following:

� change the priority from NORMAL to URGENT
� request RETURN RECEIPT.

Conclusion

SAS has created the ability to actually remove an
lengthy, repeatable administrative function. With SAS’
assistance modifying the SAS config file, this program
was extremely easy to write and implement. The most
difficult part of this is optimizing e-mail. With only two
limitations, that I found, this functionality should be
evaluated for any mass electronic mailing.

Acknowledgements

Sodexho Marriott Services is the largest provider of food
and facilities management in North America, with $4.5
billion in annual sales. Sodexho Marriott offers a variety
of innovative outsourcing solutions, including food
service, housekeeping, groundskeeping, plant operations
and maintenance, asset and materials management, and
laundry services to corporations, health care facilities,
schools, universities and colleges, and remote sites.
Headquartered in Gaithersburg, MD, the company has
103,000 employees at 5,000 locations across the U.S.
and Canada.

SAS is a registered trademark or trademark of SAS in
the United States and other countries. Any other brand
and product names are registered trademarks or
trademarks of their respective companies.

This solution was made possible by the challenges that
Decision Support Systems faces every day and our need
to answer and automate, if possible, as quickly as
possible.

Contact Information

Roy Fleischer
Director, Decision Support Systems

Sodexho Marriott Services
9801 Washingtonion Blvd, Ste 1215
Gaithersburg, MD 20878

Phone: (301) 987-4309
Fax: (301) 987-4339
Email: rfleischer@sodexhomarriott.com

Paper P156-SSU2001

Advantages and Disadvantages of Using MDDBs, HOLAP, and SAS/IntrNet® in the
Development of an Interactive System

Richard A. Denby, Lori A. Guido, United States Census Bureau, Washington, DC

ABSTRACT

The Housing and Household Economic Statistics Division
(HHES) of the United States (U.S.) Census Bureau evaluated
different SAS technologies to find ones best suited for the
development of an interactive system to review the Census 2000
long form data. The three systems that were evaluated access
data stored on centralized, large-scale Unix servers and the data
are accessed through personal computers (PCs) running
Windows 95. All the systems use multidimensional databases
(MDDBs), and display the same data, but each system uses
distinct SAS technologies.

• The first system uses a client-server approach, SAS
v6.12 and the MDDB report object in SAS/EIS® to
create more than 3400 commonly used reports.

• The second system uses a client-server approach,
SAS v8.1's Hybrid On-Line Analytical Processing
(HOLAP) techniques to build a "proxy" HOLAP cube in
addition to the MDDB report object in SAS/EIS®, but
only 74 reports had to be created.

• The third system uses a web-based approach, SAS
v8.1's HOLAP and SAS/IntrNet® and other web
products to display the data.

This paper describes the advantages and disadvantages of each
technology used, including development, deployment, and
performance issues, in addition to the space savings obtained via
the use of formats.

INTRODUCTION

The U.S. Census Bureau is best known for conducting a national
census in years ending in a zero. By December 31 of a census
year, the Census Bureau must provide the U. S. President with
population totals for each of the 50 states and the District of
Columbia. This information determines the number of seats to
which each state is entitled in the House of Representatives,
which is fixed at 435 seats, with each state getting at least one
representative. In this way, seats in the House of
Representatives are “apportioned” among the states.

Census data are also used to delineate congressional and other
election districts within each state. This processing is called
“redistricting.” States typically have tight deadlines for completing
their redistricting work in time for the 2001 or 2002 primaries and
elections. The Census Bureau is required to provide redistricting
data to the states, at a very detailed level of geography, within
one year of the census. Producing these data is a massive
undertaking that involves tabulating the characteristics of more
than 280 million people in about 116 million housing units
assigned to 39,000 governmental entities in 7.5 million census
blocks.

The apportionment and redistricting data are derived from the
total universe of all people. Additionally, approximately one in six
households received a “long form” questionnaire containing 53
questions covering 34 subjects. The remaining five in six
households get a shorter form with only seven questions. Every
question asked in Census 2000 was one that collected

information required by law to manage or evaluate federal
programs or that was needed to meet legal requirements
stemming from U.S. court decisions such as the Voting Rights
Act. Federal dollars for schools, employment services, housing
assistance, highway construction, hospital services, programs for
the elderly, and other programs are distributed based on census
data. The Census 2000 Long Form Data Review system, which
will be used to review the “long form” questionnaire data, is
scheduled to be in production in the fall of 2001.

SELECTION CRITERIA

HHES used the following criteria to decide which technology
would be best suited for the Census 2000 Long Form Data
Review system.

• The resulting system must be easy to maintain and enhance
and available for scheduled use by fall 2001. HHES will
have to develop a review system in a very short amount of
time. The analysts will have very little time to review the
data, so the programmers will have to be able to fix any
problem with the application in a short amount of time.

• The technology must handle data files containing more than
five million observations.

• It has to allow for programming flexibility. The specifications
for the system might change even after the system is in
production.

• New data will have to be incorporated into it on a “flow” basis
easily, without affecting the data already in the system.

• The technology must allow users to view several groupings
of data at once.

• The systems developed with this new technology will have to
be easy to deploy to several different user communities,
each of whom have different PC environments.

• Of course, the data have to be displayed to the user as
quickly as possible.

THE SAS V6.12 PROTOTYPE

The first prototype HHES developed uses a client-server
approach, SAS 6.12 under Windows95 and resides on user PC
desktops. Each PC has to have SAS 6.12, and the application’s
configuration and profile files installed on it. The data reside on
Sun Unix servers running the Solaris operating system. The
MDDBs and the underlying detail data sets on the Unix servers
are accessed using “Remote library services” via
SAS/CONNECT®. There is one detail data set, one MDDB, one
set of SAS/EIS® reports and one set of application files for each
of the fifty states, the District of Columbia, and Puerto Rico. One
metabase file holds all of the metadata for all of the states. The
application files and the metabase file reside on a Novell server.

The data are displayed via a gif file that contains a map that links
each state’s hot spot to an icon that lists the reports for each
state. This configuration only allows access to one state’s data at
a time. For this system, more than 3400 reports would have to

be created, with one set of 74 reports having to be created for
each state. In other words, there would have to be 51 copies of
each report, since each report could access only one MDDB, or
one state’s data. If a problem with a label or title were found in a
report, all the copies of that report would have to be updated.
There is no way to mass-correct the reports. Also, the risk of
making mistakes increases when developing such a large
number of reports.

It takes seven seconds to display a summary report. It takes two
seconds to display 557,000 detailed observations from a data set
containing 29,700,000 observations. Most of the objects used for
this system are “off the shelf.” No override methods are used.
Minimal knowledge of Screen Control Language (SCL) was
needed for the creation of this system.

HHES identified a substantial limitation in the use of SAS formats
with version 6.12. Analysts want to see display formats that are
more meaningful than the underlying coded values. For example,
the report displays the words “male” and “female” in place of the
coded values of “1” and “2”. The problem occurs when analysts
use the “show detail” option from the EIS multi-dimensional report
object. No detail records making up the cell total are found
because during the “reach-through” process, internally SAS was
searching for “male,” when in reality all the data values for males
were stored as “1.”

So, for reports where data ranges or labels have to be displayed,
a separate field was created and the appropriate range was
stored in it. Using another example, the “Drilldown 3 Highest
Degree” report, shown in Figure 1, displays the number of people
who have completed certain levels of schooling (EHIGH) by the
edit parameters that were used to allocate the data if the
response was blank or inconsistent (FLHIGH).

Figure 1. Drilldown 3 Highest Degree Report for the SAS v6.12
prototype. Please note, the data shown are from the Census
Dress Rehearsal and do not represent actual Census 2000 data.

For each observation, a field called QHIGH contained a character
code that stood for a certain level of education obtained. Data
processing that takes place before the MDDBs are built created
another field called EHIGH, which contained the character string
corresponding to the character code. Figure 2 shows a partial
listing of the QHIGH and EHIGH fields from the detail data set
that goes into this report.

Figure 2. Detail observations used to create the Drilldown 3
Highest Degree Report for the SAS v6.12 prototype. Please
note, the data shown are from the Census Dress Rehearsal and
does not represent actual Census 2000 data.

THE HOLAP PROTOTYPE

HHES worked with SAS Consulting Services to develop the next
two prototypes. The HOLAP prototype took advantage of new
features found in SAS v8.1, but also retained all of the
functionality contained in the SAS v6.12 prototype. The
prototype's main feature is a new SAS technology called hybrid
online analytical processing (HOLAP). This technology allows
users to access data from multiple local and remote MDDBs and
data sets as if the data were coming from a single data source.

A SAS view is created that allows concurrent access to the detail
data sets. The view must be rerun each time a new state’s data
is added. This view is the input to a “template” MDDB. The
template MDDB will store the hierarchies, formats, and base table
attributes to pass to the resulting HOLAP cube. It does not have
to be rerun every time a new state is added. It will need to be
rerun only when the hierarchies, formats, or base tables change.

The HOLAP cube is stored in the central repository. It holds the
location of each component of the logical data group and what it
contains. It has to be updated each time a new state is added.

 The use of the HOLAP technology decreases the number of
reports that will have to be created, from the more than 3400
required in the SAS v6.12 prototype, to a single set of 74 reports
that can be used for any state. The reports can be created in
advance, decreasing the amount of time between file processing
and file availability to the users. The HOLAP technology also
allows users of the system to view data for multiple states and
multiple years in one report.

The data are displayed via a modified version of the gif file used
in the SAS v6.12 prototype. The file still contains the map, but
for this prototype, there are hot spots for each state, regional
groupings of states, and the entire U.S. The desktop frame class
is overridden so new SCL code that allows multiple states to be
selected will execute. It takes 12 seconds to display a summary
report. Figure 3 shows how the “Drilldown 3 Highest Degree”
report appears in the HOLAP prototype. The report still displays
the number of people who have completed certain levels of
schooling, but now the report shows data for multiple states.
From this report, the data for any of the listed states can be
expanded. Figure 4 shows the same report, but with data from
both states expanded.

Figure 3. Drilldown 3 Highest Degree Report for the HOLAP
prototype. Please note, the data shown are test data created
specifically to be shown to non-Census employees and does not
represent actual Census 2000 data.

Figure 4. Drilldown 3 Highest Degree Report from the HOLAP
prototype with state data expanded. Please note, the data shown
are test data. It was created specifically to be shown to non-
Census employees and does not represent actual Census 2000
results.

“Remote library services” are also used in this system to reach
the MDDBs and the underlying detail data sets on the Unix
servers. There is still one detail data set and one MDDB for each
state. The central repository contains all the reports and the
metabase registrations. However, the repository has to reside on
each user’s PC, which must have SAS 8.1, and the application’s
configuration and profile files installed on it.

Another override method is used to correct a potential
performance problem that HHES discovered. While in the
“Wage/Salary Income” report, when only one state was chosen, a
“show detail data” took 40 minutes to subset 269,104

observations from the 18,366,027 observations available in a test
data set. SAS believes this performance problem is due to the
use of the HOLAP cube, which uses a view to point to all of the
detail datasets.

SAS does not use the indexes on the data sets when accessing
the data via a view. Even if only one state was selected, SAS is
reading all the detail data sets in the data group sequentially to
pull out the selected data. The prototype now uses an override
method that captures the cell the cursor is sitting on when a
“show detail data” is invoked. The SCL code determines what
the cell represents, bypasses the HOLAP cube, goes directly to
the data set that contains the detail data for the cell and subsets
the data based on the cell’s contents. This method allows the
same 269,104 observations to be displayed in less than five
seconds. A more in-depth knowledge of SCL is needed to
maintain or update this prototype due to the use of these override
methods.

The prototype also incorporated the use of reach-through of
display formats to data set values so they did not have to be re-
coded. This decreased disk space storage requirements with
savings ranging from 32% to 63%. For example, the original
education data set for Texas, which was created in SAS version
6.12 and had re-coded values stored in the data set, was 9
gigabytes. After the data set was converted to version 8.1 and
the formats were applied, the file was 3.4 gigabytes, producing a
61% savings in disk space.

THE WEB-BASED PROTOTYPE

The third prototype takes advantage of new features used in the
HOLAP prototype, retains most of the functionality contained in
the SAS v6.12 prototype, but also takes advantage of the
features of SAS/IntrNet®. This was the first attempt at the U.S.
Census Bureau to build a web-enabled HOLAP system
incorporating “reach-through” to the underlying detail data sets.

The Web-based prototype differs from the HOLAP prototype in
how the data are displayed. The data are displayed via an HTML
file that contains a map that has hot spots for each state, regional
groupings of states, and the entire U.S. Javascript captures the
mouse clicks and places the selections in the list box. A macro
program takes the list of selected states and manipulates code to
access the HOLAP cube that points to the selected data. The
MDDB Report Viewer (MRV) that comes with SAS/IntrNet, is
used to display the data in a report show, in figure 5.

Figure 5. A Summary of education data from the MRV portion of
the Web-based Prototype. Please note, the data shown is test
data. It was created specifically to be shown to non-Census
employees and does not represent actual Census 2000 data.

Expanding the reports is time consuming. Response time varies
with the size of files. For the MRV portion of the prototype, it
takes seven seconds to display a summary report. It takes 80
seconds to display the first set of 50 detailed observations.

Sun’s Web server is used with SAS/IntrNet® to access the
MDDBs and the underlying detail data sets on the Unix servers.
There is still one detail data set and one MDDB for each state.
The HOLAP technology is still used and all the reports and the
metabase registrations are still contained in a central repository.
However, SAS v8.1, the application’s config file, the application’s
profile file, and the repository reside on the Unix server. Nothing
resides on the user’s PC.

Setting up the SAS/IntrNet® server is very tedious. The auto
installer did not work for this product, so the installation had to be
done manually. The instructions were lengthy and written in
pieces. HHES’s system administrator could not get an overall
picture of all the steps necessary to complete the task. Many
tasks have to be performed to complete the installation. The
slightest deviation from the procedure can cause the installation
to fail. Knowledge of Unix system administration, web server
software (Apache or Sun web server), and general installation
procedures are needed to do this task. Extensive knowledge of
Javascript will be required to maintain or expand this prototype.

FINDINGS

HHES compared the prototypes with each other, reviewing the
benefits and disadvantages of each. HHES also evaluated the
prototypes against the criteria to be used to decide which
technology would be suited for the Census 2000 Long Form Data
Review system. HHES could find no clear-cut winner based on
this analysis. No prototype met all of HHES’s criteria. All three
prototypes could handle data files containing more than five
million observations in them. All three prototypes can incorporate
new data “flow” basis easily, without impacting the data that were
already there. Only the prototypes that use the HOLAP
technology allow users to view several groupings of data at once.
The SAS v6.12 prototype can display the data faster then either
of the SAS v8.1 prototypes. Table 1 shows various statistics
HHES used when evaluating the prototypes.

SAS 6.12
Prototype

HOLAP
Prototype

Web-based
Prototype

of states
that may be
displayed at
once

 1 50 50

Time to
display a
summary
report

 7 12 5

of obs /
of seconds
to display
them

557,000 / 2 269,104 / 5 89,326 / 76

Can handle
new data on
a “flow”
basis

Yes Yes Yes

Table 1. Miscellaneous Statistics Used for Prototype Evaluation.

The SAS v6.12 prototype was the least flexible because of the
number of reports that would have to be created. The HOLAP
prototype and the Web-based prototype offer more flexibility.
Changes to the report labels and titles that would affect all the
states can be made quickly in the prototypes that use the HOLAP

technology, since each only has one set of reports that will
access any of the states.

The SAS v6.12 prototype was the easiest to maintain, because it
uses “off the shelf” SAS objects. The objects are well
documented and the HHES programmers have a lot of
experience using SAS v6.12.

The HOLAP prototype is the second hardest application to
maintain, due to the use of the override methods and SCL code.
Except for the override methods, this prototype is very similar to
the SAS v6.12 prototype. The HOLAP creation process was very
easy to understand, maintain and modify. There are objects in
SAS v8.1 that would allow a user to choose which state to view.
The use of this object would eliminate the need for the map and
the need to override the desktop frame class. However, an
override method had to be used to meet HHES’s need for fast
response time to display detail data. Organizations with more
override method and SCL programming experience would be able
to maintain the prototype with ease.
For HHES, the Web-based prototype is the most complicated and
the hardest prototype to enhance or maintain. This assessment
is based on HHES’s lack of experience with Javascript, and the
problems with the server installation. Organizations with more
Javascript and SAS/IntrNet® server installation experience might
be able to maintain the prototype with ease.

The Web-based prototype is the easiest application to deploy.
Only a web-browser is needed on the user’s PC. Both the SAS
v6.12 and the HOLAP prototypes require that the appropriate
version of SAS be installed on the user’s PC. With a very slight
modification, the prototypes could probably use a network version
of SAS, but we have not tested this yet. The configuration and
profile files needed by the SAS v6.12 prototype, can be copied to
the user’s PC via a network release package. HHES is not sure if
the central repository in the HOLAP prototype can be deployed to
the user’s PC via a network release package. Another possible
option for the HOLAP prototype deployment would be to have the
central repository reside on a network server, but HHES has not
yet tested the ramifications of this configuration.

CONCLUSION

HHES will have to conduct more research before drawing a final
conclusion. HHES did not try tuning anything, nor did they fully
load test the prototypes. HHES is leaning toward using the
technology used in the HOLAP prototype for five reasons.

• There are fewer reports to create.

• SAS v8.1 is closer to the most current SAS version
than SAS v6.12.

• The use of the HOLAP technology will allow the users
to view groups of states instead of just individual
states.

• The potential problems we might encounter with the
override methods and SCL code in the HOLAP
prototype will probably be overcome with additional
training and internal mentoring from more experienced
programmers. Unfortunately, the HHES programmers
have the most SAS/IntrNet and Javascript experience
of any programmers at the Census Bureau, so
mentoring is not an option if we use the Web-based
prototype technology.

• The benefits of using the HOLAP prototype technology
outweigh the SAS v6.12 prototype’s performance
advantage.

Currently we are creating a SAS v8.1 HOLAP system using 1990
Census data to fully load test the technology before we go into
production with Census 2000 data. It will allow us to try different
tuning strategies. If these tuning strategies work on 1990 Census
data, they should work on Census 2000 data. It will also allow us
to research and test the other outstanding questions that we had
with the prototype, while allowing the programmers to gain more
override and SCL experience.

REFERENCES

SAS® is a registered trademark of SAS in the United States of
America and in
other countries

CONTACT INFORMATION

Richard A. Denby
 U.S. Census Bureau

4700 Silver Hill Road, 8500-3
Washington, DC 20233-1912
phone 301-457-6810 fax 301-457-3248
email richard.a.denby@census.gov

Lori A. Guido
 U.S. Census Bureau

4700 Silver Hill Road, 8500-3
Washington, DC 20233-1912
phone 301-457-3204 fax 301-457-3499
email lori.a.guido@census.gov

Integrating SAS/Connect���� with JavaTM

Randy Curnutt, Solutions Plus, Inc., Indianapolis, IN
Michael Pell, Solutions Plus, Inc., Indianapolis, IN

John LaBore, Eli Lilly And Company, Indianapolis, IN

ABSTRACT

SAS/Connect provides an easy and reliable method for
connecting remote hosts and executing SAS� commands on the
remote environment. This paper explores the use of
SAS/Connect in conjunction with the robust Java language.
Various methods of integration with SAS/Connect will be
reviewed, including dynamic program generation to create and
run a web-based application, and the dynamic generation and
execution of SAS/Connect programs to be submitted and
executed on remote systems, such as OS/390 mainframes, Unix
servers, and NT servers. The following will discuss the
advantages and disadvantages of each approach.

INTRODUCTION

THE PROBLEM

In today’s IT environment many different hardware and software
platforms are often thrown together in an attempt to meet diverse
business needs. This hodgepodge approach forces the user to
learn and work with each different system in order to perform the
steps necessary to obtain the needed data or programs. Often
users spend more time learning an operating system and/or
protocol than doing the job they were hired to do. For example, if
the specific operating system commands needed to logon and
traverse a directory structure are very different, this significantly
increases user knowledge/time requirements. However, even
subtle differences between platforms can have an impact. For
example, floating-point numbers are stored differently on various
operating systems. This may result in discrepancies in the
significant digits in high precision decimal numbers that may
greatly discomfort a systems analyst (Klenz, 1992). Conversely,
a statistician who understands the net effect of this type of
difference may not perceive it as a problem.

A SOLUTION

One solution to the above problem is to develop an application
that uses SAS, SAS/Connect and Java to provide functionality to
the users so that they can accomplish their desired tasks without
learning the different nuances of multiple hardware and software
environments.

All of these multi-platform tasks can be performed by
SAS/Connect itself; however anyone who chooses to do such a
task must be fairly knowledgeable of the entire hardware and
software environments in which they are working. This includes
technology differences between the platforms being used,
networking and communications issues between the platforms,
operating systems, protocols, multiple languages, etc. Solving all
of these issues at any one time can be difficult, even for an
experienced SAS user. Optimally, the SAS user should not be
sidetracked from their primary job with all of these diverse issues.
Some of the tasks that are commonly performed on a routine
basis yet may be difficult to complete include:

• Moving data to other platforms
• Converting data to other formats
• Analyzing and reporting
• Data manipulation
• Input/output

• Consistency, validation, repeatability
• Formally publishing results

The driving force for creating the suggested application is that it
provides a custom solution for all users and prevents them from
reinventing the wheel. Furthermore, with this approach the
solution is built and validated once, instead of requiring retesting
every time it is used.

THE APPROACH

The focus of this technique is to optimally integrate multiple
hardware platforms using SAS/Connect with Java so that
maximum convenience is provided to the end user. The
application itself is developed in Java. Java also provides a user
interface that can be either standalone or web-based. SAS
programs and macros are embedded within the Java code, so
that Java acts as a program generator for SAS programs and
macros.

PLATFORM INDEPENDENCE

Java, SAS programs and SAS macros are highly standardized
and portable. SAS programs, macros and datasets are not
binary compatible across platforms but the programs themselves
are highly compatible in terms of commands and syntax. There
are minor distinctions in syntax for OS/390 SAS versus PC SAS,
but for the most part the majority of programs can be used across
platforms with only minor modifications.

STATIC OR DYNAMIC PROGRAMS

Combining Java and SAS provides an architecture capable of
generating either static, predefined SAS programs, or
dynamically generated custom programs based upon selections a
user has made. To understand the static and dynamic
generation of SAS programs, let’s examine how this can be
accomplished with Java. Java programs contain classes, a term
describing a combination of attributes and methods that may be
executed. One approach to generating SAS programs or macros
is to have a Java class that contains methods, similar to functions
in other languages, dedicated to concatenating a number of
Strings together to build the desired program. Specifically, the
method actually uses StringBuffer objects, since this is a far more
efficient manner for concatenation within the Java programming
language. Here’s an example of appending two StringBuffers
together.

StringBuffer sb1 = new StringBuffer(
"Energizing Users with a ");

StringBuffer sb2 = new StringBuffer(
"Slice of SAS and a cup of Java");

StringBuffer sb3 = new StringBuffer();
sb3.append(sb1);
sb3.append(sb2);

// will return "Energizing Users with a Slice
of SAS and a Cup of Java”

sb3.toString();

This approach can append together any number of predefined
StringBuffer objects to build one long String that contains a whole
SAS program. Here’s an example of building a static SAS
program which is run on the OS/390, and returns the output of a
PROC CONTENTS in a text file:

StringBuffer sasPgm = new StringBuffer();
sasPgm.append("//USERID JOB (,8305,S),

'PROC_CONTENTS',MSGCLASS=T\r\n");
sasPgm.append("//*\r\n");
sasPgm.append("//SAS EXEC
SAS,SOUT=*,OPTIONS='LS=80 MPRINT SGEN'\r\n");
sasPgm.append("//SYSOUT DD SYSOUT=*\r\n");
sasPgm.append("//SYSIN DD *\r\n");

sasPgm.append("%MACRO CONTENTS(
PRINTTO=,) ;\r\n");

sasPgm.append("%LET LIB=%UPCASE(&LIB);\r\n");
sasPgm.append("LIBNAME LNAME \"ABC_LIB\"

DISP=SHR;\r\n");
sasPgm.append("FILENAME PRT \"&PRINTTO\"

DISP=(OLD,DELETE);\r\n");
sasPgm.append("RUN;\r\n");

sasPgm.append("FILENAME PRT \"&PRINTTO\"
DISP=(,CATLG) “);

sasPgm.append("SPACE=(CYL,(1,1))\r\n");
sasPgm.append(" RECFM=FB

LRECL=80;\r\n");
sasPgm.append("RUN;\r\n");

sasPgm.append("PROC PRINTTO PRINT=PRT
NEW;\r\n");

sasPgm.append("PROC CONTENTS
DATA=LNAME._ALL_;\r\n");

sasPgm.append("%MEND CONTENTS;\r\n");
sasPgm.append("%CONTENTS(PRINTTO=

USERID.TMP);\r\n");

sasPgm.append("/*\r\n");
sasPgm.append("//IFGOOD IF (^ABEND &

SAS.SAS.RC <= 4) THEN\r\n");
sasPgm.append("//RENAME EXEC

PGM=IDCAMS\r\n");
sasPgm.append("//SYSPRINT DD

SYSOUT=*\r\n");
sasPgm.append("//SYSIN DD *\r\n");
sasPgm.append(" ALTER USERID.TMP -\r\n");
sasPgm.append(" NEWNAME(USERID.TXT)\r\n");
sasPgm.append("//ELSE ELSE\r\n");
sasPgm.append("//DELETE EXEC

PGM=IEFBR14\r\n");
sasPgm.append("//SASDEL DD

DSN=USERID.TMP\r\n");
sasPgm.append("//ENDIF ENDIF\r\n");

The Java code above creates:

//USERID JOB (,8305,S),'PROC_CONTENTS',
MSGCLASS=T

//*
//SAS EXEC SAS,SOUT=*,OPTIONS='LS=80

MPRINT SGEN'
//SYSOUT DD SYSOUT=*
//SYSIN DD *
%MACRO CONTENTS(PRINTTO=,) ;
%LET LIB=%UPCASE(&LIB);
LIBNAME LNAME "ABC_LIB" DISP=SHR;

FILENAME PRT "&PRINTTO" DISP=(OLD,DELETE);
RUN;
FILENAME PRT "&PRINTTO" DISP=(,CATLG)

SPACE=(CYL,(1,1))
RECFM=FB LRECL=80;

RUN;
PROC PRINTTO PRINT=PRT NEW;
PROC CONTENTS DATA=LNAME._ALL_;
%MEND CONTENTS;
%CONTENTS(PRINTTO= USERID.TMP);
/*
//IFGOOD IF (^ABEND & SAS.SAS.RC <= 4) THEN
//RENAME EXEC PGM=IDCAMS
//SYSPRINT DD SYSOUT=*
//SYSIN DD *

ALTER USERID.TMP -
NEWNAME(USERID.TXT)

//ELSE ELSE
//DELETE EXEC PGM=IEFBR14
//SASDEL DD DSN=USERID.TMP
//ENDIF ENDIF

Dynamic generation is only slightly more complicated. It extends
the previous approach by appending the value of variables
between the StringBuffer objects. When the program is executed
the method builds a single String that appends the StringBuffer
value with the value of the given variable. For example, on a
user interface a field is used to provide for the entry of a userId.
In this situation presume that a value of “RandyC” was entered
into the user interface as the value of userId. Following is a code
snippet for doing dynamic generation:

public String buildSasMacro(String userId,
String password, String body)
{
StringBuffer sasPgm = new StringBuffer(
"%macro myMacro(userId=");
sasPgm.append(", pswrd=);");

sasPgm.append("\r\n\r\n");//2 returns
sasPgm.append(body);
sasPgm.append("\r\n\r\n");

sasPgm.append("%mend myMacro;");
sasPgm.append("%myMacro(userId=\"");
sasPgm.append(userId);
sasPgm.append("\",pswrd=\"");
sasPgm.append(password);
sasPgm.append("\");");

sasPgm.toString();
}

The output of this method is:

%macro myMacro(userId=, pswrd=);

the body of the macro would be generated
here...

%mend myMacro;
%myMacro(userId="RandyC",pswrd="myPass");

The SAS code that is generated can easily be saved to a file.
Doing this allows the code to later be edited by the user or it
could be used to execute the program again without needing to
regenerate the program.

BENEFITS

Not only can Java be used to generate the SAS scripts, it can
also submit them to either a remote SAS server or to the local
PC-SAS software.

Benefits of this approach include:

• A means to easily develop web-enabled platform
independent applications

• A graphical user interface that provides an intuitive, easy to
use interface for the user, shielding them from the behind-
the-scenes details and protocols

• Enhanced security since the protocols and access methods
are embedded within the application itself. The user can still
be required to enter a password via the user interface but all
of the secured functions are performed internally by the
application, thus denying a would-be hacker the chance of
altering the flow of the application

IMPLEMENTATION

LOCAL BATCH SUBMISSIONS

To submit a SAS program to PC SAS from Java, the SAS
program is written to a temporary file on the local machine, then
PC SAS is invoked using the temporary file as a parameter.
This is equivalent to the following DOS command:

SAS.exe -NOSPLASH -ICON –SYSIN tempfile.sas

The appendix contains an example of how Java can submit the
generated SAS program to PC SAS. See Example 1 for an
overview.

There are a couple of issues to consider when using
SAS/Connect. First, there must be an understanding of how PC-
SAS connects to the remote server. It uses a sign on/sign off
script file, such as tcptso.scr, to connect and sign on to the
remote host. The networking environment and the desired
remote host platform are the driving factors as to which script file
should be used. The default scripts provided with the SAS
software may need to be altered to accommodate the specifics of
a remote host. One important change that is necessary when
modifying the scripts is that there will be a need to develop a
script which can be used for batch submissions by the
application. The scripts come developed for an interactive
session and are written to query the user for their user id and
password. For the application to use such a script, it must be
altered to pass in the user id and password and not query the
user for these values (the querying is done by Java). Secondly,
one must consider that a server might restrict a user to a limited
number of sign-ons. This process will likely account for a sign-
on, so it may be an important factor if the server’s limit is one
sign-on.

SAS/Connect provides the communication mechanism within a
SAS framework to execute SAS commands on a remote host.
SAS/Connect requires that the user login to the remote host.
Once this occurs the user is free to write code to run on this
remote host. This is done with the “rsubmit” and
“endrsubmit” commands. When the user is ready to execute
code on a remote host an “rsubmit” is issued in the SAS
program. All SAS commands after the rsubmit are then run on
the remote host until an “endrsubmit” command is issued.

For reporting errors or the SAS log back to the user via the Java
code, the PC SAS program should use a PROC PRINTTO to
output the errors or the SAS log to a temporary file:

PROC PRINTTO PRINT='C:\temp\saslog.log';
run;

Example 1. Completing a task on a
remote platform via Java, PC SAS, and
SAS/Connect

SAS/Connect

SAS/Connect

Java

Java Web Application

OS/390 with SAS

PC with SAS

When the PC SAS program completes, the Java code will look
for the temporary file, read its contents into memory, then delete
the temporary file. It is important to remember that the output will
not show up in the PC SAS Log window when developing and
testing the SAS program with this PROC PRINTTO. It only
shows up in the temporary file. Therefore the programmer may
want to be selective about when that file is deleted. This will not
be an issue once the SAS program is tested and validated.

REMOTE BATCH SUBMISSIONS

There are several approaches when submitting a SAS program to
a remote host such as OS/390 or UNIX. This approach uses
FTP to submit a SAS program via a JCL job. This can all be
done in Java as well, however the process is a bit more involved
than submitting a SAS program to PC SAS. (Java
implementations of the FTP protocol are available for purchase or
as freeware. For an example of developing an FTP class see
"Hacking Java" by Mark Wutka).

The first step is to create a JCL program that runs a SAS job.
The static SAS program shown in the ‘Static or Dynamic

Programs’ section above is a good example. See Example 2 for
an overview.

Example 2. Completing a task on a remote
platform Via Java and SAS using FTP and then
using SAS/Connect to complete subsequent
tasks on other remote platforms

FTP

SAS/Connect

Java

Java Web Application

Unix Server
with SAS

OS/390 with SAS

NT Server
with SAS

PC without SAS

The next step is to submit the JCL to the OS/390. In this
application, a Java class is responsible for handling all FTP
commands for communication to the remote server. Some of the
commands are specific to the remote system’s operating system,
so it is important to design in this flexibility. The FTP Java class
will use a Socket to connect to a port on the remote machine. In
this case, set up the data connection using the PASV command
rather than the PORT command. This causes the server to
establish a listen socket. This is important because a Java
applet may not allow an incoming socket connection from the
remote server.

The FTP class will provide a user id and password (collected
from the user) to establish a valid session. From there, this class
performs typical FTP types of functions, such as list, get, put,
delete, etc.

Once there is an FTP class that can communicate with the
remote server, one must create a class that uses the FTP class
to submit a JCL job. This class knows the required behavior of
the specific remote server. For example, to submit a JCL job to
the OS/390, this class would first prepare the OS/390 session by
telling it that the next command it receives will be a specific file
type, a JCL job.

"site filetype=jes"

It would then send the JCL job via the FTP class, using the
STOR command. The STOR command tells OS/390 that a file is
about to be sent. The file is actually sent from Java to the
OS/390 through the socket using a Java OutputStream class.
With each command sent to the remote server, the remote server
will return a response code, so there will also be a need to check
for valid response codes and handle any errors.

Now that the file is on the remote server, the next step is to run
the job. This is also done by sending a command using the FTP
class:

“site filetype=seq”

At this point, the JCL job should start and run. Per the JCL
example above, the Java code should start monitoring the remote
server for a file named ‘USERID.TXT’. Once the file shows up,
Java can then use the FTP class to GET the file. The file will be
read in as a String, which is then be presented to the user.

Again, this is a very simplified summary of submitting a JCL job
from Java. It is recommended that programmers find a book,
such as “Hacking Java” to help get started. Additionally, there
are FTP classes now available for download from various sites on
the Internet.

ADVANTAGES & DISADVANTAGES

There are several advantages when using SAS/Connect on
OS/390 to submit a job to a remote host (which also has
SAS/Connect installed).

• User is not required to have PC SAS on their local machine.
• Data doesn’t have to be moved; instead, SAS/Connect

allows execution of the SAS program on the host where the
data resides.

• This approach leverages the power of the remote host,
which is likely far more powerful than the local machine. For
example, if the SAS program runs a CPU intensive
procedure that will process a large number of rows then it is
far more efficient to run this program on the powerful remote
host instead of the user’s PC.

Some disadvantages of this approach are:

• The developer who codes this piece of the application must
be knowledgeable of the FTP protocol, JCL, SAS and Java
programming.

• The application will experience delays due to connection
time if there are frequent connections and disconnections,
depending on the architecture.

• Once a job is submitted the application must wait until the
job is actually run by the remote host.

Minor obstacles are to be expected and addressed when bringing
together so many different hardware and software technologies.
Here are a few items worthy of consideration:

• Do set options = nocaps on OS/390 jobs. Problems
may be experienced with SAS/Connect from OS/390 to Unix
due to the password being uppercased by SAS/Connect,
thus causing logins to fail. With Version 8 of SAS this may
no longer be an issue, but watch out for it.

• Be aware of remote host connection limits. OS/390 only
allows one direct user connection and this cannot be set by
a parameter. Therefore, if a user is logged on via a telnet
session they will be unable to connect via SAS/Connect.
Note that FTP sessions are not counted in this area and a
user can be connected to OS/390 via FTP and still
successfully connect via SAS/Connect.

• Consider how to monitor remote jobs for completion or
failure. One approach is to always FTP either a validation
log or error log to the target destination. The Java code can
wait until one of these files exists before continuing. See the
JCL code of Appendix B for an example of this approach.

• Take the extra step of capturing error messages on the
remote host and handle these in an appropriate manner.

SUMMARY

REVIEW OF THE CODE SAMPLE IN APPENDIX B

As stated earlier, this code sample was generated by a Java
program based upon the selections made by a user. Note that in
this case the file is an OS/390 JCL file ready to be executed on
the mainframe. After the job statement is an exec command that
launches SAS.

Notice that a SAS macro is used in the job and is passed in
following the JCL statement:

//SYSIN DD *

In the macro, an options line is used to define the remote system
that will be accessed:

options remote=unix comamid=tcp nocaps;

The next line to note is the filename command that identifies the
location of the SAS/Connect script file that will be used. That is
immediately followed by the signon command that will trigger
SAS to connect to the identified remote server.

filename rlink
'syst.sas.sas608.ctmisc(datcpunx)';
signon unix;

Lastly, the code between the rsubmit and endrsubmit
accesses the remote server. In the example, the first occurrence
of the rsubmit then does a PROC UPLOAD to transfer the file
from OS/390 “client” to the UNIX system. In this case, the
remotely submitted code is running on the UNIX host, which is
viewed as the server.

Additional tasks are also included in Appendix B.

CONCLUSION

This paper highlights some of the advantages and disadvantages
of creatively combining and leveraging the unique features of
SAS, SAS/Connect and Java. The techniques presented allow
extremely powerful and flexible systems to be built and deployed.
Useful aspects of Java and SAS are introduced, and various
methods of integration with SAS/Connect are explored, including
dynamic and static SAS program generation. Additionally,

techniques are discussed for submitting the generated programs
in both local (PC) and remote (OS/390 mainframe, Unix, and NT
servers) batch jobs. Advantages and disadvantages of each
approach are reviewed. The techniques presented allow the
creative systems developer to build time-saving applications that
may not be easily possible with any single one of the discussed
languages.

REFERENCES

Buchecker, M. M. 1996. "%FLATFILE, and Make Your Life
Easier," Proceedings of the Twenty-First Annual SAS Users
Group International Conference, 178-180.

Curnutt, R., M. J. Pell, and J. M. LaBore. 2001. “Energizing
Users with a Slice of SAS and a Cup of JavaTM”, These
Proceedings.

Klenz, B. W., 1992. “Handling Numeric Representation Error in
SAS Applications,” Observations, Vol. 1, Number 3,

SAS Institute Inc. (1996), SAS Companion for the Microsoft
Windows Environment, Cary, NC: SAS Institute Inc.

SAS Institute, Inc. (1996), SAS Companion for the MVS
Environment, Version 6, Second Edition, Cary, NC: SAS Institute
Inc.

SAS Institute Inc. (1993), SAS Companion for Unix
Environments: Language, Version 6, First Edition, Cary, NC:
SAS Institute Inc.

SAS Institute Inc. (1994), SAS/Connect Software: Usage and
Reference, Version 6, Second Edition, Cary, NC: SAS Institute
Inc.

Wutka, M.,1997, “Hacking Java: The Java Professional’s
Resource Kit”, Que Publishing, Indianapolis, IN

ABOUT THE AUTHORS

Randy Curnutt, Solutions Plus, Inc. (http://www.sol-plus.com)
Randy Curnutt is the president of Solutions Plus, Inc., a software
consulting company that specializes in applying leading edge
technologies in order to provide comprehensive solutions to its
clients. He focuses on client/server solutions, especially object
oriented technology, and relational database management
systems. He has experience with Java, Smalltalk, Visual Basic,
C, C++, Oracle, MS SQLServer, and numerous other
development languages.

Michael Pell, Solutions Plus, Inc. (http://www.sol-plus.com)
Michael Pell is a consultant at Solutions Plus, Inc., a software
consulting company that specializes in applying leading edge
technologies in order to provide comprehensive solutions to its
clients. He focuses on the analysis, design, and implementation
of object oriented technology client/server solutions. Michael has
3 years of Java development experience, and spent 6 years as
an IBM consultant prior to joining Solutions Plus, Inc.

John LaBore, Eli Lilly And Company (http://www.lilly.com)
John LaBore is the SAS and JMP Coordinator for Eli Lilly and
Company, a leading innovation-driven pharmaceutical
corporation. He is responsible for supporting SAS and JMP use
by Lilly staff worldwide. John has been a SAS software user for
more than 20 years, and has authored numerous SAS technical
papers for SUGI, PharmaSUG, SEUGI, and other SAS user
group conferences.

ACKNOWLEDGMENTS

The authors appreciate the assistance of Fred Forst and Thomas
H. Burger in reviewing technical content of this paper. We also
appreciate the editing assistance provided by Linda E. LaBore.

CONTACT INFORMATION

Your comments and questions are valued and encouraged.
Contact the authors at:

Randy Curnutt
Solutions Plus, Inc.
10401 North Meridian, Suite 300
Indianapolis, IN 46217
(317) 848-3081
rcurnutt@sol-plus.com
http://www.sol-plus.com

Michael Pell

Solutions Plus, Inc.
10401 North Meridian, Suite 300
Indianapolis, IN 46217
(317) 848-3081
mjpell@sol-plus.com
http://www.sol-plus.com

John LaBore
Eli Lilly And Company
Lilly Corporate Center
Drop Code 6334
Indianapolis, IN 46285
(317) 277-6387
jml@lilly.com
http://www.lilly.com

TRADEMARK NOTICE

SAS is a registered trademark of the SAS Institute Inc, Cary, NC
and other countries. Other brand and product names are
registered trademarks or trademarks of their respective
companies.

APPENDIX A

The generated PC SAS program can be written to a temporary file, then PC SAS can be run using the generated SAS program (all done in
the Java method as shown below).

/** Writes the PC SAS program to disk, then runs it.
* @param sasProgramString String of the SAS program to be executed
* @return int the return code returned by the executed SAS program
*/

public int runSasProgram(String sasProgramString) throws TransportFailedException
{

int returnCode = 0;
try
{

//Write the file to disk
File sasProgramFile = new File("C:\\SAS\\GenProg.sas");
BufferedReader buffReader = new BufferedReader(new StringReader(sasProgramString));
PrintWriter sasProgOut = new PrintWriter(new FileOutputStream(sasProgramFile));
printDIStreamOnPrintWriter(buffReader, sasProgOut);
Runtime rt = Runtime.getRuntime();
sasProgOut.close();

//Now run the program using PC-SAS. This is equivelant to starting PC-SAS from a
//DOS command line
StringBuffer programSb = new StringBuffer("C:\\SAS");
programSb.append("\\SAS.exe -NOSPLASH -ICON -SYSIN \"");
programSb.append(sasProgramFile.getPath());
programSb.append("\"");
Process myProc = rt.exec(programSb.toString());
returnCode = myProc.waitFor(); //wait here until SAS is done running
SasProgramFile.delete(); //be a good neighbor and clean up

}
catch (Exception e)
{

throw new TransportFailedException("Error communicating with PC-SAS software.");
}
return returnCode;

}

APPENDIX B

The following is an example of a JCL job that contains a SAS program that uses SAS/Connect to transfer a SAS dataset to a UNIX server. It
also provides a summary report about the transferred data’s integrity. If the job detects an error, then it will transfer an error log rather than
the data requested.

//MYUSERID JOB (,8305,S),'DAT35TestSasToUnix',MSGCLASS=T,CLASS=T
//*--
//JS010 EXEC PROC=SAS609,SOUT=T
//*--
//MVSIN DD DSN=ABC_DATA,
// DISP=(SHR,KEEP,KEEP)
//VALLOG DD DSN=MYUSERID.F0545615.VALLOG,
// DISP=(NEW,PASS,DELETE),
// SPACE=(10796,(250,500),RLSE),
// UNIT=WKDISK,
// BLKSIZE=0,
// LRECL=120,
// RECFM=FB
//ERRNAME DD DSN=MYUSERID.F0545615.ERRORS.TXTT,
// DISP=(NEW,PASS,DELETE),
// SPACE=(10796,(250,500),RLSE),
// UNIT=WKDISK,
// BLKSIZE=0,
// LRECL=120,
// RECFM=FB
//SYSIN DD *
%macro sasToUx(userId=,

pswrd=,
inclause=,

rowconst=,
cols=,
file=,

targHost=,
targDir=,);

%let unix=&targHost;
%let userId=&userId;
%let pswrd=&pswrd;
%let inclause=%upcase(&inclause);
%let rowconst=%upcase(&rowconst);
%let cols=%upcase(&cols);
%let file=%upcase(&file);
%let targHost=%upcase(&targHost);
%let targDir=%upcase(&targDir);
options remote=unix comamid=tcp nocaps;
options sgen mprint;
filename rlink 'syst.sas.sas608.ctmisc(datcpunx)';
signon unix;

PROC PRINTTO log=ERRNAME;
proc sql;
create table WORK.INV as

select &cols
from MVSIN.INV &rowconst ;

* Create the first comparison dataset ;
create table WORK.valid1 as
select nobs,obslen,nvar
from dictionary.tables
where libname = 'WORK'
and memname = 'INV';

* Go to UNIX ;
rsubmit;

libname unixOut "/home/myUserId";

*Move the MVS work.&dsn file to Unix ;
proc upload
data=WORK.INV
out=unixOut.INV;

run;

*Move the 1st comparison file to Unix ;
proc upload data=WORK.valid1
out=WORK.valid1;

run;

* move the transferred file back to MVS ;
PROC download data=unixOut.INV

out=WORK.xfer;
run;

endrsubmit;

*Must be done on MVS to get the dictionary.tables;
proc sql;
create table WORK.valid2 as
select nobs,obslen,nvar
from dictionary.tables
where libname = 'WORK'
and memname = 'INV';

* Go back to UNIX ;
rsubmit;

* move the validation dataset to Unix ;
proc upload data=work.valid2
out=work.valid2;

* Perform the comparison ;
proc compare base=WORK.valid1

compare=WORK.valid2
out=WORK.vallog noprint;

run;

data _null_;
set WORK.vallog;

(DATASTEP CODE TO COMPARE NUMBER OF OBSERVATIONS, OBSERVATION LENGTH, AND NUMBER OF VARIABLES DELETED
FOR BREVITY)

run;
endrsubmit;

proc printto print=VALLOG;

* Perform the comparison ;
proc compare base=WORK.INV

compare=WORK.xfer
outstats=WORK.vallog;

run;

* Perform the PROC contents ;
proc contents data=WORK.xfer;

proc printto;

signoff unix;
%mend sasToUx;
%sasToUx(userId="myUserId",
pswrd="mypass",
inclause=

and name in ('CLINVNO', 'COUNTRYC', 'GLBINVNO'),
rowconst=WHERE clinvno>"804";,
cols=%STR(CLINVNO, COUNTRYC, GLBINVNO),
file=inv.ssd01,
targHost=unixhostnamee@mycompany.com,
targDir=/home/myUserId);
run;
/*
//***
//* IF JOB DOES NOT ABEND AND RETURN CODE <= 4 THEN RENAME
//***
//IFGOOD IF (^ABEND & JS010.SAS.RC <= 4) THEN
//FTP EXEC PGM=FTP,PARM='(EXIT'
//OUTPUT DD SYSOUT=*
//INPUT DD *
PASCAL
myUserId
mypass
RENAME /home/myUserId/invval.logT invval.log
PUT 'MYUSERID.F0545615.ERRORS.TXTT' /home/myUserId/invERRORS.TXT

QUIT
/*
//***
//* ELSE TRANSFER THE ERROR LOG
//***
//ELSE ELSE
//FTP EXEC PGM=FTP,PARM='(EXIT'
//OUTPUT DD SYSOUT=*
//INPUT DD *
PASCAL
myUserId
mypass
PUT 'MYUSERID.F0545615.ERRORS.TXTT' /home/myUserId/invERRORS.TXT
DELETE /home/myUserId/invval.logT
DELETE /home/myUserId/inv.ssd01
QUIT

//ENDIF ENDIF
//

SECTION CHAIR

Heidi Markovitz
Simply Systems

 H
A

N
D

S
 O

N
 W

O
R

K
S

H
O

P
S

HANDS ON WORKSHOPS

Who Needs To Know Program Syntax
When You Have Enterprise Guide?

Prepared by

International SAS® Training and Consulting
A SAS Institute Quality Partner�

100 Great Meadow Rd, Suite 601
Wethersfield, CT 06109-2379

Phone: (860) 721-1684 1-800-7TRAINING
Fax: (860) 721-9784

Web: www.destinycorp.com Email: info@destinycorp.com

Introduction

Why use Enterprise Guide?

Programming in SAS has always been the biggest obstacle for
Analysts. This course will demonstrate an incredible new tool that
will allow you to create reports, statistics, graphs and assemble
data in seconds flat. This software will also build the program for
you with perfect syntax. You don't have to code anything. This is
the best tool SAS Institute has developed for day to day SAS user
needs. You're programming and programs will never be the same
again. Folks, this is better than sliced bread.

Starting Enterprise Guide

Locate the Icon or selection on your Start Menu. Click it to
bring up the splash screen.

The application will load.

Projects

Everything you do in Enterprise Guide is done in a project. These
are similar to folders that can contain many types of analysis. It is
possible to have several project folders.

Many people don’t just work on one project at a time. This
software is designed to allow you to manage multiple analytical
projects on your machine. You can switch between projects as
required.

Notice Merlin. He is your personal assistant who can guide you
through your use of Enterprise Guide.

Note: It is best to have the appropriate multimedia computer
system to make use of this feature.

You will be prompted to enter a name for your Project.

We will use Project 1 for this demonstration.

Click to enter the Enterprise Guide Desktop.

Now that we have a project, we must insert some data into the
project so we can analyze it.

Select the Insert pull down menu and .

The following prompt window will appear, asking you to select
data. Data can come from almost anywhere, including tables from
relational databases stored on other operating systems.

Select the DEMOGRAF data set from the course library (see your
instructor for specific locations) and click .

Enterprise Guide will now analyze the data, determining variables
available and their types. When finished, the data will be loaded
onto the desktop.

Notice the data set demograf listed in the upper left corner of the
desktop as part of Project 1.

There are many pull down menus available to do all of your work
in Enterprise Guide. No coding is necessary. An overview of all of
the items will give you a better feel as to what the software will be
able to do.

File Menu

Edit Menu

View Menu

Insert Menu

Format Menu

Data Menu

Analysis Menu

Graph Menu

Code Menu

Tools Menu

Window Menu

Help Menu

Basic Analysis On Your Data

Let’s perform a simple analysis on the data to demonstrate the
power of this software.

Given the data we have loaded, we will create a simple
Frequency Analysis on the variable Status.

Select the Analysis pull down menu

The following window will appear.

The variables available are listed on the left and are color and
symbol coded based on numeric or character attributes.

The Frequency attributes are listed in the middle and some
simple instructions are listed on the right.

Drag the variable STATUS onto the Analysis variables attribute

to achieve the following.

Click when done and the following report will appear.

You can see the results in the upper left hand window. Click on
the Results item to expand it.

You will see the listing of the HTML report, a One-Way Frequency
analysis.

Let’s examine the code that was created.

Double click on the Code item to view it in the Enhanced Editor.

Double click on the Log item to view it.

Saving Projects

To save the analysis created and stored in this project, it needs to
be saved into a Project folder.

To do this, select the File pull down menu,

and specify the location for this project. You will need to know this
location when you return to Enterprise Guide and want to use the
analysis in this project.

Type the name of the Project and click when complete.

Exporting Code

Many analysts and programmers use Enterprise Guide for quick
creation of SAS programs that can be used in a standard SAS

environment. The code created to perform the analysis in each
project can be exported for use outside Enterprise Guide.

To do this, from the File pull down menu, select

Choose a destination location.

Give the program a name and click when finished.

In SAS, when the file is opened, it looks like the following.

It is important to note that librefs need to be adjusted. This
process is only designed for saving the code and not the libref
pointers used inside the Enterprise Guide session.

This paper consists of excerpts from Destiny Corporation’s course
materials. Copyright � 2001. This material may not be duplicated
in any way. Please contact Destiny Corporation for more
information.

Basic Macro Processing

Prepared by

Destiny Corporation

International SAS® Training and
Consulting

Destiny Corporation
100 Great Meadow Rd Suite 601

Wethersfield, CT 06109-2355
Phone: (860) 721-1684 1-800-7TRAINING

Fax: (860) 721-9784
Email: info@destinycorp.com
Web: www.destinycorp.com

Copyright 1999

Macro variables
In this module we discuss the first of the two special characters -
the ampersand (&).

When the SAS Supervisor sees an ampersand followed by a
non-blank character, the macro facility is triggered. In turn, the
macro facility, determines the value for the macro variable and
passes the value back on to the input stack.

If the macro facility fails to find the current value for a macro
variable, the following message appears on the SAS Log:

Warning: Apparent symbolic reference is not resolved.

In version 5 systems this message is accompanied by the number
1301:

Warning 1301: Apparent symbolic reference is not
resolved.

Strings enclosed within single blip quotes (') are always assumed
to be one continuous string. Therefore, macro variable
references within single quotes will NOT resolve. Tokens
enclosed within double blip quotes (") are treated separately and
thus macro variable references WILL resolve.

In release 5.18 and below, the facility needs to be enabled by:

OPTION DQUOTE;

In version 6 the system works as though DQUOTE is always
enabled.

Predict the results of the following statements. Assume you are
working on a version 6 system.

PROGRAM EDITOR

title ‘Macro facility involves % and &’;
tit le2 ‘Macro facil ity came as a result of much R&D’;
tit le3 "Macro facil ity came as a result of much R&D";
tit le4 "Report prepared on &sysdate";
t it le5 ‘Report prepared on &sysday’;

Automatic Macro Variables

When SAS is invoked, a set of Automatic macro variables is
created; some of these are read-only, others are read-write. We
have encountered two of these so far -&SYSDATE and
&SYSDAY.

There are certain variations in the variables available in different
versions of the systems as shown below. Note that these are the
automatic macro variables available with the base product only.

Macro variables and their current values are stored in internal
work areas called Symbol Tables. When the macro processor is
trying to resolve a macro variable reference it will scan its symbol
tables for a macro variable of that name and either retrieve its
value and place that value upon the input stack, or the message

Warning: Apparent Symbolic reference¯o-variable
not resolved.

will be issued.

When the SAS system is invoked (and assuming system options
enable the macro facility) the GLOBAL SYMBOL TABLE is built.
This holds most of the automatic macro variables.

Later we shall see other symbol tables created and deleted
dynamically, how we can force variables into different tables and
how the tables have a prescribed search order.

Creating macro variables

Within the macro facility and Data step language there are no
fewer than 9 ways of creating a macro variable. We shall see all
9 methods throughout this course.

Let us begin with the simplest method, the %LET statement. The
presence of a % followed by a non-blank character triggers the
macro facility. A %LET tells the macro facility that a macro
variable is to be defined. %LET can appear anywhere within a
SAS program to define one macro variable at a time.

The form of the %LET statement is:

%LET macrovariable = value;

� value is optional:

%LET price=;

The macro variable price is created but takes a null value.

� trailing and leading blanks are ignored:

%LET cost= very cheap ;

creates a macro variable called cost with the value of very cheap.
Note the embedded blank is included but no blanks before very
or after cheap are included.

� excepting the case above, all characters are included as
part of the macro variable including any quotes used.

%LET cost=' "very cheap" ';

creates a macro variable called cost with the value

' "very cheap" '

including all quotes and spaces. Note that you cannot do

%LET cost=' "very cheap" ;

This will give unbalanced quotation mark errors.

� inclusion of special characters in a macro variable value
(except & or %) or leading or trailing blanks can be achieved
by use of the %STR function:

%LET code=proc print;

%LET code2=%str(&code;run;);

code1 takes the value of proc print
code2 takes the value of proc print;run;

� to include & or % as part of the string use %NRSTR:

%LET code=proc print;

%LET code2=%nrstr(&code;run;);

code1 takes the value of proc print
code2 takes the value of &code;run;

� to inspect the variable's value simply use the %PUT
statement to write the value of the Macro variable out to
the log. Remember to reference it with an ampersand:

%PUT &code;

Writes the value of the macro variable code to the SAS Log.

PROGRAM EDITOR

%let station1=Paddington;
%put &station1;

%let station2=Clapham Junction;
%put &station2;

%let prefix1=St;
%let name1=Pancras;
%let station3=&prefix1 &name1;
%let suffix1=Street;
%let name2=Liverpool;
%let name3=Cannon;
%let station4=%str(Victoria);
%put &station4;

%let station5=&name2 &suffix1;
%put &station5;

%let station6= &name3 &suffix1;
%put &station6;

%let station7='Tottenham Court Road';
%put &station7;

%let station8=' Tottenham Court Road;Oxford Circus ';
%put &station8;

%let station9=%nrstr(Highbury&Islington);
%put &station9;

%let stationa=%str(Chalfont&Latimer);
%put &stationa;

%let stationb=%str(Harrow&Wealdstone);
%put &stationb;

%let stationc="&station7";
%put &stationc;

These %LET and %PUT statements write the following Log:

LOG

NOTE: The PROCEDURE PRINTTO used 0.11 seconds.

MPRINT(PROGRAM): DM 'clear log; clear out';
SYMBOLGEN: Macro variable N resolves to m234
SYMBOLGEN: Macro variable STATION1 resolves to
Paddington
Paddington
SYMBOLGEN: Macro variable STATION2 resolves to Clapham
Junction
Clapham Junction
SYMBOLGEN: Macro variable PREFIX1 resolves to St
SYMBOLGEN: Macro variable NAME1 resolves to Pancras
SYMBOLGEN: Macro variable STATION4 resolves to Victoria
SYMBOLGEN: Some characters in the above value which were
 subject to macro quoting have been unquoted for
 printing.
 Victoria
SYMBOLGEN: Macro variable NAME2 resolves to Liverpool
SYMBOLGEN: Macro variable SUFFIX1 resolves to Street
SYMBOLGEN: Macro variable STATION5 resolves to Liverpool
Street
Liverpool Street
SYMBOLGEN: Macro variable NAME3 resolves to Cannon
SYMBOLGEN: Macro variable SUFFIX1 resolves to Street
SYMBOLGEN: Macro variable STATION6 resolves to Cannon
Street
Cannon Street
SYMBOLGEN: Macro variable STATION7 resolves to
'Tottenham
 Court Road'
'Tottenham Court Road'
SYMBOLGEN: Macro variable STATION8 resolves to '
Tottenham
 Court Road;Oxford Circus '
' Tottenham Court Road;Oxford Circus '
SYMBOLGEN: Macro variable STATION9 resolves to
 Highbury&Isl ington
SYMBOLGEN: Some characters in the above value which were
 subject to macro quoting have been unquoted for

 printing.
Highbury&Isl ington
W ARNING: Apparent symbolic reference LATIMER not resolved.
SYMBOLGEN: Macro variable STATIONA resolves to
Chalfont&Latimer
SYMBOLGEN: Some characters in the above value which were
 subject to macro quoting have been unquoted for
 printing.
W ARNING: Apparent symbolic reference LATIMER not resolved.
Chalfont&Latimer
ERROR: Symbolic variable name W EALDSTON must be 8 or
fewer
 characters long.
SYMBOLGEN: Macro variable STATIONB resolves to
 Harrow&W ealdstone
SYMBOLGEN: Some characters in the above value which were
 subject to macro quoting have been unquoted for
 printing.
ERROR: Symbolic variable name W EALDSTON must be 8 or
fewer
 characters long.
Harrow&W ealdstone
SYMBOLGEN: Macro variable STATION7 resolves to
'Tottenham
 Court Road'
SYMBOLGEN: Macro variable STATIONC resolves to
" 'Tottenham
 Court Road'"
" 'Tottenham Court Road'"
MPRINT(PROGRAM): PROC PRINTTO;
MPRINT(PROGRAM): RUN;

Notes on the log:

� %LET does not allow leading or trailing blanks - for them
use quotes or the %STR function.

� Quotes remain part of the macro variable value. Note that
blanks can be included and other special characters too -
see Station8.

� Macro variable references can themselves be used within
%LET statements.

� Macro variable names conform to usual SAS naming
conventions. Note that although WEALDSTONE is 10
characters long, the Log reports WEALDSTON - 9

Characters. Once the limit of 8 characters is exceeded
SAS reports the error.

� %STR() hides the meaning of blanks and special
characters, but not & and %. A macro variable reference
will resolve within the function.

� %NRSTR() hides the meaning of the % and& as well as
blanks and other special characters. A macro variable
reference within the argument to the function will NOT resolve.

We have seen that the Global Symbol Table is built at SAS
invocation time. All the %LETs in the example above will also be
written to this table, and after they have executed the table will
contain the following:

Definition of a Macro

As the module title implies, a macro is simply 'a bundle of code'.
In its simplest form, the regular job you submit to backup your
data sets or produce your graphics can all be bundled up into a

macro and then 'invoked' using one word - the name of the
macro. This is known as making a macro 'call'.

But as you would expect, the macro facility can do far more than
this. For example, we shall see how to pass values to the macro,
and, in Module 5, how to take decisions within the macro.

All this simply leads to the inclusion of text (normally ordinary
SAS code - DATA and PROC steps) on to the top of the input
stack, to be submitted to SAS in the normal way.

Example

Consider a regular job to age a series of time-related data sets;
there are four data sets in the group. A new data set forms the
first, newest member, the former first data set becomes the
second and so on:

PROGRAM EDITOR

data mylib.new;
 ...
 ... data step statements ...
 ...
proc datasets lib=mylib;
 age new first second third fourth;
run;

new is renamed first
first is renamed second
second is renamed third
third is renamed fourth
fourth is deleted

How can we bundle this code up into a macro?

Macro definition

� A macro must be defined first before it can be called.

� Macro definitions start with the %MACRO statement which
defines the name of the macro...

� ... and the definition is deemed to continue until the %MEND
statement. Including the macro name is optional (but if it is used
must correspond with the name of the macro):

 %macro macroname;
 .
 macro programming statements;
 .
 %mend macroname;

The above example thus becomes:
PROGRAM EDITOR

%macro age; /*definit ion of macro called age*/ proc
datasets lib=mylib;
 age new first second third fourth;
 run;
%mend age; /*completion of macro definit ion*/

N.B. The %MEND is critical. The macro processor takes control
when a %MACRO statement is seen. Should the %MEND be
missing, all the input stream is regarded as being part of the open
macro definition. There are occasions when all the submitted
code is seen to be written to the log and nothing else - the code
appears to be disappearing into a black hole! Upon such
occasions, check for the absence of a %MEND statement.

What can a macro contain?

� Data and Proc step code
� Macro programming statements and functions

We shall see these in Module M5. Some macro programming
statements must be within the bounds of a macro definition,
others are totally global.

� Macro variable references
i.e. things starting with the &

� Other macro calls and definitions
i.e. things starting with the %

In the example we have just seen, the name of the data sets are
fixed. We shall see how to make these variable shortly.

What can a macro be called?

� Any valid SAS name (CMS users are limited to a maximum
of 7 characters)
� Anything other than one of the following reserved words:

Reserved words in the macro facility (Release 6.06 and higher):

ABEND GOTO QUOTE
ABORT IF QUPCASE
ACT INC RESOLVE
ACTIVATE INCLUDE RETURN
BQUOTE INDEX RUN
BY INFILE SAVE
CLEAR INPUT SCAN
CLOSE KEYDEF STOP
CMS LENGTH STR
COMANDR LET SUBSTR
COPY LIST SUPERQ
DEACT LISTM SYSEXEC
DEL LOCAL SYSGET
DELETE MACRO SYSRPUT
DISPLAY MEND THEN
DMIDSPLY METASYM TO
DMISPLIT NRBQUOTE TSO
DO NRQUOTE UNQUOTE
EDIT NRSTR UNSTR
ELSE ON UNTIL
END OPEN UPCASE
EVAL PAUSE WHILE
FILE PUT WINDOW
GLOB QSCAN
GO QSUBSTR

An attempt to call a macro by one of the above reserved names
will result in a warning message; the macro will neither be
compiled or available for use.

The compiled macro

� A compiled macro is an entry in a utility catalog in the
WORK library

� the system does not support the renaming or copying of
entries of member type of macro

The once-defined macro is stored in the WORK data library in
compiled form. In versions prior to 6.03 it was stored as a special
type of data set; in version 6.03 and above, it is stored in the

WORK.SASMACR catalog with an entry type of MACRO. As it is
held in 'compiled' form, it is, of course, not browsable or editable.

The macro could also be part of an autocall library. This topic will
be discussed at length in a later module.

The Macro Call

Once a macro has been defined it can be called anywhere in a
SAS job. The call is simply the name of the macro preceded by
the % sign:

PROGRAM EDITOR

%macro age; /*definit ion of macro called age*/
 proc datasets lib=mylib;
 age new first second third fourth;
 run;
%mend age; /*completion of macro definit ion*/
data mylib.new;
 set...;
 i f....;
run;
%age /*the macro call*/

Notice that the macro call, %age , does not include a semi-colon.
There is no need here as a semi-colon has been generated by
the macro call; the code within the definition is complete, so no
extra semi-colon is required.

The macro call sees the execution phase of the macro,
whereupon the macro processor executes the macro in
sequential form, placing the resulting open code (i.e. simple
DATA and PROC steps) upon the input stack.

Passing Parameters

In the %age example the data set names were fixed. How could
a macro be written such that the procedure is invoked with any
names for the library and data sets involved? I.e. to generate:

PROGRAM EDITOR

proc datasets lib=mylib;
age new first second third fourth;
run;

at the first invocation and to generate

PROGRAM EDITOR

proc datasets lib=newlib;
age next ds_0 ds_1 ds_2;
run;

at the next?

The way to do this is to pass parameters to the macro call.

To use this method, the macro must first be defined as requiring
parameters in the call. There are two ways of doing this:

Positional Parameters
PROGRAM EDITOR

data new; x=5; run;

data first ; x=1; run;
data second; x=2; run;
data third ; x=3; run;
data fourth; x=4; run;

%macro age(library,newds,ds1,ds2,ds3,ds4);
proc datasets lib=&library;
 age &newds &ds1 &ds2 &ds3 &ds4;
run;
quit;
%mend;

%age(work,new,first,second,third,fourth)

Here the macro age has been defined with six positional
parameters to take the variation in library and data sets - in order.

The macro is invoked by:

%age(sasdata,latest,prod1,prod2,prod3,prod4)

to generate:
PROGRAM EDITOR

proc datasets lib=sasdata;
age latest prod1 prod2 prod3 prod4;
run;

What would the call

%age(prod1,prod2,prod3,prod4,sasdata,latest)

generate?

Keyword Parameters

This method does exactly the same job as defining a macro with
positional parameters, except:

� it gets over the requirement to define and pass parameters
in the same order

� it allows default values to be attached to the parameter

PROGRAM EDITOR

data new; x=5; run;
data first ; x=1; run;
data second; x=2; run;
data third ; x=3; run;
data fourth; x=4; run;

%macro
age(library=work,newds=new,ds1=,ds2=,ds3=,ds4=);
proc datasets lib=&library;
 age &newds &ds1 &ds2 &ds3 &ds4;
run;
quit;
%mend;

%age(ds1=first,ds2=second,ds3=third,ds4=fourth)

The call

%age(ds1=first,ds2=second,ds3=third,ds4=fourth)

generates...
PROGRAM EDITOR

proc datasets lib=mylib;
age work1 first second third fourth;
run;

the definition of the macro providing default values for &library
and &newds.

The call

%age(ds2=april,ds4=june,ds1=march,ds3=may,library=y
earlib)

generates
PROGRAM EDITOR

proc datasets lib=yearlib;
age work1 march april may june;
run;

Where the macro is defined with parameters the parentheses
MUST be used. For example, where all the parameters are given
default values, the minimum invocation is:

%age()

Null values

With positional parameters, null values can be passed by using a
comma as a 'placeholder':

PROGRAM EDITOR

%macro rr(datads,setds,condval);
 data &datads;
 set &setds;
 if category="&condval";
 run;
%mend rr;

%rr(work9,saved.epidemic,E)
%rr(,saved.epidemic,E)

%rr(,work3,F)

will generate:
PROGRAM EDITOR

data;
set work3;
if key="F";
run;

and SAS will choose the name of the temporary output data set.

%rr(,,M)

will generate:
PROGRAM EDITOR

data;
set;
if key="M";
run;

and SAS will choose the name of the temporary output data set
and use the last updated data set as input.

With keyword parameters, the parameter is simply omitted.

Combination of Positional and Keyword parameters

If the methods of positional and keyword parameters are mixed,
the positional parameters must come first.

PROGRAM EDITOR

%macro tt(proc,dataset=_last_);
 proc &proc data=&dataset;
 run;
%mend tt;

The call...

%tt(print,dataset=first)

...generates
PROGRAM EDITOR

proc print data=first;
run;

Variable Numbers of Parameters

Sometimes you may want to write a macro to contain variable
numbers of parameters. For example, the %age macro in its
forms defined so far can only age 5 data sets; what if we wanted
to write a utility macro so we could age any number of data sets.
A way around this is to use the PARMBUFF option.

� Define the macro in the normal way except for the
/PARMBUFF option.

%macro age/parmbuff;

 macro programming statements

%mend age;

Here, all supplied parameters, including any special characters
used are assigned to the automatic local macro variable
SYSPBUFF which is then manipulated in the macro by macro
programming statements.

The call
%age(library=mylib,new,gdg_0,gdg_1,gdg_2)

gives a value to &syspbuff of
library=mylib,new,gdg_0,gdg_1,gdg_2

Parameters may also be included in the definition

%macro age(posparm)/parmbuff;

 macro programming statements

%mend age;

In the above example, a different number of parameters can be
supplied as long as there is at least one.

The call
%age(mylib,new,gdg_0,gdg_1,gdg_2)

gives a value to &syspbuff of
mylib,new,gdg_0,gdg_1,gdg_2

and
&posparm the value mylib.

Version 8 ODS (Output Delivery
System)

Prepared by

International SAS® Training and Consulting
A SAS Institute Quality Partner�

100 Great Meadow Rd, Suite 601
Wethersfield, CT 06109-2379

Phone: (860) 721-1684 1-800-7TRAINING
Fax: (860) 721-9784

Web: www.destinycorp.com Email: info@destinycorp.com

This presentation is designed to demonstrate the different
possibilities we use when we build web based applications for
clients and teach them the web publishing techniques we use
with SAS Software. Actual examples are available on our web
site.

Basic HTML Publishing

The most basic form is brute force HTML generation using the
traditional data step. This tends to be the most flexible, but the
most time consuming and requires complete knowledge of how
HTML works. FILE and PUT statements are used extensively.

Data Set Publishing with DS2HTM

SAS offers a macro that allows one to take a SAS data file and
present it in an HTML form.

SAS Output Publishing with OUT2HTM

Any procedure’s output can be captures and published with the
OUT2HTM macro.

Tabulate Publishing with TAB2HTM

A special macro has been designed to capture the output of a
PROC TABULATE and create an HTML table. This is a better
presentation for a PROC TABULATE than using OUT2HTM.

The following drivers are designed to create graphical output
used on the web with SAS/Graph software.

Graphical Publishing with GIFs 6.09

Graphical Publishing with GIFs 6.09e and 6.12

Graphical Publishing with GIFs 6.09e and 6.12
Transparency

Animation with GIFs

Version 8 and the Output Delivery System

When ODS was introduced in Version 8 of SAS software, a
whole new way of publishing was created.

The simplest form of output can be seen by the following
example.

First, notice the typical style of using ODS.

1. The ODS ‘capture style’ utility is turned on.
2. The process executes.
3. The ODS utility is turned off.

The general ODS syntax can look like the following.

This syntax routes HTML output anywhere you desire. It
creates four files. The FRAME.HTML file pulls them all
together.

Styles in HTML

There are several HTML styles that come with SAS. They are
designed to allow the user to create an HTML standard of
colors, fonts and more across all HTML output. Any of the
default ones can be used, or they can be modified to suit your
needs. To see the existing styles, go to the Results window and
select.

Right click and select Templates.

Select SASHELP.TMPLMST, Styles to see the available styles.

To examine a style, execute Proc Template with the Style
name. Default is the default style used.

Cut and paste the code for modification. Rerun it with a new
name and your own style can be created.

To select a style, use the ODS statement

It produces the following HTML. (Looks different than
styles.default)

See the online help to learn more about changing styles and
what the values mean.

Graphical Support

There are several other drivers available for outputting
graphical objects. Consider the following.

Java Support

There is Java support. Consider the following driver.

There are several menus available from the right click of a
mouse.

Experiment with each to understand the capabilities.

Active X Support

SAS now supports Active X controls. Consider the following
code with the Active X Driver.

A right click yields many possibilities.

Consider testing out the different options.

Using Styles in Procedures

Style options are available in SAS. Their syntax is added to
procedures when formatting them for output. This is available
on the procedure level in the following way. Use the syntax

S={foreground=blue}

At various locations to specify colors.

Current supported Procedures are Tabulate and Report.

Styles in Proc Tabulate

Additional examples use background and font_style.

Styles in Proc Report

Traffic Lighting

This is a technique that employs styles with formatted values to
allow changing the color and presentation of cells as the value
changes. Examine the following code.

Hyperlinks in Graphs and Reports

Hyperlinks in Graphs

In Version 8 of SAS Software, HTML examples that link to each
other are possible. Wouldn’t it be great to create a graph and
then be able to click on the items in the graph to branch to
appropriate detail about those items?

The following code could create that result.

Click on the appropriate bars to see the detail.

The key items to get this to work are the following:

1. Use the GIF driver for graph output.
2. Create a variable attached to the grouped data item that

includes a valid hyperlink. Here we use LINKME.
3. Use the HTML= option on the charting statement.

Hyperlinks in Reports

This is an easy task by formatting the values with predefined
hyper links. Examine the following code:

This paper consists of excerpts from Destiny Corporation’s
course materials. Copyright � 2000. This material may not be
duplicated in any way. Please contact Destiny Corporation for
more information.

SQL Processing

Prepared by

International SAS® Training and
Consulting

Destiny Corporation – 100 Great Meadow Rd Suite 601 -
Wethersfield, CT 06109-2355

Phone: (860) 721-1684 - 1-800-7TRAINING - Fax: (860) 721-9784
Web: www.destinycorp.com

Email: info@destinycorp.com
Copyright 1999

SQL Statements

PROC SQL consists of TEN statements:

1.SELECT to perform queries

2.VALIDATE to validate the syntax of a query

3.DESCRIBE to show how a view has been defined

4.CREATE to create a table (SAS data set), index or view

5.DROP to delete a table, index or view

6.UPDATE change the values in a table

7.INSERT add rows to a table

8.DELETE to delete rows from a table

9.ALTER to add, delete or modify columns in a table

10.RESET add, change or deletion of options

Of these, by far the most important is the SELECT statement.

The Select Statement

PROGRAM EDITOR

*Q02E01 The Select statement;
proc sql;
 select *
 from saved.computer;

** The Proc SQL statement is loaded into memory and
remains resident until another Data or Proc step is run or
a QUIT; statement is executed. Therefore, subsequent
queries or other SQL statements can be run without the
need to re-submit the Proc SQL statement.

** each SQL statement is processed individually. No RUN; is
required.

** Proc Print style output is automatically produced. Note
there is no observation number and there is a line below
the variable names. This output can be suppressed with
the NOPRINT option on the Proc SQL statement:

proc sql noprint;
select....

Usage

Invoke Proc SQL and then use a SELECT statement:

PROGRAM EDITOR

proc sql;

PROGRAM EDITOR

 select *
 from saved.computer;

PROGRAM EDITOR

quit;

Note that while Proc SQL is running, the RUN; statement itself
simply produces an interesting note on the Log:

Basic Examples

The SQL procedure uses the SELECT statement to perform a wide
variety of queries. Within the SELECT statement are different
Clauses:

Order by Character Variable

Select input (Char 3.) during order by during;

Ordering the Result

The order by clause determines the order in which the rows are
displayed in the resulting table:

PROGRAM EDITOR

*Q02E02 The Order By clause to determine order for rows;
 select *
 from saved.computer
 order by disk;

This code produces the same result as:

PROGRAM EDITOR

proc sort data = saved.computer;
 by disk;
proc print data = saved.computer;
run;

 Advantages of SQL:

** No physical sort has to be performed

Notice that no physical output file has been produced from this
query, simply a listing as output.

Selecting Rows

Selecting Rows is done with the WHERE clause:

PROGRAM EDITOR

*Q02E03 The subsetting rows with where;
proc sql;
 select *
 from saved computer
 where supplier = ‘KETCHUP COMPUTERS’
 order by disk;
quit;

The WHERE clause syntax:

(These variants also apply to the Having clause. Notes:

** ¬= is normally the symbol used for Not Equals on an IBM
mainframe.

** ^= is normally the symbol used for Not Equals on ASCII
based machines.

** NOT= and NE can also be used for Not Equals.

** The ‘Sounds Like’ operator uses the Soundex algorithm.
This is normally used to search for variants in names, for
example telephone directory applications, but is not
perfect.

** The BETWEEN operator includes values defined in the
range.

** IS NULL and IS MISSING are equivalent and match with
all missing values including special missing values.

** Computed columns cannot be referred to by name in a
WHERE clause. They have to be recalculated for the
WHERE clause.

** SAS functions are supported except for LAG, DIF and
SOUND. These ‘ordinary SAS’ functions should not be
confused with SQL summary functions seen in Q2.3.

Controls and Enhancements

Selecting columns

Using the column names from the SAS file allows choice of the
columns in the report:

PROGRAM

*Q02E04 Selecting columns to display in select statement;
proc sql;
 select type,disk,retail
 from saved.computer
 where supplier = 'KETCHUP COMPUTERS'
 order by disk;

This is the equivalent of:

PROGRAM EDITOR

proc sort data = saved.computer
 by disk;
run;
proc print data=saved.computer
 (where=(supplier='KETCHUP COMPUTERS'));
 var type disk retail;
run;

Again, the SQL advantage is the lack of the sort step.

Note that the list of column names require to be delimited by
commas:

select type, disk, retail

All lists of column names and table names require commas in SQL
syntax.

Calculating Columns

Columns can be calculated by assigning an expression to an item
name:

PROGRAM EDITOR

*Q02E05 Assigning an expression to column name;
proc sql;
 select type,
 disk,
 retail,
 retail * 7/47 as vat
 from saved. Computer
 where supplier = ‘KETCHUP COMPUTERS
 order by disk;
quit;

Notice the structure: expression AS variable

as opposed to the traditional SAS: variable = expression;

Notice that the traditional equivalent would now require an additional
step:

PROGRAM EDITOR

data new;
 set saved.computer;
 vat = retail * 7/47;
proc sort data = new;
 by disk;
proc print data = new
 (where=(supplier='KETCHUP COMPUTERS'));
 var type disk retail vat;
run;

Formatting Values - A Column Modifier

The format option appears after the column name, not as a separate
statement:

PROGRAM EDITOR

*Q02E06 Formatting values with a column modifier;

 t it le 'Ketchup Computers, VAT element of prices';
 select type,
 disk,
 retail,
 retail*7/47 as vat format=7.2
 from saved.computer
 where supplier='KETCHUP COMPUTERS'
 order by disk ;

This is a SAS enhancement to a standard SQL.

Labeling Columns - a Column Modifier

Column headings can be changed with the LABEL option:

PROGRAM EDITOR

*Q02E07 Labeling columns with a column modifier;

proc format;
 picture pound low-high='000,000,009.99'(prefix='$');
proc sql;
 t it le 'Ketchup Computers, VAT element of prices';
 select type label='Computer Type',
 retail label='Retail Price' format=pound9.2,
 retail*7/47 as vat format=pound7.2
 from saved.computer
 where supplier='KETCHUP COMPUTERS'
 order by disk ;

This is a SAS enhancement to standard SQL.

Using Functions

Ordinary 'Data Step' functions can be used in these expressions as
noted in Q2.1:

PROGRAM EDITOR

*Q02E08 Using functions;

options nodate nonumber;
tit le 'Charges raised for car hire';
proc format;
 picture pound low-high = '000,009.99' (prefix= '$');
 value $model 'F' = 'Fiesta'
 'E' = 'Escort'
 'O' = 'Orion'
 'S' = 'Sierra'
 'G' = 'Granada';
proc sql;
 select substr(carkey,2,1) format=$model.,
 custkey label='Customer Code',
 daychg label='Daily Charge',

 (endate - stdate +1) as duration
 label= 'Days Hired',
 (endate - stdate +1)*daychg
 format = pound7.2,
 round(((endate - stdate +1)*daychg*7/47),0.01)
 as vat format = pound7.2
 from saved.carhire
 order by 5 desc;

Notes:

Functions can be used to derive calculated columns as shown by
the SUBSTR function above and can be used to change calculate
values as shown by the ROUND function. Derived columns need
not be given aliases using the AS syntax.

Aliases cannot be used in further calculations. For example, if the
expression in line 17 above:

 (endate - stdate +1)*daychg
 were replaced by
 duration*daychg
 an error would result, duration not being found.

The order by clause can use the ordinal position of the column. In
the example above the 5th column in used. Ordering can be done a
calculated column with no alias.

Distinct Values

A useful keyword is DISTINCT, which allows selection of unique
values of a column:

PROGRAM EDITOR

*Q02E09 Selection of unique key values with Distinct;

 t it le 'Which disk types are sold by Ketchup?';
 select distinct disk
 from saved.computer
 where supplier='KETCHUP COMPUTERS'
 order by disk ; <-- not required

OUTPUT

Which disk types are sold by Ketchup?

 DISK
 20
 40
 60
 100
 120
 200

Traditional SAS programming would involve the following:

PROGRAM EDITOR

t it le 'Which disk types are sold by Ketchup?';
proc sort data=saved.computer out=sorted; <-----
required
 by disk;
data unique(keep=disk);
 set sorted(keep=disk supplier);
 by disk;
 if last.disk;
 where supplier='KETCHUP COMPUTERS';
proc print data=unique;
run;

Selecting data with DISTINCT

The DISTINCT keyword can be used to select data for all
combinations of columns:

PROGRAM EDITOR

*Q02E10 Distinct can apply to unique combinations;

 t it le 'All combinations of disk and type';
 select distinct disk label='Hard Disk Size',
 type label='Computer Type'
 from saved.computer
 where supplier='KETCHUP COMPUTERS'
 order by disk ;

The DISTINCT keyword applies to all the column names and each
unique combination of values is returned.

Data/Proc Step methods would use two BY variables. Note the
effect on the inner variable (type) when the outer variable (disk)
changes value:

PROGRAM EDITOR

t it le 'Which disk types are sold by Ketchup?';
proc sort data=saved.computer out=sorted;
 by disk type;
data unique(keep=disk type);
 set sorted(keep=disk type supplier);
 by disk type;
 if last.type;
 where supplier='KETCHUP COMPUTERS';
proc print data=unique;
run;

Syntax Checking

Use the VALIDATE statement, before the SELECT statement, to
check the SQL statements without executing them:

PROGRAM EDITOR

*Q02E11 Checking select statement syntax without executing;

 validate
 select distinct disk label = ‘Hard Disk Size’.

 Type label = ‘Computer Type'
 from saved computer

 where supplier = ‘KETCHUP COMPUTERS’
 order by disk ;

LOG

Proc SQL has valid syntax

This facility can only be used with a Query-expression i.e. to qualify
the syntax of a SELECT.

Syntax Errors

This syntax error is caused by the ORDER BY option:

PROGRAM EDITOR

*Q02E12 Where is the syntax error here?;

 validate
 select distinct disk label = ‘Hard Disk Size’,
 type label = ‘Computer Type’
 from saved.Computer
 order by disk
 where supplier = ‘KETCHUP COMPUTERS’ ;

LOG

 validate
 select distinct disk label = ‘Hard Disk Size’ ,

 type label = ‘Computer Type’
 from saved. Computer
 order by disk
 where supplier = ‘KETCHUP COMPUTERS’ ;

22
202
ERROR 22-322: Expecting one of the following: (, **, *, /, +, -, !!,
¦¦,

<,<=,<>,=,>,>=,?,CONTAINS,
eq, ge, gt, le, lt, ne, ^=, ~=,
&, AND, !, or, ¦, OR, ¦, ‘,

 The statement is being ignored.

ERROR 202-322: The option or parameter is not recognized.
Make sure the ORDER by statement is the last option on the
SELECT statement.

Analysis on Groups

Summary Functions

A series of functions are provided to work 'down the columns'. A
complete list of these functions is given in Q2.5.

PROGRAM EDITOR

*Q02E13 Analysis down a column for groups;

 select mean(retail) as avprice
 from saved.computer;

OUTPUT

AVPRICE

1929.167

This is the equivalent of:
PROGRAM EDITOR

proc means data = saved.computer mean;
 var retail;
run;

With more than one argument, the function performs for each row:

PROGRAM EDITOR

*Q02E14 More then one argument to analyze each row;

 select retail format= pound10.2,
 retail * 7/47 as VAT format = pound8.2,
 sum(retail,retail*7/47) as gross
 format =pound10.2
 from saved.computer;

With a single argument, but with other selected columns, the
function gives a result for all the rows, then merges the summary
back with each row:

PROGRAM EDITOR

*Q02E15 Merges summary value onto each row of output;

 select cpu,
 disk,
 (retail -wholesal)
 as profit label='Profit ',
 mean(retail-wholesale)
 as avprofit label = 'Average Profit ',
 (retail-wholesal) - mean(retail -wholesal)
 as diff label = 'Difference'
 from saved.computer
 where supplier contains 'FLOPPY';

To accomplish the same thing in Data/Proc step either requires use
of Proc Means/Summary to create a one-observation, one-variable
data set which is then read into the data step alongside
saved.computer or two passes of the data in the same data step:

PROGRAM EDITOR

data new;
 retain avprofit;
 if _n_ = 1 then do;
 do until(f inish);
 set saved.computer end = finish
 nobs = numobs;
 profit=retail-wholesal;
 totprof+profit;
 end;
 avprofit = totprof / numobs;
 end;
 set saved.computer;
 profit = retail - wholesal;
 diff = (retail - wholesal) - avprofit;
run;
proc print data=new;
 var cpu disk profit avprofit diff;
 label profit='Profit '
 avprofit='Average Profit '
 diff = 'Difference';
 run;

An important function is COUNT(*) which gives the number of rows:

PROGRAM EDITOR

*Q02E16 The count function supplies the number of rows;

 select count(*) as no_rows
 from saved.computer;
 select sum(retail)/count(*) as average
 from saved.computer;
quit;

Running SAS���� Applications on the Web
Prepared by Destiny Corporation

Starting The Web Server
A Web Server is required to execute
SAS/Intrnet software. It must be up and
running for a web browser and SAS to be
able to interact.

A Web Server and SAS can run under any
supported platform, including Unix,
Windows NT, etc…

For the purposes of the following
demonstrations, we will use a Personal
Web Server available through Apache.
(Apache for Windows 1.3.4) See
www.apache.org for more details.

Configuring A Local Web Server

We must determine the Internet Protocol
Configurations available and choose the
appropriate one as our IP address.

To do this, type IPCONFIG /ALL > junk at
the command line.

Edit the junk. file.

Determine the IP address to use.

We will use IP address 0.0.0.0

The HOSTS. file under the C:\WINDOWS
subdirectory must list the IP address, along
with the servername, so it can be found
easily by the local browser.

Change the HOSTS. file under
C:\WINDOWS to read:

Loading The Web Server

We load the Web Server with the following
command:

The name of the server is drafiee.

The following message appears.

Minimize the window.

Loading the Application
Dispatcher and Broker
The Application Dispatcher is an integral
part of executing SAS/Intrnet Software. It:

� Is a Gateway that connects Web
browsers with SAS software

� Allows for executing SAS programs from
a Web browser.

Note: Installation of SAS/Intrnet Software is
required prior to loading it.

To load it, simply double click on the
appropriate Icon:

Its properties are as follows:

C:\SAS612\sas.exe -config
C:\SAS612\config.sas -dmsbatch -
initcmd "af c=sashelp.web.appstart.scl
port=5001 srvroot='C:\SAS612\IntrNet'"
-altlog C:\SAS612\IntrNet\appsrv.log -
splashlocation
C:\SAS612\IntrNet\splash.bmp -awstitle
'SAS/IntrNet AppServer'

Double clicking produced the following
splash screen:

And the following non-interactive SAS
session.

Minimize it.

Testing the Broker
Now, we can test the broker.exe file.

The following SAS supplied files must live
in the cgi-bin subdirectory of the Web
Server.

� BROKER.EXE
� BROKER.CFG

On this demonstration machine, these files
live in:

C:\Program Files\Apache
Group\Apache\cgi-bin

Test them with the following commands at
the command prompt:

broker
“_service=default&_program=ping”

The following message should appear.

For more debugging, specify:

broker
“_service=default&_program=ping&_debug
=2305” > junk.

Returns the following in the junk. file.

Content-type: text/html

<H2>Symbols passed to SAS</H2>
<PRE>
#symbols: 13
 "_RMTHOST" = ""
 "_RMTADDR" = ""
 "_RMTUSER" = ""
 "_HTCOOK" = ""
 "_HTUA" = ""
 "_HTREFER" = ""
 "_service" = "default"
 "_program" = "ping"
 "_debug" = "2305"
 "_VERSION" = "1.0"
 "_URL" = "http://drafiee/cgi-
bin/broker.exe"
 "_ADMIN" = "Dana Rafiee"
 "_ADMAIL" =
"drafiee@destinycorp.com"
</PRE>
Using timeout: 60

rcv gethostname...ok
rcv gethostbyname...ok
rcv socket...ok
rcv bind...ok
rcv getsockname...ok (1041)
rcv listen...ok
Trying...drafiee:5001 (1 of 1)
gethost...ok
socket...ok (56)
bind...ok
connect...ok
write...ok
shutdown...ok
accept...ok
select...ok (1)
 recv...24
select...ok (1)
 recv...69
Content-type: text/html

<P>Ping! The Application Server
is functioning properly.</P>
select...ok (1)
 recv...0
accept...ok
select...ok (1)
 recv...129
select...ok (1)

 recv...0

Notice the valid URL value.

Testing the Browser
Load the browser. For this demonstration,
we will use Microsoft Internet Explorer
version 4.

Specify something similar to the following in
the web address line to PING the system
and the following should be returned.

To run a sample program supplied with
SAS Software, type:

Sample Programs
Several Sample programs come with
SAS/Intrnet Software. They are typically
located under the sas\intrnet subdirectory.

Server Auto File
This file is designed to reference locations
for SAS programs. It automatically loads
when the Application Dispatcher loads.

It can be tailored to fit your needs. See the
reference to sample. This is why the call for
the SAS program has a three level name.

sample.hello.sas

means

libref.programname.filetype

The following is a listing of the sample
programs that are shipped with SAS/Intrnet
software.

Let’s open each one and examine the
design. Features displayed here will be
discussed in upcoming modules.

Prepared by:

Destiny Corporation
100 Great Meadow Rd., Suite 601

Wethersfield, CT 06109-2355
Phone: (860) 721-1684 1-800-7TRAINING

Fax: (860) 721-9784
Web: WWW.DESTINYCORP.COM

Email: info@destinycorp.com

Creating Java Based Applications

Prepared by

International SAS® Training and Consulting
A SAS Institute Quality Partner�

100 Great Meadow Rd, Suite 601
Wethersfield, CT 06109-2379

Phone: (860) 721-1684 1-800-7TRAINING
Fax: (860) 721-9784

Web: www.destinycorp.com Email: info@destinycorp.com

Introduction

This presentation is designed to demonstrate the use of Multi
Dimensional Databases in SAS Software and their use in a
business environment. We will demonstrate their creation to
enablement in a webEIS application. This presentation is
designed for intermediate to advanced SAS users with some
background in web decision support.

First, we need to create a libref to access our data. We’ll issue
code similar to the following. A SAS data set called BP1 will be
located in this location.

Now, we’ll start EIS software.

Select Metabase.

This will prompt us for a location to store our metadata. This is
information about the actual data we will publish. The original
data can be in detail form.

The repository will be SASUSER for this demonstration. Select

We will add the libref SAVED that we just defined to this
metabase repository.

Select the to see the following.

Select the BP1 data set.

Click when finished.

Highlight the Table listed to see the potential attributes currently
assigned.

Click the button to assign various attributes to particular
columns in the data.

Once a column is highlighted, click to add the Analysis
attribute to this variable.

Click when finished.

Select the type of statistics desired.

Click when finished.

You can specify an attribute for several columns at a time by
highlighting them.

Click and the following screen will be displayed.

Select Analysis.

Click when finished.

Select the appropriate statistics and click

Click when you are done.

We will now add a Hierarchy to our data. This will allow some
drilldown selection when the data is presented. Click the right
hand button.

Select

and click

Now, we’ll go through a process to define several variables to a
hierarchy and then save the hierarchy with a name.

Type the name of the drilldown hierarchy and assign variables to
it in the desired order.

Click when you have completed your selection for this
hierarchy. You will see it appear at the top of the screen.

Click when finished and you’ll see a hierarchy defined in
the metadata.

Click to close the metabase window.

Now we must build an MDDB. We’ll do this through the prompting
capabilities offered with SAS/EIS software. Otherwise, PROC
MDDB could be used to perform similar tasks.

Select Build EIS.

We will use the default EIS Application location. Notice it is
currently empty.

Click to create an MDDB.

Select to take you to the following window.

Select the first button

Choose a location and name for the MDDB>

Select to choose

Select when finished.

Select the second button to see the following screen.

It is important to choose a predefined data set at this point.

Select when finished.

For the Dimension, select the button

Choose the appropriate dimensions desired.

Choose the appropriate analysis desired.

Select when finished.

Choose to select the order of column data. Here,
we will select everything in ascending order.

We will choose desired statistics.

Click when finished.

The prestored hierarchy of the MDDB can be selected with the
 button.

We will select to choose . This stores
all possible hierarchies available. This works well for the fastest
access speed during use. This also works well because the data
we are using is very small. Results of MDDB size will vary with
more hierarchies. It is a good idea to keep the MDDB structure to
a minimal number of hierarchies.

Click when finished.

Click to actually create the MDDB. The following
message will be displayed when processing is finished.

Click , and to end out of this.

Under the Appdev Studio menuing selection, load the Spawner.
This is used for development purposes.

Now load webEIS from the Appdev Studio menu to see the
following screen.

First, we need to check our connections to make sure we have
access to all of the data needed. Select Tools, Appdev Studio
Connections

Select to see your connections.

Modify it to add the appropriate libname statement in the Initial
Submit section and then click when done.

Now, create a new document and section. Select File, New

and click

Select your PC

All of the tables available will be listed.

Select the MDDB file created earlier.

Click and the following screen is displayed.

Place a title on the webEIS document by clicking on the abc
button. Draw out the area for the title.

Right click on the Text box and select

Change the title to what is appropriate and click

Select the MDDB button and draw out the location for the MDDB
to be displayed.

Drag and drop the desired statistics in the left hand display onto
the word Measures.

View it in Preview Mode.by Selecting the View pulldown and

A right click displays the following menu.

When you are ready to package it, select Tools

The following menu will appear. We strongly suggest you select
Complete to use SASNetCopy. This bundles everything needed
for long term use and speed of web based MDDB access. Click
Next and following the menus, making sure the items are
selected as we have them here.

When you click Finish, prompts similar to the following will
appear.

You will find all of the documents needed in the following location.

They must all be moved to the web server. Load the HTML file
and the MDDB will appear.

This paper consists of excerpts from Destiny Corporation’s
course materials. Copyright � 2001. This material may not be
duplicated in any way. Please contact Destiny Corporation for
more information.

Reading and Writing Data from Microsoft
Excel/Word Using DDE

Destiny Corporation

Prepared by Dana Rafiee
Destiny Corporation � 100 Great Meadow Rd Suite

601� Wethersfield, CT 06109-2355
Phone: (860) 721-1684 � 1-800-7TRAINING

� Fax: (860) 721-9784
Email: info@destinycorp.com Web Site:

www.destinycorp.com

Copyright � 1999 Destiny Corporation. All Rights
Reserved.

Dynamic Data Exchange to Excel

Dynamic Data Exchange is a means of transferring
data between different Windows applications such
as the SAS System and Microsoft Excel or Microsoft
Word. The technique uses what is known as a Client
/ Server type relationship, where the Client
application makes the requests and the Server
application responds accordingly. When using DDE
with the SAS System, SAS is always the Client.

The DDE technique may be used within a Data
Step, a Macro or from inside a SAS/AF application.

Using the DDE technique involves specifying the
following three components in what is called a DDE
Triplet:

1. The path and name of the executable file for the
server application. For example, with Microsoft
Excel the name of the executable is EXCEL.

2. The full path and file name of the document or

spreadsheet with which you wish to share data.
This is referred to in SAS documentation as the
Topic.

3. The location of data to be read or modified. With

a spreadsheet application, this is a range of cells.
In applications such as Microsoft Word, the
location of data is defined by what are known as
bookmarks.

An example of a DDE Triplet for an Excel
Spreadsheet is as follows:

EXCEL | C:\COURSES\DATA\CLIN.XLS !
R4C17:R17C8

The DDE Triplet is then incorporated into a
Filename statement of the following form:

FILENAME fileref DDE 'DDE-Triplet' |FILENAME fileref DDE 'DDE-Triplet' |FILENAME fileref DDE 'DDE-Triplet' |FILENAME fileref DDE 'DDE-Triplet' |
'CLIPBOARD' <DDE-Options>;'CLIPBOARD' <DDE-Options>;'CLIPBOARD' <DDE-Options>;'CLIPBOARD' <DDE-Options>;

where:

fileref is a valid fileref

DDE is the keyword that primes the SAS System for
Dynamic Data Exchange.

'DDE-Triplet' is the three part specification of the
DDE external file and takes the following form:
'Executable-file-name|Topic!Data-range'. Note that
the triplet is application dependent and may differ
between different releases of the same application.

CLIPBOARD’ is an alternative to directly specifying
the DDE triplet. To use this option, copy the required
data from the Server application to the Clipboard
and specify the ‘CLIPBOARD’ option in the Filename
statement. SAS will then determine the Triplet for
itself. You will be able to see the triplet definition by
looking at the Log.

DDE-Options are as follows:

HOTLINK invokes the DDE HOTLINK facility, which
causes the DDE link to be activated whenever data
in the spreadsheet range is updated.

NOTAB makes the SAS System ignore tab
characters between variables.

COMMAND allows remote commands to be sent to
DDE server applications.

Example of using DDE to read data from Excel

Consider the following Excel Spreadsheet:

With Excel running and the above spreadsheet
open, a simple Data Step can be written to read the
above data into a SAS Data Set.
The DDE Triplet components for the above example
are as follows:

Name of Executable File: EXCEL

Full Path and Name of spreadsheet file:
C:\COURSES\DATA\CLIN.XLS

Location of data (Row and Column coordinates):
R4C1:R17C8

Note how the two sets of coordinates that define the
range of data are separated by a colon.

The SAS statements required to read the data into a
SAS data set are as follows:

Running the above code generates the following
data set:

Example of using DDE to write data to Excel

To output data to an Excel spreadsheet, define a
DDE Triplet which contains the co-ordinates of the
cells to which data is to be written.

Then use a null data step containing ‘Put’
statements, to write out the values of required
variables to the spreadsheet.

For example, the following code uses a Proc
Summary to calculate simple statistics on the data

that was originally read in from Excel. The statistics
are output to a data set, which is used to update the
Excel spreadsheet:

Note that the only change to the Filename statement
compared with the previous example, is that the
DDE Triplet points at a different range of cells in the
spreadsheet.

A null data step is used to read the data set
containing the statistics and ‘Put’ statements write
out the values of selected variables to the Excel
spreadsheet. This is no different to writing out data
to a text file.

Note that a null data step is used when you wish to
avoid creating another data set.

Running the above code updates the Excel
spreadsheet accordingly:

The updated Excel spreadsheet complete with
summary statistics:

Invoking an application from SAS

In the previous examples, the invocation of Excel
and opening of a spreadsheet file has been done by
clicking on the required Icon and using the pull down
menus within Excel.

The application remains running in the background
until the user actively closes it down.
Ideally, you only want an application running for the
time that it takes to access the data. Otherwise, the
idle application ties up valuable memory that can be
better used. The solution to this problem is to open
and close applications from your SAS program.

An application may be called from SAS by using the
following statements:

OPTIONS NOXWAIT NOXSYNC;

X ‘C:\EXCEL\EXCEL’;

DATA _NULL_;
 T=SLEEP(5);
RUN;

NOXWAIT causes control to be returned to SAS as
soon as the specified ‘X’ command has been
executed. In the above example, as soon as Excel
has been loaded, control will return to SAS.

NOXSYNC causes the application called from SAS
to execute asynchronously so that it does not
interfere with the SAS session.

Remember to reset the above options to XWAIT and
XSYNC when the application is closed. The X
statement contains the path and name of the
executable file that calls the application. The Sleep
statement inside the null data step simply gives the
called application time to load. In the above
example, 5 seconds has been allowed.

Issuing Commands from SAS

Having invoked an application like Excel using the
above statements, you need to issue commands
that carry out tasks such as opening the required
spreadsheet file and selecting data. This is done
through what is called the SYSTEM Topic:

Assign a Fileref that includes the DDE topic
SYSTEM to enable Excel or Word commands to be
issued from SAS.

FILENAME CMDS DDE ‘Excel|SYSTEM’;

Commands may now be sent to Excel by using ‘Put’
statements inside a null data step. Note that the
syntax of the commands issued is application
dependent.

DATA _NULL_;

 FILE CMDS;
 PUT ‘[FILE-
OPEN(“C:\COURSES\DATA\CLIN.XLS”)]’;

RUN;

Example of invoking and issuing commands to
Excel

The example program does the following:

1. Invokes Excel.
2. Opens a Spreadsheet.
3. Reads spreadsheet data into a SAS data set.
4. Closes the Spreadsheet.
5. Closes Excel.

Dynamic Data Exchange to Word

Using DDE to access data stored in a Microsoft
Word document is the almost the same procedure
as used for Excel. The only difference is that the
location of data in Word is specified by referencing
Bookmarks rather than a cell range.

A bookmark is simply a named marker placed within
the Word document. The following Word Document
uses bookmarks to denote the position of Name and
Address fields:

To create a bookmark within a Word document,
highlight the text which you want to use as a
bookmark, then select Edit and Bookmark from the
pull down menu:

Enter a name for the bookmark and
click on Add

The components of the DDE Triplet for the above
example are as follows:

Name of Executable File: WINWORD

Full Path and Name of Word document:
C:\COURSES\DATA\ENQUIRY.DOC

Location of data (Name of Bookmark): Address1

Invoking Word from SAS

The procedure used to call Word from SAS is the
same procedure used to call Excel or any other
Windows application from SAS. Set the appropriate
options, use an ‘X’ statement to call Word, and allow
Word a few seconds to load.

OPTIONS NOXWAIT NOXSYNC;

X ‘C:\WINWORD\WINWORD’;
DATA _NULL_;
 T=SLEEP(5);
RUN;

Remember to reset the above Options to XWAIT
and XSYNC when the application is closed.

Issuing Commands to Word from SAS

As with Excel, this is done by assigning a Fileref to
the DDE topic SYSTEM:

FILENAME CMDS DDE ‘WINWORD|SYSTEM’;

Once the above Fileref is assigned, commands can
be sent to Word by using ‘Put’ statements inside a
null data step.

DATA _NULL_;

 FILE CMDS;
 PUT
‘[FILEOPEN(“C:\COURSES\DATA\ENQUIRY.DOC”)]’;

RUN;

Example of using DDE to access a Word
document

The following SAS/AF Application automatically
inserts the name and address of a customer into the
selected Word document and prints it:

The name and address information is stored in a
SAS data set that may be accessed and updated by
clicking on the ‘Edit Customer Names’ icon.

The name and address information of the selected
customer is inserted into the Word document as
follows:

Note how the name and address details have been
written to their respective bookmarks. The square
brackets, which denote the boundary of a bookmark,
do not appear in the printed document.

Note the following about the SCL Program that
controls the Frame:

1. The physical paths for the Word executable file
and Word documents, are assigned to Macro
variables in the Autoexec file which runs before
the application is called. Call Symget routines are
used in the INIT section to assign the values of
these Macro variables to SCL variables. This
approach avoids having to hard code path names
in the application.

2. The name of the Word document to open is

derived by concatenating the document path,
letter type, and the suffix ‘.DOC’.

3. The letter type is obtained by sending the

_GET_TEXT_ method to the Radio Box, which
returns the Character value assigned to the
selected item. Each Radio Box item has a
Character return value specified in the attributes
window:

Click
on

to access Return values for items

 Clicking on a Radio Box Item displays its Return
value.

4. A Submit Block contains all of the SAS code

used to load Word, access the selected

document and print it. Recall that an ampersand
within a Submit Block references an SCL
variable.

5. Five different Filrefs are assigned to point at the
various name and address bookmarks in the
Word document.

The SCL Program is as follows (see next column):

Workshop Session
Create an Excel Spreadsheet and enter the text
‘Demographic Data’ in cell A1. Save the
spreadsheet and make a note of the path and file
name used.

Write a SAS program to do the following:

1. Invoke Excel.
2. Open the spreadsheet file that you have created

for this exercise.
3. Write out values of Demographic Data Set

variables to the Excel spreadsheet.
4. Save the spreadsheet.
5. Close the spreadsheet file.
6. Close Excel.

The resulting spreadsheet should appear as follows:

Hints:

Use a separate Fileref to define the range of cells
into which people’s names are written and include
the NOTAB option i.e.:

FILENAME XLF1 DDE
‘EXCEL|C:\COURSES\DATA\DEMOG.XLS!r3c1:
r52c1’ NOTAB;

The NOTAB option makes SAS ignore Tab
Characters between variables. In this example, the
space between the first name and surname is taken
as a Tab Character, which results in the two parts of
the name being put into different columns in Excel
unless NOTAB is specified. Use a second Fileref to
define the range of cells for the remaining variables
but do not include the NOTAB option as non of the
variables include space characters:

FILENAME XLF2 DDE
‘EXCEL|C:\COURSES\DATA\DEMOG.XLS!r3c1:r52c1’;

Within a null Data Step, use separate File and Put
statements of the following form to output the data:

DATA _NULL_;
 FILE XLF1;
 PUT NAME;
 FILE XLF2;
 PUT AGE GENDER etc;
RUN;

Remember to reset options NOXWAIT and
NOXSYNC to XWAIT and XSYNC respectively.

Interactive Proc Report
Version 8

Prepared by

A part of

International SAS� Training and Consulting

Destiny Corporation ���� 100 Great Meadow Road, Suite 601 ���� Wethersfield, CT 06109-2379
Phone: (860) 721-1684 ���� 1-800-7TRAINING ���� Fax: (860) 721-9784
Web: WWW.DESTINYCORP.COM Email: info@destinycorp.com

2001-06-27

Interactive Report Generation

From the , click on the option. Select 'Design a
report...'

Select SAVED.DEMOGRAF AS THE 'Active data set:'

Run it and the prompter will appear. You can restrict the number of observations used
to interactively create the report.

Click since this is a small table.

The next screen prompts you for the columns to be displayed on the report from left to
right.

Select the order.

Click on the File pulldown and .

The following report is displayed.

and you are prompted to define each column.

Click on each of the prompt screens to accept the defaults. Notice character
columns are automatically set to DISPLAY while numeric columns are automatically set
to ANALYSIS.

For better display, change the default line size (width) to about 80 for this
demonstration.

Click on the Tools pulldown, Options and System.

Select SAS Log and Procedure Output.

Double click on Linesize and change it to 80.

Select when finished.

Refresh the report by selecting the View pull down and

Let’s enhance the report. Let’s order the data and add subtotals and grand totals.

Highlight the Gender column.

Click the Edit pull down and

The following screen appears, allowing you to define the highlighted column.

Change it to modify the Usage to be Order and change the Header label.

Click to see the results immediately and when done.

Notice how both GENDER and STATUS were both redefined as Order.

Change the Age column’s default statistic to Mean.

Type a ? in the statistic field to see the possible statistics.

Select Mean, the File pull down, and change the header label.

Click when finished.

Now, let’s add subtotals to the Gender Level. Highlight the Gender column.

Select the Edit pull down, Summarize information, After Item.

Change the following screen to specify how to break, which request summarization, an
overline and to skip a line after the subtotal.

Click when finished.

Let’s add a grand total.

Select the Edit pull down and Summarize information At The Top.

Modify the screen to look like the following.

Click when finished.

Let’s add some final touches, including titles and headers.

Select the Tools pull down, Options, Report.

Select Headline and Headskip.

Click when finished.

Let’s subset the report. Select the Subset pull down and

Click

Let’s add a computed column to the right (very important) of the existing data. We will
add a new column called RAISE. It will use SALARY, which will be printed to the left.
SALARY must be available so RAISE can use it in a calculation.

Highlight Salary, select the Edit pull down, Add Item, Computed, Right.

Type in the name of RAISE.

Click to see

Type in the calculation.

Remember, SALARY is really known as SALARY.SUM, because the statistic has been
applied to the column on the report.

Close the window and click .

Define the column as necessary.

Click and the following is displayed.

Add a title by opening up the title window.

Type in the command box.

Modify as necessary and close.

Click

Titles don’t appear until the display is refreshed. Select the View pull down and

Finally, let’s consider how grouping is used. First, we must restructure the report.
Remove subtotaling an change all Order definitions to Group.

Highlight GENDER.

Select the Edit pull down and Summarize Information,

Unselect summary information.

Click

While GENDER is still highlighted, select the Edit pull down and

Change the Definition to Group.

Click and see the result.

Notice how the report can also do the summarization for us.

Two utilities can be useful here. We can take this report structure and output it to a SAS
data set or we can simply save the code for future use.

To output the result to a data set, select the File pull down and select

To save the code created to a file, simple select on the Tools pull down and

Notice no Title statements are part of the code. Select the File pull down

and give it a name.

Graphing in SAS Software
Prepared by

International SAS® Training and Consulting

Destiny Corporation – 100 Great Meadow Rd Suite 601 -
Wethersfield, CT 06109-2379

Phone: (860) 721-1684 - 1-800-7TRAINING
Fax: (860) 721-9784

Email: info@destinycorp.com
Web: www.destinycorp.com

Copyright © 2001 Destiny Corporation

Proc Gplot

Proc GPLOT is the standard Sas procedure that allows us to create
graphs in plot form.

The GPLOT procedure allows you to plot one variable against another,
each pair derived from the same observation in the input data set.

We can produce relatively simple plots using a few statements and then
enhance the result.

With GPLOT we can do the following:

� Draw reference lines on the plot

� Overlay plots

� Use any symbol to represent the points

� Reverse the order on the vertical scale

� Plot character variables (<= length 16)

� Select colors, symbols, interpolation methods, line styles

� Produce 'bubble' charts

� Plot a second vertical axis

� Produce logarithmic plots

Simple Plots

Proc GPLOT uses the Share Price Data Set and produces a scatter plot
for two variables.

The Plot statement first specifies the Y-axis.

A Gplot step may contain any number of Plot statements.

A Quit statement is required at the end of the program code because the
procedure resides in memory.

Note: Confirm that the Create Listing option in the Results tab in the
Preferences window is checked. This is critical for SAS to be able to store
the output created (in list format) and create a graph from this output.

SAS creates the following list output and graph output:

Connecting the Dots

By default, the values on the graph are left unconnected. This is probably
the most accurate depiction of the data, because once lines are drawn
between data points, we begin making assumptions about the data.

The Symbol statement is used to specify the line drawn between the data
points. Join and Spline are two methods used by the symbol statement to
connect the dots.

An example of the Symbol statement with the Join option is displayed
below:

Once specified, the symbol statement remains in effect until it is canceled
by another specification or by specifying the following:

Goptions Reset=Global;

This is only one way of joining the points on a graph.

The symbol statement controls the type of line drawn, its color, width, line
style and the symbol used to mark the data points. Now let’s resubmit the
code using the Spline option, which applies a smoothing effect to the
points being connected.

Incorporating the rcli95 option in the Symbol Statement:

Labeling the Axes

In the previous example, the range of vertical axis of the graph
(representing bp) is mapped by default. It ranges from 310 to 380 in
scale.

We can change the default settings for both axes by specifying the
ranges for the axes, as displayed in the code below:

We can change the presentation of the graph, in this manner.

The symbol statement has been repeated here for clarity. It is not
necessary, since it was submitted previously.

Adding Titles, Footnotes and Legends

There is no legend on the graph even though the legend was requested.

We will see how to display legends using a different form of the plot
statement, in a subsequent section.

Legends can be constructed with footnote statements on simple plots.

Once specified, the Title, Footnote and Symbol statements remain in
effect until canceled.

Overlaying

The overlay option is used to place multiple graphs on a page.

This is illustrated in the code below:

Notice the colors of the plot lines.

One symbol statement has been used in this graph, all with the option
i=join.

The second plot requested was not produced. The SAS log informs us
that the values to be plotted lie outside the axis range specified: either the
vaxis or the haxis specification is not sufficient to cover all the data.

Since the values of date are the same for all share prices, we can
assume that the vaxis needs to be extended.

Let’s re-submit the code after making modifications to the vaxis, as
displayed:

The graph now displays all the plots as requested in the code.

Global Statements

Symbol statements cycle round the list of colors if not color is specified

Symbol statements are Global.

The program below first resets the global statements to the default and
then sets the Symbol, Title and Footnotes again.

This is clearly inefficient, and has been shown solely for illustration
purposes.

Symbol statements are additive, in addition to being global in nature.

The result of Symbol1 displayed in the previous code is:

Symbol1 i=join;
+ Symbol1 c=red;

= Symbol1 i=join c=red;

The graph shows one symbol statement being used, a joined red line.

The other plots do not have symbol statements and a join is not
displayed. They have begun to cycle round the list of colors for the
device.

Cycling Colors

If the Symbol statement is not given a color, then it cycles round the list
of colors for the device, generating a symbol statement each time.

Given a device with the following colors:

goptions colors=(black,red,green,blue,orange,brown);

Consider the effect of the following Symbol statements:

Symbol1 c=green i=join;

Symbol2 i=join;
Symbol3 c=blue i=join;

Results in the following symbol statements generated:

symbol c=green i=join;* 1st statement generated;
symbol c=black i=join;* 2nd generated;
symbol c=red i=join;* 3rd generated, etc...;
symbol c=green i=join;
symbol c=blue i=join;
symbol c=orange i=join;
symbol c=brown i=join;
symbol c=blue i=join;

Pointing to a Symbol Statement

The Plot statement can point to a Symbol Statement. It points to the nth
generated symbol statement, as displayed below:

The values inform SAS how to assign the Symbol Statements.

Line Control

Proc Gplot controls lines using the Symbol Statement. The symbol
statement can accept many options Symbols.

SYMBOL STATEMENT LINE = OPTIONS

SYMBOL STATEMENT VALUE= OPTIONS

SYMBOLS CODE(SYMBOLS)

Variations

Examples of Symbol Statements:

Now let’s modify the code by changing the interpolation method for
symbol1 to needle.

Resubmit the code:

The output is displayed below.

Symbol Statement Examples

Next, we use the option designed to present information graphing
confidence limits.

X*Y=Z and Axis Control

A normal plot statement of the form:

Plot A*C B*C / Overlay;

The above code displays two plots on one graph, but no legend showing
which line corresponded to A, and which to B.

X*Y=Z

Using the X*Y=Z form of the Plot statement generates automatic Legends
which display what each line represents.

Plot X*Y=Z;

To do this, the data must be in a certain structure.

Review the Flu data set:

Output in list form:

Output in HTML form:

We could Plot A*Date B*Date C*Date D*Date E*Date /Overlay; but this
would not generate a legend.

We need to rearrange the data for the Y*X=Z form.

Rearranging Data

We can now Plot Cases*Date=Category;

For each Category, A, B, C, D, E a separate line will be drawn on the
graph.

 The output is displayed below.

The five Symbols statements generated will match with the five lines
drawn, one for each value of category.

Always review the SAS log for notes and messages. They inform you
about plots that lie outside the available range.

Introduction to Charts

SAS/GRAPH can create different chart styles.

Let’s illustrate with a few examples.

Vertical Bar Chart Example

Submit the following code:

Horizontal Bar Chart Example

Notes:

Unless otherwise specified, SAS displays the frequency of the selected
variable for display, by default.

Each bar or block represents a value of a variable, either character or
numeric.

Bars can be grouped, sub-grouped and various patterns and colors can
be used to enhance the presentation.

By default, Horizontal Bar Charts display graph statistics on the graph
area next to the graph.

Pie charts can be of two types, Pie Charts and Star Charts.

Terminology

Physical Forms

The physical form of a chart is determined by the type specified in SAS
code:

Proc Gchart Data=SAS_data_set;
 Vbar Variable / Options ;

The Vbar statement requests a vertical bar chart.

The variable after Vbar determines the number of bars the graph will
contain.

Options on the statement control other aspects of the graph.

For example, the Demograf data set has a variable named gender, which
has two values: F and M.

If we specify the following:

The following chart is displayed.

By default, the vertical axis displays the frequency or the number of
observations in the data set.

In this case, there are 21 females and 14 males.

Midpoints

For numeric variables, SAS/GRAPH will chart the midpoints of a data
range.

Sometimes this produces unexpected results.

Let's consider the same vertical bar chart as before, but use a numeric
variable such as Age that takes on values from 15 to 65.

As seen from the graph, it does not produce one bar for each value in the
data.

The data range (2 to 65) is divided into ranges, and the midpoint of each
range is charted:

DISCRETE

The discrete option suppresses the calculation of these ranges and
forces the procedure to produce one bar for each value in the data.

Submit the code below for illustration purposes.

The graph will be displayed, as follows:

The Discrete option is valid for all types of charts.

Valid Options for GCHART

Some options are common to the Vbar, Hbar, Block, Pie and Star
Statements, while others are specific to the type of chart being drawn.

The table below lists options the types of chart(s) to which they can be
applied.

Bar Charts

Vertical Bar Charts

The Vbar Statement produces Vertical Bar Charts, also known as
Histograms.

Character Variables

The discrete option does not add value when used with a character
variable since each value in the data is given a bar.

The Response Axis

The response axis is controlled with the SUMVAR (summing variable)
option.

By default, the sumvar option displays the sum for the specified variable.

Statistics for SUMVAR

By default, the statistic displayed for Salary is SUM.

The response axis can display several different statistics, such as Mean,
Sum (total), Freq, Cumulative Percent, Cumulative Frequency.

The option controlling statistics is TYPE.

Type and Sumvar work together to control which variable and statistic is
displayed on the response axis.

Controlling the Bars

The Midpoints option allows specification of which bars to chart. Use
quotation marks around character values.

The usual SAS shortcuts can be coded when using Midpoints, e.g. 10 to
100 by 10.

Selecting Observations

The Where clause can be used to subset certain observations you wish
to chart.

Sub-Dividing the Bars

The SUBGROUP option allows us to use another variable to divide the
bars:

Note that an automatic legend is produced when subgroup is specified.

Grouping Bars

In addition to sub-dividing bars, they can also be grouped together using
the GROUP option. This is displayed below.

Additional Options

Additional options are available that can control the appearance of the
report.

The following example illustrates Frame, Gspace, Space, Ref, Patternid,
Nozeros, Ascending, Sum and Raxis.

The above code has four pattern statements (lines 5-8) and the pattern id
(line 13) changes patterns by sub-group.

The graph used four different patterns.

The space between the bars and the space occupied by the bars is set to
two.

A reference line is drawn at 10,000, and the bars are drawn in ascending
order.

No space is left for non-existent bars, and patterns change across the
sub-groups.

The response axis is ordered with the Raxis option.

Block Charts

Block Charts are specified with the Block statement.

They use more space on the graphics area than a Vbar or Hbar and you
may need to increase Hpos and Vpos. This is displayed on the next page.

Manhattan Charts

The GROUP option produces Manhattan Charts.

Note how the use of the discrete option changes the graph.

Also called Manhattan Charts, this Grouped Block Chart displays the data
across the two axes.

Note the values of Hpos and Vpos.

The original values of Hpos=80, Vpos=62 have been increased by 50%
each.

The aspect ratio then remains the same.

Calculations: 80+40 = 120 62+31=93

Pie Charts

Pie Charts can be displayed using pies and stars.

Both types are capable of displaying data in a circular pie form.

Pie and Star charts are specified in a fashion similar to Vbar, Hbar and
Block Charts:

Star Variable
Pie Variable

Default Option: OTHER

The option OTHER specifies a value of 4%, by default.

If you do not change this value, then any slice of the pie, which
contributes less than 4%, is grouped together with all the OTHER small
values.

This will be illustrated in the following examples.

Pie Chart of County

Let’s create a Pie Chart displaying the counties of the UK.

When Pie charts are drawn for numeric variables, the Discrete option
needs to be applied.

Since all the values in the data were under 4% of the total, they have
been grouped together into the OTHER category.
Review the log.

The notes state that all the counties were included in the OTHER slice
because none of them represented more than 2.6% of the total pie.

In such a situation, we incorporate the other option where we specify the
value of the other slice.

We need to adjust the other slice in relation to the values that we would
like to display as slices of the pie.

Let’s set the value for Other at 0.1. This is demonstrated below.

The output is displayed below:

All the slices of the pie are displayed. The display is not clearly legible.

Let’s increase the hpos to 150 and vpos to 120 and re-submit the code.

This addresses the spacing issue and makes the graph legible.

Now let’s fill all the slices in the pie with solid colors.

Let’s add a pattern option, as follows:

We see that about half the total number of slices in the pie are solid. This
is because the large number of slices requires more than one pattern
specification.

We need to keep adding pattern statements (pattern1, pattern2, pattern3)
until all the slices are solid.
In this example, we need to add three pattern statements to make all the
slices in the pie solid colors.

There are so many slices in this pie that they have exhausted three
patterns.

Finally, we see that all the slices have been assigned solid colors.

Review the log and you will see messages stating that not all the slices in
the pie were labeled.

This is addressed in the following section.

Labeling just the Midpoint

Let’s take the previously submitted code and add the slice, value and
percent options.

Submit the code.

We see that the output is displayed as follows.

Regional Percentages

In the previous examples, by default the frequency was displayed on the
charts.

When the SUMVAR option is absent, the frequency, or the number of
observations in the data set, is charted.

Let’s label each slice of the pie, as displayed in the following code.

We see that there are no warning messages in the Log.

Contour Plots

Contour plots present output in three-dimensional forms.

There are two procedures used for plotting in three dimensions:

1. GCONTOUR

2. G3D

In GCONTOUR the response to two independent variables is displayed
as different contour lines

G3D is a 3-dimensional perspective representation, either as a 'sheet' of
joined points or a scatter plot.

In this section, we will demonstrate how to produce the various shapes of
a plot.

It is beyond the scope of this course to explain all the options and
features available.

The next sections explain how to create basic shapes and enhance plots
using features like patterns, axis and legend specifications and definitions
of different plotting symbols.

The data set used for our examples is typical of monitoring drug dosages.

The two independent variables used are the dosage, which is recorded in
milligrams and the frequency of dosage, which is shown in hours.

The response to the dosage and frequency is measured in terms of the
patients' pulse rate.

Here is a sample of the data:

Dose is measured in milligrams and regulary is measured in number of
hours.

The goal here is to lower the patients’ pulse rate as much as possible
based on the combination of dosage and regulary.

The first example shows the default contour plot produced with the Y*X=N
form of plot statement.

The vertical axis is the Y, the horizontal is the X and the contour, or the
response axis, is represented by values of the N.

The SAS System has chosen the line types, axis gradations and contour
steps.

We can infer a pattern from the data that the patient response is getting
better with increased dose and regularity.

We can also see that dosages greater than around 75 milligrams at 4-
hour intervals (regulary) do not decrease the pulse rate - in fact, it
increases again.

The goal is to find the point at which the pulse rate is minimized. This
trend will be shown in many ways in the following graphs.

This example shows that for a given regularity of dosage, increasing
dosage results in a decrease in pulse rate. After reaching a certain
dosage level pulse rates start to rise again.

The most effective dosage seems to be 75 mg at four-hour intervals.

Increasing the dosage to 110 mg has a less positive response.

LEVELS= Option

The first way we can enhance the plot is to specify the contour levels.

This is done by the LEVELS= option on the plot statement.

As usual, options on a plot statement follow a /.

The levels are going to start at 80 and increase in increments of 15 up to
140. The legend reflects this information.

Note that the start value (80) is below any value in the data, and a note in
the LOG states the same.

Pattern Option

The pattern option displays the graph as 'bricks' of X and Y combinations.
The contour passes through it to be patterned according to value.

The join option joins together areas of equal response.

3-D Plots

PROC G3D can depict three-dimensional graphs.

PROC G3D generates two types of plots - 'sheets' of joined points across
a surface and scatter plots.

Note that if any interpolation is required between the joined points of the
sheet, the data must first be processed using PROC G3GRID.

Using the same drug dosage data, we can display the relationship
between the two independent variables (DOSE and REGULARY) and the
dependent response variable (PULSE).

Using the code below, we get a three-dimensional presentation of the
information where the exact points are joined together and graphed.

The example shows the very simple plot statement, again in the form
Y*X=N.

Our first enhancement is to rotate the plot around the Z-axis using the
rotate option and tilt it towards the observer by tilting around the Y-axis.

Side 'walls' will also be displayed for the sides of the plot.

The next example shows a very simple example of the scatter plot.

To produce this form simply substitute SCATTER for plot and specify the
graph in the Y*X=N form.
\

The pyramid shapes are produced by default.

We can change the pyramid shape by using the shape option and
specifying a variable in the input data set.

In the next example, we have specified a prism for values of PULSE of
100 and below.

Values above these values are assigned the balloon shape.

G3GRID Procedure

We can use the G3GRID to smooth the values in our input data set and
produce an improved G3D.

See the user guide for the amazing algorithm!

SECTION CHAIRS

Caroline Bahler
 Meridian Software, Inc.

Jimmy DeFoor
Brierly and Partners

IN
T

E
R

N
E

T
, I

N
T

R
A

N
E

T
 &

 T
H

E
 W

E
B

INTERNET, INTRANET &
THE WEB

HTML for the SAS���� Programmer

Lauren Haworth, Genentech, Inc., San Francisco

� ABSTRACT

With more and more output being delivered via
the Internet, a little knowledge of HTML can go
a long way toward improving the appearance of
your output. This paper introduces some simple
HTML coding techniques that are useful for SAS
programmers. The paper will show how your
SAS output is converted into HTML, and dem-
onstrate HTML tricks that you can use in your
SAS code to dress up your SAS HTML output.

The examples in this paper are based on SAS
version 8.

� INTRODUCTION: HOW TO CREATE HTML
OUTPUT FROM SAS

There are several ways you can move your SAS
output to the web. If you are going to be doing a
lot of web publishing, you may want to investi-
gate the SAS/InterNet� product. However, if you
just want to publish the occasional table, report,
or printout on the web, you can do this with
SAS/BASE�.

To put your output on the web, you need to con-
vert standard SAS output into HTML files.
HTML stands for HyperText Markup Language,
and it is the common language understood by
web browsers like Netscape and Internet Ex-
plorer.

To create HTML-formatted results, all you have
to do is use the Output Delivery System and
specify HTML as the output format. A simple
example is shown below:

ODS HTML BODY='myfile.htm';
 PROC PRINT DATA=TEMP NOOBS LABEL;
 VAR JobType Salary;
 RUN;
ODS HTML CLOSE;

� WHAT YOUR OUTPUT LOOKS LIKE ON THE
WEB

When you create an HTML file from your SAS
output, the usual SAS output format of text and
numbers separated by spaces is “marked up”
with HTML “tags.” These tags tell Internet
browsers how to display your output. They iden-
tify headers and footers, specify fonts and type

sizes, reference images, and point to other loca-
tions on the web (hyperlinks).

For example, the following PROC PRINT
output …

XYZ Co.
Market Salary Survey

Average
Skill Salary

SAS Programmer $55,444
SAS Programmer + HTML $64,369

Based on a completely unscientific
survey of job postings on
headhunter.net and dice.com

… would look like this on the web …

… and would contain the HTML code shown in
Figure 1. The figure is considerably simplified,
with a number of formatting tags removed for
the sake of clarity.

FIGURE 1: HTML CODE

<HTML>

<HEAD>
<TITLE>SAS Output</TITLE>
</HEAD>

<BODY>

<TABLE><TR><TD>XYZ Co. </TD></TR>
<TR><TD>Market Salary Survey</TD></TR></TABLE>

<P>

<TABLE>

<TABLE><THEAD><TR><TD>Skill</TD><TD>Average Salary</TD></TR></ THEAD >

<TBODY><TR><TD>SAS Programmer</TD><TD> $55,444</TD></TR>
<TR><TD>SAS Programmer + HTML</TD><TD> $64,389</TD></TR>
</TBODY></TABLE>
<P>
<TABLE><TR> <TD>Based on a completely unscientific survey of</TD></TR>
<TR><TD>job postings on headhunter.net and dice.com</TD></TR></TABLE>
</BODY>
</HTML>

<HTML> </HTML> surrounds all code, and identifies it to the
browser as HTML code.

<HEAD> </HEAD> surrounds your header. In this
section, you will find general information that applies
to the entire file. The <TITLE> </TITLE> tags identify
the text to display in the browser’s title bar when the
page is viewed.

<BODY> </BODY> tags enclose the “guts” of your HTML output.
All of the content that will be displayed on the page is contained
between these two tags.

<P> </P> marks a break between para-
graphs. It puts a large break between the
lines above and below. If you don’t want
such a large break, use the
 tag

The <THEAD> </THEAD> tags mark the beginning and end of the heading row
of the table. Text in these cells is displayed in bold in the browser.

<TABLE> </TABLE> tags en-
close a table that is used to align
the two titles for this output. The
<TR> </TR> tags mark the be-
ginning and end of each table
row. The <TD> </TD> tags
mark the beginning and end of
each table cell in the row. Table
tags are also used to align the
results and the footnotes.

The <TBODY> </ TBODY > tags mark the beginning and end of the body
rows of the table. Text in these cells is not displayed in regular weight (not
bold) in the browser.

As you review the information in Figure 1, you will
see that the HTML file is composed of the basic text
of the SAS output (shown in italics), surrounded by
numerous HTML tags enclosed in angle brackets
(shown in bold face).

If you look closer, you will also see that HTML tags
come in pairs. If you look at the very first tag on the
page: <HTML>, you will see that there is a match-
ing </HTML> tag at the very bottom of the file.

Figure 1 explains the meaning of each of the tags in
the file. This is just a small sampling of HTML tags;
there are dozens more. However, if you can under-
stand the tags used here, you will understand 80-
90% of the tags you will find in more complicated
web pages.

� TRICK #1: ADDING A HYPERLINK TO YOUR
FOOTNOTE.

Now that you know a little about HTML tags, it’s
time to turn this knowledge to our advantage. We
can use a couple of HTML tags in our FOOTNOTE
statement to add a hyperlink to our output. This is a
useful trick because it allows you to annotate your
output. You can use the footnote to list the source of
your data, and then attach a hyperlink so when the
viewer clicks on the footnote, it automatically links
them to the web site for that source.

To do this, you need to learn a new HTML tag. The
tag for a hyperlink is:

text

The “xxx” is where you put the information on
where you want the hyperlink to go. This needs to
be a valid URL (Universal Resource Locator) like
“http://www.sas.com” or
“http://www.mycompany.org/sales.htm”.

The “text” is where you put the text for the hyper-
link. This is the text that will be displayed on the
page (with an underline to indicate that this is a hy-
perlink). For example, you could use “SAS Insti-
tute” or “January 2001 Sales Figures.”

To see this code in action, we can add the following
hyperlinks to the footnote statement from our previ-
ous examples. The original FOOTNOTE statement
for the second line of the footnote was:

FOOTNOTE2 'job postings on
 headhunter.net and dice.com';

The revised FOOTNOTE statement with hyperlinks
added is:

FOOTNOTE2 'Job postings on

 headhunter.net and

 dice.com';

When you run this code, SAS passes the HTML tags
along with the rest of the text for the footnote. When
the file is viewed with a browser, these tags are in-
terpreted, and the footnote is displayed with a hy-
perlink. This is how the file looks when viewed with
a browser:

One warning: version 8.1 will sometimes fail to
correctly convert the HTML tags in your footnotes.
Any tags you put in titles work fine. The problem
has been corrected in the 8.2 release.

� TRICK #2: CHANGING THE TITLES

Another HTML tag that we can use to our advantage
is the header tag. This tag identifies the level of the
header. Lower levels (<H1> or <H2>) create big,
bold titles. Higher levels create smaller titles. SAS
picks a size for your titles based on the ODS style
you are using.

However, if we want a bigger title, all we have to do
is add header tags to the text in our titles. The fol-
lowing code shows how this is done:

TITLE "<H1>XYZ Co.</H1>";
TITLE "<H2>Market Salary Survey</H2>";

This code uses the <H1> </H1> tags on the first
title for a really big title, and the <H2> </H2> tags
for the second title for a slightly smaller title. The
results are shown below:

� TRICK #3: CHANGING THE FONTS

The titles in the previous example are certainly big-
ger, but they’re not very attractive. This is because
each web browser has a default font and point size
for each heading level. Unfortunately, the fonts are
pretty basic.

This example will show how to specify the font and
point size for each title, instead of just using the
standard heading definitions.

To do this, you need to learn a new pair of HTML
tags: . What these tags do is
control the appearance of the text between the two
tags. You can specify the typeface, color, and size,
among other attributes.

For this example, we’re going to put some tags into
our titles to select two new typefaces and point size
settings. The syntax is:

TITLE "<FONT FACE='Comic Sans MS'
 SIZE=5>XYZ Co.";
TITLE2 "<FONT FACE='Arial'
 SIZE=3>Market Salary Survey";

Notice how the two parameters for the FONT tag
are used. The FACE= tag is used to specify the type-
face. The SIZE= tag is used to specify the font size.
A SIZE setting of 3 is the standard font size used for
the rest of the text on the screen. By using a larger
setting for the first title, it stands out from the rest of
the text.

The technique can also be used on footnotes. In this
case, it would be nice if the footnote were smaller,
so it wouldn't draw so much attention. The follow-
ing code changes the footnote to the typeface Arial
and the size to 1, which is much smaller.

FOOTNOTE "
 the text goes here ";

The results are shown below:

� TRICK #4: CHANGING THE FONT COLOR

In addition to controlling font size and typeface, the
FONT tag can also be used to change the color of
your fonts. If you don't like these bright blue titles,
you can change them to a more aesthetically pleas-
ing color.

The syntax for assigning a font color is:

There are several ways you can define the color.
First, you can use a color name. For example, to get
a red title, you could assign the font to
COLOR="red". However, there is a limitation here.
Browsers vary in terms of which color names they
understand, and also in how those colors are ren-
dered. "Red" may be bright and orangish in one
browser and dull and bricklike in another browser.

To get exactly the color you want, the best way is to
specify the color using RGB codes. These are hexa-
decimal values that indicate the amount of red,
green, and blue to use to create your color. You can
look up these codes in the SAS/GRAPH manual, or
use a "Color Picker" on the internet (just use your
favorite search engine to find one, there are dozens
of free color pickers out there).

For this example, we'll use the RGB code for a
lighter blue that matches the table heading to create
a new color for our titles. The code for the title
statement is:

TITLE "<FONT COLOR='#639ACE'
 FACE='Comic Sans MS' SIZE=5>
 XYZ Co.";
TITLE2 "<FONT COLOR='#639ACE’
 FACE='Arial' SIZE=3>
 Market Salary Survey";

The new output is shown below. The titles are now
the same color as the table heading. (You'll have to
take the author's word on this, as it's hard to see the
difference in this black and white output).

� TRICK #5: ADDING A LOGO TO THE PAGE

One of the most powerful aspects of the HTML is
its ability to display images along with the text on a
page. Images are added to the page using the
 tag.

This is a very simple tag to use. All you have to do
is specify the image source by listing the file name
for the image. Ideally, you should use a web-
friendly image format like GIF or JPG for your im-
ages.

There are two ways you can add this logo to your
output. The first is to add an tag to your
TITLE statement. The following code shows how
to display an image in the top left corner of the page
by adding an tag to the first TITLE state-
ment.

TITLE "<IMG SRC='xyzlogo.gif'
 HEIGHT=40>";

This IMG tag uses parameters to specify the file
name to be used and the size to which the image will
be expanded or compressed. It is important to spec-
ify a size, or you may end up with an image being
displayed either too small to see or too large to fit on
the screen. Picking the right size usually involves
some trial and error.

The other way to add a logo is to create a new style
definition. This approach allows you to add a logo at
the top of every page of output, without having to
edit all of the TITLE statements.

The code to create the new style definition is shown
below:

proc template;
 define style MyHTMLStyle;
 parent=Styles.BarrettsBlue;
 replace Body from Document /
 prehtml="
";
 end;
run;

The PREHTML attribute is used to add the same
 tag we used in the TITLE statement. The
only difference is that putting it in the style means
that it will be used at the top of every HTML page.

Now you can use this new style by adding
STYLE=MyHTMLStyle to your ODS HTML
statement.

Whether you use the TITLE approach or create a
new style, your results will look like the output
shown below.

� TRICK #6: ADDING AN IMAGE TO THE
BACKGROUND

Each of the previous examples has shown some ba-
sic black text on a white background. However, if
you’ve spent much time surfing the Web, you
probably know that it’s possible to use all sorts of
colors and images for the page background.

This next example will show how you can add a
background image to your output.

To add a background image, we need to modify the
<BODY> tag. We are going to add two new attrib-
utes to that tag.

First, we need to tell the browser what image to use.
This is done using the following tag:

<BODY BACKGROUNDIMAGE=image>

The image is identified by file name, just as we did
with the logo in the previous example. Again, web-
friendly formats like GIF or JPG are best. The im-
age we will use is shown below.

The other change we are going to make is to widen
the left margin. The reason for this is that this image
has a dark pattern on the left side, and we don't want
our results to be hidden in the page background. If
your background image does not detract from your
results, you can skip this step.

The syntax for a margin change is:

<BODY LEFTMARGIN=number>

To apply these two new settings, we are going to
create a new style. Just as in the previous example,
we'll use PROC TEMPLATE.

proc template;
 define style MyHTMLStyle;
 parent=Styles.BarrettsBlue;
 replace Body from Document /
 prehtml="
"
 backgroundimage='xyzback.jpg'
 leftmargin=125;
 end;
run;

We're adding attributes to the <BODY> tag by
adding attributes to the Body style element. Notice
how the style attributes are named to match the
<BODY> tag attributes. This is true of a number of
the SAS style element attributes. The new results
follow. If you look back to the original version of
this table on the first page of this paper, you will see
that this is quite an improvement.

If you looked at the HTML code that was generated
for this output, you would see that ODS has added
two new parameters to the <BODY> tag in the file.
The new body tag that controls the background is as
follows.

<BODY BACKGROUND='xyzback.jpg'
 LEFTMARGIN=125>

Although you didn’t have to specify this tag in order
to use it, it’s still helpful to review the code to see
what tags ODS has used to build your output.

� TRICK #7: ADDING A NAVIGATION BAR

The previous examples have shown how to add
some fairly simple HTML code to your results. This
next example will show how you can add some
fairly elaborate features using the tags we have al-
ready learned.

This example will add a navigation bar at the bottom
of the page. This is a series of links back to other
parts of your web site. It's a useful tool to help users
move around your site without getting lost.

To add the navigation bar at the bottom of the page,
we will use the POSTHTML attribute of the Body
style element. This works just like the PREHTML
attribute we used earlier.

The hyperlinks that make up the navigation bar will
be organized into a single-row table. The HTML
code we will use is:

<TABLE CELLPADDING=8><TR>
<TD>Home Page
</TD>
<TD>About XYZ
</TD>
<TD>Contact Us
</TD>
<TD>Copyright
Information
</TD>
</TR></TABLE>

These tags create a table with one row and four col-
umns. Each column contains a hyperlink to a differ-
ent part of the web site. The CELLPADDING is set
to 8 pixels to put some space between the links.

This code is added to our style as follows:

proc template;
 define style MyHTMLStyle;
 parent=Styles.BarrettsBlue;
 replace Body from Document /
 prehtml="
";
 backgroundimage='xyzback.jpg’
 leftmargin=125
 posthtml="
<TABLE CELLPADDING=8><TR>
 <TD>Home Page
 </TD>
 <TD>About XYZ
 </TD>
 <TD>Contact Us
 </TD>
 <TD>
 Copyright Information
 </TD>
 </TR></TABLE>";
 end;
run;

The new results are shown below:

� CONCLUSIONS

These examples are just a brief introduction to the
world of HTML. You can use these tricks to spice
up your HTML output.

However, if you’re going to be creating a lot of
HTML output from SAS, I strongly recommend that
you take the time to learn more about HTML. Al-
though SAS gives you great tools to create HTML
output, you will find it a lot easier to use these tools
if you can understand the resulting output.

Start with reading up on ODS styles and templates.
These tools will give you a lot of control over your
output. You'll want to pay special attention to the
documentation on the PREHTML and POSTHTML
attributes.

The references section lists several good tutorials
and books to help you learn more about HTML.
Also, see the Appendix for a listing of common
HTML tags.

Finally, the next time you’re out surfing the web,
take a look at the HTML code behind the pages
you’re viewing. You can learn a lot by viewing
other people’s web sites.

Netscape and Internet Explorer both have menu
options to view the source code for the page on the
screen. You won’t recognize all of the tags you see,
but the basic tags presented here will show up again
and again.

� REFERENCES

Free downloadable HTML tutorial:

http://www.pagetutor.com/pagetutor/index.html

Another tutorial (aimed at kids, but it’s a lot of fun)

hotwired.lycos.com/webmonkey/kids/

Good books for HTML beginners:

Castro, Elizabeth, HTML 4 For The World
Wide Web Visual Quickstart Guide, Peachpit
Press

Powell, Thomas, HTML: the Complete Refer-
ence, McGraw Hill

Lemay, Laura, and Denise Tyler, Teach Your-
self HTML 4 in 24 Hours, SAMS

� ACKNOWLEDGEMENTS

SAS is a registered trademark of SAS Institute Inc.
in the USA and other countries. � indicates USA
registration.

Other brand and product names are registered
trademarks or trademarks of their respective compa-
nies.

� CONTACTING THE AUTHOR

Please direct any questions or feedback to the author
at: info@laurenhaworth.com

APPENDIX: SELECTED HTML TAGS

� BASIC TAGS

<html></html> Creates an HTML document
<head></head> Sets off the title and other information that isn't displayed on the Web page itself

<title></title> Puts the name of the document in the title bar
<body></body> Sets off the visible portion of the document

<body bgcolor=?> Sets the background color, using name or hex value
<body text=?> Sets the text color, using name or hex value

� TEXT TAGS

<pre></pre> Creates preformatted text
<h1></h1> Creates the largest headline
<h6></h6> Creates the smallest headline
 Creates bold text
<i></i> Creates italic text
 Emphasizes a word (with italic or bold)
 Sets size of font, from 1 to 7
 Sets font color, using name or hex value
 Sets font typeface, using name (in quotes)

� LINKS

 Creates a hyperlink

� FORMATTING

<p> Creates a new paragraph
<p align=?> Aligns a paragraph to the left, right, or center

 Inserts a line break
<blockquote></blockquote> Indents text from both sides
 Creates a numbered list

 Precedes each list item, and adds a number
 Creates a bulleted list

 Precedes each list item, and adds the bullet

� GRAPHICAL ELEMENTS

 Adds an image
 Sets display size of an image
<hr> Inserts a horizontal rule

� TABLES

<table></table> Creates a table
<tr></tr> Sets off each row in a table
<td></td> Sets off each cell in a row
<th></th> Sets off the table header (a normal cell with bold, centered text)

� TABLE ATTRIBUTES

<table border=#> Sets width of border around table cells
<table cellpadding=#> Sets amount of space between a cell's border and its contents
<tr align=?> or <td align=?> Sets alignment for cell(s) (left, center, or right)
<tr valign=?> or <td valign=?> Sets vertical alignment for cell(s) (top, middle, or bottom)

Delivering Information Everywhere using JSP and SAS®

Bryan Boone, SAS® Institute Inc., Cary, NC
Pat Herbert, SAS® Institute Inc., Cary, NC

ABSTRACT
With the advent of the Internet and the increasing mobility of its
users, it has become necessary to allow immediate access to
data and reports from non-desktop (wireless) devices such as
palm pilots and phones. In this paper we will show how SAS
technology in conjunction with JSP and Servlets will keep your
users connected to their business information on demand.

INTRODUCTION
The face of business is changing and corporate executives and
managers must be mobile in order to meet the fast-paced
changes in customer and market demands. To meet these
requirements, executives are turning to wireless devices, such as
the cell phone and Personal Digital Assistant (PDA), to remain in
touch with the office while attending to customer needs.

The Cahners In-Stat Group forecasts that the number of non-
desktop (wireless) users will surpass 1.3 billion by 2004.
Additionally, it is projected that more than 1.5 billion handsets,
PDAs, and Internet appliances will have wireless capability by the
end of 2004.

Wireless communications and the Internet are becoming
increasingly intertwined. Using the combination of SAS and Java
technology, the mobile executive can have important sales and
customer data delivered wirelessly to his or her cell phone, PDA
or other non-desktop device.

WIRELESS TECHNOLOGY
Wireless Application Protocol (WAP) is a global standard for
applications over wireless networks. It is just one of the wireless
and handheld device standards that SAS is supporting to enable
the mobile user to access his or her data more efficiently. In this
paper we will be using WAP as the basis for many examples but
the reader should keep in mind that other standards are
supported equally. Within the WAP standard, Wireless Markup
Language (WML) is used to create pages that can be displayed
in a WAP browser. The WML markup language contains
hierarchies of screens ("decks") and links between those screens
("cards"). WML is designed to display content on wireless
devices such as phones, pagers, and PDAs.
A typical WAP request for a cell phone would entail:

1. The user presses a phone key that initiates a request.
2. The phone browser sends the request to a WAP

gateway using the WAP protocol.
3. The WAP gateway creates an HTTP request for the

specified URL and sends the request to the designated
web server.

4. The web server then processes the HTTP request as it
would any other HTTP request.

5. The web server returns the requested WML deck using
either a static WML deck or a dynamically generated
WML deck.

6. The WAP gateway verifies the HTTP header and WML
content and encodes them to binary form. The gateway
then creates a WAP response containing the WML and
sends it to the phone browser.

7. The phone browser receives the WAP response,
processes the WML response and displays the first
card of the WML deck to the user.

JAVA TECHNOLOGY
Java is a software language that is platform neutral. It is said that
Java is “Write Once, Run Anywhere ™ “. That is, an application
developed in Java can be deployed to any machine that supports
the Java™ Virtual Machine. Two important technologies that build
on Java are Java™ Servlet and JavaServer Pages ™ (JSP ™).
When used in conjunction with wireless technology, developers
can use their knowledge of these technologies to provide
dynamic delivery of data such as WML. Java's component-
based technology, JavaBeans ™, makes it easier to build web
pages using JSPs and Servlets. JavaBeans separate the user
interface from the application logic. This enables the page
designer to focus on writing the presentation layer while allowing
the application developer to generate the dynamic content portion
of the page using Java and JSP. Additionally, JavaBeans
provides an integration standard. This is important for developing
solutions in heterogeneous environments within the enterprise or
across the Internet. SAS Institute Inc. adheres to this standard
and offers component-based JavaBeans that allow easy access
to complex SAS resources.

SAS TECHNOLOGY
SAS Institute Inc embraces Java technology. AppDev Studio™ the
first Java-based development solution to be tailored for the
information delivery environment, is a complete suite of
application development tools for building thin-client Java
applications. Applications written using AppDev Studio™ can tap
into SAS resources through webAF™.

SAS’s component technology, webAF™, makes it easy to use a
standards-based approach to access SAS from the Web. webAF
software is a Java framework that enables access to SAS/AF®
objects, tables (data sets), multidimensional databases (MDDBs),
and other SAS computing resources. webAF® provides data
models that enable developers using JavaServer ™ Pages
(JSP ™) to create dynamic content that maximizes the
capabilities of the SAS System.

The power of webAF's JSP support lies in its InformationBeans™
and TransformationBeans. InformationBeans encapsulate SAS
data by presenting it as webAF data models. The webAF data
models are then, in turn, consumed by TransformationBeans,
which transform the model into appropriate presentations. A key
to integrating SAS into wireless technology lies in the server-side
processing of the HTTP request. Here the TranformationBeans
display SAS data for the appropriate wireless enabled device or
PDA.

CONCLUSION
Changes in today’s business market require corporate executives
and managers to be more mobile. At the same time, cell phones
and PDAs are becoming more common in the workforce and
have a tremendous potential to provide more information to those
mobile professionals. Wireless technologies facilitate the use of
JSPs and Servlets on the web server, where the user’s request is
ultimately evaluated. SAS technologies, particularly
InformationBeans™ and TransformationBeans found in webAF,
deliver SAS data wirelessly to cell phones, PDAs and other non-
desktop devices, keeping the user connected to his or her
business at all times – providing “The Power to Know ™”.

Internet and Intranets

The complete copy of this paper can be found at
http://www.sas.com/usergroups/sugi/sugi26/sipapers

CONTACT INFORMATION
Your comments and questions are valued and encouraged.
Contact the authors at:

Bryan Boone
SAS Institute Inc.
SAS Campus Dr.
Cary, NC 27513
(919) 531-6039 (Voice)
(919) 677-4444 (Fax)
Bryan.Boone@SAS.com

Pat Herbert
SAS Institute Inc.
SAS Campus Dr.
Cary, NC 27513
(919) 531-7618 (Voice)
(919) 677-4444 (Fax)
Pat.Herbert@SAS.com

Internet and Intranets

Using SAS/IntrNet���� Software

Kevin Davidson
FSD Data Services, Inc.

ABSTRACT

This paper will demonstrate the best methods of running
SAS programs with SAS/IntrNet software. Examples of
SAS programs executed via the web will be shown.
Installation issues will be discussed, such as the optional
settings of the Application Dispatcher and the efficiencies
of each (the Application Dispatcher is the intermediary
between the web browser and the SAS programs that
retrieve or update data.) One topic will be customizing
the broker configuration file and PROC APPSRV (the
procedure which invokes the Application Server).
Another will be the options for invoking SAS programs.

INTRODUCTION

SAS/IntrNet software allows you to build dynamic Web
applications and gives you the ability to dynamically
query your data, generate reports on demand, and perform
many of the same analysis that you would run in an
interactive SAS session. Obviously, taking the power of
SAS software to the Web has tremendous advantages for
a wide variety of companies. The purpose of this paper is
to discuss some of the options within SAS/IntrNet
software that make for an efficient operation and show
how you can use the built in options to keep a fairly easily
maintained web server.

In the ensuing pages, the following issues will be
discussed:

Customization options:

 Decide on socket, pool, or launch services

 Broker.cfg
Timeout option
Administrator name and e-mail address
Fieldwidth for textarea boxes
Exporting fields
Creating fields using SET statement
Load Manager

 PROC APPSRV
ADMINPW option
Unsafe option

Short macro for simplifying the ALLOCATE,
DATALIBS, and PROGLIBS statements.

Request init
Statistics
Using datalib to use aggregate naming
Log statement

 A brief review of the plusses and minuses of 4 different
program submit styles

SAS/IntrNet SOFTWARE

SAS/IntrNet software is composed of a number of
components including Application Dispatcher, HTMSQL,
and the MDDB Report Viewer. An Application
Dispatcher server is a SAS session that serves out
requests from thin clients and returns results via the
browser. Parameters are passed to the Application
Dispatcher and can be accessed in the form of macro
variables. One of the parameters is '_program' which tells
the Application Dispatcher which SAS program to run
(usually either a standard .sas program or a compiled
macro).

CUSTOMIZATION OPTIONS:

Deciding on type of service

The on-line documentation for SAS/IntrNet does an
excellent job of presenting the pros and cons of the three
different types of services. For discussion purposes, the
following text on services is adapted from the on-line
documentation.

A service can be a socket, pool, or launch service. The
features, advantages, and disadvantages of each of these
service types are discussed below.

Socket Services
Socket services consist of one or more Application
Servers that run continuously, servicing client requests.
Socket services are generally started whenever a machine
is restarted (either manually or by an operating system
mechanism for starting processes at boot or login time).

The service usually runs until the machine is shut down.
Socket services are relatively simple to configure and
manage and are adequate for most applications

Advantages
� Socket services are supported on all SAS/IntrNet

platforms. Other service types are not supported
everywhere.

� The server is already running by the time a client
request appears, so clients do not have to wait for
a server to start.

� The administrator has explicit control of
resources allocated to the service: the
administrator can control how many servers are
run on each system and which resources are
allocated to each server.

� Increasing load can be handled by adding more
servers to the service.

Disadvantages
� Servers must be started and stopped manually or

by the operating system. No automated start-up
and shutdown service is provided by
SAS/IntrNet software.

� No dynamic scaling to meet increasing loads is
provided. A fixed number of servers are
available to handle all client requests. A few
long-running requests can slow the entire service
for all clients.

Pool Services
Pool services consist of a pool of Application Servers
shared by clients. Based on system loading the servers are
started and stopped by the Application Load Manager.
Numerous options are provided to fine-tune the operation
of a pool service. Pool services combine some of the
advantages of socket and launch services.

Advantages
� Servers are started as needed. If all servers in the

service are busy, the Load Manager can start an
additional server.

� Servers can be reused by new clients once they
are started. A started server remains in the pool
until an idle timeout is reached and the server is
stopped.

� Unlike launch services, pool services can be on a
different system than the Web server and can be
distributed across multiple server systems.

� Using the SAS Spawner, servers can be started
under specific usernames to control access to
system resources.

Disadvantages
� Installation and configuration are more complex

for pool services. The Application Load Manager

must be installed. The SAS Spawner must be
installed in most cases.

� Client requests might have to wait for a new
server to start, although this is typically no worse
(and could be better) than waiting for currently
executing requests to complete in a socket
service.

Launch Services
A launch service starts a new Application Server for each
client request. An existing server is reused only for
applications that use sessions or the _tmpcat catalog for
IDS output. Most of the features of launch services are
better provided by pool services (a new feature for
Version 8). Launch services are not generally
recommended for new installations.

Advantages
� Server start-up is automatic for each request.

Once the launch service is configured, little or no
additional administration is necessary.

� Requests run in a separate server, so a long-
running request will not block access to the
service for other clients.

� Many requests can run in parallel, assuming that
the system will support the load.

� Ill-behaved applications that "crash" or "hang" a
server will not affect other client requests.

Disadvantages
� Launch services are started by the Application

Broker and must run on the same system as the
Web server.

� Each new request incurs the resource overhead
and delay of starting a new server session.

� Launch services are not suitable for high user
loads. There are no settable limits on the server
load. The service will attempt to start a new
server for each new client. In an extreme case,
200 simultaneous users could cause 200 servers
to be started, likely causing extreme "memory
thrashing" and very slow response for all users.
Most Web servers have limits on the number of
simultaneous CGI requests that could help to
control this problem.

� Each launch service request must incur the
additional time for starting a SAS session.

� Launch services are not supported on CMS,
OpenVMS, and OS/390 platforms.

� Launched servers can be difficult to shut down.
A launched server that creates a session or
_TMPCAT catalog will continue running until an
idle timeout is reached. These servers cannot be
shut down other than by interrupting the server
process.

There are a number of things that can be done to
customize your SAS/IntrNet configuration. Here we will
focus on customizations that can be made within two
files, broker.cfg and PROC APPSRV. Broker.cfg is the
main configuration file.

Broker.cfg - The broker configuration file is the
configuration file for the Application Broker. Among the
items that you might find useful to alter are:

1) One of the options that can be set is the 'timeout'
period, after which the end-user will see an error message.
To manually set this option, put a line similar to the
following anywhere in your broker.cfg:

Timeout=60

This sets the timeout option to 60 seconds. You will want
to carefully analyze the expected times that your
programs may take before setting this value. You need to
take into account the speed of the machine, speed of
connectivity, and amount of traffic. It is a good idea to
periodically check the run times of your web program
submissions to determine the causes of any slowdowns.
Should an end-user experience a timeout they will see
something similar to this:

Timeout error
The program ran longer than its allotted
timeout period (60 seconds). This could
happen if the timeout is too short, if the
server is unavailable or busy, or there
was an error invoking the SAS server.
Note: program may still be running.

Kevin Davidson, KevinD@FSD.nu

This request took 6.38 seconds of real
time (v8.2 build 1391).

Note that the Timeout option can also be set as a PROC
APPSRV option.

2) Administrator name and e-mail address

In case of an error this name and e-mail address will
appear so that an end-user can alert you. This data can
easily be altered by changing the lines that read:

Administrator "Kevin Davidson"
AdministratorMail "KevinD@FSD.nu"

3) Field width of text area blocks

Any text area fields that you may set up in your HTML
are chopped up into character block fields according to an
option set in the configuration file. The default used to be
80 and although the SAS supplied comments in the 8.2
configuration file still indicate that the default is 80, it
does not appear to be so (at least under Windows).
Suppose your HTML page has an input field such as the
following:

<textarea name=comment cols=80 rows=4 wrap=virtual>
This is a pretty long text field. We want to see where it
wraps. The zero in 80 is the eightieth character in this
line. We want to see if it splits it given the default length
that is specified in the broker.cfg file.
</textarea>

There is an option in the broker.cfg called 'Fieldwidth'. If
the Fieldwidth is set to 80, then upon submitting the
above text to the Application Dispatcher, the symbols
made available to SAS will look like the following:

comment=This is a pretty long text field. We want to see
where it wraps. The zero in

comment0=3
comment1=This is a pretty long text field. We want to

see where it wraps. The zero in
comment2=80 is the eightieth character in this line. We

want to see if it splits it
comment3=given the default length that is specified in the

broker.cfg file.

As you can see, the longer string is cut up into smaller
fields of roughly 80 characters each. The 1st field listed
above is the original input field name. The 'comment0'
value of 3 indicates that the original variable was split
into three different blocks. The three different blocks are
represented by the numeric suffix being added to the
original input field name.

You can alter this setting by entering a value such as the
following:

Fieldwidth 32767

This will allow text area strings to be exported to SAS as
one long character string (you will of course want to make
use of the 'compress' data set option if you create
extremely long character variables in your data set).

4) Exporting fields

If you examine the broker.cfg file, there is a series of
potential export variables which you can make available
to your SAS session (they will appear in the 'SYMBOLS'
section of your logs). In version 8.2, the list of available
export variables are as follows: Simply uncomment those
that you want to make use of.

What is it? Export variable name
CGI version Export

GATEWAY_INTERFACE
_GATEWAY

Web server
hostname

Export SERVER_NAME
_SRVNAME

Web server
name/version

Export SERVER_SOFTWARE
_SRVSOFT

HTTP version Export SERVER_PROTOCOL
_SRVPROT

Web server
port number

Export SERVER_PORT
_SRVPORT

GET, POST,
etc.

Export REQUEST_METHOD
_REQMETH

Extra path
info after
script

Export PATH_INFO
_PATHINF

Local filename
of PATH_INFO

Export PATH_TRANSLATED
_PATHTRN

Dup of _URL Export SCRIPT_NAME
_SCRIPT

Directory from
which Web
documents are
served
[unreliable]

Export DOCUMENT_ROOT
_DOCROOT

Query string
for GET
requests
[duplicate of
user macro
parms]

Export QUERY_STRING
_QRYSTR

User's DNS
name if known

Export REMOTE_HOST
_RMTHOST

User's IP
address

Export REMOTE_ADDR
_RMTADDR

Usually Basic Export AUTH_TYPE
_AUTHTYP

Username if
authenticated

Export REMOTE_USER
_RMTUSER

RFC931 id if
supported

Export REMOTE_IDENT
_RMTID

HTTP POST type Export CONTENT_TYPE
_CONTTYP

HTTP POST
length

Export CONTENT_LENGTH
_CONTLEN

Email address
of user making
request
[unreliable]

Export HTTP_FROM
_HTFROM

MIME types UA
likes
[unreliable]

Export HTTP_ACCEPT
_HTACPT

Cookies Export HTTP_COOKIE
_HTCOOK

Browser name Export HTTP_USER_AGENT
_HTUA

Referring page
if known

Export HTTP_REFERER
_HTREFER

As an example, if we have the "_HTUA" set to export,
then your SAS programs will be able to make use of the
variable and you can also automatically store the value in
the STATISTICS data set (see below). Near the top of
your log, you would see something similar to:

Thu, 31 May 2001 11:18:23.687 Request 12 Program is
proglib.myprogram.sas
Thu, 31 May 2001 11:18:53.858 Request 12 ended okay
(30.50 seconds)
============ Request 12 Symbols ==============
 _SRVNAME=www.fsddatasvc.com
 _RMTADDR=216.91.105.82
 _HTUA=Mozilla/4.0 (compatible; MSIE 5.5; Windows
NT 4.0)

5) Creating fields using a SET statement

In addition to the SAS supplied export variables, you can
also create your own. For example, if you have multiple
web servers running Application Dispatcher(s), you may
want to display in the log (and/or in the STATISTICS
data set) the name of the server. If you add a line to your
configuration file such as:

Set machinename kevinspc

This statement will display the variable
'MACHINENAME' in the log with a value of 'kevinspc'.

6) Load Manager

The load manager is not required for socket services but is
recommended. It is required for the use of pool services.
It is a good idea to run the load manager so that some
software intelligence is used to direct requests to an
inactive port, rather than being shipped to a port that is
already active and thus put into a queue. Another benefit
is that if all dispatchers are busy, then the load manager
will hold the request until a dispatcher is open. In the
case of pool services, it will launch a new dispatcher.
Once the load manager (an .exe file) is loaded, there is
simply one line within the broker.cfg file which activates
it:

LoadManager www.fsddatasvc.com:6301

PROC APPSRV

This procedure invokes the application dispatcher and
contains a number of customization options which can be
used to your benefit. The procedure can be run within a
larger SAS program if you want to create macros and/or
set macro variables. At our company, we create a file

called 'appstart.sas' which contains the PROC APPSRV
procedure. Here are a few of the options and statements
that you might find beneficial.

1) ADMINPW

The Adminpw=xxxxx. Allows you to run admin
programs and restricts others from being able to shut
down your dispatchers. There are several SAS supplied
administrative programs such as PING, STATUS, and
STOP (you can create your own as well). If you set up an
administrative password, then these administrative
programs cannot be run unless the password is provided.
An example of how to implement this option is something
like this:

proc appsrv port=6013
adminpw='MYADMINPASSWORD';

2) UNSAFE

The unsafe option strips unwanted characters from fields
which end users submit. The most often stripped
characters are ampersands, semicolons, and quotes. Use
this with caution as you might be surprised where these
values are needed.

UNSAFE='&"%;'

There is an appsrv_unsafe function that allows you to pull
the original value even if the unsafe option is utilized.

3) Short macro for simplifying the ALLOCATE,
DATALIBS, and PROGLIBS statements.

If your applications dispatcher references a number of
libraries, your PROC APPSRV can get quite long and
cumbersome. Below is a short macro which can simplify
the process.
%let drive_direct=f:;
%let drive_share=c:;

%macro libfile(ref,path,server);
 allocate library d&ref "&drive_direct\&path";
 allocate library s&ref "&drive_share\&path" &server;
 allocate file p&ref "&drive_direct\&path";
 datalibs d&ref s&ref p&ref;
 proglibs p&ref;
%mend;

proc appsrv port=6013
adminpw='MYADMINPASSWORD';

%libfile(mylib,\mydir,%str(server=servname.myserver));

%libfile(mylib2,\mydir2,%str(server=servname.myserver)
);

4) REQUEST statement

If you wish to run a program either before or after each
requested program is run, you can specify the REQUEST
statement with either or both of the INIT and TERM
arguments. An instance of where this might be useful is if
you want to initialize a set of macro variables or run an
options statement to apply to all requests. If you are using
compiled macros across multiple dispatchers, you need to
point the program to them using an options statement to
avoid a lock being put on the catalog. To do so, you need
to submit an options statement with the 'mstored' and
'sasmstore' options specified. You can then store that
options statement in a .sas program (e.g. myinit.sas) and
then have it submitted before each request with a
statement such as:

request init=mylib.myinit.sas;

5) STATISTICS Statement

The STATISTICS statement is an extremely useful to for
collecting statistics on individual requests made to your
dispatchers. By default, the data set is set up to collect the
following pieces of information:

Variable
Name

Variable Type Description

Obstype Character length 1 R = request, I =
Internal, U = startup, D
= shutdown, T = trace

Okay Character length 1 1 = request ran okay, 0
= error

Duplex Character length 1 H = half duplex, F =
full duplex

Http Character length 1 1 = http request, 0=
normal broker request

Program Character length 32 _PROGRAM variable
Peeraddr Character length 16 Peer address
Hostname Character length 20 Node name of the

server
Username Character length 12 _USERNAME

variable, if any
Entry Character length 32 _ENTRY variable, if

any
Sessionid Character length 12 _SESSIONID, if any
Service Character length 12 Service name
Starttime Number Time the request

started
Runtime Number Run time of the request
Port Number Server port number

Bytesin Number Number of input bytes
(read from client)

Bytesout Number Number of output
bytes (written to client)

As long as the variable is available when the request is
made (either by having set it to be exported or creating
your own variable), the variable gets added to the data set.
There are options that you can set to control the frequency
with which the request queue gets written to the data set.
You can easily add or drop variables from the data set just
as you would any other data set (assuming of course that
the application dispatcher is closed as it puts a lock on the
data set). You can use SAS/SHARE software to so that
multiple dispatchers can write to a single data set. The
following statement is a sample usage of the
STATISTICS statement:

statistics data=mylib.mystats (DLDMGACTION=repair);

Note that the data set option is a useful option that we
have found prevents manual intervention when the data
set is damaged due to an unfortunate shutdown. One of
the great utilities of this data set is that you can then write
SAS utility programs as needed to analyze the data on a
real time basis. For example, you can create reports to
show you which programs are running slowly, what the
frequency of the various programs is, what the usage by
hour and by day of the week is, etc.

6) Using aggregate syntax (member name syntax) with
%include

Note that since you are essentially setting up filerefs
within your PROC APPSRV statement, you can utilize
aggregate syntax for use with %include. This saves you
the trouble of having to include the path name. For
example, to %include a file named 'myfile.sas' you would
simply use the following code:

%include mydir(myfile);

7) LOG statement

The LOG statement gives you some control over what
gets written to your application dispatcher log as well as
the naming of the log. If you are not using Web Hound
and wish to be able to track happenings via the logs, it is
highly suggested that you display as much information as
possible. To do so, specify the following:

allocate file logfile "d:\mydir\%nrstr(%m%d%y)_1.log";
log display=all symbols=all file=logfile;

The 'display=all' option tells the dispatcher to write the
log information from all requests to the log file.

'Display=error' would write the log information only
when the request ended in an error. 'Display=none' would
never write any log data. The same three options (all,
error, and none) are available for the symbols argument
which controls the listing of the client request passed
values within the log. The syntax shown in the example
above creates a file with a name of "mmddyy_1.log"
where mmddyy is month, day and year. There are
numerous other options available for naming the log file.

Running your SAS programs:

Whenever the application dispatcher is summoned, one of
the pieces of information that it must receive is something
that tells it what to do. This piece of information is in the
form of an input field with a reserved name of '_program'.
This information can be one of 4 types of programs:

You can run 4 different types of SAS programs. Three of
the types reside in catalogs.

1) SAS programs - _program=library.program.sas

Pros – easily maintained
Cons – relatively slow as the code needs to be compiled

Generates larger dispatcher log files

2) SCL entries - program=library.catalog.program.scl

Pros – precompiled code
Cons - SCL code has its origins in the full-screen

enviroment and thus much existing SCL code
needs modification to run stand-alone.
Source code is not stored with the compiled
macro

3) MACRO entries - compiled macros
_program=library.catalog.program.macro

Pros – precompiled code
Cons – Can be difficult to maintain as must compile
them and copy them to a catalog

Source code is not stored with the compiled
macro.

4) SOURCE entries - .sas programs stuck in a catalog
with a different extension
_program=library.catalog.program.source

Pros – fairly easy to maintain although not as easy as
running SAS programs

Cons - relatively slow as the code needs to be compiled
Generates larger dispatcher log files

CONCLUSION

Determining how you set up your Application Dispatcher
within SAS/IntrNet can be a daunting task. As usual with
SAS software, there are many ways to get things done.
The administrator and programmer are given a wide range
of options. A little forethought into what type of statistics
you want to gather, how much security you want or need,
and how you plan to maintain your SAS/IntrNet web site
will go a long way in helping you make decisions that you
are comfortable with for the long haul.

Kevin Davidson, Ph.D.
FSD Data Services, Inc.
2020 Southwest Freeway, Suite 206
Houston, Texas 77098
713-942-8436
kevind@fsd.nu
www.fsd.nu

SAS and all other SAS Institute Inc. product or service
names are registered trademarks or trademarks of SAS
Institute Inc. in the USA and other countries. � indicates
USA registration.

Paper P304

Building a SAS Intranet Site
Tim Williams, PRA International, Charlottesville, VA

ABSTRACT

Intranets are now common in both large and small
organizations. These internal websites provide a way to
present vast quantities of information in an organized and
searchable form. This paper describes the construction and
implementation of an intranet site developed by the Analysis
Programming staff of PRA International in Charlottesville,
VA. Methods for content development and display of SAS
coding examples are illustrated. Management of SAS coding
projects is discussed in terms of how a database-driven
website can increase the efficiency of a programming team
and lead to a better deliverable product. It is hoped that this
paper will stimulate discussion on how intranets may better
serve SAS programmers in the pharmaceutical and other
industries.

INTRODUCTION

When I recently joined PRA International, a well-established
Contract Research Organization (CRO), I found I had a great deal
to learn about the industry. While I was an experienced SAS
user, this was my first exposure to the world of pharmaceutical
research in the United States. I needed to learn new standard
operating procedures and coding conventions. Experienced
personnel were often required to assist me in locating information
and explaining policies. The situation called out for a well-
organized, indexed and searchable resource for staff.

At the time of my employment, PRA was embarking on the
implementation their of intranet. Initial development of static
HTML pages had begun (Phase 1) with a planned move to
dynamically generated content during Phase 2. These early
developmental stages provided an excellent opportunity for
departments to define their needs, conceptualize site content,
and contribute to decisions regarding choices of technology.

This paper describes the initial design of a static HTML intranet
site for the Analysis Programming Department at PRA. It also
includes a discussion on how processes will be streamlined when
a dynamic, database-driven site is implemented. The paper will
not discuss issues such as website style, navigation, scripting, or
comparisons between technologies and approaches These
issues are beyond the scope of the paper and are often
dependent upon company policy and individual preferences.

DEVELOPMENT STRATEGY

Winning the support of management and staff was critical to the
project. The staff already had heavy workloads, so it was crucial
to build a strong case for the departure from client-oriented
project work. Managers and staff met early in the project to
determine what processes and procedures could be targeted for
rapid content development and benefit most from web integration.

Our staffing and workload constraints lead us to adopt the staged
delivery model of software development (McConnell, 1996).
Staged delivery, also known as incremental implementation,

makes content available to users in successive stages as the site
is developed. In this way our staff and management saw tangible
benefits of the intranet without having to wait for its full
implementation. The first content was purely informational; it told
the company who the Analysis Programming Department is and
what they do. Next, we quickly realized our second goal of
providing a resource for department staff. Early successes
helped to strengthen support for later, more ambitious aspects of
development.

Our overall objective was to start with static content while
structuring the site to facilitate the switchover to database-driven
dynamic pages (using ASP and Oracle) in the near future.
Several staff were already familiar with basic HTML or were able
to learn it in a short period of time. The anticipated delay in
moving to dynamic content will allow staff to obtain the skills and
training they need.

DEVELOPING CONTENT

The PRA Webmaster developed HTML templates, style sheets,
and initial site structure for all departments. These templates
provided an excellent launch pad for rapid development because
they freed individual developers from the time and effort required
when starting from scratch. Individual departments selected
development teams to identify content requirements and start site
construction.

We organized available materials into a series of easy-to-
navigate HTML pages to provide immediate benefits to staff.
Many of the vital components already existed in electronic form
and were easily linked to HTML pages. Such items included:

• Standard operating procedures
• FDA Electronic Submission Guidelines
• Coding conventions
• Project specific information

HTML content was searchable directly after publishing to the web
server because we used Microsoft FrontPage 2000 and
published to a Microsoft Internet Information Server 4.0. (IIS 4.0)
with the FrontPage Server Extensions installed. Additional
benefits over the pre-existing documents were gained by
including hyperlinks to related site content. For example, links to
a Table of Acronyms has proven to be a useful tool for
employees new to the industry.

KEY CONTENT
Essential content was identified by meeting with interested
department staff and storyboarding the website. We defined the
following areas for early development:

• Training in company-specific SAS Coding Methods
• Standard Operating Procedures
• Table of Acronyms
• SAS Content

o SAS help documentation
o External SAS resources

o Search facility for SAS discussions (see
below)

o SAS functions reference
o Standardized “in-house” SAS macros and

code modules
o Code examples contributed by staff

SEARCHING THE SAS-L ARCHIVES
AND COMP.SOFT-SYS.SAS
One of the most popular items on our website is the ability to
conveniently search both the UGA SAS-L Listserv and
comp.soft-sys.sas through the website through the Google
search facility at http://groups.google.com. Google Inc. acquired
the Deja.com Usenet Discussion Service in February 2001. The
service provides a means to search millions of Usenet messages
dating back to 1995.

Instead of providing simple links to the internet home pages of
these searchable archives, we placed the search forms within our
intranet, thus removing the additional step of loading the search
page from the remote server. Our staff simply enters the search
text along with other optional parameters and the form is then
submitted to the remote search engine. The browser returns the
search results page when processing is complete.

The code below illustrates how simple it can be to incorporate
such functionality into a web page. In this example, comp.soft-
sys.sas is searched for articles containing a list of all the words
entered on a form:

<form method=GET

action= "http://groups.google.com/groups"
name=f>

 <h3>Search comp.soft-sys.sas</h3>
 for all of these words:
 <input type=text value="" name=as_q
 size=25>

 <input size=30 type=hidden
 value="comp.soft-sys.sas" name=as_ugroup>
 <input type=submit value="Google Search">

</form>

At the time of this writing, groups.google.com supports the
following fields on their “Advanced Groups Search” form:

• All words in a list (as in the example above)
• Any of the words in a list
• An exact phrase
• Subject
• Author
• Message ID
• Language

Further options are also available to limit the search to a range of
dates, return only a specific number of items, and sort the results
by either relevance or date.

Developers can easily add these fields to their own form by
locating the field names on the “Advanced Groups Search” page
at http://groups.google.com. Simply use the View | Source menu
on Internet Explorer when the remote page is loaded. A similar
method was used to implement a form to search the UGA SAS-L
Listserv from our intranet.

PRESENTING SAS CODE ON THE INTRANET
Formatting of the original code lines should be preserved when
presenting SAS code examples on the web. This allows users to
cut-and-paste code from the web into a SAS code editor.
Similarly, contributors to the website need to cut-and-paste SAS
code into FrontPage (or another HTML editor) while preserving
formatting. Users of the website should be able to quickly identify
SAS code through the use of distinct fonts and colors. All of
these elements are available through the use of HTML tags and
style sheets.

<PRE> TAG
The HTML tag <PRE> defines a section of text that the browser
will render in exactly the same character and line spacing as it
appears in the HTML source document. It is this tag that allows
the programmer to cut-and-paste SAS code from the SAS editor
(or other text editor) directly into HTML while preserving spacing
and indentation of the code lines. Some authors use this tag in
conjunction with the <BLOCKQUOTE> tag that helps to delimit
the code section by applying special indentation and formatting.
Our approach was to instead use our own user-defined tag
<CODE> to encapsulate SAS code blocks and render formatting
through application of styles to that tag.

STYLE SHEETS AND THE <CODE> TAG
Cascading Style Sheets (CSS) provide a powerful and easy way
to provide a consistent font, font size, color and other properties
for HTML pages, sections of pages, or an entire website. The
web author can not only control the presentation attributes of
standard HTML tags but can also implement user-defined tags for
their own use. Styles can be applied to HTML tags using inline
styles, document-level styles, and external style sheets. Use of
external style sheets is often preferred because it allows the web
author to apply global style changes to a website by editing only
one file. Styles “cascade” down from the external sheets through
local document styles down to inline styles.

We developed a style sheet for SAS program code to enhance
the style sheet supplied by the PRA Webmaster. We chose to
distinguish the program logs, outputs, comments, and required
program parameters from surrounding text on the web page. We
applied additional styles to code linked to documentation through
either a mouse-over or a mouse-click. Our new style sheet was
linked to all documents containing SAS code using the following
line in the header section of HTML pages:

<link rel=”stylesheet type=”text/css”
href=”../SASCode.css”>

Styles were then applied to the user-defined <CODE> tag by
specifying different values for the CLASS parameter as shown in
the table below.

Classes of the user-defined <CODE> tag
CLASS= Used for display of:
comment Comments within code, typically code lines with /*

*/ , * or %* comment styles
change Program code that should be changed by the

user prior to implementation. E.g.: a random
number seed.

explain Text explaining a code segment
footnote Designates footnotes that are not part of the code

but are used to label code for explanation in a
footnote

log SAS log
out SAS output
prog SAS program code

The following code illustrates the use of the <PRE> and <CODE>
tags :

<pre>
<code class=”prog”>
data random1(drop=i);
 do i = 1 to 10;
 random=ranuni(
 <code class=”change”>54321</code>);
 output;
 end;
run;
</code>
</pre>

In addition to uniquely rendering the types of SAS code being
presented, it is also useful to identify sections of code that
contain explanations or documentation available through mouse-
overs or hyperlinks within the code itself. Styles were therefore
defined for use with the HTML <A> tag to enable users to identify
these areas on the screen. Typically, these <A> tags will appear
enveloped within <CODE> tags for the presentation of SAS code
and output.

Classes of the HTML tag <A>
CLASS= Used for display of:
example Code is hyperlinked to additional

examples illustrating the same
concept or program statements.

explain Code displayed with this parameter is
hyperlinked to an explanation or
documentation

footnote Code is hyperlinked to additional
information in a footnote.

mouseExplain An explanation of the code will appear
on the page when the mouse pointer
is moved over the code section.

The code below illustrates the use of the <A> tag to display the
ranuni function as an HTML hyperlink which, when clicked,
takes the user to the HTML document sasFunctions.html that
contains additional documentation about the function.

<pre>
<code class=”prog”>
%let rannum=<a
href=”./sasFunctions.htm#ranuni”
class=”explain”>ranuni(1234);
</code>
</pre>

USING SAS TO GENERATE AND UPDATE HTML PAGES
Many papers have been presented in past conferences
describing how to generate HTML output from SAS prior to the
introduction of ODS in Version 8 (Bahler 1999, 1998 ; Pope
1997). SAS can also be used to update existing HTML files that
are subsequently published to the intranet. One way to

accomplish this is to develop a template page containing HTML
comment tags that delimit a section where a SAS program will
insert output. No text between the start of the HTML comment
tag “<!--“ and the end of the tag “-->” is displayed by a
browser, so the comment tag provides a convenient and invisible
marker for use by a SAS program.

[Top of the HTML document omitted]

<h2>SAS Generated Table Follows</h2>
<!-- Start SAS Insertion -->
 <!-- this text will be replaced by SAS -->
<!-- End SAS Insertion -->
Table generated using SAS 6.12

[Bottom of the HTML document omitted]

It is then a simple task to develop a SAS program that reads the
HTML page one line at a time and writes it back out until the
insertion point is found. When the program finds the insertion
point a routine is called that inserts SAS output into the HTML
document.

Once the SAS program has finished inserting HTML, it will read in
(but not write out) lines from the source HTML file until it reads in
a line denoting the end of the insertion area:

 <!-- End SAS Insertion -->

Using this approach, any text that exists in the HTML template
between the start and end of the insertion point is not written to
the HTML output file. When the end of the insertion point is
found, the SAS program reads in and writes out each line until
the end of the input file is reached.

The completed HTML output file must then be published to the
web server before it can be viewed. Although inconvenient, this
method has provided a way to extract data from Oracle
databases for display on our intranet, using SAS as an
intermediate step.

THE CHALLENGES OF MICROSOFT FRONTPAGE
Microsoft has made many improvements over early versions of
FrontPage but it can still be problematic for the HTML source
code enthusiast. Care must be taken when developing the
“template” pages mentioned above; opening them into FrontPage
may result in pages with lines longer than the 200 character limit
of SAS version 6.12 and earlier. The FrontPage visual interface
also has an undesirable habit of inserting many proprietary tags
and redundant formatting tags that make editing of the source
code difficult.

However, if a developer employs patience and ingenuity,
FrontPage can make the presentation of SAS code easier (and
thereby encourage other programmers to submit code examples
to the website). One such example is the ability to easily apply
the user-defined tags for formatting SAS code. Ideally, a
developer would select code with a mouse in FrontPage’s visual
editor, then click on a button to apply the custom style to the
selection.

This functionality can be added to FrontPage by defining macros
in the Visual Basic Editor and assigning these macros to buttons

on a toolbar. An example of a Visual Basic macro that applies
the <CODE CLASS=”prog”> tag reads as follows:

Sub CODEProg()
 ' Apply the <CODE CLASS=”PROG”> tag
 ' to multiple selected lines
 Dim objTxtRange As IHTMLTxtRange
 Dim myHTML As String
 'Range of selected text
 Set objTxtRange =
 ActiveDocument.selection.createRange
 myHTML = "<code class=" & """prog""" & ">"
 & objTxtRange.htmlText & "</code>"
 objTxtRange.pasteHTML (myHTML)
End Sub

FUTURE DIRECTIONS

An intranet will truly come into its own when it uses dynamic
content. The next step in our development process is to move
toward dynamic content generation using Active Server Pages
(ASP) and a database back-end.

In our department we have well-defined quality assurance
methods for code development, team coordination, and quality
control. These three elements currently exist as separate entities
that could be joined together using web technology.

Our SAS programs contain a standardized header section that
includes information such as :

• Author
• Program abstract
• Date of code completion
• Date of code validation
• Author of code validation
• List of input and output files
• List of macros called
• Notes
• Amendments

Headers serve not only as a guide to our programmers but also
to our clients who often request the source code as part of the
deliverable product. Much of the program header information is
repeated in a Microsoft Excel “Table of Programs” (TOP)
spreadsheet. Our programmers use the TOP to coordinate code
development while providing additional documentation for each
SAS program.

After programming is complete, each program is validated using
a rigorous Quality Control Checklist. As a series of MicroSoft
Word documents (one for each SAS program) the QC Checklists
represent a third element that disconnects and adds redundancy
to the process (FIGURE 1).

Figure 1 : SAS programs and related files prior to database
integration.

Related elements of the coding process can be integrated into a
web-based system (FIGURE 2). A centralized database will hold
information about each program for display and updating through
dynamically generated web pages. These pages will allow
developers to enter information about a project and its associated
files. QC documents will no longer exist as disconnected
elements, but will share fields with the Table of Programs and
SAS Headers in a database. Redundancy of data entry will be
greatly reduced and the entire process will become streamlined
due to the centralization of information. Programmers will be able
to spend more hours on client oriented project work and less time
laboriously filling out redundant fields during code validation and
project management.

Figure 2 : Integrated database approach to managing SAS
programs and related files

The approach to the SAS program headers requires further
investigation. One option may be to have a reduced header
during code development that contains only a few key fields
needed to link it to the database. One could foresee the
placement of a hyperlink that, when clicked in the editor, would
launch the database interface providing a means to view, add
and edit information about the program. Once coding is
complete, a separate “annotator” SAS program could link to the
database and extract information about each SAS program in a
project. The annotator program would sequentially read in each
SAS program and insert detailed information from the database
into the header comment section. Each program, with its
updated, detailed header would be written back out to a
production directory for shipment to the client and archiving.

CONCLUSION

Implementation of an intranet can greatly improve existing
processes and add new ones that increase department efficiency.
The Analysis Programming site has become a model for other
intranet sites in our organization and has facilitated
communication between departments and regional offices.
However, it remains a challenge for staff to find the time to supply
content, even with several tools available to facilitate their
contributions. Use of our intranet will increase dramatically once
our standard operating procedures become incorporated into a
dynamic, database-driven website that integrates coding, quality
control, and project management.

REFERENCES

Bahler, C et al. 1998. SAS and HTML - HTML Publishing Using
SAS. Proceedings of the Twenty-Third Annual SAS Users Group
International Conference. Paper 38.

Bahler, C, S. Calhoun, E. Kistner. 1999. Essentials for Static and
Dynamic Web Publishing - SAS HTML Formatting. Proceedings
of the Twenty-Fourth Annual SAS Users Group International
Conference. Paper 158.

Jennett, M. 1999. FrontPage 2000 Developer’s Guide.
Osborne/McGraw Hill. 709 p.

Kauffmann, J , K Spencer and T Willis. 2000. Beginning ASP
Databases. Wrox Press. 824 p.

McConnell, S. 1996. Rapid Development: Taming Wild Software
Schedules. Microsoft Press. 647 p.

Musciano, C and B Kennedy. 1998. HTML: The Definitive Guide,
Second Edition. O’Reilly & Associates Inc. 531 p.

Pope, P. 1997. Using the SAS System for Large Volume HTML
Document Production. Proceedings of the Twenty-Second
Annual SAS Users Group International Conference. Paper 215.

SAS is a registered trademark of the SAS Institute, Inc., Cary,
NC

ACKNOWLEDGMENTS

I wish to thank the Analysis Programming staff at PRA Intl. for
their continuing feedback and assistance. Analysis Programmers
Larry Broach, Jennifer Potter, Dev Patel and Senior Manager Lee
Walke were instrumental in developing site content and layout.
Special thanks to Leslie Cagley, PRA Intranet Webmaster, for
assisting with site setup and always having an answer for my
countless questions.

CONTACT INFORMATION

Your comments and questions are valued and encouraged.
Contact the author at:

Tim Williams
PRA International
4105 Lewis and Clarke Drive
Charlottesville, VA 22902
Work Phone: (804) 951-3504

Fax: (804) 951-3001
Email: WilliamsTim@PRAIntl.com
Web: www.praintl.com

Paper P305

Sounds Like a Good Idea, But What’s the ROI?
John E. Bentley, First Union National Bank

Abstract:
Too many good ideas for using SAS Software remain just
that: good ideas that are never implemented. Why? Getting
an idea approved and funded as a project largely depends
on showing that it has real value, and most organizations
select projects based on ROI—Return on Investment.
ROI is the net profit that a project generates in the form
of either additional revenue or reduced expenses. This
paper will introduce SAS users to concepts related ROI,
present some essential information about calculating ROI,
and suggest how to write a Project Justification Document
that includes an ROI estimate. The goal is to provide some
insight and suggestions on how to get a project approved.

Disclaimer: The views and opinions expressed here are
those of the author and not those of First Union National
Bank. First Union National Bank does not necessarily
subscribe to any philosophy, school of thought, definition,
methodology, approach, or process the author describes.

The Gravy Train is Over
The days of easy money are over, if you were lucky enough
to enjoy them. The business cycle has turned and the
bottom line focus has returned. For everyone from
Corporate CEO’s to programmers, controlling costs and
increasing revenue have re-assumed their preeminent place
in the corporate strategic plan.

This focus on profitability will continue for quite a while.
Several quarters ago it became clear that the US economy
was slowing after two incredible years of Internet-fueled
growth. Companies generally over-invested in technology
during those years, seeking revenue generation at the
expense of profitability. As marginal returns on technology
spending fell, companies slowed their investment in IT and,
consequently, the demand for equipment declined and
equipment supplier were hurt.

As companies retrench they cut back in all areas, including
advertising, travel, and training, spreading the pain to non-IT
companies. Hiring slows and layoffs are announced. As this
paper was being written in Spring 2001, many economists
and business leaders were forecasting an economic turn-
around in the second half of the year, but others said that
these conditions would exist into 2002.

In this economic climate, savvy business leaders realize that
the continued investment in strategic technology can be the
single biggest differentiator between a thriving business and
one that’s just treading water or even going under. Smart
CEOs are positioning their companies for the next upswing
in the business cycle. Even so, it’s no surprise that as part
of their cost-cutting efforts organizations are examining IT
projects more closely and trying to separate those with the
greatest potential for improving the bottom line from those
with little or no potential.

There is much evidence showing that IT spending has been
virtually out-of-control. A recent case study by The Beta
Group focuses on a large financial services firm in which 60
percent of the IT systems development and support budget
was being spent without an evaluation of the business
impact of the expenditure. An analysis revealed that almost
$30 million was spent annually under an “entitlement budget”
for legacy system support. The Beta Group estimates that

most companies can redeploy 10 to 20 percent of their IT
budget by evaluating the business impact of those
expenditures and reallocating dollars to higher-return
projects and initiatives.

A survey of corporate IT executives by ComputerWorld in
Spring 2001 found a new focus on deriving real business
value from IT spending. In the past, the value derived from
e-business technology, for example, was secondary to
having an e-business initiative. Projects with Internet, web,
OLAP, or BI in its name were almost guaranteed funding. A
John Deere e-business manager, though, typifies the new
approach to IT project review: “Don’t loose sight of the fact
that IT is a tool in the context of the larger business plan.”

Project Justification and ROI
Here’s a hypothetical chance conversation in an elevator
between a Division CIO and a SAS application developer:

CIO: Bret, I’ve just come from a meeting where your
manager said that you have an idea about making
our inventory reports available over the corporate
Intranet. It sounds like it will save money.

Bret: Yes, it is a great idea… we’d be using cutting edge
technology and I know everyone on my team would
like to do it.

CIO: Cutting-edge technology? Hmmm. Well, it still
sounded like a good idea. I’ve asked that you send
in a project justification that includes an ROI
estimate.

Bret: Huh?

In recent years, SAS programmers and developers have
largely been insulated from concepts related to profitability.
For many IT professionals who have fewer than five or six
years’ experience, this renewed focus on business value
might be a new theme. For the more experienced, it may be
only a vague memory. For everyone, well, get used to it.
During tight economic times all IT projects will get closer
scrutiny to see if they improve the bottom line. “Improving
the bottom line” may mean different things in different
organizations, but it always includes justifying a project in
terms of having a positive ROI, and the sooner the better.

An ROI estimate is an indicator of profitability showing by
how much—in either dollars or as a percent—new revenues
and/or operational cost reductions exceed the investment.
ROI is derived from a comparison of project costs to project
benefits. Basically, it shows the profit that can be attributed
to your project after it is implemented and after the project
costs have been deducted. Quite often a technique called
payback analysis is also incorporated; in this, the length of
time it takes to recover the initial cost of a project is factored
in. Given the pace of technological change, though, budget
managers are looking for shorter and shorter payback
periods.

There are four generally accepted techniques for estimating
IT project ROI, and spreadsheet packages will do all the
calculations. By using the same set of techniques across
projects for estimating potential profitability, management
can accurately compare projects and select the ones with
the highest value-added.

A criticism of all four techniques is that while they compare
benefits to costs focus on current expenses and minimize

maintenance costs. Also, they do nothing to insure that the
technology selected and related expenditures are
appropriate for the project.

Table 1. Measuring IT project profitability

Technique Description

Payback analysis

The length of time it takes to
recover the initial cost of a project,
with or without regard to the time
value of money.

Return on investment

A comparison of profitability
indicators, where net new
revenues or operational cost
reductions from the project exceed
the investment.

Net Present Value

The present value of the expected
future cash flow generated by the
project minus the cost. Useful for
comparing projects.

Internal rate of return

The discount (interest) rate at
which net present value is zero.
Usually an organization will set a
benchmark rate such as 25
percent so that only the highest
value-added projects are funded.

Economic value
added

Based on the concept that
profitability should account for the
cost of equity capital as well as
debt and other means of capital
acquisition. Companies invest only
in projects that will return more
than the total cost of capital.

There are three generally accepted models that utilize the
ROI techniques presented in Table 1. These models help
organizations assess and prioritize technology investments.

Table 2. Models Guiding IT Project Selection

Model Description

Enterprise ROI

First identify enterprise-level
financial targets for new revenue or
cost reduction. Then allocate
those targets to broad initiatives,
which set targets for specific
projects. The success of any given
project, however, is often
dependent on a concurrent project.

Productivity

The project is justified on the basis
of employees “doing more with
less.” Uses goals such as
“managers will use 10% less time
searching for information.” Result
is difficulty in auditing and
measuring actual benefits. Often
difficult to accurately attribute
financial gains to a specific project.

IT Value/Utilization

Focuses on individual project
economics and maximizing value
of IT investments by managing
execution and implementation.
Premise is that the technology
aligns with the existing IT strategy
and has low-cost maintenance.

To improve profits, your project must either (a) generate
higher revenues or (b) reduce costs, but preferably both.
The project can be something completely new, like delivering
customer profiles on-demand to a PDA, or an enhancement
to an existing system, such as automating the validation
process for an existing production report. As long as it adds
real measurable value, it’s a candidate for approval.

ROI elements
Many items can be used in an ROI estimate but both costs
and benefit estimates are needed. You need to take a
snapshot of how you’re doing business now and then
compare that to an estimate of how you’ll be doing business
when your project is in production. It’s nearly impossible to
present an ROI estimate without using a baseline to estimate
the cost-benefit differential.

One important point to remember: Costs are incurred up-
front during project design, development, implementation,
and maintenance—all through the life cycle. Benefits don’t
accrue until the project goes into production.

Costs

The first two parts of a four part series by William Roetzheim
in Software Development Magazine provide valuable
information on estimating project costs. Costs can be
grouped into three broad areas.

• Time
• People and skill sets
• Hardware and software

Time is obvious. How many people do you need and how
many person hours will it take? Multiply people by their
hourly rate (or an average). Don’t use a best-case scenario,
but don’t use a worst-case scenario either. Take a hard look
at the project and make a good, solid, realistic estimate.

People and skill sets. Do you have the skills the project
needs? If not, you’ll have to acquire them by either training
existing staff or hiring contractors. If you have to train or
bring in outside help there will initially be some non-
productive time, so be sure to adjust your time estimate to
allow for people coming up-to-speed.

Your people-related costs should be adjusted to account for
certain “environment factors” that are beyond the scope of
this paper but are detailed in the Roetzheim series. Keep in
mind that you need the people and skills not only to develop
and implement the project but also to maintain and upgrade
it over its life cycle.

Hardware and software costs are also obvious. Either you
have what you need or you don’t. But make sure you know
what you need and what you have before submitting your
ROI estimate. Finding out a month into the project that you
need $10,000 for DASD will blow away your credibility and
may sink the project. Even if you don’t need extra DASD
this year, what about next year? Forecast your needs three
years out.

Benefits

Benefits should be calculated after the costs. It might
quickly become clear that the costs are prohibitive. There
are four categories of benefits derived from IT:

• Time Savings
• Personnel Savings
• Operational Savings
• Revenue enhancement

As a simplified example, lets say that we have an idea to
automate a set of ten weekly reports that require fifteen
person hours to generate, validate, copy, and distribute
through interoffice mail to thirty-five people. Because the
process has been stable for a number of months, we want to
automate everything: the report generation and validation
processes, change the output from listings to spreadsheets,
and then email the spreadsheet to the recipients. If there
are no validation problems (and there haven’t been), the

entire process will happen Sunday afternoon and the fifteen
person hours are reduced to zero.

Time savings are the amount of time saved by the user
community. It is a sort of “time to market” concept and can
be difficult to quantify. In our example, the users are the
people receiving the reports. We will have to talk with them
to get a feel for the value (if any) that they will derive from
having the reports in spreadsheet format at 8 am Monday
instead of Tuesday when the interoffice mail is delivered.

Personnel savings include improvements in staff utilization
such as allowing a staff member to redeployed from one
area to another, reducing the number of temporary hires, or
slowing the rate of new hiring. Deferred training costs
should be included here. Average annual salaries can be
used in this estimate. In our example, the person who
modifies and submits the program each week and the
person who validates the results can be reassigned to other
work. Here we save 15 person hours, so we multiply 15
hours by the average hourly salary. But we should reduce
that number by an efficiency factor of 30% because not all
time saved will be redirected productively.

Operational savings can be unexpectedly high as you
“speed up” a system to run a job faster or “scale up” to
handle more work in the same amount of time. To estimate
savings in this area, the Systems Administrator can provide
an estimate of how much it costs to run the system on an
hourly basis. In our example, the project may require a
substantial rewrite of the existing report generation code and
that may allow us to make the code more efficient. Time
saved here, though, will have to be subtracted from the time
it takes the new validation routine to run.

Operational savings also include deferred software and
hardware costs. It may be that one of our motivating factors
for our project is that we heard a rumor that the IT group was
considering purchasing an OLAP software package to do
what our project does. Since we already have SAS
Software, we don’t have to purchase the new package,
install and implement it, or train users. We also save the
paper that the hardcopies are printed on. Finally, if the
reports deal with inventory, there may be savings attached to
being able to place a restock order Monday morning instead
of Tuesday afternoon.

Revenue enhancement from an information analysis or
delivery project can be difficult measure. If a manager uses
your information along with other information (and his own
experience) to make a decision that generates $250,000
more revenue, it’s difficult to assign a percentage to any one
piece of information that he used. But if your project will
result in faster turn-around or higher response for a
marketing campaign, it’s easy to assign a dollar value to that
“lift”.

Which Projects Will Be Approved?
The surest way to getting a project approved is to learn your
organizations priorities and strategies and then propose a
project that supports them. A project that delivers well-
defined business results that support strategic goals should
always make the first cut in a budget review. Finding a
partner on the business side to help you develop, focus, and
refine your initial concept will also improve your chances.
Decision-makers are always more likely to approve projects
that are jointly developed by business and IT staff. Further,
projects that already have business support will get priority.

IT projects related to data and information differ in their
business value. Capturing raw data is good, but in and of
itself doesn’t add value; analyzing and reporting adds value

to data. Discovering patterns, running complex statistical
analyses, and model building adds even more value.

As a joint SAS Institute/EMC White Paper describes it, there
is a continuum along which data moves to first become
information, then knowledge, then intelligence, and finally
wisdom. It’s at the higher levels that companies gain the
highest ROI in information gathering, processing, reporting,
and analysis. Figure 1 depicts how moving from having raw
data to performing predictive analysis increases the power of
information and, consequently, ROI.

Figure 1. Information Power = ROI

Information’s value also increases as more people have
access to it, and delivering the right information at the right
time to the right people is extremely valuable. Applications
that deliver information are high value-added projects, and
the Web provides a perfect channel to expand information
access to front-line supervisors and customer-facing staff.
Applications that automate processes and tie together data
analysis and delivery are also high value-added.

The Project Justification Document
A Project Justification Document is not a formal IT Proposal.
IT Proposals are usually required only for major system
implementations or modifications. It provides management
with a comprehensive evaluation of a significant problem,
suggests options, presents the preferred solution, and asks
for a go-ahead. An IT Proposal is much more time and
research intensive than a Project Justification and is usually
a formal group project that includes team members outside
the IT group. Our focus here is on a “quick and dirty” Project
Justification Document that may be a precursor to an IT
Proposal.

The Project Justification Document is exactly what it says: it
justifies the project and says on why it is important. Let’s
define the terms.

Project: An extensive undertaking requiring an
extended, focused, concerted effort.

Justification: A condition that demonstrates a concept
or action to be right, valid, or just.

Document: A written or printed paper that contains
information presenting decisive evidence

Based on our definition of terms, you need to identify a basic
message, the message contents, and a writing style. Your
language and style should be should short, clear, and
concise. More is not better. Remember that non-technical
business and budget managers may be reading it.

S
eg

m
en

t

At tr i t ion

Return on Inves tment

P o w e r

Da ta Informat ion Knowledge Intel l igence W i s d o m

R a w
Data

S tandard
Repor ts

Ad hoc Repor ts
a n d O L A P

Descr ip t ive
Mode l i ng

Predic t ive
Mode l i ng

• Be direct and unequivocal (don’t say “in first
quarter 2002, say “in March 2002”,”);

• Quantify when appropriate and possible (don’t say
“ several dozen users”, say “36 known users”);

• Be specific (don’t say “this project is important”,
say “the outcome of this project will enable
<someone> to achieve their goal of <goal>.

The document should be only two or three pages long. Each
section should have a short heading and be no more than
two or three paragraphs and a table. Where possible, use
bullet points instead of a paragraph. Here are some
buzzwords that should be relevant to a software project.

1. Effectiveness – the ability to work smarter and do
more with less.

2. Productivity improvements wherein fewer people
do the job in a shorter time period.

3. Ease of use, requiring minimal training and having
a steep learning curve.

4. Reuse of hardware and software that the
organization already owns.

5. Scalability and the ability to accommodate growing
volumes of data, demands for speed, and
increasing numbers of users.

6. A neutral architecture that conforms to industry
standards and supports multiple platforms.

7. Data exchange and integration with other
applications.

8. Reuse and sharing of the project’s components
and modules within the development organization
and for future projects.

Writing a Project Justification Document
Know Your Audience

The purpose of the justification is to persuade decision-
makers that they should approve and fund your proposal by
allocating time and money in the budget. But who are these
decision-makers? It’s entirely possible that your own
supervisor or manager is not one of them. Instead, they may
your organizations senior managers—your boss’s boss—
financial group managers, and budget analysts. Very likely,
people who know and understand your technology are not
among them, so you have to be very clear and specific in
your writing.

What do they want to know? They want to know the same
things you want to know when you are trying to decide
whether or not to purchase a product or service for your own
use:

• What specifically is it?
• What specifically will it do?
• How much does it cost?
• How much does it cost to maintain it?
• When will I get it?
• Can I trust the seller?

Write an Outline

Writing an outline is similar to flowcharting: everyone usually
agrees that it’s valuable, but it’s usually not done. In this
case, it helps organize your points, identify which information
to include, and avoid things that obscure your message.
Major sections of the outline contain:

• Alignment with a business objective or a strategic
goal. (“Here is our goal, and this will help us
achieve that goal.”)

• Cost estimates. ("This is what it will cost you to do
it and what it will cost to maintain it.")

• The approach. ("It will do what it will do.")
• Key deliverables and a schedule. ("This is what

you will get and when you will get them.")
• A project control plan. ("This is how you know you

are getting the work done on time and within
budget.")

Flesh out the Outline

Align with a business objective or a strategic goal. Find out
what objectives and goals are hot buttons with the decision-
makers and think of ways that your idea will support those.
Generally, this means doing things better, cheaper, or faster
than they are now. You need to increase revenue or
decrease costs. Start with a “Project Objective Statement”:

 "To [implement, complete, activate, etc.] [what] by
[month, year], which will enable [business group,
function, or process] to [increase, decrease, etc.]
 [what - related to business objective].

Cost Estimates. The cost estimates here are neither
exceedingly detailed nor agonizingly accurate. Although
accuracy definitely counts, senior managers and financial
analysts are comfortable with estimates and realize that
you’re projecting costs up to six months in advance. Always
give a good faith estimate. Depending on how much you’re
asking for, you should probably round your estimates to
thousands or hundreds of dollars. At a minimum, the cost
estimate must include the total amount requested, broken
down into personnel expenses and non-personnel expenses
for a specific time period, usually the coming fiscal year.

Personnel expenses include the salary cost of employees
who will be working on the project only the period of time
that the employees will be assigned to the project. That is, if
a person is working full-time on the project for three months,
only one-quarter the annual salary is requested for the
project. Also include cost estimates for contractors who will
be needed for the project. (Obviously, by the time you get to
this point you will need to know the skill sets that your project
will take and the number of man-hours it will require.)

The amount for non-personnel expenses must include all
other expenses associated with the project. This includes
hardware and software acquisition and licensing, training,
travel to the training, reference manuals, the cost of setting
up work cubicles, long-distance phone calls, even for late-
night dinners. Think of everything. Don’t knowingly
underestimate here and blind-side your managers later with
a request for something you should have foreseen, like
$2,500 to send a developer to Java training when your
training budget was $49.95 for “Learn Java in 15 Days”.

It’s important that your cost estimates not only include costs
to get the project completed, but annual estimates of what it
will cost to keep it in production over its life-cycle. Is there
an annual license renewal associated with the software, or
as the database grows will you have to purchase more disk
space? If so, get those costs out in the open now. It helps
establish your credibility, and by showing that you’ve done
the research you’ll somewhat reduce the likelihood that
anyone will question your numbers.

The Approach. Briefly explain how you identified the need
for the project and the steps you’ll take in the design,
development, testing, and implementation phases. You
should include a paragraph about how you’ve worked closely
with a business partner in developing this solution. (How
else would you know that this is the right solution, right?)

It’s important to include a few sentences on any significant
risks and how they will be prevented or mitigated. Be up-
front about the risks, but don’t dwell on them. If, for

example, you need a UNIX server with a specific
configuration and you’ve found an underused box that fits
your specs and your cost estimates assume that you’ll get
access it, you must say what the consequences will be if you
don’t get it—either you’ll be delayed while you find another
box or the cost goes up when you buy a box or the project is
stopped. If you need a team member with a specific skill set
like Java, what will be the consequences if that person isn’t
available when you’re ready?

A description of how you will assure that the project will
deliver results is also necessary. This could include a
concise overview of the software development and/or project
management methodologies that will be used, the extent of
end user involvement in development and testing, project
progress reporting, and post-implementation follow-up and
evaluation. This section should not be exhaustive treatment
of any of the items mentioned. The intent is to help decision-
makers understand that you have thought through the
project and understand what needs to be done to deliver
what you are promising.

Key Deliverables and a Delivery Schedule. This is where
you spell-out what they are getting for their money and when
they will get it. Deliverables are tangible products that the
project will generate; there are intermediate deliverables
(e.g., a beta version of a software) and final deliverables
(e.g., fully tested and documented software placed in
production). Always include the final deliverable and
delivery date. Don’t over promise! A delivery date appears
“overly aggressive” will make people question your credibility
and ask more questions.

Depending on the project, intermediate deliverables could
include:

• Business and System requirements documents
• Hardware acquisition specifications and

installation
• Pilot project results
• Software installation
• Database design and implementation
• Evaluation and acceptance testing
• User documentation
• User training

The Project Control Plan. Briefly explain here how you will
keep the project activities on track and insure that it will be
finished on schedule. This section should include a few
sentences each covering:

• Project plans and schedules. (Avoid details.)
• A short table of key milestones and dates.
• Key performance indicators for monitoring and

tracking progress.
• The process for taking corrective actions when

needed.
• What periodic meetings you will have, who will

attend them, and when, how, and to whom you will
communicate project status.

Double check the numbers and get a peer review

Budget numbers are closely checked so don’t let a simple
mistake in arithmetic undermine your proposal. Even though
many of the people reviewing your proposal may not be IT
professionals, they’ll know enough to know when they’re
being sandbagged. Don’t use clearly unrealistic estimates
because credibility is the very first criteria a proposal must
pass.

Get a peer review from someone who isn’t familiar with the
business issue you’re address or the technology you want to
use. After they read it, ask them to tell you what the project

is, what it is for, what the business benefits are, and why it’s
important. If your reviewer can’t answer these questions, the
people reviewing your proposal won’t be able to either.

Summary
An idea needs to be funded before it becomes a project, and
funding depends on the anticipated Return on Investment
(ROI). Calculating ROI is not necessarily difficult, but it’s
critical that the Project Justification Document presenting the
ROI be clear, concise, and as accurate as possible.

Although the Project Justification Document may be only the
first step in the approval process, it’s a critical first step. For
that reason, it’s important to keep in mind that non-IT staff
will very likely review your proposal and that the Document
has to clearly describe the project, what it will accomplish,
and how much it will cost in addition to how much it will add
to the bottom line.

References and Resources
Hummingbird. “Enterprise IT Value: Beyond Data
Warehousing and ROI.”
www.humingbird.com

Information Discovery, Inc. “Measuring the Dollar Value of
Mined Information”.
www.datamine.aa.psiweb.com/infoval2.htm

Resources Management Systems, Inc., on-line tutorial. “Get
Your IT Project Funded – 5 Steps to Improve the Odds”.
www.rms.net/tut_proj.htm

Roetzheim, William H. “Estimating Software Costs.”
Software Development Magazine, 4-part series, October
2000 to January 2001.
www.sdmagazine.com/articles/2000/0010/0010d/0010d.htm

SAS Institute and EMC, Inc. “SAS and EMC: Working
Together to Turn Data into Knowledge.” White Paper.

The Beta Group. “IT Budgets in Uncertain Times, Part 1:
Managing The Legacy “Entitlement Programs”. Working
Note, 2001.

SAS and all other SAS Institute Inc. product or service
names are registered trademarks or trademarks of SAS
Institute Inc in the USA and other countries. ® indicates
USA registration

Contact Information
John E. Bentley 704-383-2686
First Union National Bank John.Bentley2@FirstUnion.Com
201 S. College Street
Mailcode NC-1025
Charlotte NC 28288

About the Author
John Bentley has used SAS Software for fourteen years in
the healthcare, insurance, and banking industries. For the
past four years he has been with the Enterprise Information
Group of First Union National Bank with responsibilities of
supporting users of First Union’s data warehouse and data
marts and managing the development of SAS client-server
applications to extract, manipulate, and present information
from it. John regularly presents at national, regional, and
special interest SAS User Group Conferences and local SAS
User Group meetings.

Web-Intelligence: A Primer
Don Henderson, PricewaterhouseCoopers LLP

Ralph Mittl, PricewaterhouseCoopers LLP

Abstract
Web-Intelligence (also referred to as e-
Intelligence) is the application of business
intelligence and analytics to data resulting
from activity at a web site. Given the advent
of e-commerce, such data is becoming very
important to organizations as they strive to:

 Understand who their customers and
prospective customers are

 Provide appropriate content to their web
site customers

 Leverage other information they have
about customers and prospects from
other channels

Much attention is given to concepts like
web-site personalization engines, click-
stream analysis, predictive modeling, web-
site optimization (the list goes on).

In order to fully leverage this data, it is
essential to have an understanding of what
data are available and the types of
questions that data can help answer. The
next step is then to use a proper data
warehouse platform to support the access,
management and analysis of that data.

This paper will provide an overview of the
key concepts involved in making effective
use of web log data.

Basic Definitions
There are a number of metrics and terms
that are discussed in the web-intelligence
space. In order to leverage the data
available from a web site, it is essential to
understand exactly what the metrics are,
and their corresponding limitations.

One of the most commonly discussed
metrics is Hits. When a user visits a web
site, each request is logged, and each of
those requests is counted as a hit. The Hits
metric is of interest to those who manage
web sites and are interested in load,
demand, etc. However, Hits is a metric
whose value can be misleading. For
example, if a single web page has 15
graphics, then whenever a user makes a
request to see that page, there are 16 hits.
One hit is counted for the main web page,
and one for each of the 15 graphics.

The Page View is an attempt to deal with
this shortcoming. A page view counts the
number of requests to load a single web
page, regardless of the content on the
page. This metric is often measured by
excluding from the counting any graphic or
multimedia files. However, there are a
number of other confounding factors that
impact page views. For example, consider
an HTML page that is a frameset, with two
embedded frames (or panels). The question
is whether to measure Page Views for the
individual panels (which are also HTML
pages) or the frameset definition page.
Thus, this could be considered a single
Page View for the frameset or single Page
Views for each frame (or pane).

The number of Visits or Visitors is a
measure of how many times any user has
viewed any page on a web site within some
prescribed time period (a Session). Note
that if a user leaves the site and returns
after the prescribed time period ends, this is
interpreted as two visits.

Summarizing these, consider the scenario
where a single person visits a site and
views 7 pages (no frames to keep the

example simple), each of which has 5
embedded graphics. The values for these
metrics would be:

 Hits: 42
 Page Views: 7
 Visitors: 1

Next, let us consider the concept of a
Unique Visitor. A unique visitor is an
identifiable individual who visits a web site
and is typically a major interest to most
business users. However, quite often, the
term Visitor is (incorrectly) used inter-
changeably with Unique Visitor. Measuring
unique visitors is problematic because, at
its core, the web is an anonymous/stateless
environment. Thus, any attempt to measure
or quantify unique visitors requires the
application of business rules.

The term Click-stream (or click-stream
data) is often used and is also subject to
many interpretations. Some uses of the
term click-stream data refer to any/all the
data collected from the activity of
users/visitors requesting pages from a web
site. In the context of its intended use,
however, the term click-stream is intended
to mean a data-based representation of the
path or sequence of activity (e.g., pages
viewed) while a user navigates through a
web site. It is this pathing data that is
typically of high interest (e.g., what click-
stream paths through my web site resulted
in more or higher-value purchases?) to
most business users. It is also this type of
data that is most desirable for Data Mining.

Cookies are widely used, reviled and
misunderstood. A cookie is simply a text file
that is stored on a user’s local machine and
contains data specified by a web-server.
The data is specific to that server and the
data stored in a cookie are only available to
the server that provided them. A standard
Set-Cookie script allows the web server to
specify the following:

 Name
An arbitrary string containing the name
of the cookie.

 Value
Any specified value, as a string, to be
stored in the cookie.

 Expires
The datetime the cookie should expire
(Greenwich Mean Time). Note that a
value can be provided that indicates that
the cookie should never expire.

 Domain
Domain name of the server(s) that can
read the cookie. A domain cannot read
a cookie unless the server that created
the cookie grants permission explicitly.

 Path
Pathname in the domain for which the
cookie is valid.

The form and location of these cookies
depends on the browser being used.

Cookies can be used to provide a variety of
facilities, including:

 The storage of user preferences

 A unique user identification

 Market Basket data

While cookies themselves are somewhat
innocuous, they have been used in the past
to do things that many users feel to be
inappropriate or invasive. Thus, the use of
cookies must be carefully evaluated in any
web environment.

A cookie is often used to identify you when
you return to a web site (e.g.
AMAZON.COM). To accomplish this, the
cookie stored some identification key that
the site could translate to your name or
some other value you have provided to that
site in the past. When you visit the site
again, the data in the cookie is provided by

your browser to the web server and that
information is then used to populate the
page you see.

Web Log Data
Web servers log their data to log files,
creating the most common source of data.
There are a number of standards, the first
being Common Log Format (or CLF). The
successors, by and large, are the
Combined Log Format or the Extended Log
Format (ELF) which includes additional
commonly used/needed fields.

The ELF Data
The ELF fields include, among others:

 Host
Host is the Internet address of the
browser or other agent making the
HTTP request and the location where
the response will be sent. The value for
host is the numeric IP address (e.g.,
“124.11.121.11”) and that is the value
that will be typically seen in web logs.
Most web servers can resolve this
address into a text domain using an
Internet query protocol called reverse
DNS (Domain Name Server) lookup.
This is a process whereby the IP is
replaced by the domain name (e.g.,
www.microsoft.com). This makes logs
more readable, but can increase the
load on the server dramatically if done in
real time. More commonly, if DNS
lookup is needed, the IP lookup is
integrated with the Data Warehouse
ETL process.

At first glance the results of DNS appear
to be potentially very useful (e.g. what
percent of my visitor are from
SAS.COM). However, upon examining
the data it is only useful for a limited set
of reporting functions. For example, a
B2C site will typically find that the vast
majority (e.g., upwards of 80%) of the
IPs resolve to AOL.COM. Thus,
knowing the actual domain name

provides little discriminatory value.

As discussed later, this IP value is
commonly used to identify visitors and
sessions. The IP value remains constant
during a browser session, and can be
used to tie events together where a
more reliable mechanism such as a
cookie or server-generated session ID is
not available.

 Ident
The ident data element is an arbitrary
identifier that can be supplied by client
applications that support the identd
(identity daemon) protocol. Most
common browsers do not provide this
value and so this field is rarely if ever
used.

 Authuser
Authuser is a user ID that the web
server will prompt the user for if HTTP
authentication has been enabled on the
web server. The user must enter a valid
user id and password before the web
server will provide any pages to the user
browser. Only the user id is stored in the
web log as providing the password
would be a security breach.

Figure 1 shows an example of a prompt
that the browser will display if the web
server signals that HTTP authentication
is required.

Figure 1. HTTP Authentication

Many people incorrectly associate the

Authuser field with requests that are
made to a secure server using the
HTTP secure sockets layer (SSL). Such
URLs begin with HTTPS instead of
HTTP and are commonly used at sites
where sensitive data (e.g., credit card
numbers) are entered. The Authuser
value is logged whenever HTTP
authentication is enabled and that value
is written to every web log record even
though the user is only prompted once.

 Time
Time is usually the time when the web
server completed the response to the
HTTP request. It is usually is set to GMT
(Greenwich Mean Time). For web sites
that are supported by multiple servers,
atomic clock should utilities be used for
all servers to ensure synchronicity.

 Request
The request field contains the actual
request line from the browser, for
example “Get /mypage.html HTTP/1.0”.

In this example, GET is the HTTP
method, the next section is the Uniform
Resource Locator (URL), and HTTP/1.0
is the protocol version being requested
by the client. The two most common
request methods are GET, which
requests an object from the server, and
POST, which sends information from the
browser to the web server.

 Status
Status is the three-digit status code
returned to the browser from the server
and indicates whether the page was
returned to the user’s browser (and, if
not, why not). Example values include:

 200 (OK)

 302 (Moved Temporarily)

 404 (Not found)

 Bytes
Bytes is the count of bytes returned to
the client by the server. It is seldom
used, but is important to certain sites.
For example, a site providing video or
audio files which are large would likely
make more use of this field (e.g., how
many of my first-time visitors are
downloading files larger than 300K).

 Referrer
Referrer is a text string that contains the
referring page, i.e., the URL of the page
that contained the link a user clicked on
to get to the current page. The referrer
field allows you to trace how a user got
to a page by navigating backwards
through the web log.

If a page contains images or embedded
pages (e.g., framesets or iframes), then
the referrer value for the page
component is the container page that
includes the references.

It is the referrer field that typically
provides the data source for click-
stream data.

 User-agent
The user-agent is the name and version
of the client software making the
request, and the corresponding
operating system. This can be used to
ensure that only content that can be
supported is sent to the client.
Unfortunately, this is very difficult to
accomplish, as there is still not a widely
used industry standard. For example,
both Internet Explorer and Netscape
have their own proprietary version of
Dynamic HTML, Cascading Style
Sheets, etc. and their own extensions as
well as supporting some but not all of
the supposed industry standard data
elements.

On an Intranet (as opposed to Internet)
site, this is typically a more manageable

problem as standards can dictate what
the supported browser (and version) is.

In addition to browsers, the user-agent
field can also contain values for search
engines, spiders, or web-bots that crawl
the Internet (or an Intranet) to find, index
and catalogue text.

An application that makes an HTTP
request can provide any value it wants
for the user-agent field. This field can
also be easily changed by the end-user
in their registry or other appropriate
system location. In developing their
WebHound solution, SAS Institute
identified well over 1000 different values
for user-agent based on just examining
the web logs for their external site.

Data Usage Problems
When using data to investigate an issue, it
is important to understand the nature of the
data, how it was collected, and how it can
be used. There are a number of issues
relating to the quality of web intelligence
data that must be considered.

The Visitor Problem
At the core of any web-intelligence effort is
the need to uniquely identify visitors.
However, as described above, the web is
an anonymous and stateless environment.
Thus, the identification and definition of a
unique user must be dealt within the design
of the web site. For some environments,
uniquely identifying a user is
straightforward, while for others it can be
next to impossible.

For an Intranet site that requires
authentication to the web-server, the user’s
id is automatically captured by the web-
server, is written to the standard logs, and
is easily made available to any web
application server.

For the typical Internet site, web server
authentication is not an option. Thus, other
techniques must be used to identify visitors.

Cookies are commonly used to identify
unique users. When a user visits a web
site, the web server can request that a
cookie be created on the user’s pc and
store some anonymous but unique identifier
in that cookie. Any future visit to that web
site will include the cookie value and so it is
possible to identify a unique user (though
this technique does not provide any other
information about who the user is). There
are a number of problems with this option:

 Some users may disable cookies

 If multiple users share a single machine
(e.g., a home PC), the unique visitor
identification is really identifying a
household and not an individual

 A user may roam (e.g., use more than
one pc) and have different cookie values
on different PCs.

 The cookie on a specific PC represents
that PC and not the specific individual
user.

Regardless, the use of cookies is a widely
used technique that can suffice for many
situations.

Another commonly used technique is to
request that the user log in or identify
themselves to the site. However, this
requires that the web site provide some
incentive for a frequent visitor to log in vs.
browsing anonymously. It also requires that
the web site be designed so the values are
propagated as the user navigates through
the web site.

The most widely used technique groups
together log records with the same IP
number and assumes that they represent a
single visitor if the time between successive

requests is less than some value (30
minutes is typically used).

The use of the IP number to identify unique
visitors has limitations. First and foremost,
the IP is not tied or associated with a
specific visitor. A few scenarios where
multiple users could share a single IP
include:

 Multi-user Machines
More than one person is using the same
machine to browse the web site, and
since the IP is associated with the
machine, multiple users are
indistinguishable.

 Proxy Servers
A proxy server is used by many
organizations and ISPs to cache
commonly requested content. When a
user makes a request for a page, it is
the proxy server that is making the
connection to the web site and so the IP
of the proxy server is logged. Thus all of
the individuals going through that proxy
server are indistinguishable.

 IP Reassignment
If a user logs off (e.g., disconnects from
their AOL account), his or her IP is now
available for use by someone just
logging on.

It is also possible for a single user to have
two IPs. Many Internet Service Providers
(ISPs) have a policy that if there is no
activity for some time period (e.g., 15
minutes), the user’s connection is
terminated. Consider the scenario where a
user is browsing and stops on a page, gets
distracted, and returns 20 minutes later and
continues to browse. When they click on a
link, a new ISP session is begun and they
likely have a new IP. Alternatively, for sites
with multiple proxy servers, any given
request from a client to an external site can
appear to come from any one of these
proxies.

The Click-stream Problem
The holy grail of web intelligence is the use
of click-streams or pathing data in order to
gain insight into customer behavior. For
example, if you can identify patterns in the
click-stream that result in a higher
propensity to buy, or that increases cross
selling of related products, the usability and
profitability of a web site can be improved.

There are (at least) two stumbling blocks to
making use of click-stream data. First is
ensuring that the click-stream path is
collected completely and correctly. A
second issue is the size of the data volume.

Consider the problem of ensuring that the
click-stream path is collected completely
and correctly. The data that is available is
based on activity/requests made to the web
server. However, there are external factors
that can prevent a complete click-stream
(from the user’s perspective) from being
collected. The issue is caching of pages –
either by the user’s browser or by a proxy
server.

Follow the click-stream path below:

1. user starts at page New Orleans

2. clicks on a link to Shopping

3. clicks on a link to Clothing

4. clicks on a link to Jax Brewery

5. browser back button, to return to New

Orleans

6. clicks on the link to Shopping again

7. goes back to New Orleans

8. clicks on a link to Mardi Gras

9. clicks on a link to Mardi Gras America

10.decides to buy

11.and continues.

So the user’s actual click-stream path is:

New Orleans:Shopping:Clothing:Jax
Brewery:New Orleans:Shopping:New

Orleans:Mardi Gras:Mardi Gras America,
etc. . .

Due to the fact that the browser has cached
the pages, when the visitor uses their back
button, there likely is no record at the web
server of that activity, so the data that is
logged might be:

New Orleans:Shopping:Clothing:Jax
Brewery:Mardi Gras:Mardi Gras

America, etc. . .

Further, suppose that the pages New
Orleans and Shopping (being the main
pages at a popular site) were cached by a
proxy server (and lets ignore the issue of
identifying the visitor for this example). The
resulting click-stream recorded at our web
site might be:

Clothing:Jax Brewery:Mardi Gras:Mardi
Gras America, etc. . .

An analysis of this data might yield the
conclusion that this is THE path that leads
to higher-value purchases when in fact,
pages Clothing and Jax Brewery are
digressions and, in fact, many visitors to
Clothing and Jax Brewery may actually
abandon the site. The important path might
be New Orleans:Shopping:Mardi
Gras:Mardi Gras America. However, that
is not what is recorded in our click-stream.

A compounding factor is browser favorites.
By saving an intermediate page in the click-
stream path as a favorite and returning to it
later, the actual path that the user took may
be spread out over several sessions. As a
result, when the user makes the decision to
buy, it is a truncated click-stream that is
recorded in the log.

Next, consider the issue of data volumes.
The click-stream paths that can be

recorded are both very long and very
voluminous. The patterns of interest are
likely a small subset of a much larger click-
stream. If one considers the entire click-
stream, then many of the paths are going to
be unique. The cardinality of the data is
very high and so any analysis of the data is
difficult at best.

As yet, no one has identified an apposite
solution to these problems. However, the
problem can be made tractable by scaling
back what is examined. Instead of
examining all of the click-streams, a site
should consider identifying a small subset
of pages of interest, and then build the
click-stream paths for just that subset.
There are at least two techniques that
should be considered:

1. Pathing To
Identify an ending page of interest (e.g.,
checkout) and then examine the click-
steams that lead to this page.

2. Pathing From
Identify a starting page and examine the
click-streams that start from this page.

The Web-Intelligence Platform
In order to provide a robust solution that
integrates the data/information available
from web logs, it is both necessary and
appropriate to consider the design of both
the web site as well as the data warehouse.
Each of these will be covered briefly in the
following subsections.

Web Site Design
Depending upon the scope and purpose of
the web site, there are a vast array of
techniques and methodologies that can be
employed. While many are specific to the
scope/purpose, some are more general in
nature. Some of the common design
considerations are included below.

 Dynamic vs. Static Pages
Web sites can be composed of a
combination of both dynamic and
statically generated pages. The primary
advantage of static web pages is that
such pages can be served quickly and
easily. Dynamic pages can be
customized to the user, and tracking
access to them is less likely to be
impacted by caching issues (by either a
proxy server or the user’s local browser
cache). Dynamic pages place a higher
demand on the web server. Sites can be
built using either of these techniques or
a combination. There are a number of
techniques that can be employed for
dynamic page generation, including:

 Common Gateway Interface (CGI)
 Servlets
 URL rewriting

 Content Labels
Content labels for pages allow the page
events to be classified and coded for
later analysis. These labels can either
be coded manually, or may be
generated by application files or
directory structures automatically. Such
an index can then be integrated with the
web log extract system to be used as
part of the Extract-Transform-Load
(ETL) system. For both static HTML
and dynamic HTML pages, tables must
be set up and rigorously maintained.
Possible classifications for content
labels include:

 Page source (static, dynamic)
 Page template (catalogue, index)
 Page function (site index, product

catalogue, FAQ, announcement)
 Item code (product ID)

And others as mandated by the
business requirements.

 Use of a Null Logging Server
There are numerous names for this

technique. It has been made popular
(and to some extent, infamous) by
Doubleclick. The basic idea is to embed
a reference on a page to an image (or a
cgi reference, etc.) that is located on
that server. By embedding such an
HTML tag into a web page, a single web
log record is written on the null logging
server that contains the requested
image as well as the page that
requested it (in the referrer field). That
data can then be directly used for click-
stream analysis. One technique
commonly used to do this is to use an
HTML IMG tag to request a one pixel
sized transparent .gif file. This results in
a record being written to the server web
log. By using a one-pixel .gif (also called
a webdot), there is a minimal impact on
the download time because of the small
size of the picture. Thus, it can be done
relatively transparent to the user.

Alternatively, instead of using a
separate web server, the webdot can
be served by the same web server. This
requires more effort during the ETL
process in order to identify the click-
stream.

 Unique URLs
If the site is part of an overall CRM or
Marketing Automation solution, then it is
likely that prospects, customers, and
users have received an email with a link
to the site. Such URLs can be made
unique to both the user receiving them
as well as the marketing campaign. In
order to fully leverage such data, it is
necessary to make sure that the entire
browsing session can be linked to the
page. One way to do that is to count on
the use of the referrer field to build the
click-stream path. Alternatively, the site
can be designed to propagate the
values on the original URL (e.g., to
identify both the user and the
campaign).

 Exit Point
Tracking the last page of a site that the
user visits is of very high interest and
value. Unfortunately, it is not easy to
identify. While the referring field will tell
you what page the user navigated from,
there is no way for the web log to
contain the page for which the user left
(though if the page is on the same site,
it can be determined). For example, if
your site contains links to external sites,
when a user clicks on one of them, there
is no information written to your server’s
web log recording that action by the
user. Since this is useful and important
information to have, many sites will
employ what is called a redirect page.
When the user clicks on such a link,
they can be brought to a page (either an
HTML page or a cgi, asp or jsp
application) that indicates that they are
leaving the site. Then the site either
makes them click again or automatically
transfers them after a short time. The
record written to the web server log
contains both a page on the current site
(thus is it logged) as well as the site the
user is being transferred to.

 Entry Point
Tracking the first page a visitor visits is
also important. Fortunately, this can be
determined in a straightforward manner
once visitors/session tracking has been
addressed. The entry point will typically
be the first page visited at the site for
any selected time window that has
either a URL for another site in the
referrer field (this is useful data as it
identifies where the visitor is coming
from) or no value at all for the referrer
field. The referrer field can be blank for
a number of reasons, the most notable
causes are:

 The user directly keyed the URL in
the browser address field, or

 A previously saved favorite was
used, or

 The user received an email with the
link, which they clicked on to access
the site.

Warehouse Design
There are a number of vendors and
products that can be used to create a
warehouse to support analysis of web log
data, such as:

 WebHound from SAS Institute

 eSite from Informatica

 WebTrends

 Accrue

 NetGenesis

They each have their strengths and
weaknesses. Instead of trying to compare
these offerings, this paper will focus on
general design principles that should be
factored into the decision for the
Warehouse platform.

Any warehouse platform must be scalable
and extensible and should include, at a
minimum, the following features or
capabilities:

 Warehouse Centric
The platform should be fully integrated
with a data warehouse environment and
should be based upon a data model that
addresses both the specifics of web log
data, and is extensible so that site
specific characteristics and fields can be
integrated into the warehouse.

 A Standard Web Log Data Model
The model should address the following
constructs at a minimum:

 Hosts
A table that contains information
about all the hosts (internal and

referring) that appear in the web log.

 Pages/URLs
Each unique page or URL that is
surfaced by the site should be
identified and should be integrated
with the Content Label functionality
as earlier described.

 Sessions
Each unique session should be
identified and information about it
should be available from a sessions
table.

 Visitors
Each visitor should be identified in a
table. If IP is used to identify visitors,
then the visitors and the session
tables will be one in the same. If
some mechanism (e.g., cookies) is
used to identify visitors then the
visitors table should be linked to the
sessions table using a one-to-many
relationship.

 Paths
Each unique path should be stored
in a table. It may also be appropriate
to define a table of unique paths by
session or visitor.

 Integrated with Other Channels
In order to maximize the effective use of
data collected from web logs, the
warehouse platform must enable easy
integration with other enterprise data
(e.g., customer history, product
information, etc.). If the web log
warehouse contains only information
about web-site access, its usefulness
will likely be limited to optimizing the
web site itself rather than providing
additional data that can be integrated
into a CRM environment.

 Static Reporting
There must be a rich set of publishable
reports that contain information about

web-site access and usage as well as
information of business value (e.g., how
many sessions, visitors, most common
entry/exit points, typical paths to
purchase, etc.)

 OLAP Tools
Since not all reports can be generated
statically, seamless integration with
OLAP tools to allow business and
technical users to slice-and-dice the
data for discovering trends and patterns
is an essential component of any
warehouse platform.

 Data Mining
Web logs can provide massive amounts
of data and so integration with data
mining tools that can be used to mine
and discover information contained in
the web logs is important. Data mining
the web log information is an ongoing
activity and should be targeted to
address specific questions. There must
be an ability to create data mining
databases specific to certain problems.
Trying to automatically mine the entire
web log data is likely to be not nearly as
productive as mining subsets of the data
extracted for specific questions.

 Web-based Platform
Reports and access to the data should
be web-based and deployed to any user
with a browser (with appropriate
security, as necessary). It is an
oxymoron to require proprietary desktop
applications to browse and mine web
logdata.

Summary
This paper has provided a brief overview of
the fundamental elements of web-
intelligence. Questions for the authors can
be directed to:

Don.Henderson@us.pwcglobal.com
Ralph.Mittl@us.pwcglobal.com

Case Studies in Data Management on the Web

Carol Martell, UNC Highway Safety Research Center, Chapel Hill, NC

ABSTRACT

The Highway Safety Research Center(HSRC) at the University of
North Carolina in Chapel Hill uses the data management
capabilities available through SAS/IntrNet® CGI Tools for several
projects. This paper will examine three applications. The PBCAT
Order application captures information, forwarding relevant fields
to a fulfillment house. The Walk to School application collects
data from the web and quickly resurfaces that data after human
scrutiny. The PedBike Information System is similar to a problem
tracking system. Questions are directed to a team of experts.
Both questions and answers are entered into the system, creating
a searchable database. This paper describes the structure of
these projects, which incorporate base SAS®, SAS/SHARE® and
two SAS/IntrNet components (htmSQL and the Application
Dispatcher) in a Solaris environment.

INTRODUCTION

For each case study we begin with how the application behaves
through a web interface. The parameter section describes project
requirements that give direction to the system design. The
solution overview describes the general organization and
dynamics of the system. The data management section
highlights coding techniques.

PBCAT ORDER SYSTEM

This software available free of charge on CDROM helps a
customer categorize pedestrian and bicycle crashes. The order
form is available on the virtual Web site hosted at Highway Safety
(Figure 1).

Figure 1

The process begins when a customer submits an online order
(Figure 2).

Figure 2

The order arrives at the fulfillment house in an email message:

Subject: PBCAT CD-ROM Order 868796
 Date: Mon, 28 May 2001 12:45:53 -0400 (EDT)
 From: somewhere@server.unc.edu
 To: fulfillment@thatplace.com

Please send a PBCAT CD-ROM to the following person:

Ms Carol Martell
UNC HSRC
730 Airport Rd CB# 3430
Chapel Hill NC 27599-3430
USA
 phone 919-962-2202
email carol_martell@unc.edu

This order was placed on 28MAY01

The customer receives acknowledgement email:

Subect: PBCAT CD-ROM Order 868796
 Date: Mon, 28 May 2001 12:45:53 -040(EDT)
 From: somewhere@server.unc.edu
 To: carol_martell@unc.edu

Thank you for ordering the PBCAT CD-ROM.
We will mail it to:

Ms Carol Martell
UNC HSRC
730 Airport Rd CB# 3430
Chapel Hill NC 27599-3430
USA
 phone 919-962-2202
email carol_martell@unc.edu

This order was placed on 28MAY01

Please wait 15 business days for delivery.
If you do not receive your cd within that time, please send email to:
contact@unc.edu and reference order number 868796.

If the customer does not receive the software, they may follow up

with the contact provided, who has access to a dynamic web
page showing all orders placed (Figure3). Each order has links
allowing address correction and reordering:

Figure 3

PARAMETERS
The fulfillment house is external to HSRC, so orders must to be
forwarded to them. Their legacy system only accepts manual
input, so we could not code something to automatically feed into
their system. Instead, order requests are submitted to them by
email. Because HSRC plans email notification to previous
recipients of future software releases, order information is
retained.

SOLUTION OVERVIEW
A single SAS table houses the order data. New information is
added to the table through the Web form in Figure 2.
Unacceptable mailing addresses, obviously invalid email
addresses, and inconsistent zip codes are returned to the
browser for correction and resubmission. Email to order the
software is automatically sent to the fulfillment house when a
record is added. At the same time, an email message
acknowledging the order is sent to the customer. In-house
maintenance is available through the dynamic web page (Figure
3) that lists each record with links enabling various actions. From
this page we can, for instance, correct an address and resubmit
the order for a customer.

DATA MANAGEMENT
The Application Dispatcher is used for data entry. All the
information from the web form is passed in to a SAS program as
macro variables. In the SAS code, a temporary, one-observation
table is created for the order. Data is checked for completeness
and validity. The following sample code shows email address
screening:

email="&email";
if email = '' then
 do;
 str='We need your email address';
 goto errorm;
 end;
if index(email,'@')=0 or
 index(email, '.')=0 then
 do;
 str='We need a viable e-mail address';
 goto errorm;
 end;

If problems are encountered, the customer is prompted to correct
the problem and resubmit. Further processing must be prevented
to avoid sending empty email messages. This is accomplished by
using a macro variable (&quit):

errorm: do;
file _webout;
put 'Content-type: text/html' ; put;
put '<h1> Please provide all required
information: </h1>';
put str "
";
put "Please provide the missing information
and resubmit
";

put "Thank you </html>";
call symput('quit','yes');
stop; end;
run;

data _null_;
x=symget('quit');
if x='yes' then do;
 abort abend;
 end;
run;

If all required data items are present and acceptable, the
temporary table is appended to the main table. Next, the order is
sent:

data;
set temporarytable;

filename sendit email
"fulfillment@thatplace.com"
subject="PBCAT CD-ROM Order &order";

file sendit;
put 'Please send a PBCAT CD-ROM to the
following person:';
put ' '/salutation first_name last_name /
organization;
…

The acknowledgement message is composed similarly. The
wording differs and the email filename statement contains the
customer’s email address in place of the fulfillment house email
address.
Customer inquiries about an order are resolved through the in-
house maintenance htmSQL page (Figure 3). This page lists
each order record with four links to other htmSQL pages. The six-
digit order reference number, created with a random number
generator, is used to specify the record in the links. The four
actions available for a record are update, delete, email and
reorder. We examine the entire htmSQL code for the main page.
We begin with the opening {query} directive pointing to the
SAS/SHARE server:

{query server="myshareserver"}

Next we select all records from the table:

{sql}
select * from mylib.cdrom
order by date
{/sql}

We will present the results in a single HTML table, so we must
first open the table and provide header information:

 PBCAT Order List for Maintenance
<table border=0>
<tr>
 <td>order date</td>
 <td>country</td>
 <td>state</td>
 <td>first name</td>
 <td>last name</td>
 <td>update record</td>
 <td>delete record</td>
 <td>email customer</td>
 <td>reorder for customer</td>
</tr>

We want an HTML table row for every observation. We specify in

the {eachrow} section the HTML formatting and variable display
for a single observation. This specification will be applied to each
row returned from the query:

{eachrow}
<tr>
 <td>{&orderdate}</td>
 <td>{&country}</td>
 <td>{&state}</td>
 <td>{&firstname}</td>
 <td>{&lastname}</td>

 <td>
update record</td>

 <td>
delete record</td>

 <td>
send email</td>

 <td><a href=
"…broker8?_program=a.reord.sas&o={&ord}">

reorder for customer</td>
</tr>
{/eachrow}

The first five HTML columns above display variable values. The
next three build the links with accompanying name/value pair.
The last column is an Application Dispatcher call to a program
that sends a reorder request to the fulfillment house.
Having composed the row, we close the {eachrow} section.
Next we close the table and the {query} section:

</table>
{/query}

The update.hsql page is exactly like the original order form except
that it is already populated with the observation’s values. We can
easily accomplish this by making a copy of the order form,
naming it ‘update.hsql’. We place a query to select a specific
observation at the top.

{query server=”myserver”}
{sql}
select * from mylib.cdrom where order=”{&o}”
{/sql}

Then we surround the form with {eachrow} directives, supplying
values for each field. For example, where the order form
contained an input field for first name with no value supplied:

<input name=”firstname” value=””>

the update form contains:

<input name=”firstname” value=”{&firstname}”>

The order number must be passed along in a hidden field.
Finally, we change the _program name to a different SAS
program - one that updates an observation’s values instead of the
one that adds a new observation.

The code for the htmSQL page to delete a record could contain
an {sql} section as simple as the following:

{sql}
delete from mylib.cdrom where order=”{&o}”
{/sql}

Weaving back and forth between htmSQL and Application
Dispatcher allows the developer to take advantage of the
strengths of each tool.

WALK TO SCHOOL 2001

This project is for a campaign to identify obstacles preventing
children from safely walking to school. HSRC hosts a website
(Figure 4) with an online registration application to help event
coordinators in the USA plan and publicize their local event.
Coordinators provide information and we surface it to the web.

Figure 4

Figure 5

When someone organizing an event registers online (Figure 5),
an acknowledgement window appears in their browser window
(Figure 6).

Figure 6

The record immediately becomes available for in-house
screening (Figure 7).

Figure 7

The screener can delete a bogus registration, approve it as is, or
correct typos and approve corrected version (Figure 8). Upon
approval, the registrant receives a ‘welcome’ email message
(Figure 9). The message includes a link for updating their record.
The link brings up a registration form already filled out with their
information, ready for additions (Figure 10).

Figure 8

Figure 9

Figure 10

All previously approved registrations are also available for in-
house review in an update mode (Figure 11).

Figure 11

The image map on the web site is the starting point for the public
to view event details for all registered events (Figure 12). States
with registered events are highlighted. Within ten minutes of
registration approval, a new registrant’s state becomes
highlighted on the map (Figure 13).

Figure 12

Figure 13

Clicking on the state brings up a list of communities with
registered events (Figure 14), and clicking on a community name
brings up event descriptions for that community (Figure 15)

Figure 14

Figure 15

PARAMETERS
This application is streamlined and otherwise improved from the
previous year’s registration application. Goals included avoiding
problems that cropped up the previous year. Registrants reluctant
to navigate a web site or to supply login and password can take
advantage of the update link provided in the welcome email
message. Those who mistakenly register anew instead of
updating are flagged on the screening page, minimizing the
chance of duplicating records. Registrants are allowed to choose
their own passwords. The code to refresh the image map and the
code to send the welcome email message is placed in frequently
run scheduled batch SAS jobs. No Application Dispatcher is used
in the system; it is written entirely in htmSQL and scheduled
batch jobs. Presenting a record to be screened in an update form
allows for on-the-spot typo correction. We introduce the use of
frames to simplify navigation for data maintenance.

SOLUTION OVERVIEW
A single SAS table houses the screened registration data. Each
unscreened registration or update is a separate table that is
deleted after screening. To flag instances where the customer
mistakenly registers anew rather than submitting an update, the
dynamic screening page provides links to display similar
preexisting registrations. Since passwords are user-defined,
duplicate logon information is also displayed. New submissions
and preexisting records are displayed side-by-side on the
screening page for easy comparison. Both new and preexisting
records are displayed in a populated form; each can be accepted,
modified or deleted.

DATA MANAGEMENT
Record flags are used to accomplish tasks requiring a data step.
A batch job is scheduled to run periodically that checks for the
welcome message flag. All new registrations have this flag set.
The job sends a customized message to the email address in
each record having the flag set and then resets the flag to 0. A
batch job publishes the image map of the US every 10 minutes.
Other tasks are accomplished using htmSQL. The screening
page frameset defines the layout seen in Figure 16.

<frameset cols="20%,40%,40%">
 <frameset rows="10%,90%">
 <frame src="menu.html">
 <frame src="screen.hsql"
 name="thelist">
 </frameset>
 <frame name="incoming">
 <frame name="existing">
</frameset>

This code divides the page into three vertical columns (frames),
the first of which is also divided horizontally. Each frame given a
name can be the target of a link from elsewhere on the page. We
use the convention of always displaying new data in the center

column, and always displaying preexisting data in the far right
column…hence the names ‘incoming’ and ‘existing’. The bottom
left frame displays screen.hsql, listing all new records for
screening.

Figure 16

We examine the code for screen.hsql. We query the dictionary
tables to find all tables other than the main registration table. If
there are none, we display a message to that effect:

{sql}
select * from
dictionary.tables where libname="WOCSLIB"
and memname ne "REGISTERED"
{/sql}
{norows}No new registrations at this time
{/norows}

For each registration found, we must look for similar names and
watch out for duplicate name/password combinations. We use
the nesting capabilities of htmSQL to accomplish our various
tasks:

{eachrow}
 {sql}
 select fnameas f, lname as l, type as t,
 uid as unew, pword as pnew,
 "{&memname}" as filename
 from wocslib.{&memname}
 {/sql}

We build a link targeting the center column to display the new
data. The variable type, aliased as t, specifies whether the record
is a new registration or an update, taking on values ‘new’ and
‘upd’. The link will resolve to either viewnew.hsql or viewupd.hsql.
They must differ because if the data is new it should be added
while updates replace an existing observation.

{eachrow}<a href=
 "view{&t}.hsql?f={&filename}"
 target="incoming">
 {&f} {&l} {&t} {&crdate}

We now look for similar preexisting data, comparing the names
using soundex and spedis functions. If we find none, we display a
message to that effect. For each record found we construct a link
to display the existing data in the far right column:

 {sql} select uid as u, pword as p,
 first_name as fn, last_name as ln
 from wmaint.registrants
 where
 (
 soundex(first_name)=soundex("{&f}")
 and

 soundex(last_name)=soundex("{&l}")
)
 or
 (
 spedis(first_name,"{&f}")
 +
 spedis(last_name,"{&l}")
 <50
)
 {/sql}
 {norows}no similar records{/norows}
 similar records already registered
 {eachrow}<a href=
 "viewold.hsql?u={&u}&p={&p}"
 target="existing">
 {&fn} {&ln}

 {/eachrow}

We perform another search for exactly matching preexisting
logon information (the login has been constructed by
compressing together first and last names). Again we either
announce that there are no matches or build links to these similar
records, targeting the far right frame. We close the
encompassing eachrow sections:

 {sql} select uid as ux, pword as px,
 first_name as fn, last_name as ln
 from wmaint.registrants where
 ux="{&unew}" and px="{&pnew}"
 {/sql}
 {norows}no matching login and password
 {/norows}
 already registered with login/password
 {eachrow}<a href=
 "viewold.hsql?u={&ux}&p={&px}"
 target="existing">
 {&fn} {&ln}

 {/eachrow}
 {/eachrow}
{/eachrow}

HTML formatting to display these results is not included in the
code above. The formatting we use organizes the gathered
information about each new record into a table with a border. The
similar names and matching login/password records are
displayed as unordered lists. Consequently, the person screening
data sees a box for each new record, with bulleted lists of
preexisting data that should be used for comparison.
Data screeners are very happy with this solution. Providing
access to all relevant information in a single Web page has
proved to be extremely advantageous.

PEDBIKE INFORMATION SYSTEM

The use of frames for the Walk to School application was applied
to another Web data management project. This project functions
like a problem tracking system. A panel of experts answers
questions posed by the public through a variety of avenues.
Questions and answers are logged into the system through the
web. The single Web page for this application is divided into five
frames (Figure 17). The top left frame provides a menu. We will
examine the avenues available there. Suppose someone named
David Harkey poses a question. The first step is to determine
whether or not he is already in the system. Entering a portion of

his name, ‘hark’, and clicking ‘find’ (Figure 18) sends a list of
matching names to the lower left frame. We see that a record is
found for David Harkey (Figure 19).

Figure 17

Figure 18

Figure 19

Clicking ‘see record’ sends his personal information record to the
middle frame (Figure 20). It is displayed in a form so that
information can be easily added or corrected.

Figure 20

Clicking ‘see activity’ sends a list of David’s questions with the
answers and outstanding referrals to the top right frame (Figure
21). Clicking ‘add question’ sends a form to the bottom right
frame (Figure 22). Clicking ‘answer’ in the activity frame sends a
form to the bottom right frame (Figure 23). Clicking ‘refer’ in the
activity frame sends yet another form to the bottom right frame
(Figure 24).

Figure 21

Figure 22

Figure 23

Figure 24

Dynamic select lists used throughout the forms provice choices
for items such as the expert’s name or the question source
(Figure 25).

Figure 25

To explore another avenue, we return to the menu frame (Figure
18) and click ‘todo’. A list of four followup categories appears in
the bottom left frame (Figure 26).

Figure 26

Beside each category is a numbered link for every item requiring
attention. We click the link to see a not-yet-conveyed answer in
the top right frame (Figure 27). The answer not yet conveyed is
displayed as a form with conveyance marked in red. Once the
answer is conveyed, the expert clicks the ‘completed’ button and
the item will no longer show up in the ‘todo’ list.

Figure 27

The menu (Figure 18) offers the ability to search questions or
answers for a word or phrase. We enter the search term, choose
the file to search, and click ‘find’ (Figure 28). Results are
displayed in the lower right frame (Figure 29). Each matching
item has a numbered link. Clicking the link would display the
specific question and answer(s) in the top right frame.

Figure 28

Figure 29

Now we choose the ‘keyword’ link from the menu frame (Figure
18). We see, in the lower right frame, three forms, two of which
have select lists (Figure 30). These forms manipulate keywords.
The first allows modification of an existing keyword.

Figure 30

Clicking modify brings up three choices (Figure 31). One might
find that two keywords should be collapsed into one, or that a
keyword was misspelled and should be replaced with a new,
correctly spelled keyword. Keyword deletion is also available.

Figure 31

The keyword search form (Figure 30) allows multiple selection of
keywords to find questions flagged with all the selected keywords.
The search results (Figure 32) follow the familiar conventions:
clicking the result number causes the question to display in the
top right frame (Figure 33) with the usual accompanying
information and links.

Figure 32

Figure 33

PARAMETERS
The system needed to track who is asking questions, what those
questions are, who is answering the questions, and what the
answers are, and needed to be searchable to allow reuse of
previously supplied answers. An expert should be able to refer a
question to another expert. All question and answer activity for a
customer should be available to help provide the expert with a
context. Determining whether someone is new versus already in
the database should be extremely easy. A list of keywords to
select and associate with questions must be included, along with
the ability to add new keywords. Since the experts are scattered
around the country, a web application was requested.

SOLUTION OVERVIEW
There are separate tables for the questions, answers, people,
keywords, referrals, and experts. Each person, question, answer
and referral is assigned a unique id. These are used to link the
information for display. Where possible, answers are
automatically sent by email or fax, using scheduled batch jobs
that search the answer table for flagged records, send the
answers, and change the flag values. Keyword management with
retroactive action is included.

DATA MANAGEMENT
We will examine the htmSQL page invoked by clicking the
‘activity’ button from the person record (Figure 20). The person id
has been passed in as ‘p’.

<h2>Activity</h2>
{query server="myserver"}
{sql}
 select fname, lname from pbic.person
 where pid={&p}
{/sql}
{eachrow}{* display name, person rec link}

 {&fname} {&lname}

 <a href="person.hsql?p={&p}"
 target="tm">
 see record

{/eachrow}
{sql} {* find questions for person}
 select qid as q, * from pbic.question
 where pid={&p} order by date
{/sql}
{norows}

no activity
{/norows}
{eachrow}
 <table width=350 border=1>
 <tr><td>{&date}({&source}) {&text}

 <a href="editques.hsql?p={&p}&q={&q}"
 target="br">edit question|
 <a href="newansw.hsql?p={&p}&q={&q}"
 target="br">answer|
 <a href="newref.hsql?p={&p}&q={&q}"
 target="br">refer|
 <a href="deleteques.hsql?q={&q}"
 target="br">delete question+answers

 </td></tr> {* show keywords}
 <tr><td>keywords: {&keyword}</td></tr>

 {query server="myserver"}{* find answers}
 {sql}
 select *,
 {* words/fonts vary by status}
 case sendthis
 when 'a' then 'conveyed'
 when 'p' then
 'phone'

 when 'f' then
 'fax'
 when 'x' then 'autofax'
 when 'e' then 'autoemail'
 when 'm' then
 'snailmail'
 else 'unknown'
 end as status,
 {* HTML comment tags to fake out browser}
 case
 when sendthis in('a' 'x' 'e')
 then '<!--' else ''
 end as op,
 case when sendthis in('a' 'x' 'e')
 then '-->' else ''
 end as cl
 from pbic.answer
 where pid={&p} and qid={&q}
 {/sql}
{* formatting for each answer follows}
 {eachrow}
 <tr>
 <td>
 {&date} A({&status}
 from {&source} via {&provider}): {&text}
 <a href=
 "editansw.hsql?a={&aid}&p={&p}&q={&q}"
 target="br">edit answer
 |
 <a href="deleteansw.hsql?a={&aid}"
 target="br">delete answer

{* only need form for unconveyed answers}
{* surrounding HTML comment tags override}
 {&op}
 <form action="sentthis.hsql"
 target="br">
 {&cl}
 {&op}
 <select name="prv">
 <option value="">
 {&cl}
 {&op}
 <input type="hidden" name="p"
 value="{&p}">
 {&cl}
 {&op}
 <input type="hidden" name="a"
 value="{&aid}">
 {&cl}
 {&op}
 <input type="hidden" name="q"
 value="{&q}">
 {&cl}

 {sql}
 select distinct source as pr from
 pbic.sources
 {/sql}
 {eachrow}
 {&op}
 <option value="{&pr}">{&pr}
 {&cl}
 {/eachrow}
 {&op}
 </select>person conveying answer
 <input type="submit"
 value="completed">
 </form>
 {&cl}
 </td></tr>
 {/eachrow}

 {/query}{* ends answer query}
 {* search for referrals not yet addressed}
 {query server="myserver"}
 {sql}
 select * from pbic.referral
 where pid={&p}and qid={&q}
 {/sql}
 {eachrow}
 <tr><td>{&date}Referred to {&refto} by
 {&source}
 {&comment before=" with comment: "}

 <a href=
 "newanswref.hsql?r={&rid}&q={&q}&p={&p}"
 target="br">respond to referral
 </td></tr>
 {/eachrow}
 </table>

 {/query} {* ends referral query}
 <hr>
{/eachrow}
{/query}{* ends question query}

CONCLUSION

Web data management allows a distributed population to add,
modify and query shared data. In this examination of case studies
we have seen that a tailored solution can be designed to suit
project requirements.

CONTACT INFORMATION
Your comments and questions are valued and encouraged.
Contact the authors at:

Carol Martell
UNC Highway Safety Research Center
730 Airport Rd, CB# 3430
Chapel Hill NC 27599-3430
Work Phone: 919-962-8713
Fax: 919-962-8710
Email: carol_martell@unc.edu

 Web: www.hsrc.unc.edu

Using the SOCKET Access Method to Invoke SAS Programs

Rick Langston, SAS

Abstract: This paper discusses a prototype application that sends SAS code to 3 SAS
sessions. The three SAS sessions are listening on sockets for SAS code, and execute the
SAS code and set semaphores when the blocks of SAS code are completed. The
Prototype application is also a SAS application, and it post-processes output that each
SAS session produces. Used in the applications are the SOCKET access method,
%INCLUDE, and the SLEEP function.

Obtaining and Using Euro Currency Rates in SAS® Programs
Rick Langston

SAS Institute, Inc., Cary, NC

BACKGROUND

The euro became the official currency of the
European Economic Community on January 1,
1999. On that date, the currencies of eleven
countries of Europe became the euro in lieu of
their historical currencies. Those eleven
currencies are the Belgian franc, the German
mark, the Spanish peseta, the French franc, the
Irish pound, the Luxembourg franc, the Dutch
florin, the Austrian schilling, the Portuguese
escudo, and the Finnish markka. Other countries
will eventually join the list as their respective
governments and voting public decide to do so.
(Greece has since done this, on January 1,
2001). On September 28, 2000 Denmark voted
down conversion to the euro, as another case.
Other European countries are in various phases
of decisions on the subject of conversion.

The SAS System provides
a set of functions and
formats to facilitate the
conversion between the
euro and historical
currencies, and also
conversion between the
euro and the currencies of
non-adherent countries.
These formats and
informats are called
EURFRxxx and
EURTOxxx (where xxx is
the standard 3-character abbreviation for the
country). The function is EUROCURR, which
allows for conversion between any two
currencies.

The informat/format/function set (herewith
referred to as the euro IFF set) use a built-in
table to obtain conversion rates. This works fine
for the eleven initial adherent countries, because
their conversion rates were made irrevocable
with the adoption of the euro. However, for all
other currencies, their rates fluctuate constantly
in an open currency market. This aspect was
recognized when the euro IFF set was
first implemented, and the rates can be specified
by an external table and/or macro variables,
either of which will override the builtin rates.

This paper describes a method for obtaining the
most current rates and incorporating them into a
dynamic table so that the euro IFF set will give
properly conversion results.

OFFICIAL CURRENCY RATES

The offical governing bank for the euro is the
European Central Bank (ECB). Their web site,
www.ecb.int, is the official web site to obtain
rates pertaining to the euro. As of the time of this
writing, the specific web page for obtaining
currency rates is

http://www.ecb.int/home/eurofxref.htm

This web page contains rates displaying in the
following fashion (using a snapshot from May
29, 2001):

Because the web page consists of an HTML
table and it is displayed based on your browser,
the information seen above won't display the
same way on your screen. I have made two
other modifications to what is seen above: all
decimals line up, and I've put a * beside the
currencies actually recognized by the euro IFF
set. Also recognized by the euro IFF set but not
displayed above are the Russian ruble (RUR)
and the Yugoslavian dinar (YUD).

Note the use of the 3-character abbreviation.
This is the same abbreviation used by the euro
IFF set. Not all currencies listed here are
recognized by the euro IFF set.

Currency Spot Currency Spot
USD US dollar 0.8552 LVL Latvian lat 0.5416
JPY Japanese yen 102.88 MTL Maltese lira 0.3955
DKK*Danish krone 7.4575 PLN*Polish zloty 3.4529
GBP*Pound sterling 0.60320 ROL*Romanian leu 24540
SEK*Swedish krona 9.0350 SIT*Slovenian tolar 217.5675
CHF*Swiss franc 1.5260 SKK Slovakian koruna 42.938
ISK Icelandic krona 88.24 TRL*Turkish lira 956700
NOK*Norwegian krone 7.8865 AUD Australian dollar 1.6608
BGN Bulgarian lev 1.9461 CAD Canadian dollar 1.3167
CYP Cyprus pound 0.57690 HKD Hong Kong dollar 6.6704
CZK*Czech koruna 34.219 NZD New Zealand dollar 2.0285
EEK Estonian kroon 15.6466 SGD Singaporean dollar 1.5449
HUF*Hungarian forint 254.00 KRW South Korean won 1102.78
LTL Lithuanian litas 3.4217 ZAR South African rand 6.7732

Note also that these rates indicate the value of 1
euro in the specified currency. For example, 1
euro was worth .8552 US dollars on May 29,
2001. If you wanted to know how many euros
were in one US dollar, you'd need the reciprocal
of this rate (1/.8552, or 1.1693). This means it
took 1.1693 euros to make one US dollar on
May 29, 2001.

EXTERNAL TABLES WITH THE EURO IFF
SET

The euro IFF set can use an external table for its
rates. The table is stored in a file referenced by
the EURFRTBL fileref. The entries in the table
are as follows:

EURFRxxx=rate1
EURFRyyy=rate2
EURFRzzz=rate3

where xxx, yyy, and zzz are 3-character
abbreviations for currencies. The values
indicated by rate1, rate2, and rate3 are the
number of units of the currency comprising one
euro, just like the rates that appear in the ECB
web site table. For example, the EURFRTBL
entry for pounds sterling, using the rates seen in
our May 29 table above, would be

EURFRGBP=0.60320

As a complete example:

filename eurfrtbl temp;
data _null_; file eurfrtbl;
 input; put _infile_; cards4;
EURFRGBP=0.60320
;;;;

data _null_;
 n_euros = eurocurr(1,'gbp','eur');
 n_pounds = eurocurr(1,'eur','gbp');
 put n_euros= n_pounds=;
 run;

The result is

n_euros=1.6578249337
n_pounds=0.6032

The EUROCURR function has the arguments

to_units =
eurocurr(from_units,from_curr,to_curr);

So in our example, the first use of EUROCURR
is to convert 1 pound sterling into euros. The
second use is to convert 1 euro to pounds
sterling. As we expect, n_pounds is equal to the
rate given in the EURFRGBP value.

MERGING THE ECB TABLES WITHIN THE
SAS PROGRAM

We now know we can obtain current rates from
the ECB web site, and we can dynamically
specify a table for the euro IFF set to use. So
here's how we can merge these abilities into a
single SAS program.

In version 8 of the SAS System, the HTTP
access method was made generally available.
We can use this access method to read web
pages directly. The syntax for this access
method is as follows:

filename fileref HTTP 'web-page-address'
authentication-info;

where fileref is the filefef you want to use 'web-
page-address' is the web site address, and
authentification-info is whatever is necessary to
access external web pages. It may be likely that
you'll need a userid, password, and proxy
address, depending on your security setup:

filename fileref HTTP 'web-page-address'
proxy='address' userid=userid
pass='password';

An approach I used in testing this access
method on a Unix system was to read my userid
and password information from the .netrc file,
looking for a particular machine (in this example,
called abc) to obtain the userid and password:

data _null_; infile '~/.netrc' length=l;
 input @; input @1 line $varying200. l;
 machine=scan(line,2);
 if machine='abc';
 userid=scan(line,4);
 pass=scan(line,6);
 call symput('myuserid',trim(userid));
 call symput('mypass',trim(pass));
 run;

filename xxx http
‘http://www.ecb.int/home/eurofxref.htm'
 user=&myuserid. pass="&mypass."
 proxy='<our proxy machine name>';

data _null_;
 call symput('myuserid',' ');
 call symput('mypass',' ');
 run;

This SAS code allows me to use my real userid
and password but without having to write it in a
SAS program. Note that as soon as the
FILENAME statement is processed, I reset
those macro variables to blanks to avoid
exposure of the values.

Note that if you are running a version of the SAS
System prior to Version 8, and you don't have
access to the HTTP access method, an
alternative may be to use the lynx command.
The lynx command is vailable on a variety of

platforms. See the official lynx web site at
http://lynx.browser.org. The FILENAME
statement for lynx would incorporate the use of
the PIPE method:

filename xxx pipe 'lynx -source
http://www.ecb.int/home/eurofxref.htm';

The SAS code to read from this fileref is exactly
the same as that from the fileref using the HTTP
access method.

Here's the SAS code to read the HTML tables as
they currently exist at the ECB web site. The
SAS code also creates the EURFRTBL table
that the euro IFF set will need, as well as %LET
statements for the macro symbol
version of these rates.

 /*---*/
 /* Read in the currency abbreviations for the currencies that are */
 /* recognized by the euro IFF set. The first 11 currencies are those */
 /* with the 01JAN1999 irrevocable rates */
 /*---*/

data curr;
 length abbr $3;
 input abbr $ @@;
 first11=_n_<=11;
 cards;
ATS BEF FIM FRF DEM IEP ITL LUF NLG PTE ESP CHF DKK GBP GRD SEK CZK HUF NOK RUR TRL PLZ ROL
YUD SIT
;
run;
proc sort data=curr; by abbr;

 /*---*/
 /* Read the rates from the ECB web site. */
 /*---*/

data rates(keep=abbr desc rate);
 infile xxx length=l;
 retain part 0;
 length desc $40 abbr $3;
 retain abbr desc;

 /*---*/
 /* Read the line of HTML. The HTML lines at the time of this */
 /* implementation had the 0x0d 0x0a carriage-return / line-feed in */
 /* MS-DOS style. On non-Windows systems, the 0x0d will remain as a */
 /* data character, so we need to remove the character. Also we */
 /* create an upcased version of the line so we can look at HTML tags */
 /* with case-insensitivity. */
 /*---*/

 input @; input @1 line $varying200. l;
 line=left(compress(line,'0d'x));
 uline=upcase(line);

 /*---*/
 /* We will effectively ignore all HTML text until the TABLE tag is */
 /* seen. our 'table' variable indicates we've seen this tag. */
 /*---*/

 if uline=:'<TABLE' then do;
 table=1;
 retain table;
 return;
 end;
 if table;

 /*---*/
 /* At this point we'll be reading from the HTML table of rates. We */
 /* will traverse through every token on the line. Tokens are */
 /* separated by < and >, so HTML tags and the data are separate. We */
 /* are only interested in the data between the <TD> </TD> tags. */
 /* We are interested in the 3 data items that appear in the TD */
 /* parts. Note an example of the section: */
 /* <tr bgcolor="#fff7cc"> */
 /* <td align="center">USD</td> */
 /* <td>US dollar</td> */
 /* <td align="right">0.8480</td> */
 /* <td bgcolor="#ffffff"></td> */
 /* <td align="center">LVL</td> */
 /* <td>Latvian lat</td> */
 /* <td align="right">0.5377</td> */
 /* </tr> */
 /* We see both the USD and LVL currencies defined in this row. */
 /*---*/

 td=0;
 do i=1 to 100; /* do while(1); is more appropriate but dangerous */
 piece=left(scan(uline,i,'<>'));
 if piece='/TABLE'
 then stop;
 if piece=' '
 then leave;
 if piece=:'TD ' then do;
 td=1;
 end;
 else if piece='/TD' then td=0;
 else if td then do;
 part=mod(part,3);
 if part=0 then do;
 abbr=piece;
 end;
 if part=1 then do;
 desc=left(scan(line,i,'<>')); /* get original casing */
 end;
 else if part=2 then do;

 rate=input(piece,best12.);
 output;
 end;
 part+1;
 end;
 end;
 run;
proc sort data=rates; by abbr;

 /*---*/
 /* This macro performs conversions from all desired currencies to euro, */
 /* using the builtin rates or the EURFRTBL rates if they are available. */
 /*---*/

%macro doconv(iter);
data conv&iter.; set curr(where=(first11=0));
 value&iter.=eurocurr(1,abbr,'EUR');
 run;
%mend;

 /*-----iteration 1: using builtin rates-----*/

%doconv(1);

 /*---*/
 /* Create the EURFRTBL table using the rates we obtained from the ECB */
 /* web site. We only emit the rates for the currencies that we are */
 /* interested in. Be sure to add the greek drachma, now with an */
 /* irrevocable rate. Other adoptive currencies would be added in this */
 /* way, since they rates will not be in the ECB table. */
 /*---*/

filename eurfrtbl temp;

data curr;
 file eurfrtbl;
 length abbr $3;
 merge rates(in=have) curr(in=want where=(first11=0)); by abbr;
 if _n_=1 then put 'EURFRGRD=340.750'; /* Greek drachma */
 if want then do;
 newrate=have;
 output curr;
 end;
 if want and have;
 put @1 'EURFR' abbr $char3. '=' rate;
 run;

data _null_; infile eurfrtbl; input; put _infile_; run;

 /*-----iteration 2: using eurfrtbl rates-----*/
%doconv(2);

 /*---*/
 /* Now merge the different converted values (builtin vs. current rate) */
 /* to see how they compare. */
 /*---*/

data _null_; merge conv1 conv2; by abbr;
 put abbr= value1= value2=;
 run;

Here is what the EURFRTBL looks like, using
May 30, 2001 rates:

EURFRGRD=340.750
EURFRCHF=1.5206
EURFRCZK=34.195
EURFRDKK=7.4556
EURFRGBP=0.5973
EURFRHUF=253.75
EURFRNOK=7.93
EURFRROL=24392
EURFRSEK=9.125
EURFRSIT=217.6353
EURFRTRL=995000

Here is the output from the final merged DATA
step:

The values for PLZ, RUR, and YUD did not
change since they don't appear in the ECB
table. Some (TRL and ROL in particular) have
changed drastically due to market fluctuations
since the builtin table was created.

abbr=CHF value1=0.6233248146 value2=0.657635144
abbr=CZK value1=0.0286892183 value2=0.0292440415
abbr=DKK value1=0.1335097442 value2=0.1341273673
abbr=GBP value1=1.4283020916 value2=1.6742005692
abbr=GRD value1=0.0029335406 value2=0.0029347029
abbr=HUF value1=0.0038413522 value2=0.0039408867
abbr=NOK value1=0.1087228329 value2=0.1261034048
abbr=PLZ value1=0.2380952381 value2=0.2380952381
abbr=ROL value1=0.0729394602 value2=0.000040997
abbr=RUR value1=0.050586807 value2=0.050586807
abbr=SEK value1=0.106770191 value2=0.1095890411
abbr=SIT value1=0.0052356021 value2=0.0045948428
abbr=TRL value1=0.0029681341 value2=1.0050251E-6
abbr=YUD value1=0.0765438903 value2=0.0765438903

USING PICTURE AND MULTIPLIERS FOR
THE RATES

Although the US dollar (USD) symbol is not part
of the euro IFF set, it is set by our code above. If
we want to convert between the USD and euro,
the US dollar, we can incorporate it into a
MULT= option of a PICTURE format. However,
you have to be aware of what the MULT= does
with respect to a decimal point. Consider the
following SAS code:

 /* Create a macro variable for the US
 Dollar rate */

data _null_; set rates;
 if abbr='USD';
 call symput(‘EURFRUSD’,
 trim(
 left(put(rate,best12.))));
 run;

 /* Create a picture format using this rate
as the multiplier */

proc format;
picture usd other='000,000,009.99'
(prefix='$' mult=&eurfrusd.);

 run;

 /* Try this format with $1 to see the
result as the number of euros.
 It will be wrong. */

data _null_; x=1; put x=usd.; run;

Indeed, the result is

x=$0.00

We don't get what we expect! This is because
without a MULT= option, picture processing will
multiply by 10**n, where n is the number of
places to the right of the decimal point. But if a
MULT= option is given, as it is here, no
accommodation for the decimal point takes
place, and it's assumed that the number has
already been multiplied by the number of
decimal places, or that the MULT= value factors
this in.

/* Now try the following, which does work */

data _null_; x=1; x=x*100; put x=usd.; run;

This results in

x=$0.84

Meaning that 1 euro is worth .84 US dollars.

/* Instead create with the multiplier
included */

data _null_; set rates;
 if abbr='USD';
 call symput('EURFRUSD',
 trim(

 left(
 put(rate*100,best12.))));
 run;
proc format;

picture usd other='000,000,009.99'
(prefix='$' mult=&eurfrusd.);

/* This time the answer is as expected */

data _null_; x=1; put x=usd.; run;

And it is also generated as

x=$0.84

BEING AWARE OF OVERUSE OF WEB SITES

This SAS program will read the ECB site for
rates. Please be aware that this site is accessed
by users all over the world, and you should not
access it more often than necessary. The values
are changed each business day, around 1:30pm
GMT. If you need to have access to these
values, it is probably best to make a local copy
of the values and then access that local copy
throughout the day. Otherwise the CEB web site
may be overwhelmed by accesses.

SAS is a registered trademark or trademark of
SAS Institute Inc. in the USA and other
countries. ® indicates USA registration.

A SAS© Approach to WEB-Based Surveys
Bernard R. Poisson, Statprobe Technologies

Abstract

The United State Air Force had a problem. Its existing methods
of collecting information from its people were time-consuming,
error-prone, and costly. Not any more! The Survey Engine, based
on SAS©/IntrNet solved those problems once and for all! The
Survey Engine provides the ability to host any number of
Internet/Intranet surveys concurrently without in-depth computer
or Internet knowledge or experience. All questions and response-
sets are stored in SAS© data sets, independent from any display
characteristics, giving them greater flexibility and reusability. This
application provides a powerful, efficient, and cost-effective
approach to gathering data from large groups of individuals.

Introduction

The U.S. Air Force Surveys Branch performs more than 3 dozen
large-scale surveys on an annual basis, polling members to
obtain their impressions on a wide variety of topics such as
adequacy of compensation (pay, living conditions, etc), job
satisfaction (having proper equipment, having adequate spare
parts, adequate and safe working conditions), and others. Two
principal goals of the data gathering efforts focus on determining
what AF members believe senior leadership must do to make the
USAF desirable enough to retain existing members and to attract
high-school and college graduates as new members. The global
nature of the USAF makes sampling of the total force a very
difficult task.

In the not so distant past, surveys were administered using
question booklets and scan-sheets. With the advent of increased
software capabilities over the World Wide Web (WWW), the
survey analysts assigned to the AF Surveys Branch conducted
periodic reviews over the WWW of available survey applications
on a routine basis in search of a better way of fulfilling their
mission. Each application was thoroughly reviewed to ascertain if
it was capable of coping with the rigorous demands placed upon it
by professional survey construction and administration
requirements. Although some applications possessed certain
capabilities that made them an interesting possibility, they were
also were found to contain critical flaws that would render them
practically unusable in the world of professional survey
construction and administration. The primary capability lacking in
most of these applications was inability to control program and
question flow based on the respondent’s responses. After several
years of searching, the survey analysts and senior leadership
concluded the most plausible solution was to obtain a military
programmer/analyst with sufficient experience and knowledge to
design and create the required application for them.

The resulting SAS©/IntrNet based survey application, the Survey
Engine, written in SCL, has replaced all previous manual methods
of data collection. Using this application, the operational
efficiency of the AF Surveys Branch has increased by over 55
percent through decreased fielding and turn-around times.
Operational costs of survey administration have been reduced by
over 75%. More importantly, the survey experience leaves the
respondent with a high degree of satisfaction through reduced
frustration and time.

This paper will explain how this application came about and
demonstrate how its use can help your organization, regardless of
size, diversity, and geographic location.

Determining Program Requirements

In order to establish an organized idea of what the survey
application was required to do, a list of program requirements was
devised. These requirements came about through a series of
many short informal meetings held between the two senior survey
analysts and the programmer. The survey analysts brought 40+
years of survey experience and the programmer 18+ years of
systems and programming knowledge to the table. Together,
they established the requirements listed in Figure 1.

Questions must be reusable
Responses must be reusable
Responses must be independent of display characteristics
Additional Instructions capability needed
Response Format Options (Output)

Radio-Buttons (mutually exclusive)
Check-Boxes (mark all that apply)
Drop-Down List (single selection)
Drop-Down List (multiple selection)
Text-Box (single numeric value entry)
Free-Form Text field
Radio-Buttons with Large Response characteristics
Check-Boxes with Large Response characteristics
Check-Boxes with Large Response characteristics
with branching
Multiple Drop-Down ‘Rating’ Lists
Multiple Drop-Down ‘Rating’ Lists with branching
Text-Box List (single numeric value entry for each)
Text-Box List (single numeric value entry for each)
with branching
Responses must be validated to: disallow skipping of
questions, ensure entry of values within allowable
range, and to provide feedback to the respondent.

Respondent must be able to go back to previous questions, in
case of errors or desire to change responses based on new
questions
Respondent must be able to Stop & Resume a survey at a later
time, continuing from the place where they left off.
Analysts must be able to ‘track’ respondents for demographic
purposes and longitudinal/historical review
Must provide access control by restricting entry into surveys
(limit entry to USAF Personnel, sample set, etc. only)
Prevent previous respondents from re-submitting multiple
surveys
Follow-On Question and/or Skip-Logic required, based on
respondent selection(s) to responses.
Must be able to administer multiple surveys concurrently
Must be coded so that future code maintenance is NOT required

Figure 1 – Program Requirements

Access Control & User Validation

An integral consideration of any survey, especially surveys
administered over the WWW is that of access control. Sampling
is used to derive a mathematically representative group of
respondents, taking various strata into consideration. In order to
maintain some sense of order, and to prevent the possible
skewing of results, access to a survey must be restricted to only
those individuals who fall within the sample group. This capability
is provided through a small, independent module named
CHKUSER.SCL, operating as a front-end to the Survey Engine.
When a respondent attempts to enter a survey, they are greeted
by the screen shown in Figure 2.

Figure 2 – Survey Login Screen

There are two distinct ways that a respondent may access a
survey. These are:

• A URL to a given survey such as:
http://surveys.af.mil/srvyonl/login/demo.htm

• A URL + PID (Personal ID) value such as:

http://surveys.af.mil/srvyonl/login/demo.htm?53492
34234

If the URL provided by the individual does NOT contain a PID
value appended to the query-string, the individual must manually
provide a valid Social Security Number (SSN) that is contained
within the sample group of the survey. If the URL provided does
contain a valid PID value appended to the query-string,
JavaScript embedded within the login screen parses the value
from the query-string and performs an ‘auto submit’ thereby
effectively bypassing the individual’s need to manually enter a
valid SSN. In either instance, a look-up is performed to determine
if a valid value was provided for authentication into the survey. If
either of the values is not valid, the individual is redirected to a
screen indicating an error condition. If the provided value is valid,
the Survey Engine is invoked and survey administration begins.

Presenting Survey Information to the
Respondent

The Survey Engine uses a standardized layout throughout the
course of a survey to present the information to the respondent as
shown in Figure 3.

Figure 3 – Standardized presentation layout

Object 1: Section/sub-section designator. Allows surveys
covering multiple topics to be broken up into multiple ‘logical’ sub-
sections such as finances, job satisfaction, living conditions,
career intent, etc.

Object 2: Graphic Banners: Allows customization of the output
display.

Object 3: Survey Title: A data object containing the survey title.

Object 4: Survey Options: Control objects providing ‘page back’
and ‘Stop and Resume’ capabilities.

Object 5: Question Section: A data object containing the question
to be asked.

Object 6: Special Instructions: A data object allowing the
inclusion of additional information to be presented to the
respondent to clarify a question, response, etc.

Object 7: Response Section: A data object containing the list of
acceptable answers for the question presented.

All objects depicted above are static in that they do not change
form or structure except for the Response Object (7). The
response object can be dynamically represented in any one of 10
data-independent formats, depending on survey requirements.

The Response Object Formats: The response object
formats are described in detail below:

The Radio-Button Response Format (Single Selection)
This response object uses radio-buttons for response selection.
Radio buttons are mutually exclusive; therefore only one radio-
button can be selected. The header of the response object
instructs the respondent to 'Select One Response'. The
application constructs as many columns, comprised of 10 radio-
buttons + responses, as required to display the complete
response list. The respondent need only click on the desired
response and the application automatically advances to the next
question. (Figure 4).

Figure4 - Radio-Button Response Format

The Check-Box Response Format (Multiple Selections)
This response object uses check-boxes for 'Mark All That Apply'
response selection(s). This implementation allows the selection
of some or all responses, but not none. The header of the
response object instructs the respondent to 'Check All That
Apply'. The application constructs as many columns, comprised
of 10 check-boxes + responses, as required to display the
complete response list. Since more than one response can be
selected, the respondent must click the 'Submit' button for the
application to advance to the next question. (Figure 5).

1

2 3 2

4

5

6

7

Figure 5 - The Check-Box Response Format

The Drop-Down List Response Format (Single Selection)
This response object uses a single Drop-Down List for response
selection. This implementation of the Drop-Down List is mutually
exclusive; therefore ONLY ONE item within the Drop-Down List
can be selected. The header of the response object instructs the
respondent to 'Select One Response'. The application constructs
a SINGLE drop-down list containing as many
selections/responses as required to display the complete
response list. The respondent need only click on the desired
response and the application automatically advances to the next
question. (Figure 6)

Figure 6 - The Drop-Down List Response Format

The Drop-Down List Response Format (Multiple Selections)
This response object uses a drop-down list for 'Mark All That
Apply' response selection. This implementation of the Drop-
Down List allows the selection of some or all responses, but not
none. The header of the response object instructs the
respondent to 'Select All That Apply'. The application constructs
a SINGLE drop-down list containing as many
selections/responses as required to display the complete
response list. Since more than one response can be selected,
the respondent must click the 'Submit' button for the application to
advance to the next question. (Figure 7)

Figure 7 - The Drop-Down List Response Format

The Text Value Entry Response Format (Variable Length)
This response object uses a variable-length text-box for the entry
of a numeric value entry such as 'Number of days TDY'. The
header of the response object displays the range of acceptable
values. The entry field is dynamically sized based on the number
of characters required to enter the maximum value allowed for the
particular response. Dynamically embedded JavaScript validates
the value entered and prompts the user with an error/correction
dialog if the value entered is not within the allowable range. The
respondent must click the 'Submit' button for the application to
advance to the next question. (Figure 8)

Figure 8 - The Text Value Entry Response Format

The Free-Form Text Entry Response This response object
allows the entry of FREE-FORM text. Dynamically embedded
JavaScript code monitors the respondent's progress and
continuously displays '##### Characters Remain' in the response
object header as the respondent types. The JavaScript code
validates the number of characters typed and prompts the user
with an error/correction dialog if the number of characters typed
exceeds the allowable range. The respondent must click the
'Submit' button for the application to advance to the next question.
(Figure 9)

Figure 9 - The Free-Form Text Entry Response Format

The Radio-Button Response Format (Single Selection +
Large Response) This response object uses radio-buttons for
response selection. Radio buttons are mutually exclusive;
therefore ONLY ONE radio-button can be selected. The header
of the response object instructs the respondent to 'Select One
Response'. The application constructs a single column containing
as many entries as required (with scroll controls) to display the
complete response list. The respondent need only click on the
response and the application automatically advances to the next
question. (Figure 10)

Figure 10 - The Radio-Button Response Format

The Check-Box Response Format (Multiple Selection + Large
Response) This response object uses check-boxes for response
selection. This implementation allows the selection of some or all
responses but not none. The header of the response object
instructs the respondent to 'Check All That Apply'. The
application constructs a single column containing as many entries
as required (with scroll controls) to display the complete response
list. Since more than one response can be selected, the
respondent must click the 'Submit' button for the application to
advance to the next question. (Figure 11)

Figure 11 - The Check-Box Response Format

The Check-Box Response Format (Multiple Selection + Large
Response + Branching) This response object uses check-boxes
for response selection and uses the respondent's selection(s) to
control program flow through the survey. This implementation
allows the selection of SOME or ALL responses but not none.
The header of the response object instructs the respondent to
'Check All That Apply'. Each response option in the list is
capable of branching to a different/separate 'Follow-On'
question. Sequential program flow continues once all follow-on
options have been completed. Since more than one response
can be selected, the respondent must click the 'Submit' button for
the application to advance to the next question. (Figure 12)

Figure 12 - The Check-Box Response Format

The Drop-Down ‘Rating’ list Response Format
This response object provides drop-down list containing pre-
defined 'ratings/rankings' for the respondent to select from. Each
response option 'Rated' by the respondent represents
Selection+Rating. This implementation allows the selection of
some, all, or none of the response objects. The header of the
response object instructs the respondent to 'Rate Applicable
Items'. The application constructs a single column of text items
containing as many entries as required (with scroll controls) to
display the complete response list. Since more than one
response can be selected, the respondent must click the 'Submit'
button for the application to advance to the next question.
(Figure 13)

Figure 13 - The Drop-Down ‘Rating’ list Response Format

The Drop-Down ‘Rating’ list Response Format (+ Branching)
This response object provides drop-down list containing pre-
defined 'ratings/rankings' for the respondent to select from. Each
response option 'Rated' by the respondent represents
Selection+Rating. This implementation allows the selection of
some, all, or none of the response objects. The header of the
response object instructs the respondent to 'Rate One or More
response(s)'. The application constructs a SINGLE column of text
items containing as many entries as required (with scroll controls)
to display the complete response list. Each response option in
the list is capable of branching to a different/separate 'Follow-
On' question. Sequential program flow continues once all follow-
on options have been completed. Since more than one response
can be selected, the respondent must click the 'Submit' button for
the application to advance to the next question. (Figure 14)

Figure 14 - The Drop-Down ‘Rating’ list

The Text Value Entry List Response Format (Variable Length)
This response object uses variable-length text-boxes for the entry
of a list of numeric value entries such as 'Number of days TDY'.
The header of the response object displays the range of
acceptable values. The entry fields are dynamically sized based
on the number of characters required to enter the maximum value
allowed for each particular response. Dynamically embedded
JavaScript code validates the entered values and prompts the
user with an error/correction dialog if any of the values entered
are not within the allowable value range. Since more than one
response can be selected, the respondent must click the 'Submit'
button for the application to advance to the next question.
(Figure 15)

Figure 15 - The Text Value Entry List Response Format

The Text Value Entry List Response Format (+ Branching)
This response object uses variable-length text-boxes for the entry
of a list of numeric value entries such as 'Number of days TDY'.
The header of the response object displays the range of
acceptable values. The entry fields are dynamically sized based
on the number of characters required to enter the maximum value
allowed for each particular response. Dynamically embedded
JavaScript code validates the entered values and prompts the
user with an error/correction dialog if any of the values entered
are not within the allowable value range. EACH NUMERIC
ENTRY in the list is capable of branching to a different/separate
'Follow-On' question. Sequential program flow continues once all
follow-on options have been completed. Since more than one
response can be selected, the respondent must click the 'Submit'
button for the application to advance to the next question.
(Figure 16)

Figure 16 - The Text Value Entry List Response Format

The Survey Completion/Termination Screen:
Upon completion of a survey, the respondent is presented with a
completion/termination screen explaining what will be done with
the data collected from them during the course of the survey. At
this point the survey has been terminated and all data recorded.
The respondent is provided a ‘Close Window’ button to facilitate
closing of the survey browser interface. An example screen is
shown in Figure 17.

Figure 17 - The Survey Completion/Termination Screen

Behind The Screens – Making it all come
together

Creating a survey engine capable of displaying any response
using any one of several response formats came about from the
fact that although the available topic matter of surveys may
change and is unlimited, the ways in which responses can be
successfully presented and formatted to create a workable survey
is finite. Taking these factors into consideration, we created an
adequate set of response object format styles to meet any future
needs of the survey analyst. Taking advantage of the capabilities
of today’s web browsers, we can build powerful and truly dynamic
surveys that can address any topic matter.

Data Sources

In order to have a truly dynamic application, one capable of
literally changing with the needs of the organization, the
application must obtain as much of its required operational
information from the most dynamic of sources available to the
computer. The most dynamic sources of data of course are data
files. The survey engine acquires 99% of its operational data
from four separate SAS© data sets. These are the QuestionsDB,
ResponseDB, JumpTableDB, and AppCFG data sets. Their
functions are as follows:

QuestionsDB: This local data set is where the survey engine
obtains most the operational information required for a particular
survey and is a subset of the Master Questions Database. The
data obtained from this data set is comprised of the Question
Text, Response Code, Response Format, Response Range,
Skip-Logic Flag, Section Text, and Instruction Text. Using a
combination of these elements, the application has the
information it requires to dynamically generate a particular survey.

ResponseDB: This global data set is where the survey engine
obtains ALL of the information required relating to ALL response-
sets for ALL surveys. The data obtained from this data set is
comprised of the Response Name and Individual Responses that
comprise the response.

JumpTableDB: This local data set may or may not exist for a
particular survey. If a survey does not require any response-
dependent branching (skip-logic), then this file will not exist for the
given survey.

AppCfg: This global data set is the ‘master configuration file’
used to prevent the need of maintenance on the survey engine’s
code. The data obtained from this data set is comprised various

operational parameters such as libnames for the Master
QuestionsDB, ResponseDB and other data sets, WEB server
name, path to HTML information screens, foreground/background
colors to be used when generating the surveys, etc. The libname
‘APPCFG’ is the ONLY EXTERNAL item of information that the
Survey Engine requires and is dependent upon for its successful
operation. Armed with this information, the Survey Engine can
obtain all other required operational parameters from the AppCfg
data set.

JumpTable.slist: This is a dynamically created SAS© SCL list.
If/When a survey contains a response object utilizing response-
dependent branching; this list will be created on the fly and saved
to disk in order to perform correct question sequencing.
Branching represents a deviation from the normal sequential flow
from one question to another. The existence of this list indicates
to the survey engine that it must anticipate this deviation for this
particular respondent. Additionally, the engine uses the contents
of this file to repopulate the SCL list, which contains the question
numbers represented in the deviation from normal flow through
the next ‘logical’ question.

ResponseHistory.slist: This is also a dynamically created SAS©
SCL list. The intent of this list is to create an audit-trail of each
respondent’s path through a survey. As the respondent proceeds
through a survey, the number of each question referenced is
appended to the existing list and the list saved to disk for future
reference thereby creating a complete transaction history. Its
intended purpose is to provide an EXACT reverse-path through
questions visited by the respondent so that if/when the
respondent selects the ‘Previous Question’ button one or more
times, the Survey Engine will be able to correctly display the
desired question along with the respondent’s response.

The Survey Engine Module and its Routines

The Survey Engine’s principal module is comprised of 13
separate CONTROL sections, and 16 FORMATTING sections
each constructed as subroutines. Due to the reentrant nature of
this application, most variables used are global and are not
unique to a particular section of code. Each section of code was
given a ‘meaningful’ name which clearly describes the
functionality of the code contained within it.

The CONTROL sections are:

INIT
FIND_NEXT_QUESTION_NUMBER
GET_PREVIOUS QUESTION
SAVE_RESPONSE
SAVE_HISTORY
SET_LOCKOUT
GET_PREVIOUS_RESPONSE
DISPLAY_NEXT_QUESTION
DISPLAY_MESSAGE
SET_LOCKOUT
WEBOPEN
WEBCLOSE
DEBUG
TERM

The formatting sections are:

FORMAT_RB
FORMAT_CM
FORMAT_DS
FORMAT_DM
FORMAT_TX
FORMAT_TF
FORMAT_RL
FORMAT_CL

FORMAT_DL
FORMAT_TL
ADD_CONTROL_PARAMETERS_FRAME
ADD_CONTROL_PARAMETERS_NOFRAME
IFRAME_RESPONSE_OPEN
IFRAME_RESPONSE_CLOSE
INNER_TABLE_OPEN
INNER_TABLE_CLOSE

Walking Through the Survey Process – The
Operational Cycle

We will now step through the typical processing cycle of the
Survey Engine and briefly describe the various processes
involved within each of the CONTROL and FORMATTING
sections encountered during the run. Please note that there are
NO ‘hard-coded’ values incorporated into the Survey Engine code
itself. Any required parameters and values are provided by the
AppCfg data set and will be discussed in greater detail below.
Pseudo-code will be used to simplify explanation and
understanding of code functions and provide brevity.

Once validated into the system via the ChkUser module, a call is
made to the Survey Engine’s main processing module,
POSTRESP.SCL. Respondent-dependent data values such as
SURVEY_NAME, PID, PREVIOUS_QUESTION,
NEXT_QUESTION and the like are passed to POSTRESP via an
SCL list, PARAMS, as part of the program call.

INIT Section: This section is unconditionally executed and
performs the following:

DEFINE required variable types and lengths
RETRIEVE data values from the PARAMS list and set like-named
variables
INITIALIZE control variable values
RETRIEVE control variable values from the AppCfg data set and
set like-named variables
EXECUTE ‘LINK’ calls to the other sub-routine sections contained
within POSTRESP

The sub-routines are called by the INIT section in the following
order:

GET_PREVIOUS_QUESTION
FIND_NEXT_QUESTION_NUMBER
GET_PREVIOUS_RESPONSE
SAVE_HISTORY
SAVE_RESPONSE
DISPLAY_NEXT_QUESTION
RETURN

The remaining sub-routines within the POSTRESP.SCL module
are called by these sections, as required, to satisfy the balance of
control and function of the sections listed above.

GET_PREVIOUS_QUESTION Section: The function of this sub-
routine is to replace/bypass the value provided by the
FIND_NEXT_QUESTION section and enables the Survey Engine
to logically ‘reverse’ its normal program-flow and revisit questions
previously displayed to the respondent. This section is
conditionally executed and is called ONLY when the PAGE
BACK flag is set. This section is ‘triggered’ by the respondent’s
selection of the ‘Previous Question’ button on the survey screen
and performs the following:

Create SESSION_HISTORY_LIST (SCL list)
IF SESSION_HISTORY_LIST.SLIST exists

LOAD values from .SLIST entry identified by user’s PID
and SURVEY NAME

IF SESSION_HISTORY_LIST length > 0 THEN

SET NEXT_QUESTION to value of last item in
SESSION_HISTORY_LIST
DELETE last item from SESSION_HISTORY_LIST

 SAVE updated SESSION_HISTORY_LIST.SLIST
ELSE

SET NEXT_QUESTION to 1
RETURN

FIND_NEXT_QUESTION Section: This section determines the
next question to be displayed to the respondent. This section is
conditionally executed and is executed only when the PAGE
BACK flag is not set. The determination is made using
dynamically provided values and is the single most complicated
section of code within the POSTRESP module. This section
performs the following:

JT is a flag indicating that skip-logic will be used.

MATA is a flag indicating that the question will use ‘mark all that
apply’ functionality.

RF is a flag indicating the output response format to be used in
displaying the response object to the respondent.

IF RESPONSE_INDEX > 0 and JT=’Y’ and MATA=’Y’ THEN

Open JUMPTABLE file
Set WHERE clause to value of
PREVIOUS_QUESTION
Create JUMP_TABLE_LIST (SCL List)
Insert PREVIOUS_QUESTION value into
JUMP_TABLE_LIST
LOOP
IF Nth response is selected

Insert nth value from JUMPTABLE data set
based on numeric value of the respondent’s
response

END LOOP
Insert PREVIOUS_QUESTION value +1 into
JUMP_TABLE_LIST
SAVE JUMP_TABLE_LIST.SLIST

IF RESPONSE_INDEX > 0 and JT=’Y’ and MATA=’Y’ AND
RF=’DL’ OR RF=TL’ THEN

Open JUMPTABLE file
Set WHERE clause to value of Nth sub-item of
PREVIOUS QUESTION
Create JUMP_TABLE_LIST (SCL List)
Insert PREVIOUS_QUESTION value into
JUMP_TABLE_LIST
LOOP
IF Nth response of Nth sub-item is selected

Insert nth value from JUMPTABLE data set
based on numeric value of the respondent’s
response

END LOOP
Insert PREVIOUS_QUESTION value +1 into
JUMP_TABLE_LIST

IF JUMP_TABLE_LIST.SLIST EXISTS THEN

Create JUMP_TABLE_LIST (SCL List)
Load JUMP_TABLE_LIST with values contained in
JUMP_TABLE_LIST.SLIST

JUMP_TABLE_LIST_LENGTH = length of
JUMP_TABLE_LIST
FIRST=value of 1st entry in JUMP_TABLE_LIST
LAST=value of last entry in JUMP_TABLE_LIST

Look for PREVIOUS_QUESTION in
JUMP_TABLE_LIST

If position returned <= JUMP_TABLE_LIST_LENGTH -
1 then

NEXT_QUESTION=value of position+1 in
JUMP_TABLE_LIST

If position returned = 0 then
NEXT_QUESTION=NEXT_QUESTION+1

If position returned <= JUMP_TABLE_LIST_LENGTH
then

NEXT_QUESTION=value of position in
JUMP_TABLE_LIST +1 (normal resume
point)

IF RESPONSE_INDEX > 0 and JT=’Y’ and MATA=’N’ THEN
Open JUMPTABLE file and set WHERE clause to value
of PREVIOUS QUESTION
Set NEXT_QUESTION to Nth value from JUMPTABLE
data set based on numeric value of the respondent’s
response

ELSE
 NEXT_QUESTION=PREVIOUS_QUESTION+1

RETURN

GET_PREVIOUS_RESPONSE Section: This section retrieves
the respondent’s response(s) to the current question from the
RESPONSE data set. The purpose of this section is to enable
the pre-select/re-selection of the respondent’s responses
(remember) AFTER they have selected the ‘PREVIOUS
QUESTION’ button and revisited one or more questions. This
section performs the following:

Open RESPONSE data set and set WHERE clause to
respondent’s PID value
Retrieve respondent’s previous response from RESPONSE data
set
IF response value = 0 then

PREVIOUS_RESPONSE=’’
RETURN

SAVE_HISTORY Section: This section tracks a respondent’s
progress through a survey. The purpose of this section is to
enable the respondent to navigate BACKWARDS through
question(s) they have already responded to. This is
accomplished by incrementally modifying an SCL list and saving
the list to a .SCLIST entry for future reference. This section
performs the following:

IF NEXT_QUESTION >1 THEN

Create SESSION_HISTORY_LIST (SCL List)
IF SESSION_HISTORY_LIST.SLIST exists

Load SESSION_HISTORY_LIST with values contained
in SESSION_HISTORY_LIST.SLIST

IF SESSION_HISTORY_LIST length > 0 THEN
LAST_HISTORY_LIST_ITEM=value of last entry in
SESSION_HISTORY_LIST

IF PAGE_BACK flag not set and PREVIOUS_QUESTION <>
LAST_HISTORY_LIST_ITEM THEN

Insert value of PREVIOUS_QUESTION into last
position of SESSION_HISTORY_LIST
Save SESSION_HISTORY_LIST to
SESSION_HISTORY_LIST.SLIST

 RETURN

SAVE_RESPONSE Section: This section records the
respondent’s response(s) to the current question to the
RESPONSE data set. This section performs the following:

Open RESULTS data set
Set WHERE clause to respondent’s observation
IF the question is a ‘mark all that apply’ type THEN

Initialize MATA_REPONSE variable to ‘’
LOOP

Set index to maximum number of possible
responses
If Nth response is selected THEN
Concatenate current response value to
MATA_RESPONSE

END LOOP
Save MATA_RESPONSE or RESPONSE to RESPONSE data set
Close RESULTS data set
RETURN

DISPLAY_NEXT_QUESTION Section: This section displays the
‘next question’ and dynamically generates and displays the
response object to the respondent. This section performs the
following:

QT contains the question-text obtained from the QUESTIONS
data set
JT is a flag indicating that skip-logic will be used.

MATA is a flag indicating that the question will use ‘mark all that
apply’ functionality.

RF contains the output response format to be used in displaying
the response object to the respondent.

RC contains the NAME of the RESPONSE SET to be formatted
and displayed to the user. Example: Agree007. Each response-
set indicates the number of entries within it. In the example
above, the response-set is an Agree/Disagree response-set and
contains 7 entries/values to be displayed to the user.

Open QUESTIONS data set
Set SURVEY_TITLE to value obtained from 1st observation
Set WHERE clause to NEXT_QUESTION
Load Question-Text
Close QUESTIONS data set

IF QT=’END’ THEN

LOCKOUT=’Y’
Delete JUMP_TABLE_LIST.SLIST
Link SET_LOCKOUT
Display Thank you/Termination Message

Open RESPONSE data set
Load response-object entry/entries
Close RESPONSE data set

If RF is ‘mark all that apply’ type

MATA = ‘Y’
ELSE

MATA = ‘N’

IF ‘PAGE_BACK flag set THEN

Link GET_PREVIOUS_RESPONSE

CALL appropriate Response-Set formatting routine (an example
will be provided later)

Display static HTML containing global output display formatting
objects such as TABLES, FRAMES, and embedded JavaScript
for input validation

Output Question-Text
Output Special-Instructions Text
Output Response-Object (SCL List containing dynamically
generated HTML/JavaScript)

RETURN

FORMAT_XX Sections: These 10 sections of code are
responsible for dynamically generating the output response object
(HTML and JavaScript) using the response-text obtained from the
RESPONSE data set. The appropriate section is triggered by the
value contained in ‘RF’ during the current execution cycle. We
will discuss one of the simpler response-objects (Radio-Button) in
order to avoid confusion. The compound-object types, dynamic
objects comprised of one or more dynamically generated objects
are too complex to illustrate within the constraints of this paper.
That is unless you want a really, really BIG paper ☺. These
sections generally perform the following:

Create RS SCL List (Container to hold dynamically generated
HTML/JavaScript)
Calculate # of columns in output display (N-times rows of 10
responses)
Link IFRAME_RESPONSE_OPEN (Create In-Line frame)
Generate dynamic header
Link INNER_TABLE_OPEN (provide structure for response
objects)
Link ADD_CONTROL_PARAMETERS_FRAME (add required
hidden variables to dynamic HTML to make selection re-select
Survey Engine & provide required operational/informational
parameters)
LOOP
Generate Nth response object
END LOOP
Generate ‘Submit Response’ or ‘Re-Submit Response Button
Link INNER_TABLE_CLOSE
Link IFRAME_RESPONSE_CLOSE
RETURN

========== End Code ==========

Once the referenced code sections have been executed and have
performed their operations, communication between the
SAS©/IntrNet server and the respondent’s browser is terminated.
All control information required for progression to the next
question has been embedded within the display’s response-object
region thereby negating the need for continued communication
between the server and respondent via sessions or other
methods, thereby conserving resources on the server. The
resultant display within the respondent’s browser contains all the
information required by the respondent to successfully understand
and provide their response(s) to the question.

Conclusion

Professional survey construction and administration places
tremendous demands on an application. The advent of the WWW
proffers one of the most efficient and cost-effective methods of
administering surveys to individuals located in even the most
remote locations. The SAS©/IntrNet-based Survey Engine is the
application of choice for any organization requiring a professional
commercially available product capable of fulfilling its survey
administration needs.

Contact Information
Bernard R. Poisson
(801) 816-0137
BPoisson@Statprobe.com

Avoiding Entanglements:
Migrating Applications to the Web

Eric Brinsfield, Meridian Software, Inc.®

ABSTRACT

After many years of developing SAS/AF
applications, most of us find ourselves facing or
pondering conversions to Web-based SAS®
applications. Before beginning the process, we
need to ask ourselves a series of important
questions. For example, is the end result worth
the cost of migration? Or, should we convert the
entire application or just parts of it or should we
just start over? And, what tools should we use in
the new Web-based software?

In this paper, I will discuss many of the issues that
we should take into consideration when preparing
for and planning a migration from a fat-client
application to a thin-client browser application. I
will present specific case studies that illustrate
successful migration paths.

INTRODUCTION

For many years, SAS/AF and SAS/EIS were the
primary tools used for SAS user interface
development. SAS/AF and SAS/EIS were, and still
are, highly customizable and powerful. The
functionality and “look and feel” of these custom
applications varied widely based on the experience
and training of the designers and programmers
building them.

Now, as the use of Web browsers has become a
household activity, most people are reasonably
experienced and comfortable using a Web browser.
Although every Web site application is different,
they all have some common threads of behavior,
based on the browser used to access the site. In
other words, different Web browser applications
seem to behave similarly just because they are
using the same Web browser.

So, with widespread availability and familiarity,
Web-based applications offer shorter learning
curves and less resistance to change. In many
cases, companies have set the Web browser as the
standard interface for any new application installed
on their networks.

But, how do we move existing applications to the
Web browser interface without rebuilding the
entire application. To address this issue, this
paper will present a case study that illustrates one
way to deal with this very common dilemma.

In this paper, I will use a case study to illustrate
the issues involved in migrating an application to
the Web.

For that case study, I will:

• Provide a general description of the case study

• Document the objectives of the project

• Identify the high-level set of options available
for achieving the objectives

• Note the client requirements and constraints
on our solution

• Discuss the option selection process

• Explain our rationale for the final solution

Case Study

In 1998, Meridian Software completed a pilot
project and delivered a Quality Analysis system to
a manufacturing client that provided the following
features:

• Real-time data feeds from a production control
system

• Master quality database stored in Microsoft
SQL Server

• Data-entry subsystem built using SAS/AF
Frame technology

• Real-time quality monitoring functions using
SAS development tools including SAS/AF,
SAS/Graph, SAS/Stat, and SAS/QC.

• Some historical analysis using the master
quality database and SAS with the interface
built in SAS/AF

In reality, our project was more than a pilot. In
this case, pilot meant that we would develop a
complete system, but only provide services for one
department rather than all. We also deferred
some large-scale decisions, such as data
warehousing, until after we proved the value of the
application. For clarification, note that department
refers to discrete steps in the manufacturing
process. The pilot focused on one piece of the
puzzle with its own set of engineers and
technicians.

Our projects with this client have been broken into
phases. Phase 1 was the pilot project. Phase 2
involved adding more capability and statistical
analysis and only expanded the scope to include
one other department. The focus of this discussion
is on our proposal process for Phase 3, which
added significant capability and scalability and the
potential for conversion into a Web application.

OBJECTIVES

Observations after 6 months of production usage

After using the pilot version of the Quality Analysis
system for 6 months in a production environment,
the client gained incredible insight into their
manufacturing process as well as revealing facts
about their suppliers’ quality control. The system
gave the quality analysts access to data that was
never available before and reduced historical
analysis time from six weeks to hours or even
minutes.

After a second phase, that delivered even more
statistical power, we found ourselves in the
following situation:

• The client wanted to add more features and
expand the system to cover additional
departments (steps in the manufacturing
process)

• Only a few users had access to the system,
because they could not justify licensing SAS on
the workstations of infrequent users.

• More technicians, engineers, and managers
wanted to have access to the analysis and
monitoring features

• SAS/Intrnet software had matured

• Our client had recently installed a set of Web
servers and a corporate intranet. They set a
new standard that favored Web browser
interfaces for all new software. Any
application that was not using a Web interface
would eventually be phased out. Our
application was the only SAS application at the
site, which meant that SAS could have been
phased out as well.

• Performance was unsatisfactory for users with
low-powered workstations. With insufficient
memory and CPU speeds, the SAS-based
reporting tool seemed sluggish, although it
worked fine on reasonable machines.

Phase 3 Objectives

Upon hearing the issues, detecting some of the
future trends, and receiving their request for more
features, we saw the need to move to a Web
browser-based application. When we provided a
proposal for Phase 3 enhancements and expansion,
we included plans for a conversion to a Web
application. With our plan, we hoped to achieve
the following objectives:

• Add new analysis and graphics

• Expand availability by making monitor and
analysis features available over the corporate
intranet

• Get information and our system in front of

engineers and upper management

• Insure future compliance with the corporate
direction toward Web interfaces thereby
increasing our chances of acceptance and
showing how valuable SAS software can be

• Improve performance on low-powered
workstations by using thin-client technology
that shifts the workload to the server

But, we did not want to propose starting over and
discarding all of the work from the past two years.
So, we had to consider our options carefully.

OPTIONS

No Change

Doing nothing was not an option because they
wanted expansion. We did not consider this
option.

Upgrade SAS/AF Application and Spread to More
Workstations

Because of cost considerations, we had to evaluate
the option of keeping the application completely in
SAS/AF and background processes. Although we
included this option in our proposal, we pointed
out that this option did not reflect the true
capabilities of SAS with SAS/IntrNet. We provided
a fair estimate of the upgrade price along with
advantages and disadvantages.

If we had to add a few additional reports, staying
with SAS/AF would have been a cheaper solution.
But, after the pilot version had been in production
for a year or so, we noted areas of frustration for
the data-entry technicians that we needed to
address.

In particular, data entry and reporting were all
built into one application. The users did not like
closing their data-entry windows in order to go
look at a report. We solved this with multiple SAS
sessions, but we did not consider this a robust
solution for scalability. So, some redesign was
necessary whether we converted to the Web or
not.

The biggest negatives for a complete SAS/AF
solution were cost of additional workstations with
hardware upgrades and negative impression in
view of the popularity of Web interfaces.

Convert to a Total Web Solution

We considered the possibility of converting all user
interfaces to a Web application. This conversion
would include all reporting tools, all analysis tools,
all administrator tools, and data-entry subsystems.
Given the power and complexity of the data-entry
applications currently in use, a total conversion

seemed like a very expensive option.

In addition to deciding whether to migrate to the
Web or not, we also had to consider which Web
tools were appropriate. Specifically, what
combination of the following tools should we use:

• SAS/IntrNet Application Dispatcher and Load
Manager

• CGI

• JavaScript

• Active X

• JAVA

• AppDev Studio

• Or an additional Web development tool

Build a Hybrid Solution (partial conversion to Web)

As the final option, we also evaluated
implementing a partial conversion, which would
leave more complex functions that were used by
fewer people, in SAS/AF, while converting queries
and analytical functions to the Web. Very few
users were entering new data, while many people
wanted to access the informative graphs and
reports available in the reporting and analysis
subsystems. The hybrid solution looked appealing
and offered some obvious payoffs.

REQUIREMENTS AND CONSTRAINTS

To evaluate the options fairly, we had to consider
all of the requirements carefully and see which
options withstood the customer’s constraints.
Specifically, we considered the following issues:

Usability

If more users were going to have access to the
system, interface usability was critical for success.
We could not ask high-level managers to take time
to attend training classes on using our system.
Because almost everyone is comfortable with a
Web browser now, the Web conversion seemed like
a very logical and important step for success.

Accessibility

Obviously, the Web application would be more
accessible. The client was not willing to license
SAS for every possible, casual user, who might
want to view a graph. So, SAS/AF was definitely
limiting accessibility throughout the company. The
Web version would make the application available
to everyone in the factory as well as employees at
other plants on the same corporate intranet.

Maintainability

One of the reasons IT folks love the thin-client
model is because thin-client applications are easier
to maintain. All of the code resides in a central

location on a server or servers rather than
dispersed on individual user workstations. In
addition, by using standard Web tools, the client
would not be as dependent on contracted SAS
expertise for all of their support, if that is an issue.

Performance

By forcing the processing back to the server with a
thin-client Web application, we could reduce the
demands on underpowered workstations. This
benefit moved the scale heavily toward the Web
conversion, but we also had to consider the
increased workload on the server. By moving all
processing to the same server along with
increasing the number of users, we had to consider
the possibility of overloading the existing server.

Security

Within the company, everyone was permitted to
see the data and review the reports, but only
selected employees were authorized to update the
database. So, data entry posed the biggest
security challenge.

Concurrent Access

Concurrency was built into the application from the
original design and was still critical as we
expanded the availability. With automated process
updates every 5 minutes for two different data
sources and manual data entry on a frequent but
irregular basis, concurrent access to the data had
to be studied again in view of the addition of more
users coming in from the Web.

“Real Time” data with historical analysis capability

With potentially more people running historical
analysis, concurrent access to the same database
could become a performance problem. So, with
the expansion to more users and conversion to the
Web, we had to review the database design and
server processing as well. The data-
entryrequirements were in conflict with the
analysis requirements, so how do you spell relief?

D - A - T - A M – A – R - T

We could not justify using data warehousing
techniques in the pilot project, but before scaling
up, we had to implement part of that strategy.
Future expansion will involve even more formal
data warehousing steps.

“Most Bang for the Buck”

As with any consulting project, our clients want to
get the most “bang for the buck”, in both the short
term and long term.

We could achieve this only by:

• Reusing as much existing code as possible

• Evaluating cost of development versus value of
end result (ROI)

• Delivering the new version in as short a time
as possible so new capabilities were available
sooner

• Keeping maintenance costs low (maintenance
cost had been negligible over the past 2 years
already)

• Decreasing demand on workstations so our
application and SAS were not the cause for an
increase in hardware requests

• Getting the most out of their SAS license,
opting to add new products and capability
rather than additional licenses, which would be
underutilized

• Increasing the expected life span of the
application thereby decreasing near-term costs
of replacement and increasing long-term ROI

OPTION SELECTION PROCESS

In our proposal to the client, we provided cost
figures for each major option along with the
description of the pros and cons of each. As you
may have guessed from my comments earlier, we
recommended a hybrid solution, which left data-
entry and administrative tools in SAS/AF and
moved all monitoring and analysis solutions to the
Web.

Basically, we could not recommend building new
features with SAS/AF for all of the reasons listed
above. Although SAS/AF is a powerful tool, the
Web is too popular and widely accepted to ignore
(even after the “dot com bust”).

We also considered moving everything to a Web
application, but to achieve the same level of
flexibility in the data-entry features, we would
need more time and more JAVA development.

At the time of the proposal, SAS Software’s
AppDev Studio did not support JAVA Server Pages
(JSP) and we (and many of our clients) were not
satisfied with the performance of JAVA applets.
So, although a JAVA approach might make sense
today, we felt that increased price and decreased
performance were significant risks with a total Web
conversion at that time.

The hybrid solution could be completed quickly,
providing the greatest functionality and
accessibility at the least cost.

FINAL SOLUTION

In our final solution, which went into production in
December of 2000, we implemented a hybrid
solution that kept data-entry functions in SAS/AF
and moved all reporting and analysis functions to
the Web browser. To support our new design, we
also recommended some hardware and database
changes that improved the overall performance

and function of the Web application.

Each of the major changes is described below,
starting with the system architecture changes.

Split the server

In anticipation of increased demand on the server
when more thin-client users started executing SAS
on the server, we recommended splitting the
single Windows NT Server into two servers,
thereby creating a three-tier architecture. One
server housed the Microsoft SQL Server database,
while the other became the Web server and SAS
Application Server. By splitting these functions,
multiple SAS sessions on the application server
were not competing with SQL Server for CPU and
I/O time.

PROCESS
CONTROL
SYSTEM

SAS
IMPORT &

LOAD

SAS WEB
SESSION

LOAD MANAGER

INTERNET
INFORMATION

SERVER

SQL SERVER

BROWSER

WIN NT SERVER WIN NT SERVER

SAS
APPLICATON

SERVER

WORKSTATION

Figure 1. Three-Tier System Architecture

After implementing this split and upgrading the old
machine at the same time, we saw significant
performance improvements in the SAS/AF-based
data-entry applications and the import processes
even while supporting thin-client analytical users.
To achieve this split, we did have to modify the
design of our import process slightly to take
advantage of the parallel processors. In addition,
we optimized all queries to split the workload
appropriately between the two servers. Large
queries would reduce the result sets within SQL
Server before passing them back to SAS for further
processing.

Split the database

The original database was designed to support
real-time updates and data entry. Consequently,
historical analysis activity could sometimes be slow

or go into wait state during large imports. These
conflicting objectives provide part of the
motivation behind today’s data warehouse
technology. As part of Phase 3, we recommended
implementing a more typical data warehouse
approach before expanding to any other
departments.

So, we took two steps to provide the fastest
performance for both types of users (transactional
and analytical). First, we partitioned the database
into current data (less than three months old),
historical data (between 3 and 12 months old), and
archived data, which was moved offline.

All transactional processes, such as data entry and
automatic import, accessed only the current
partition. In addition, monitor programs that took
a quick pulse of the system in real time, used only
the current data.

Secondly, we designed and built a data mart that
is refreshed twice a day automatically, but can be
refreshed on demand if desired. The data mart
was designed to optimize analytical processing and
included data from the current and historical
databases.

By implementing this strategy, we improved
performance for data entry and imports, while
providing impressive speeds in the Web
application. At any given time, the data mart may
not contain the most recent process data, but for
historical analysis or defect trend analysis, new
data points are not critical. In addition, this
strategy increases the scalability of the application
as we incorporate more departments into the
application.

Upgraded Data Entry

Although we did not convert the data-entry
application to the Web, the hybrid approach
provided enough leeway in the budget to allow us
to streamline the existing SAS/AF application. By
removing functions from the SAS/AF application
that had been shifted to the Web, we could give
users an application that was more focused on
their specific data-entry tasks. They could use the
Web for monitoring, while using SAS/AF for the
data entry on the same machine.

We also took advantage of the split server and
optimized the data-entry inserts and queries in
consideration of that design. Consequently, the
technicians were much happier, because data entry
was faster and easier and they could pop over to
the Web application to see their results instantly
without closing their data-entry application or
running two SAS sessions.

As a standard client-server application, the data-
entry subsystem was unaffected by any workload
on the SAS application server, because SAS and
the SAS/AF application ran on the data-entry
workstations and communicated directly with SQL

Server. The data-entry application did not need to
request any services from the SAS application
server.

Converting Monitoring and Analysis to the Web

As part of phase 3, we evaluated the current
application and categorized the reports and graphs
as either process monitors or quality analyzers.
We used this dichotomy in the Web application. In
addition, the new version also added a yield
analysis feature that produced reports on yield
rates and production levels rather than on quality
and defect levels.

Each category has the following attributes:

Process Monitors:

• Provide snapshots of current processes in real
time

• Utilize the “current” database, so historical
data was not available

• Are customized for a specific function

• Execute with a default set of options and
filters, so they could be run with a single click
of the mouse

• Run extremely fast

• Offer very few customizable options, if any at
all

• Include status reports, event viewers, control
charts, trend charts, density plots, and Pareto
charts

Quality Analysis and Yield Analysis:

• Provide a historical view

• Utilize the data mart and did not usually touch
the real time database

• Are extremely flexible, permitting the user to
define data subsets and specify graph or
reporting options

• Include predefined and custom reports, control
charts, graphs, trend charts, density plots,
Pareto charts and advanced analysis

• Enable users to download the data that was
used to create the report into SAS data sets or
Excel

We utilized SAS/Intrnet and the Application
Dispatcher with Load Manager for load balancing.
The Load Manager controls how many SAS
sessions are made available to the browser
sessions and reuses open sessions that are not in
use.

We used a combination of HTML, JavaScript, and
VB Script with Active Server pages to make the
Web site dynamic. SAS was used primarily for
reporting and analysis after the user selects
options. The Active Server pages communicate
directly with SQL Server to create dynamic select
lists and to perform non-analytical functions for the

browser sessions.

Because the Meridian Software standard for
software development encourages SAS/AF
developers to isolate SAS programs in a standard
directory or macro library rather than embedding
them within the SAS/AF application or catalog
entry, reuse of existing report programs was very
easy.

Instead of collecting and passing user parameters
with an AF window, we collected the parameters
within a browser and passed them to the same
programs. Our only major modifications to the
report programs were to add utilization of the
Output Delivery System (ODS), because we also
upgraded to Version 8 in Phase 3. ODS made the
conversion to the Web even easier.

SUMMARY AND FINAL ANALYSIS

Faced with upgrading an existing SAS/AF
application, you should seriously consider
converting all or part of the application to the Web.
SAS/IntrNet and the CGI interface provide a
painless path for existing SAS programmers to
take into the Web application development world.
SAS programmers do not have to jump directly to
JAVA.

With proper analysis, you can convert quickly and
cost effectively to the Web browser without losing
the power of SAS. We achieved a significant cost
savings by settling on a hybrid solution rather than
a total Web conversion. Our client is very happy
with the new interface and the users seem more
comfortable working in the Web environment.

If we were starting on the project today, we would
probably consider using more JAVA now that
Version 2.0 of AppDev Studio is available. The
development tool offers more features with more
communications capability and support for JAVA
Server Pages. It is quite likely that we will be
using AppDev Studio in Phase 4, when that
happens.

CONTACT INFORMATION

Eric Brinsfield
Meridian Software, Inc.
12204 Old Creedmoor Road
Raleigh, NC 27613
(919) 847-6750

merecb@meridiansoftware.com

www.meridiansoftware.com

TRADEMARKS

SAS® and all SAS products are trademarks or registered
trademarks of SAS Institute Inc. Meridian Software,
Inc.� is a registered trademark of Meridian Software, Inc.

Delivering OLAP Solutions to the Web
Tammy Gagliano, SAS Institute Inc., Carmel, IN
Tony Prier, SAS Institute Inc., Kansas City, MO

ABSTRACT
What is OLAP (Online Analytical Processing) and how can it
benefit your organization? Can you or should you be delivering
your OLAP applications via the web? If so, what tools are
available to you?

These questions and more will be answered during the
presentation, which will include live demonstrations of the Java
technologies available to you for web-enabling your OLAP
solutions. Using tools that are part of AppDev Studio™, you can
develop applet-based or servlet-based (including JavaServer
Pages™) OLAP applications. Comparisons will be made
regarding the pros and cons of each approach as well as how the
different technologies can be used together to provide a complete
solution.

INTRODUCTION
The ability to look at data from multiple dimensions, or areas of
interest, and to access that data quickly and in a consistent
manner is key to the success of any business intelligence
application. Today, OLAP (On-Line Analytical Processing) is
acknowledged as a key technology for a successful
implementation of any business intelligence system and is vital
for creating strategic competitive advantages for any
organization.

OLAP provides analysts, managers and executives the freedom
to interrogate their enterprise data. Using multidimensionality,
the data is organized according to the categories that reflect the
way the user thinks about the enterprise.

The SAS OLAP solution uses SAS Institute’s multidimensional
database (MDDB) server to provide high-performance OLAP
capabilities within an integrated data warehouse environment.
MDDB’s package warehouse data into multidimensional data
structures, which deliver data to OLAP client software upon
request. The SAS OLAP Server bundles all the required server-
side functionality you need for defining your OLAP data. Using
the SAS OLAP Server you can:

• create MDDB’s using PROC MDDB,
• register OLAP Metadata,
• create Access Control definitions,
• use Model Coordination.

The SAS OLAP server also supports Hybrid OLAP (HOLAP).
HOLAP provides the ability to partition your multidimensional
databases so that data can be split across multiple MDDB’s that
could reside on different servers. Data can also be accessed
from Relational databases, SAS data sets, summary data sets,
flat files, etc. This is all meta data driven and often provides a
much more open and scalable solution.

With SAS OLAP Server on the back-end, you can access data
from any source – in any format. Now, you are ready to choose
the front-end or the client interface to the data. For that, many
organizations today are turning towards thin-client solutions –
interfaces that can be easily deployed through the Internet or
corporate-owned intranets.

The growing use of the Web as a way to deliver client services
also results in the reduction of the costs associated with
upgrading applications. The role of the client interface becomes
that of a viewer of information delivered by the server. Adding a
new OLAP user can be as simple as e-mailing them the URL of
the OLAP application.

The SAS OLAP solution is web enabled and supports a full range
of client/server configurations including totally thin-client. By
relying on MDDBs on the server side for storage and processing,
SAS OLAP clients can be used soley as viewers of MDDB data.
Users can run queries and generate reports from their browser
without the need to run a SAS session on the client. The SAS
OLAP solution provides:

• web publishing tools such as the SAS Output Delivery
System (ODS) available as part of base SAS software in
Version 7 as well as the HTML Formatting Tools available
with Release 6.12 of the SAS System.

• the Application Dispatcher and htmSQL which are both part
of SAS/IntrNet™ software and are based on CGI
technology.

• Java-based technology such as servlets, JavaServer Pages
(JSP), applets or applications.

For the remainder of this paper, we’re going to focus on the Java-
based technologies available in AppDev Studio and how they fit
as part of the SAS OLAP solution. AppDev Studio (ADS) is a
complete, stand-alone development environment. It is an
integrated suite of development tools that provides the power you
need to build web-enabled applications that use HTML, CGI, Java
servlets and JavaServer Pages (JSP) as well as sophisticated
Java applications and applets. ADS contains many OLAP
specific components and interfaces to help build sophisticated yet
easy-to-use OLAP documents and deploy them to the web.

APPDEV STUDIO: WEBAF™ AND WEBEIS™ SOFTWARE
webAF software
Within the AppDev Studio suite of products, webAF software is
the primary development tool for Java-based applications. It
helps you build applications that are lightweight, easy to manage,
and instantly connect to SAS software. Support for the creation
and debugging of applets, servlets and JavaServer Pages is
provided. webAF software’s component-based visual
development environment enables easy access to SAS software
from Java classes, transparent access to SAS/AF objects,
access to JDBC data sources, access to remote tables and
MDDBs stored on one or more SAS servers, and access to SAS
compute power through remote procedure submissions.

If you are a webAF user, you will have to have some knowledge
of Java as it is a Java development tool. Code is automatically
generated for you as you drag-and-drop your components into
your project and it also provides a simple interface for linking
properties and setting event handlers to get components talking
to each other.
However, you still need to have a good understanding of the
underlying language in order to build a sophisticated application.

webEIS software

For those of you who are not Java experts, but still need to build
OLAP applications, you should take a look at webEIS software.
webEIS covers the entire spectrum of user needs – from
business executives who want an easy-to-use document for
viewing multidimensional data to business analysts who expect
sophisticated reach through, data visualization, analysis and
reporting capabilities. It is an application written in Java that
makes it easy to create interactive, EIS-style documents
containing charts and multidimensional tables. A webEIS
document is published on the Web as a Java applet or JSP. You
do not write any Java code to create these applications. They are
created purely using the intuitive and powerful point-and-click,
drag-and-drop interface provided by webEIS software. It is also
important to note that any webEIS documents you create can
easily be incorporated into a webAF project for further
customization using Java.

Using webEIS, you can point to existing MDDB or HOLAP data
on a remote SAS server. You can also point to an existing
SAS/EIS object, which enables you to reuse functionality and
behavior defined in the remote server object. Once these
documents are deployed, your users can:

• navigate intuitively through volumes of data using drill down,
expand/collapse or subsetting operations.

• perform analysis, and row and column calculations at run
time.

• apply traffic lighting or exception highlighting to record
important trends or outliers in the data.

• dynamically reach through to detail data anywhere on the
network without having to know where the data resides.

• and more.

All of this functionality is built into the various MDDB components
that are used in the background. It allows users to work
interactively on the client from their Web browser while they are
unknowingly communicating back to a SAS server where the data
is stored. webEIS is implemented in a multi-user client/server
mode and offers consistent rapid response to queries, regardless
of database size and complexity.

During this presentation, we will walk you through how to build an
OLAP document using webEIS and then show how easy it is to
deploy the document either as an applet or JSP – without you
having to write a single line of code!

JAVA TECHNOLOGY
We’ve talked about the tools that will enable you to deploy your
OLAP applications using Java technology, but we haven’t
discussed why you should consider choosing Java as your
development platform to begin with. Just why is it that Java is
considered by some to be the premier language of choice for
providing highly interactive user interfaces to the Web browser?

Java technology is continuously being enhanced to provide
components and features that elegantly handle problems that are
difficult in traditional programming languages such as
multithreading, database access, network programming and
distributed processing. It is ideally suited for the Web because it
is:
• portable across platforms by virtue of it being an interpreted

language. A Java Virtual Machine (JVM) must be available
on the user’s machine. Most browsers (e.g. Netscape and
Internet Explorer) contain a JVM as part of their standard
installation.

• secure through its ability to maintain the integrity of the client
machine. The JVM has the opportunity to enforce the rules

specified by the security manager to ensure that the integrity
of the user’s machine is maintained and that the applet does
not have access to resources other than those the user has
specifically granted. In addition, it allows vendors to digitally
sign the archive file to identify the vendor that created the
JAR file. This allows the user to decide whether they “trust”
the software provided by this vendor.

• considered to be a true thin client solution because of its
ability to be dynamically downloaded on demand versus
permanently installed on the user’s machine. This
eliminates the user or IS staff at your site from having to
install and maintain current versions of software on each
client machine.

JavaBeans™
Another reason that Java is so popular is because of its
JavaBeans and Enterprise JavaBeans architectures. These
object-oriented frameworks allow for the building of some very
powerful components that make it easy for developers to create,
deploy and manage cross-platform applications. webAF offers
its own set of JavaBeans compliant components referred to as
InformationBeans™. These beans allow you to tap into the
enterprise data access, data warehousing, and decision-support
capabilities of SAS software.
You can build sophisticated web applications that can:

• access SAS data libraries on a remote server allowing
access to any data source that SAS can access through its
extensive list of database engines.

• display SAS multidimensional databases in a ready-to-use
OLAP viewer that has built-in functionality for drilling down
through the data, subsetting, exporting the data to a
spreadsheet, applying exception highlighting, adding
computed columns and more.

• perform compute services by submitting SAS code on the
server to perform tasks such as statistical analysis,
reporting, summarization, and quality control -- just to name
a few.

There are many components available with webAF that are
specifically designed for generating custom OLAP applications –
accessing the power of SAS on the server for both data (MDDBs)
and compute resources. For example, the
com.sas.sasserver.mdtable.MultidimensionalTableV3Interface is
an InformationBean that is designed specifically to read and
manipulate MDDB data.

The data supplied by this model can be displayed on the web
using one of the following viewer components:

• in a Java applet using the MultidimensionalTableView
component (found in com.sas.mdtable)

• or in JavaServer Pages/Servlets using the MDTable
TransformationBean™ (found in
com.sas.servlet.beans.mddtable.html).
TransformationBeans are discussed in more detail later in
this paper.

Both of these viewers were designed to display MDDB data in a
table format and communicate with the above model through
model/view communication. Model/view communication enables
a viewer (typically a visual control) to communicate with a model
(typically a non-visual component) based on a set of common
methods that are defined in an interface. The viewers seemlessly
communicate with its attached model without you having to write
additional Java code to perform tasks such as retrieving rows to
display, handling updates that might be made through client-side
table interaction and more.

InformationBeans virtually open the door to SAS, which enables

your web applications to take advantage of any and all
functionality that SAS software provides. And using AppDev
Studio, the power of having SAS on the server can be exploited
without having SAS software installed on the client machine.

Java Applets
Applets lend themselves nicely for creating highly interactive user
interfaces for thin-client applications. With applets, you avoid
having to install an application locally on a user’s machine.
Instead, when an applet is executed (usually by being called from
within an HTML page), the necessary files are automatically
downloaded from the Web server. The applet is then loaded into
memory and displayed in the browser. Typically, applets are
subject to security restrictions on the client, the server, or both.
Make sure that you understand any limitations that your
production web environment may impose.

webAF’s Project Wizard quickly steps you through creating an
applet. Then you can begin building the pieces of your
application using webAF’s drag and drop interface to add visual
and non-visual components to a window.

Even though the power of Java makes applets a popular choice
among many Web application developers, applets present some
deployment hurdles that you should be aware of. By
"deployment" we mean the mechanism by which the applet is
made available to the Web browser user.

Some of the most common complaints you hear about applets
are:

• the need for the Java Plug-in which is an ActiveX control.
This raises some security concerns for sites, which do not
allow downloading of any ActiveX technology.

• the start-up time required to download an applet’s
implementation files and all required class libraries from the
web server host to the client machine.

• the amount of time it takes the applet to set-up the server
side environment – for example, to instantiate a SAS
session and load large tables in that session that are then
accessed from within the applet.

AppDev Studio developed applets require a Java VM that is JDK
1.3 or later. Popular web browsers like IE 5.0 and Netscape 4.5
do not natively support such levels of the Java VM. In response,
Sun has produced the Java Plug-in to allow applets to run with
the JDK level that they require in these browser environments.
As a result ADS developed applets need to use the Java Plug-in
on order to run in these browsers. Some sites do not allow
downloading of any ActiveX controls because these controls have
access to the local machine and can create havoc if coming from
an unreliable source. One way to address the security issue that
the Plug-in raises is to install it on a local intranet where the
browser can be configured to allow it to be downloaded by
applets as needed. This allows use of the Plug-in without
allowing other ActiveX controls to be downloaded from the
Internet. Another option, which avoids the ActiveX/Java Plug-in
issue altogether is to consider using servlets/JSPs to deploy your
application which is discussed later in this paper.

The latter two concerns from the above list fall under the ‘applets
are slow’ category. Both tasks are performed every time the
applet is invoked. When dealing with a slow network or dial-up
connection, slow applet performance can severely limit their
effectiveness.

To help overcome these problems, AppDev Studio provides a
number of techniques that you can use. Where applet download
times are a problem, SASNetCopy or JSASNetCopy along with
the Java Plug-in’s applet caching feature can be used to install
the applet classes and any required extension classes onto the

client machine. Both of these technologies use a zero-
administration, auto-install approach. Using either technology,
the applet’s required class libraries can be downloaded
automatically the first time that the applet HTML is referenced
and then cached on the client machine for subsequent re-use.
Updated class libraries are made available by simply installing
them on the web server and modifying a server-side configuration
file. Then, the next time a user accesses the applet HTML, the
updated class libraries will automatically be downloaded and
cached on the client machine.

Where SAS startup time is an issue, the AppDev Studio
Middleware Server’s SAS session preloading and MDDB or class
preloading feature can be used such that the required SAS
support is available to a client virtually instantaneously. This
feature can be used for servlet/JSP environments as well.

For more details on these techniques, refer to the following
papers available from the AppDev Studio Developer’s Site:

• Improving Applet Performance: SASNetCopy and
JSASNetCopy:
http://www.sas.com/rnd/appdev/Tools/applet-

performance.htm

• AppDev Studio Middleware Working with User Profiles:
http://www.sas.com/rnd/appdev/doc/MWSprofiles.htm.

Java Servlets and JavaServer Pages™ (JSP)
While the techniques described above will help speed up applet
startup times, applet technology may still present some problems
that lend themselves towards a look at servlet or JavaServer
Page technology instead. For example, suppose you have an
applet that needs a connection to a SAS session on a remote
server in order to take advantage of data stored there or the
compute power of a SAS server. If you are deploying your
solution in a more restrictive network environment (for example
through firewalls, proxy servers, or using secure HTTP), you may
have to undertake considerable effort to get applet solutions to
work. In such a network environment, you should also consider
using a server-side Java solution such as JavaServer Pages or
Java servlets. These solutions simply return HTML back to the
client device while the code runs on the application server
machine. Both the server-side program and the SAS server
reside behind the firewall.

At a conceptual level, servlets are just like applets except that
they run in the server environment instead of the browser
environment.
In the firewall scenario mentioned above, hosting the processing
on the server eliminates the problems with communications from
the client machine to the SAS server. Additionally HTTPS is fully
supported since the only requests being passed between the
client and the web server are HTTP requests.

JavaServer Pages are actually an extension of the Java Servlet
API. However, developing an application based on JSP
technology does not require in-depth knowledge of how servlets
work. JSP technology makes it easier to build web pages with
dynamically generated content through the use of Java's
component-based technology. It separates the user interface
from the application logic, which enables:

• the page designer to focus on writing the HTML that controls
the overall page design.

• the application developer, using JSP tags (or scriptlets), to
generate the dynamic content portion of the page.

Java is the native scripting language for JSP, which means you
can develop platform-independent applications due to Java's
"Write Once, Run Anywhere" characteristic. In the simplest

terms, a JSP page is simply an HTML page with embedded Java
code. If you are comfortable writing Java code, you can embed
Java programs directly in the JSP page using scriptlet tags.

If you’re not a programmer, you can take advantage of reusable,
cross-platform components (JavaBeans or Enterprise
JavaBeans) with JSP-specific XML tags (e.g. USEBEAN tag)
that make it simple to instantiate JavaBeans components and
manipulate properties on a component from within your web
page.

Through the use of this component-based logic, page developers
are able to develop sophisticated, interactive web-based
applications with very little Java programming knowledge.
JavaServer Pages provide other benefits as well. Execution of
JSP pages is simple and fast because they can be executed on
any Java-enabled Web server, application server, or operating
system. This differs from other technologies that have specific
server requirements. For example, Microsoft’s Active Server
PagesTM technology is dependent on other Microsoft technology
(such as COM).

JSP technology holds advantages over traditional CGI-based
solutions, which have shown limitations with respect to scalability.
With each CGI request, a new process on the server is launched.
When multiple users access the program concurrently, these
processes can quickly consume all of the web server’s available
resources and can bring the application to a halt. When a JSP
page is first called, if it does not yet exist, it is compiled into a
Java servlet class and stored in the server memory. A Java
servlet is a Java-based program that runs on the server as
opposed to an applet, which runs on the browser. This enables
very fast responses for subsequent calls to that page (and avoids
the CGI-bin problem of spawning a new process for each HTTP
request, or the runtime parsing required by server-side includes).

Finally, JSP differs from other technologies because it utilizes
reusable components and tags, instead of relying heavily upon
scripting within the page itself. Through its use of servlet
technology and Java server-side processing, it offers:

• scalability for complex, dynamic web pages
• a true thin-client deployment strategy (with an even smaller

footprint than applets which require the Java classes to be
downloaded to the client)

• persistence due to Java’s true session management
capabilities.

However, like CGI, the graphical user-interface (GUI) portion of
the application is somewhat limited to what the HTML form
elements can provide. For more detail on comparing this
technology to CGI or Applets, refer to Getting Started with
AppDev Studio, First Edition.

In addition to what the servlet/JSP platform provides, AppDev
Studio offers additional functionality, which makes the
development of web pages in the servlet/JSP environment even
easier. Those features are:

• TransformationBeans (available for both servlets and JSPs)
• Custom Tag Library for the TransformationBeans and key

InformationBeans (custom tag technology available for use
within JSPs only)

TransformationBeans
TransformationBeans are a set of specialized JavaBeans
included with webAF. These beans are designed to consume
data from an existing webAF model (e.g., using the
DataSetInterface model that retrieves data from a SAS data set)
and transform it into HTML to display on the Web page (e.g.,
using the Table TransformationBean, which displays the data in

an HTML table).

When using webAF’s InformationBeans and
TransformationBeans together, not only does the page author
have access to the power of SAS on a remote server but they
also spend less time writing HTML. The TransformationBeans do
all the work!

The table below, lists the TransformationBeans you will find
useful when building an OLAP application:

Package: com.sas.servlet.beans.mddbtable.html
TransformationBean Description

MDBar
creates an HTML Bar chart
image that represents data
stored in a MDDB table

MDCombination

creates an HTML
Combination chart image
that represents data stored in
a MDDB table

MDDrillPath

displays text that
corresponds to the current
drill path within an MDDB
table

MDExportToExcel exports MDDB data to MS
Excel (using CSV file format)

MDFinder

generates HTML to represent
a selector that allows a user
to specify a text string to
search for in a selected
Column of an MDDB table.

MDNavigationBar

generates HTML visuals
which allow a user to scroll
within an MDTable
Transformation Bean

MDPie

creates an HTML Pie chart
image that represents data
stored in a Multidimensional
Database.

MDQuerySelector

generates HTML and
JavaScript to represent a
selector that allows a user to
dynamically change Rows,
Columns, Measures and
Statistics displayed in an
MDTable
TransformationBean

MDScatter
creates an HTML Scatter
chart image that represents
data stored in a MDDB

MDSegmentedBar

creates an HTML
SegmentedBar chart image
that represents data stored in
a MDDB

MDSelectorMenuItem
used to populate a Menu
item in the MenuBar
TransformationBean.

MDSortSelector

generates HTML and
JavaScript to represent a
selector that allows a user to
change the sorting criteria for
MDDB data displayed in a
MDTable
TransformationBean

MDSubsetSelector

generates HTML and
JavaScript to represent a
selector that allows a user to
change the subset criteria for

MDDB data displayed in a
MDTable
TransformationBean

MDTable

generates HTML tables to
view data stored in a MDDB
(attached to the
MultidimensionalTableV3Inte
rface InformationBean)

MDTopBottomSelector

generates HTML and
JavaScript to represent a
selector that allows a user to
subset according to top
N/bottom N criteria for MDDB
data displayed in a MDTable
TransformationBean

MDTotalsSelector

generates HTML and
JavaScript to represent a
selector that allows a user to
specify totals to be displayed
in a MDTable
TransformationBean

Package: com.sas.servlet.beans.html
TransformationBean Description

MenuBar

generates HTML that builds
a menubar which can be
populated with Menu items
and MDSelectorMenuItem
items which launch the
various TransformationBean
selectors described in the
above table

Menu

used in conjunction with the
MenuBar and
MDSelectorMenuItem
components to populate a
MenuBar

Note: All HTML beans adhere to functionality available in HTML
3.2.
There are many more TransformationBeans available in the
com.sas.sservlet.beans.html package than what is listed in the
above table. To see a complete list along with examples, use the
following link to go to the Server Side Examples page on the
AppDev Studio Developer’s Site:
http://www.sas.com/rnd/appdev/webAF/server/examples.htm

At first glance, it might seem that TransformationBeans are
simply a set of convenience objects that help a Java developer
implement an HTML page. Compare the HTML code necessary
to place a form input element such as a check box on a page

<input type="checkbox" name="box1"
value="checked" checked>Label

with the Java code that implements a CheckBox
TransformationBean

<%
com.sas.servlet.beans.html.Checkbox
 checkbox = new
 com.sas.servlet.beans.html.Checkbox(
 "box1", "Label", true, "checked");
checkbox.write(out);
%>

The simple HTML code is straightforward and easy to read.
However, the TransformationBean makes it easy to implement

dynamic content. If you wanted to simply check or uncheck the
form control based on the value of a boolean variable named
status defined in your JSP, the code without the
TransformationBean looks like

<% if (status) { %>
<input type="checkbox" name="checkbox1"
 value="checked" checked>Label
<% } else { %>
<input type="checkbox" name="checkbox1"
 value="checked">Label
<% }%>

Using the TransformationBean, the JSP code contains

<%
com.sas.servlet.beans.html.Checkbox
 checkbox = new
com.sas.servlet.beans.html.Checkbox(
 "checkbox1", "Label", status,
 "checked");
checkbox.write(out);
%>

The use of the bean not only aids in dynamic content generation,
but it is also easy to read and debug.

The above TransformationBean example was taken from a paper
found on the AppDev Studio Developer’s Site called Why use
TransformationBeans? To read the complete article use the
following link:
http://www.sas.com/rnd/appdev/webAF/server/whytbeans.htm

SAS Custom Tag Library
Along with the standard scriptlet and JSP specific tags, the
JavaServer Pages specification also supports something called
custom tags. A custom tag is a user-defined JSP language
element.
Custom tags are usually distributed in the form of a tag library,
which defines a set of related custom tags and contains the
objects that implement the tags.

webAF offers an extensive tag library that corresponds to the
TransformationBeans and key InformationBeans that you would
want to use in your JSP applications. You do not have to be a
Java expert to use these custom tags. The tags are HTML- or
XML-like. You simply specify values for the attributes on a given
tag statement in your JSP.

Continuing with the Checkbox TransformationBean example
shown above, the equivalent custom tag code would look as
follows:

<sasads:Checkbox id="checkbox1"
 text="Label" selected="<%= status %>"
 value="checked" />

In the section labeled USING WEBAF TO BUILD A JSP-BASED OLAP
APPLICATION found later in this paper, you will see an OLAP
example of the custom tag code that gets generated as you drag
and drop components from the webAF toolbar onto your JSP
project. The custom tag source code that gets generated is
much easier to read and maintain versus scriptlet or standard
Java code. As a result, you’ll find that using custom tags
increases your productivity because of the encapsulation they
provide for more than often very complex tasks.

For more details on the SAS Custom Tag Library and what it has
to offer, go to the following papers found on the AppDev Studio

Developer’s Site:
• WebAF and the SAS Custom Tag Library

http://www.sas.com/rnd/appdev/webAF/server/customtags.h
tm

• SAS Custom Tags: Overview
http://www.sas.com/rnd/appdev/webAF/taglib.htm.

LETTING WEBEIS GENERATE YOUR OLAP APPLICATION
FOR YOU
One of the easiest and quickest ways for you to design an OLAP
document and deploy it to the web is to use webEIS software.
Using webEIS, you do not need to write a single line of code. It
provides you with a friendly user-interface to perform all the tasks
you need such as

• creating OLAP documents that have one or more sections to
them.

• choosing a remote data source.
• adding components to the sections within your document.
• rearranging the components and change their properties to

give them the exact behavior and look and feel that you
desire.

• deploying the finished document as either an applet or JSP.

Saving the document as a JSP application is new with Version 2
of AppDev Studio. Instead of choosing File->Save as Applet…
from the webEIS menu,

1. Select File -> Save As JSP…
2. In the Save as JSP window, note the name of the JSP and

the path where all dependent files will be saved. By default,
JSPs are named using the name of the current document.
They are saved to the default Web server location if one has
been specified; otherwise, they are saved to the current
document directory.

When you save a document as a JSP, several JSP files are
created:
• a main JSP file
• one JSP file for each section
• any associated resource dependencies (for example,

images that were specified with absolute file paths) are
also saved.

3. (Optional) Click the Package files as… check box if a Web
server has not been specified. All files are then saved as a
.zip file. You can easily move the .zip file to another
location, such as a Web server.

The EIS document itself is still available and is saved in a file with
a .eis extension. This document can be edited later within
webEIS. Additional applets and/or JSPs can be generated from it
at any time.

Some developers like to have more control over their application
or add additional behavior than maybe what a user-interface like
webEIS provides. For example, an OLAP document may be only
a small part of a much bigger application. The application may
need to surface additional reports against relational data or
submit other tasks such as more sophisticated data analysis or
forecasting. Or, some developers simply like to write their own
code instead of letting an application generate it for them. If
you’re one of these people, you may prefer to use webAF
software to develop your OLAP applications.

The underlying OLAP components are the same between the two
products. webEIS uses the MultidimensionalTableV3Interface to
access MDDB data from a remote SAS server. You would use
the same model in webAF regardless of whether you’re building
applets or servlets. The difference between the two tools

obviously being that in webAF, you will be writing the code to
make the various components communicate with each other and
to control the overall behavior of the application. The remaining
two sections of this paper focus on using webAF to build your
OLAP solutions.

USING WEBAF TO BUILD A JSP-BASED OLAP APPLICATION
With webAF, you can choose to create either a JSP or servlet
project. It’s not unlike the steps you go through when building an
applet. webAF offers various components that are available from
its component palette. You drag and drop those components
onto the project you are creating. Some code gets generated
automatically for you. You can use various wizards, dialogs and
properties windows to specify options and control some of the
behavior. But more often than not, you will end up going directly
to the code and writing some yourself to complete the application!

First, let’s take a look at building a JSP-based OLAP application
using webAF. We’ll take a look at the custom tag code that gets
generated and how to manipulate that code. In the next section,
we’ll show the same example from a servlet perspective. Again,
the underlying components used are the same – only the
implementation differs. One uses custom tags and scriptlets
mixed with HTML elements… the other uses pure Java code.

To begin creating a JSP project, select File→New from the
webAF menu. When the New window appears,

1. select JavaServer Pages Project from the Projects tab
2. type sugi26 in the Project Name field
3. select OK
4. select Finish in the Project Wizard – JSP options window.

Change the component palette from JSP/Servlet to MDDB
JSP/Servlet. Now we need to drag the six components needed
for this OLAP application onto the project. Select the Visuals tab
in your webAF project frame area, then drag a

• MultidimensionalTableV3Interface from the SAS tab (a
Connection object will automatically be created along with
this component since it needs to make a remote connection
to SAS to get the data),

• MDCommandProcessor from the Data Viewers tab,
• MDExportToExcel from the MDDB Tasks palette,
• MenuBar from the Selectors tab,
• MDTable from the Data Viewers tab,
• and MDBar from the Graphics tab.

The Visuals tab within webAF should look like the following after
dropping the components.

Open the customizer for MDModel1. On the Data Source tab,
1. type sugidemo in the Metabase field

2. type SUGIDEMO.CBMDDB in the Database field.

On the Query tab,
1. type Product Hierarchy for Add New Item and

select the Add button for Rows
2. type Time Hierarchy for Add New Item and select

the Add button for Columns.

On the Measures tab type,
1. Actual for Measure and SUM for statistic
2. Forecast for Measure and SUM for statistic
3. Difference for Measure and SUM for statistic.

On the Totals tab type,
1. Product Group for Level
2. Total for Label
3. true for state.

Close the MDModel1 customizer.

Open the property sheet for MDExportToExcel1, type
1. index.jsp in the formAction field
2. exportForm in the formName field
3. false in the render field.

Setting render to false will prevent the tag from writing itself out at
the location of the custom tag. The tag will be rendered later
when it is referenced as a menu item in the Menu bar. Close the
Property Sheet Window.

Open the customizer for menuBar1. On the Menu Bar tab,
1. select MenuBar in the Tree
2. select SELECTOR_EXPAND for Menu Type
3. type | in the separator field
4. select Menu in the Tree
5. type Subset in the Label field
6. type /assets/subset.gif in the Image field
7. type Subset in the Alternative Text field
8. expand the Subset Node in the Tree
9. select MDSelectorMenuItem in the tree
10. type MDModel1 in the Model field
11. select SUBSET_SELECTOR from Selector Type choice box
12. select MenuBar in the Tree
13. select New→Child
14. type Export to Excel in the Label field
15. type /assets/export.gif in the Image field
16. type Export To Excel in the Alternative Text field
17. type document.exportForm.submit(); in the

Custom Action field
18. select New→Child
19. select MDSelectorMenuItem from the Menu Item Type

choice box
20. type MDExportToExcel1 in the Selector field

Close the customizer for menuBar1.

Open the customizer for MDTable1. On the MDTable tab,
1. type MDModel1 in the Model field
2. set the border width to 1
3. type MDCommandProcessor1 in the

CommandProcessor field.

On the NavBar tab type,
1. /assets/double_left_03b.gif in the First

field
2. /assets/left_03b.gif in the Previous field
3. /assets/right_03b.gif in the Next field
4. /assets/double_right_03b.gif in the Last

field.

Close the customizer for MDTable1.

All the properties of the MDTable are not displayed in the
customizer. To view all the attributes available in the custom tag
open the help window for the MDTable custom tag. To open the
help window,
1. select MDTable1 in the Project Navigator,
2. use the right mouse button to display a pop-menu
3. select help from the pop-menu.

Switch to the Source tab in webAF project. Edit the MDTable1
custom Tag directly to specify additional attributes. New
attributes are in bold.

<sasads:MDTable id="MDTable1" maxRows="25"
 maxColumns="10" scope="session"
 borderWidth="1"
 commandProcessor="MDCommandProcessor1"
 model="MDModel1"
 detailDataStyleSheet=

”/assets/sasads.css”
 upArrowImage=”/assets/up_03b.gif”
 rightArrowImage=”/assets/right_03b.gif”
 leftArrowImage=”/assets/left_03b.gif” >

 <sasads:MDNavigationBar
 doubleLeftArrowImage=
 "/assets/double_left_03b.gif"
 doubleRightArrowImage=
 "/assets/double_right_03b.gif"
 leftArrowImage="/assets/left_03b.gif"
 rightArrowImage=

 "/assets/right_03b.gif"
disabledDoubleLeftArrowImage=

 "/assets/double_left_03g.gif"
 disabledDoubleRightArrowImage=
 "/assets/double_right_03g.gif"
 disabledLeftArrowImage=

 "/assets/left_03g.gif"
 disabledRightArrowImage=

 "/assets/right_03g.gif" />
</sasads:MDTable>

Open the property sheet for MDBar1, specify
1. MDCommandProcessor1 for the commandProcessor

property
2. MDModel1 for the Model property.

Close the property sheet.

To complete the JSP page we need to add a few HTML tags to
complete the HTML. The complete index.jsp file is shown on the
following page. The added HTML tags are shown in bold.

<%-- Copyright (c) 2001 by SAS Institute Inc., Cary, NC 27513 --%>
<%@taglib uri="http://www.sas.com/taglib/sasads" prefix="sasads"%>

<sasads:Connection id="D2159_s_PC" serverArchitecture="PC" persistedName="D2159’s PC"
 command="sas.exe -dmr -comamid tcp -noterminal -cleanup" host="D2159"
 scope="session" />

<sasads:MDModel id="MDModel1" connection="D2159_s_PC" scope="session" metabase="sugidemo"
database="SUGIDEMO.CBMDDB" >

 <sasads:MDRowAxis >Product Hierarchy</sasads:MDRowAxis>
 <sasads:MDColumnAxis >Time Hierarchy</sasads:MDColumnAxis>
 <sasads:MDMeasure measure="Actual" selectedStatistics="SUM" />
 <sasads:MDMeasure measure="Forecast" selectedStatistics="SUM" />
 <sasads:MDMeasure measure="Difference" selectedStatistics="SUM" />
 <sasads:MDTotal level="Product Group" label="Total" state="true" />
</sasads:MDModel>

<sasads:MDCommandProcessor id="MDCommandProcessor1" scope="session" />

<sasads:MDExportToExcel id="MDExportToExcel1" formName="exportForm" formAction="index.jsp"
 render="false"/>
<html>
<head>
<link rel="stylesheet" type="text/css" href="/assets/sasads.css">
</head>
<body>
<sasads:MenuBar id="menuBar1" menuType="SELECTOR_EXPAND" separator="|" >
 <sasads:Menu label="Subset" image="/assets/subset.gif" alternateText="Subset" >
 <sasads:MDSelectorMenuItem model="MDModel1" selectorType="SUBSET_SELECTOR" />
 </sasads:Menu>
 <sasads:Menu label="Export To Excel" image="/assets/export.gif" alternateText="Export
to Excel" customAction="document.exportForm.submit();" >
 <sasads:MDSelectorMenuItem selector="MDExportToExcel1" />
 </sasads:Menu>
</sasads:MenuBar>

<sasads:MDTable id="MDTable1" model="MDModel1" commandProcessor="MDCommandProcessor1"
 maxRows="25" maxColumns="10" scope="session" borderWidth="1"
 detailDataStyleSheet="/assets/sasads.css" upArrowImage="/assets/up_03b.gif"
 rightArrowImage="/assets/right_03b.gif" leftArrowImage="/assets/left_03b.gif">
 <sasads:MDNavigationBar doubleLeftArrowImage="/assets/double_left_03b.gif"
 doubleRightArrowImage="/assets/double_right_03b.gif"
 leftArrowImage="/assets/left_03b.gif"
 rightArrowImage="/assets/right_03b.gif"

disabledDoubleLeftArrowImage="/assets/double_left_03g.gif"
 disabledDoubleRightArrowImage="/assets/double_right_03g.gif"
 disabledLeftArrowImage="/assets/left_03g.gif"
 disabledRightArrowImage="/assets/right_03g.gif" />
</sasads:MDTable>

<sasads:MDBar id="MDBar1" model="MDModel1" commandProcessor="MDCommandProcessor1"
 imageLocation="/assets/" scope="session" />
</body>
</html>

To test the JSP page from within webAF:
1. Make sure your web server is running by selecting

Tools->Services->Start Java Web Server.
2. Select Build→Execute in Browser.

The resulting page should appear in the browser as shown.

DEPLOYING YOUR OLAP APPLICATION USING SERVLETS
AND JAVASERVER PAGES
In most Web project development scenarios, multiple roles and
responsibilities will exist. For example, an individual who designs
HTML pages fills the role of a Web designer, while someone who
writes Java code might fill a software development role. With the
Web technologies available in J2EE -- namely JSP and servlets -
- not only can you appropriately separate the development roles,
you can also maintain a separation between your business logic
and presentation code.

We have already demonstrated how you can use JSP technology
for presentation purposes. Let’s examine how one might separate
some elements of the business logic from that presentation. To
accomplish this, you can identify the components you need, then
decide which technology to use to implement those components
based on the role they play:

• Java servlets are well-suited to manage application flow and
business logic evaluation. You can use servlets to provide a
single point of entry into the Web application by performing
such actions as intercepting HTTP requests that arrive from
the client and simplifying security management.

• Presentation JavaServer Pages generate HTML (or other
mark-up), and have as their main purpose the presentation
of dynamic content.

The application can flow from the servlet to the presentation
JSPs because the servlet can simply delegate or "forward" the
incoming request -- plus any additional information returned by
the business logic processing -- to the JSP. This separation,
then, is analogous to the Model-View design pattern, where the
front-end servlet functions as the model and the presentation JSP
functions as the view. This approach is often presented as a
"best practice" in implementing Web applications using J2EE.

Consider the OLAP application example, beginning with its
Connection component. If you were to deploy the application
within an organization that had many users, simple tasks such as
connecting to SAS become much more costly because so many

users could be accessing the application at the same time, which
increases the load on the SAS server. To remedy this, your team
would likely employ a server load balancing technology such as
AppDev Studio Middleware. Or, you might direct users with
specific roles or from specific departments to other SAS servers.
The logic to implement the Connection component under such
constraints is no longer appropriate within the JSP page. It would
require embedding conditional Java scriptlets within the JSP or
adding a significant number of attributes to the Connection
custom tag. Instead, you can instantiate the Connection
component from within a servlet. You’ve now begun to separate
your business logic from the presentation code.

When determining how to separate the components of your
application, you can apply a simple test: Does this component
contribute to the rendering of the response? If it does, then you
can leave it in the JSP. Otherwise, it is appropriate to move it into
the servlet. The MDModel in our OLAP application fits this
criteria. For example, by coding the metabase and
multidimensional database information directly on the JSP as
attributes of a custom tag (as we did in the previous
demonstration), you place a reference to key information about
your organization within the presentation. In addition, this
metabase information may be data-driven itself -- or, based on
your business logic, you provide different metabases for different
user roles or scenarios -- and the presentation simply displays it.

In general, it is best to leave a Web designer with the
responsibility of coding attributes on tags that simply render
information. Any information related to organizational data or an
organizational process is more appropriately included in the non-
visual servlet.

Some other things to consider:

• webAF supports the development of both servlets and JSPs
from within a single project. You can use File > New and
specify a HTTP Servlet if you want to add a servlet file to a
project.

• To forward a request from a servlet to a JSP, you use the
code shown at the top of the following page.

Example of forwarding request from a servlet to a JSP:

RequestDispatcher dispatcher=getServletContext().getRequestDispatcher("jsp-file.jsp");
dispatcher.forward(request, response);

where jsp-file.jsp is the name of the presentation JSP.

The remainder of this section illustrates how the example we’ve been building can more appropriately be separated into servlets and JSPs.
We’ve separated the business logic and application flow components (Connection, MultidimensionalTableV3Interface, CommandProcessor)
and placed them in a servlet. The presentation component (MDTable) is placed in the JSP. To complete the example, you would also need
to add the MDNavigationBar, MDBar, and Menubar custom tags to the JSP since they also represent rendering of visuals that are part of the
application.

Servlet Example:

/* Copyright (c) 2001 by SAS Institute Inc., Cary, NC 27513 */
import java.io.*;
import javax.servlet.*;
import javax.servlet.http.*;
import com.sas.rmi.Connection;
import com.sas.rmi.Rocf;
import com.sas.servlet.util.BoundConnection;
import com.sas.sasserver.mdtable.MultidimensionalTableV3Interface;
import com.sas.servlet.beans.mddbtable.html.*;
import com.sas.servlet.beans.mddbtable.MDCommandProcessor;
import com.sas.servlet.util.Util;
import com.sas.servlet.beans.mddbtable.commands.*;

public class servletSugi26
 extends javax.servlet.http.HttpServlet
{

/**
 * Respond to the Post message.
 */
public void doPost(javax.servlet.http.HttpServletRequest request,

javax.servlet.http.HttpServletResponse response)
throws javax.servlet.ServletException, java.io.IOException

{
//Get the session object for this user
HttpSession session = request.getSession();
if (session != null)
{

//Declare the Objects that will have Session Scope
MultidimensionalTableV3Interface MDModel=null;
MDCommandProcessor MDCommandProcessor1;

//Get the connection object
Connection olapConnection = (Connection)session.getValue("olapConnection");

//If olapConnection is null then the user has not connected to the server.
//Establish a connection and create the objects needed for application and put
//the objects in the users session so they can be retrieved by future requests.

 if (olapConnection==null)
{

//Create the Connection Object, set the host to localhost, and
//store it as a session object.
olapConnection = new Connection();
olapConnection.setHost("localhost");

 session.putValue("olapConnection",olapConnection);

//Make this a bound connection so the SAS session will be
//terminated when the http session times out.
BoundConnection bc = new BoundConnection(olapConnection);
session.putValue("bc",bc);

//Create the Rocf Object and store it as a session Object
Rocf rocf = new Rocf();
session.putValue("rocf",rocf);

//Create the MDCommandProcessor Object and store it in the session

MDCommandProcessor1 = new MDCommandProcessor();
session.putValue("MDCommandProcessor1",MDCommandProcessor1);

//Create the MDModel Object.
MDModel =(MultidimensionalTableV3Interface) Util.newInstance(rocf,

 olapConnection, MultidimensionalTableV3Interface.class);

if (MDModel != null)
{

//Store the MDModel as a session object
session.putValue("MDModel",MDModel);

//Create String arrays to initialize the MDModel.
String rows[]={"Product Hierarchy"};
String cols[]={"Time Hierarchy"};
String measures[]={"Actual","Forecast","Difference"};
String stats[]={"SUM"};
try
{

//Set up the MDModel
MDModel.setMetabase("sugidemo");
MDModel.setDatabase("SUGIDEMO.CBMDDB");

 MDModel.setRowAxis(rows);
 MDModel.setColumnAxis(cols);

MDModel.setSelectedMeasures(measures);
 MDModel.setSelectedStatistics("Actual",stats);

 MDModel.setSelectedStatistics("Forecast",stats);
 MDModel.setSelectedStatistics("Difference",stats);

}
catch(com.sas.table.TableException te)
{
 //If there is a problem, forward to an error page.
 RequestDispatcher errPage =
 getServletContext().getRequestDispatcher("/error.jsp");

 errPage.forward(request, response);
}

}
}
else
{

//If the Connection has already been made retrieve the session objects.
MDModel = (MultidimensionalTableV3Interface)session.getValue("MDModel");
MDCommandProcessor1 =
 (MDCommandProcessor)session.getValue("MDCommandProcessor1");

}
 RequestDispatcher dispatcher =

 getServletContext().getRequestDispatcher("/{ProjName}/presentation.jsp");
 dispatcher.forward(request, response);
 }

}

/**
 * Respond to the Get message.
 */
public void doGet(javax.servlet.http.HttpServletRequest request,

javax.servlet.http.HttpServletResponse response)
throws javax.servlet.ServletException, java.io.IOException

{
// Note: Add User DO_GET code here
doPost(request,response);

}
}

The request gets forwarded to the JSP.
JSP EXAMPLE:

<%-- Copyright (c) 2001 by SAS Institute Inc., Cary, NC 27513 --%>
<%@taglib uri="http://www.sas.com/taglib/sasads" prefix="sasads"%>

<html>

<head>
<title>OLAP Presentation JSP</title>
<!-- Include sasads style sheet for default style classes -->
<link rel="stylesheet" type="text/css" href="/assets/sasads.css">
</head>
<body>

<h2>OLAP Presentation Example</h2>

<!--Create the MDCommandProcessor, Connection and MDModel -->
<!--Locate the MDCommandProcessor tag at the top of the page-->
<!--because the execution of other tags depend on the executed command-->
<sasads:MDCommandProcessor scope="session" id="MDCommandProcessor1" />
<sasads:Connection ref="olapConnection" scope="session" />
<sasads:MDModel ref="MDModel" scope="session" />

<!--Create and write out the MDTable -->
<sasads:MDTable id="MDTable1" borderWidth="1" cellSpacing="0"

maxColumns="8" maxRows="20" cellPadding="1"
 detailDataStyleSheet="/assets/sasads.css" commandProcessor="MDCommandProcessor1"

scope="session" model="MDModel" />

</body>
</html>

CONCLUSION
AppDev Studio gives application developers a simple way to build
OLAP applications that leverage the broad power of SAS on the
server. It delivers powerful, easy-to-use OLAP reporting
capabilities through

• WebEIS software, a rich 100% Java-based application,
which enables you to build your OLAP applications without
having to write any Java code. Documents built with
webEIS can be easily deployed as applets or JSPs by
simply making a choice off of a menu!

• webAF software which is a stand-alone, integrated Java
development environment. Through its drag-and-drop
interface you can quickly build applications, applets, servlets
or JSPs. webAF also provides a rich class library that
includes the foundation components for building OLAP
solutions. These components are dedicated to delivering
OLAP data on the web and utilizing SAS on the back end for
both computation power and data storage.

By offering this all of this technology under one umbrella, AppDev
Studio gives you the tools to build the right solution for your
enterprise.

ADDITIONAL RESOURCES AVAILABLE
AppDev Studio Developer’s Web Site
The AppDev Studio Developer’s Web site is designed to help you
develop and implement enterprise applications that use the
power of SAS software to support information delivery and
decision making.
The AppDev Studio Developer’s Web site is continuously
updated with new information, including comprehensive tutorials,
how-to topics, and technical papers.

A snapshot of the AppDev Studio Developer’s Web site is
installed to your local Web server when you install AppDev
Studio. You can always access the most current version of this
site at www.sas.com/rnd/appdev/.

Training
SAS Institute offers a broad curriculum of instructor-based
courses to help you use SAS software to meet your development
goals with AppDev Studio. Courses cover a wide range of Web
applications development, including:
• SAS Web Tools: Accessing MDDB Data Using webEIS

Software
• SAS Web Tools: Developing JSP Applications Using webAF

Software
• SAS Web Tools: Understanding Java in webAF Applications
• SAS Web Tools: Overview of SAS Web Technology
• SAS Web Tools: Running SAS Applications on the Web

Instructor-based training allows you the flexibility to attend
courses in training facilities across the United States and in other
countries. In addition, SAS staff can conduct on-site training. For
more information on these and other courses, visit the SAS
Training site at www.sas.com/training.

REFERENCES
SAS Institute Inc. (2000), Getting Started with AppDev Studio,
First Edition, Cary, NC: SAS Institute Inc.

OLAP Tools and Techniques within the SAS System, A SAS
White Paper written by John McIntyre, Mark Moorman, and
Johnny Williams, SAS Institute Inc.

ACKNOWLEDGMENTS

Much of the content of this paper was pulled from various papers
that are available on the AppDev Studio Developer’s Site. We
tried to give credit in the appropriate sections for those
contributions, but we would like to thank all of the authors for the
valuable information and useful examples that are available from
that web site.

We’d like to personally thank several SAS developers for either
review and/or writing of material for this paper: Angela Allen,
Corey Benson, Scott Leslie, Rich Main and Marty Tomasi.

CONTACT INFORMATION
Your comments and questions are valued and encouraged. You
can contact the authors at:

Tammy Gagliano
SAS Institute Inc.
Work Phone: (317) 569-9598
Email: Tammy.Gagliano@sas.com

Tony Prier
SAS Institute Inc.
Work Phone: (913) 491-1166, x1364
Email: Tony.Prier@sas.com

WebHound: Your Best Friend for Web Traffic Analysis

Dean Duncan, School of Social Work, University of North Carolina -- Chapel Hill, NC
Frank Lieble, SAS, Orlando, FL

Carol Martell, Highway Safety Research Center, University of North Carolina – Chapel Hill, NC
Sally Muller School of Social Work, University of North Carolina – Chapel Hill, NC

The University of North Carolina at Chapel Hill has two state-chartered organizations engaged in
e-campus and e-business initiatives. The Work First Group (WFG), in the School of Social Work,
provides a web site that presents dynamic statistics and analyses about the welfare reform
program, "Work First," in North Carolina. The Highway Safety Research Center (HSRC)
develops project-specific sites for contracting agencies. These sites are as diverse as the projects
themselves, ranging from a site designed to deliver specific information for college students, to
sites created to increase public awareness. This paper presents two case studies on lessons
learned from the experiences of implementing SAS WebHoundTM at WFG and HSRC. We
describe how the study of web traffic logs allows both organizations to understand how their
users are using their web sites.

Introduction

The Internet has revolutionized how we
access and retrieve information. It has
touched all industries including commercial,
government, and academia. The need to
easily provide accurate information in a
timely manner is more important today than
it ever has been. The need to find solutions
to meet this level of service is crucial in the
success of these organizations.

SAS WebHoundTM was used to analyze web
logs at two University of North Carolina –
Chapel Hill sites, the School of Social Work
(SSW) and the Highway Safety Research
Center (HSRC). We will discuss the need for
web traffic analysis, the SAS WebHound
solution, what issues it is addressing, and
finally present two case studies
documenting discoveries found from
analyzing web logs using the SAS
WebHound solution.

Why Web Traffic Analysis?

Web traffic analysis is crucial for any
organization that has a web site. For
example, commercial corporations or the
private sector want to increase revenue and
profitability, while government agencies,

universities and colleges or the public sector
want to provide services and information.
Even though theses two sectors have
different goals they do have one goal in
common. They must be able provide the
highest level of service to their users. This
can be achieved by:

• Providing the most relevant information
to the people visiting the web site.

• Improving communication via the
intranet and extranet.

• Optimizing the buying process to
maximize revenue.

• Promoting the information that is the
most popular.

• Creating a convenient experience by
organizing information more effectively
on the site.

• Improving user satisfaction by reducing
the number of clicks it takes to access
information.

Web traffic analysis is the study of web user
usage patterns. This will allow an
organization to determine:

• Where are my web users coming from?
• What path do they take before finding

the information they want?
• What path do they take before leaving?
• Which pages are the most popular?

• Which pages are the least popular?
• How many clicks did it take to find the

information?

But before these questions can be answered
a process and/or application is needed to
capture, store, manage, analyze, and report
web usage data.

SAS WebHound

SAS WebHound is a solution that
incorporates SAS technologies to allow web
analysts to understand web traffic usage
within their organization’s web site. With
WebHound they can identify who is
browsing their web site, what are they
looking at, and how often they visit.
WebHound also provides ease of use and
flexibility by:

• Processing large volumes of web log
data (scalability).

• Integrating web data with other data
sources on-line and off-line.

• Providing dynamic reporting through any
browser by providing accurate
information about how users interact
with the web site.

• Tracking visitor usage trends across
time of day, weeks, months, and even
years.

WebHound will allow an organization to
measure and improve the effectiveness of
their web site, which will provide the highest
of service to their users.

WebHound Case Studies

The following are two case studies on
lessons learned from the experiences of
implementing SAS WebHound. The first
case study, the School of Social Work, have
never performed web traffic analysis at their
site. The second, the Highway Safety
Research Center, have been using other
web analysis tools for web traffic analysis for
the past year. Each case study will introduce
their organization, describe their web
environment, discuss their e-problem and
solution implementation, and close with a
conclusion.

Case Study 1:
School of Social Work – University of
North Carolina at Chapel Hill

The North Carolina University - Chapel Hill
(UNC-CH) School of Social Work (SSW) has
45 full-time faculty and more than 300
graduate level students. The School ranked
4th in the nation, according to the 2000 U.S.
News and World Report survey of social
work at public universities and 7th overall of
140 graduate schools of social work. At
UNC-CH, the School is ranked third in
externally funded projects. The School's
mission is to provide an interface between
the physically and economically
disenfranchised people of North Carolina
and the government, non-profit, and private
foundations of North Carolina. The School's
site (http://ssw.unc.edu) hosts 12 individual
programs: such as the Work First project.
The Work First's Web site
(http://ssw.unc.edu/workfirst) provides
longitudinal (i.e. historic) statistics on more
than 335,000 families and 795,000
individuals who have received assistance
through welfare (i.e. Work First) since
January 1995. This SAS/IntrNet web site
was developed by Dr. Dean Duncan and his
staff in 1998 to provide performance
measures to county Departments of Social
Services (DSS) to administer the Work First
program. Also it enables DSS staff, social
workers, researchers, policymakers, and the
public to access analyses regarding welfare
reform.

Web Environment

SSW’s web site (Figure 1) consists of three
web servers: two of which are HP Netserver
5 servers running Windows NT 4.0 Service
Pack 4. Respectively, installed with 180
MHz and 200 MHz processors, attached to
12 and 32 GB RAID drives. Both servers
have 128 MB of RAM. The third server is a
HP Netserver LX-Pro running Windows
2000. Installed with a 600MHz processor,
640 MB of RAM, 2 20 GB RAID drives. Two
servers collect IIS web logs and one collect
Netscape web logs.

The SSW web sites are distributed across
all three machines, but each individual site is

only on one machine. SSW decided that,
rather than include all of their web logs in
one WebHound report, for each web server
they would essentially run a separate
WebHound application. Thus, each web

server has it's own URL for the WebHound
reports. This case study will examine web
usage logs collected for six weeks from
January 2001 to February 2001.

Figure 1

e-Problem

In 1999, the SSW faculty realized that their
School's web site was the first place people
went for information about the School, and
so the dean formed a committee to look at
the site. Their consensus was that the web
site could make a significant contribution
toward achieving the School's mission,
provided:

• There are clear goals and valid
measures for tracking progress.

• Faculty and students have easy access
to computers, software, and the Internet.

• Faculty know how to use the technology
effectively.

A member of the committee and director of
the Computing Information and Technology
Unit, Laura Zimmerman, Ph.D. said, "We
want to implement a look and content that
appeals to our students and faculty as well
as potential students, researchers, faculty
from other campuses, and the media." The
School encourages faculty to use the web
site to promote their research and courses.
And because the site is often the first entry
point for alumni and constituents, SSW
administrators, such as the Director of

Alumni Relations, increasingly are using the
web site.

Just when the School's faculty was voicing
concerns that students and researchers who
visited the SSW site could not easily find
what they needed, Duncan was considering
ways his group could determine if their Work
First web site was effective.

Duncan and his staff decided that in order to
improve their Internet presence it would be
necessary to identify the purpose of their
site and then identify valid measures for
tracking their progress. They identified the
mission of the Work First web site as a
vehicle for easy access to statistics
regarding Work First recipients for DSS
staff, social workers, researchers, policy
makers, program leaders, and the public.

The measures Duncan and his staff
identified for tracking progress:

• Can visitors, who know what they are
searching for, find it?

• If visitors know where to go to find the
information, is it still too difficult to
navigate?

• Where are visitors coming from and
going to and which links to the site are
the most popular?

• Are pages that we promote actually the
pages that are visited the most?

• Are the visitors who come to the site,
the visitors that we expect?

• Are our web pages being developed in a
cost-effective manner?

• Is the impact of our web pages on the
School’s computer minimal?

Solution Implementation

In January 2001, SAS consulting staff
installed and configured the WebHound
solution at the School of Social Work. A
Windows NT AT process was created to
archive the web log files collected by
Expanded Log Format (ELF) each night.
They were then copied from the three NT
web servers to a fourth NT server on which
SAS WebHound was installed (Figure 1).
After WebHound processes the logs, reports
are generated back to one of the three web
servers where they can then be accessed
via any web browser. The reports produced
by WebHound at this point are all static.
Dynamic reports are also produced using
SAS/IntrNet features of WebHound. These
applications are submitted to a broker, which
resides on one of the three web servers.
During the implementation, decisions had to
be made as to where to put various pieces
of the process and also how to surface the
resulting reports.

As soon as the reports became available,
we began investigating which of the reports
provided measures for tracking progress
toward achieving web site goals.

Duncan discovered that the WebHound
report, "Browsers By Version," (Figure 2),
could provide him with another source of
information regarding his client's use of IT.
Duncan can use this information in several
ways, including testing new releases of the
web site by using the same browsers and
browser versions that visitors use. This was
salient because last year Duncan got a call
from the NC Division of Social Services that
a staff member was having trouble

accessing the Work First site. After
investigating, Duncan discovered the
problem was the version of the staff's

browser.

Figure 2

As the Principle Investigator of the Work
First project, Duncan is also interested in the
information provided by the "Sessions --
Day/Hour Contour" report (Figure 3). From
this report, Duncan can determine the times
of the day when usage peaks. He can
examine those days when his staff have
issued announcements or given
presentations about the site and determine
the impact of these announcements and

presentations.
Figure 3

In justifying resource allocation to funding
agencies, it is helpful to be able to
substantiate projections with statistics such
as the actual number of web visitors to the
site (Figure 4).

Figure 4

Another measure Duncan selected to track
was the impact of the Work First site on the
School's web server. Two of the School's
system managers, Andy Broughton, Ph.D.
and Manuel Garcia, were consulted. The
system managers agreed that the reports
they needed most were those that would
allow them to identify and track "trends" in
system usage. Only by identifying trends
can they make informed decisions about the
need for system expansion. They found that
the "Sessions By Month," report (Figure 5),
provides the kind and level of information
that they are looking for: a summary of total
number of web sessions over months. At
the time of this writing, only six weeks of
data were available. However, as new
months are added, the system managers
will be able to detect patterns of usage and
use this information for capacity planning.

Figure 5

The system managers also found the report,
"Sessions Day/Hour Grid Profile," helpful for
identifying patterns of usage (figure 6). The
report provides information regarding the
total number of sessions for any particular

hour on any particular day, for as many
weeks as were specified in the WebHound
configuration. With this information, the
system managers can correlate NT
performance measures on memory, disk,
processor, and network usage with these
measures of total number of sessions for
specific date/time combinations. Note that
the report allows for "rubber banding" a
piece of the report may be selected for
further analysis.

Figure 6

Conclusion

Using results "straight out of the box", the
web server system managers, project
director, and IT director were each able to
immediately find reports appropriate to their
areas of interest. The system managers
have a finger on the pulse of system
parameters. The project director can see
what users respond to his announcements,
he has documentation to justify funding, and
he knows the range of browser versions for
future development parameters. The IT
director can learn which areas of the sites
are most popular and plan future
development to use the most appealing
approaches. This is just the tip of the
iceberg. They will next explore: 1) removing
in-house traffic, 2) using the TreeView
Applet to examine pathing, and 3) examining
the times spent on individual pages.
WebHound has already provided leads that
have allowed SSW and the Work First
Group to address a multitude of problems,
issues, and opportunities. Now they need
only follow these leads to obtain the
information that they are seeking.

Case Study 2:
Highway Safety Research Center –
University of North Carolina at Chapel
Hill

The UNC Highway Safety Research Center
(HSRC) conducts interdisciplinary research
aimed at reducing deaths, injuries and
related societal costs of roadway crashes in
North Carolina and the nation. Our research
addresses crashes involving motor vehicles,
bicyclists and pedestrians, and takes into
account the various human, vehicular,
roadway and environmental components of
these risks. HSRC strives to translate
developed knowledge into practical
interventions that can be applied at local,
state, national and international levels. While
public service announcements, posters and
printed documents are still important ways of
sharing life-saving transportation safety
messages, the web offers an explosion in

capabilities for marketing our research and
outreach projects.

Web Environment

HSRC is, at the time of this writing, bringing
online a Sun Enterprise 250 with 1GB of
RAM, one 400MHz UltraSparc-II processor
and three 18 GB drives to consolidate web
and application server needs, which had
been distributed across in-house and UNC
campus servers (Figure 7). Other in-house
Sun servers are an Ultra 5, an Ultra 1 and a
SparcStation 5. This case study will examine
logs collected in December of 2000 from a
Sun Ultra 5, serving at the time as the
Center’s Apache web server. Virtual sites
are not configured to log separately, so a
single log file contains all entries. The log is
archived out twice a day. DNS lookup has
already been performed for these logs.

Figure7

e-Problem

Web traffic statistics have been
implemented at HSRC using other software
for more than a year. These numbers have
allowed us to examine traffic volumes, but
these static reports cannot answer all our
questions. Each new web project has design
strategies influenced by lessons learned in
earlier projects. The web development team
is extremely talented but small. Efficiency,

not a new concept, must be applied to this
relatively new environment.

Solution Implementation

Archived log files were transferred via FTP
from the Ultra 5 to the E 250, which will
serve both to process the logs and to serve
the results to the web. After the initial
installation and test run of WebHound, we
immediately wanted to incorporate the
virtual site name as a variable, and to

eliminate all in-house traffic. Since the logs
were collected using the default Common
Log Format (CLF), the virtual site name was
not part of the logging information. Also,
since virtual hosts were not configured to log
separately, the virtual host could not be
determined from the source file.

Our site name workaround was to employ
operating system utilities to parse out the log
files. We “grep’d” the logs by writing each
virtual site to a separate file. The first level of
each resulting filename was assigned the
value we wished to see in the reports to
represent the virtual site. For example, this
command:

cat logfiles | grep www.hsrc.unc.edu > hsrc.log

creates a file containing every log entry
involving the main HSRC virtual site. In
order to use the filename to assign a value
to the variable SITENAME, we added code
to a catalog in the USERMODS library.
USERMODS is employed to house override
code for a WebHound data store. The
variable SITENAME already exists in
WebHound, so we were populating an
existing variable with values rather than
adding a new variable.

USERMODS was also the appropriate place
to delete log entries from in-house users.
WebHound already has a facility for ignoring
traffic from of a range of IP addresses. We
could not use the facility, however. These
logs no longer had IP addresses since DNS
lookup had already been performed. The
following code, placed in entry
USER_ASSIGNMENTS_AFTER_INPUT in
the USERMODS.WBETL catalog performs
both customizations:

if index(client_id,'.hsrc.unc.edu')>0 then delete;
length _sitetmp $200;
_sitetmp = scan(File_Name, -1, "/");
_sitetmp = scan(_sitetmp, 1, ".");
sitename = _sitetmp;

Our next task was to make SITENAME
available in all the Exploratory Analysis
groups. The SAS table WBCROSS contains
all the class variables that will be used to
create the MDDBs for the Exploratory
Analyses. We found SITENAME in two
groups, and added entries for the remaining
groups (Figure 9)

Figure 9

We could have stopped at this point and had
SITENAME available in all the interactive
table groups. We wanted, however, to
change some of the hierarchical groupings
available in those tables. Again, we used
override code in the USERMODS library.

Figure 10 shows the original code creating
the Top Pages Exploratory Analysis.

Figure 10

In our situation, file structures and names
are often duplicated across sites, so without
SITENAME, the requested file is ambiguous.
Consequently, we modified the hierarchical
definitions as seen in Figure 11. A new
hierarchy replaces drillhier2 and drillhier3 is
the same as the original drillhier2 with
SITENAME inserted as the first level.

Figure 11

To first examine the enhancement
introduced by adding SITENAME to the
WBCROSS table, we examine Top File
Types. Suppose we’d like to know how the
heavy use of graphics affects our traffic. The
initial report is seen in Figure 12.

Figure 12

What we see is file type by week (graphic is
truncated here). The boxes between the title
and the table indicate that the ‘down’
variable is hierarchical: ‘File Type->Status
Code (hier)’. The other boxes indicate that
the top 5 file types are displayed and that
the ‘across’ variable is also hierarchical:
‘Week->Date’. Clicking on the date causes
the table to refresh with each day of that
week appearing separately across the table.
The hierarchy of the ‘down’ variable may be
explored in two ways. Clicking on the arrow
to the right of a file type causes the second
level of the hierarchy to appear (Figure 13),
whereas clicking on the file type itself drills
down to a table of only that file type (Figure
14)

Figure 13

Figure 14

The Layout button provides complete control
over the report. Every variable in
WBCROSS for the group as well as the
hierarchies defined in MDDB creation are
available. Filter variables allow the end user
browsing to subset based on filter variable
values (Figure 15).

Figure 15

Changing the configuration to reveal bytes
sent for file type by site generates Figure 16.

Figure 16

Changing ‘Sum’ in the select box in the table
to ‘Percent of Sum’ yields Figure 17. Seeing
that 89% of the bytes sent for the 2outof3
site are gif or jpg files, which represent 58%
of our traffic (Figure 18) would make it seem
a byte hog were it not revealed in Figure 19
that 2outof3 represents only 5% of the
traffic.

Figure 17

Figure 18

Figure 19

To illustrate the success of the hierarchy
modification, we see in Figure 20 that
SITENAME appears as a first level in two of
the available hierarchies for the Top Pages
reports.

Figure 20

Conclusion

SAS WebHound Exploratory Analysis tools
give us access to a frontier of information
that was not provided in our other web
analysis tools. Our job is to ask questions.
When the answers raise more questions, it
is easy to dig around for those answers as
well. We have only begun to explore the
information available using this e-tool. There
are two areas we will pursue but have not
addressed in this paper: customization of
static reports to automate virtual site-specific
information and implementation of the
TreeView Applet, which visually presents
click stream data.

Summary

The Internet has transformed how
corporations, government, and academia
conduct day-to-day business. The common
goal of these organizations is to provide the
web user with the highest level of service

possible. To achieve this web traffic analysis
must be performed. SAS WebHound
provides the ability to capture, store,
manage, analyze, and report web usage
data.

The School of School of Social Work (SSW)
and the Highway Safety Research Center
(HSRC) had the need to analyze web logs to
improve the level of service for users visiting
their web sites. They both installed SAS
WebHound on their web site servers and
started to analyze six weeks of web log
data. SSW, who never has analyzed their
web site, is now able to access web usage
information they were not able to access
before. This information will allow them to
predict user impact on hardware resources
and justify resource allocation to funding
agencies. HSRC, who has analyzed their
web site with other web analysis tools,
discovered SAS WebHound exploratory
analysis tools could provide additional
information about their web site and user
patterns. They now have the flexibility to
determine how user traffic will affect their
web site. These discoveries have provided
new information for both SSW and HSRC to
improve the level of service for their web
users.

Acknowledgements

The authors thank the following people for
their contribution to this paper:

Andy Broughton, Ph.D., Manual Garcia,
Harvey Hou, Michael Ingraham, Andy Parks,
Stephen Schultz, Christian Valiulis, Jia Xu,
and Laura Zimmerman, Ph.D.

Contact Information

Your comments and questions are
encouraged. Contact the authors at:

Dr. Dean Duncan
UNC School of Social Work
301 Pittsboro Street, CB# 3550
Chapel Hill, NC 27599-3550
919-962-7897
Dean_Duncan@unc.edu

Frank Lieble
SAS Institute Inc.
Orlando Regional Office
1035 Greenwood Blvd., Suite 465
Lake Mary, FL 32746
407-804-1995 x237
Frank.Lieble@sas.com

Carol Martell
UNC Highway Safety Research Center
730 Airport Road, CB# 3430
Chapel Hill, NC 27599-3430
919-962-8713
Carol_Martell@unc.edu

Sally Muller
UNC School of Social Work
301 Pittsboro Street, CB# 3550
Chapel Hill, NC 27599-3550
919-843-7798
sally@email.unc.com

Energizing End Users with a Slice of SAS���� and a Cup of JavaTM

Randy Curnutt, Solutions Plus, Inc., Indianapolis, IN
Michael Pell, Solutions Plus, Inc., Indianapolis, IN

John LaBore, Eli Lilly And Company, Indianapolis, IN

ABSTRACT

Many corporate information systems have evolved to integrate a
diverse mixture of hardware platforms. Although commonplace,
the mainframe has been joined by a plethora of UNIX and NT
servers as well as an army of personal computers often
connected by Local Area Networks (LAN) or Wide Area Networks
(WAN). Further, software tools in this environment are diverse.
Users now wish to analyze their mainframe data with PC and
UNIX tools in addition to using mainframe tools. It is often
necessary to migrate data to new platforms because some tools
require local data access. Users may become intimidated and
stymied by the prospect of finding an easy and reliable method
for moving mainframe data to remote platforms. We explore how
the flexibility of SAS system architecture, combined with Java
programming capabilities, provides instant access in an easy-to-
use tool for point-and-click data migration and conversion
(OS/390 SAS, DB2 views, Oracle views) to a PC or UNIX/NT
servers. We also discuss methods to automatically convert the
resulting dataset to the desired format (SAS dataset, SAS
transport file, Excel, CSV, tab delimited, space delimited, or
dBASE) on the target platform. Our tool implements a verification
process that ensures integrity of transferred data. Additionally,
meta-data is available before and after the transfer.

INTRODUCTION

BUSINESS PROBLEM

The DATAccess Tool facilitates clinical data analysis by providing
an easy way to transport and convert SAS data on the OS/390
mainframe to the platforms and formats desired for analysis.
Instead of learning mainframe or communications programming
commands, or waiting for a systems analyst to move the data for
them, the user is free to focus on analyzing the data.

CONSTRAINTS

The budget for the project was limited to purchasing a Java
integrated development environment and leveraging other
existing tools already in house, such as PC SAS. The application
had to adhere to all existing security policies across all platforms.

GOALS

The goal of the DATAccess Tool was to provide an intuitive
graphical user interface that gave non-technical users a simple
and repeatable process for copying (and converting) data from
any platform to any supported target platform. Data integrity was
of the utmost importance, especially since this tool may be used
to create SAS Transport files that are submitted to the regulatory
agency for review. The DATAccess Tool facilitates the
verification process to ensure the transferred data is accurate.
Since the tool brought together so many disparate technologies
and platforms, it was imperative that it go through a rigorous

validation process to ensure that it functioned as desired. It was
also important for the tool to provide instantaneous transfers
since the users had previously experienced lengthy delays
waiting on technical analysts to move and convert the data for
them.

The DATAccess tool allows the user to select test or production
data, provides a list of research project codes for the selected
environment. It then queries OS/390 to build a list of SAS
libraries that the user is permitted to access for the selected
research project code. Then a user can select a library and
request that the tool identify the datasets available within that
library (this generates another query to the OS/390). To transfer
a dataset, the user selects a target host, a directory location, and
a file format, then clicks a "Transfer" button.

ENVIRONMENT

Our environment is very diverse, both from a user perspective as
well as from a technological standpoint. The end-users span a
very broad base; from non-technical to very technical. This user
base includes statisticians, systems analysts, data analysts,
research scientists, and physicians; these staff are located at
both US and overseas locations.

The hardware encompasses an OS/390 mainframe, Sun Solaris
systems, Windows NT servers and Windows based client
machines.

The software environment is comprised of a Java applet,
Windows NT server, Windows 95/98/2000/NT clients, PC SAS
6.12, UNIX SAS 6.12 and OS/390 SAS 6.09, JCL, FTP. The
data is a mixture of SAS, SAS Transport, DB2, Oracle, CSV,
dBase, tab delimited text files, and Excel. Communications
techniques utilize both SAS/Connect� and FTP. The DATAccess
Tool also generates and submits OS/390 JCL jobs, as well as
dynamically generating SAS programs that run on the most
appropriate platform via SAS/Connect (i.e., the Windows client,
OS/390, UNIX, or NT Server).

SOLUTION

SAS and Java provide the glue necessary to tie all of the various
technologies together. Architecturally, the DATAccess Tool is
viewed as a pipe that connects a source to a target, and
manages the transfer and conversion process. Realistically, the
initial design was for the source to always be SAS data residing
on an OS/390 platform, but we did not wish to architect to such a
rigid standard. The basic idea is that it shouldn’t matter what
platform or data structure resides at either end of the pipe.
The following diagram depicts the physical architecture for the
tool:

The user interface is developed with Java. The code that was
developed can be deployed as either a stand-alone application or
a Web based applet.

Based on the user's selections, Java is used to dynamically
generate PC SAS, OS/390 SAS, UNIX SAS programs or OS/390
JCL jobs to accomplish the data transfer and conversion. The
tool submits the generated program to the appropriate SAS
engine depending on the client and server configuration. For
example, if the user has PC SAS, then most programs generated
by the application would leverage the local SAS software. If the
user does not have PC SAS, then all generated programs are
submitted to OS/390 SAS, which would make use of
SAS/Connect as needed. If the user desires a transfer to the
UNIX platform, this would always be accomplished by generating
an OS/390 SAS program that runs SAS/Connect on the OS/390
to spawn a job on the desired UNIX host.

Generating SAS code for multiple platforms is relatively easy due
to the fact that SAS code is highly portable across platforms.

We have included 3 code samples in this paper. The first is an
example of a Java method to generate a SAS program. The
output of the Java method is a String of text that is the SAS
program. The second is an example of a SAS program that was
created by Java, and the third is an example of a Java method
that accepts the String of text, writes the String to a temporary
file, then invokes PC SAS using the new file as a parameter to
the sas.exe.

The following Java code sample is an example of using Java to

generate a SAS program:
/** Builds a PC-SAS program to transfer
* the requested files.
* The PC-SAS program will connect to the
* MVS host using the
* user's username and password (as
* gathered from the Password dialog).
*/

public String buildPcSasProgram(String
sourceLib, String sourceDataset,
String targetHost, String targetDirectory,
String destinationFileFormat,
String targetFileName, String username,
String password,
String rowConstraints)
{

StringBuffer strBuf = new StringBuffer();

strBuf.append("%macro scon2Win(userId”);
strBuf.append("=, pswrd=);\r\n");
strBuf.append("options comamid=tcp “);
strBuf.append("remote=mvs");
strBuf.append("set=tcptn3270 1;\r\n");

strBuf.append("signon "C:\\SAS\\”);
strBuf.append("connect\\saslink\\”);
strBuf.append("datcptso.scr\";\r\n")
strBuf.append("%let userId=&userId; ");
strBuf.append("\r\n”);
strBuf.append("%let pswrd=&pswrd;\r\n");

strBuf.append("rsubmit;\r\n");

strBuf.append("libname srcLib '");
strBuf.append(sourceLib);
strBuf.append("' DISP=SHR;\r\n\r\n");

strBuf.append("proc sql;\r\n");
strBuf.append("create table WORK.");
strBuf.append(sourceDataset);
strBuf.append(" as\r\n");
strBuf.append(" select * from srcLib.");
strBuf.append(sourceDataset);
strBuf.append("\r\n");

// Do the actual download.
strBuf.append("\r\n\r\n");
strBuf.append("proc download “);
strBuf.append("data=WORK.");
strBuf.append(aDataSetName);
strBuf.append("\r\n");
strBuf.append(" out=WORK.");
strBuf.append(aDataSetName);
strBuf.append(";\r\n run;\r\n");

(the rest of this method was not included)

Below is a simple example of what the output of the Java code
above might look like follows (note: this is not showing the exact
output of the method shown above). Also, to fit in the columns,
the formatting had to be altered in a few places.

%macro scon2Win(userId=, pswrd=);
options comamid=tcp remote=mvs

set=tcptn3270 1;

signon "C:\SAS\connect\saslink\datcptso.scr";
%let userId=&userId;
%let pswrd=&pswrd;
libname targDir 'C:\temp\';

/* Beginning of LIB_ABC.sd2 transfer */

rsubmit;
libname srcLib 'LIB_ABC' DISP=SHR;

proc sql;
create table WORK.LIB_ABC as

select *
from srcLib. LIB_ABC;

proc download data=WORK.LIB_ABC
out=targDir.LIB_ABC;

run;
/* validate the transferred data */
PROC upload data=targDir.LIB_ABC
out=WORK.xfer;
run;
proc compare base=WORK.LIB_ABC
compare=WORK.xfer

outstats=WORK.vallog;
run;
proc download data=WORK.vallog

out=WORK.vallog;
run;
endrsubmit;
/* Now put the output of the Contents to the
Validation log file. */
proc contents data=targDir.LIB_ABC;
run;

PROC PRINTTO;
run;
RSUBMIT;
/* The following bit of code is used to
record this transfer on the OS/390 host
for reporting purposes. */
FILENAME SUB 'MYDIR.PDS.CNTL' DISP=OLD ;
DATA _NULL_;FILE SUB(DATMETR);
PUT @1 "//MYJOB JOB (,8305,S,MYUSERID), "
/

@1 "//
'anytexthere',CLASS=A,PRTY=10,MSGCLASS=T " /

@1 "//STEP2 EXEC PGM=IEFBR14 " ;
RUN;
FILENAME SUB CLEAR;
X SUBMIT 'MYDIR.PDS.CNTL(DATMETR)' ;
RUN;
endrsubmit;

/* End of LIB_ABC.sd2 transfer */

signoff
"C:\SAS\connect\saslink\datcptso.scr";
%mend scon2Win;
%scon2Win(userId="MYID",pswrd="xxx");

The appendix contains an example of how Java can actually
submit the generated SAS program to PC SAS.

A variety of SAS Procedures are used within the generated
programs. For example, PROC SQL is used because it allows
the tool to dynamically limit which rows and columns to include in
the target dataset (per the user's specification). PROC
DOWNLOAD is used to copy the dataset from a source to a
target host, and PROC COMPARE is used when possible to
assist with the verification that the transferred data is exactly the
same as the source data. There are also cases where a SAS
PROC was not available, such as for creating text files from the
SAS datasets. Buchecker (1996) describes SAS macros that
effectively automate the creation of flat files from SAS datasets.

SAS/Connect facilitates the communication with many different
hardware platforms. This topic is dealt with in greater detail in
our other paper titled, “Integrating SAS/Connect With Java”.

When it is necessary to execute an OS/390 based program, the
tool will generate a JCL job. It then uses the FTP protocol to
connect to the OS/390 mainframe, send a command to alert the
host that the next command should be auto-submitted to the
JES2 job stream.

CONCLUSION

Some of the benefits of the DATAccess Tool include:

• 15,000+ files transferred with no data corruption
• 35 teams have used the DATAccess Tool
• Ease of use – minimal or no training required
• Improves the clinical analysis process by allowing the

users more flexibility to choose the software tools that
provide the analytical capabilities they need

• Provides an easy to use graphical user interface for
transferring SAS datasets from OS/390 to the NT or
Unix servers, or the local machine.

• Shields the user from the complexities of OS/390, JCL,
SAS/Connect and FTP

• Provides data conversion to a format that is usable at
the remote host (SAS, SAS Transport, Microsoft Excel
97, CSV text, Tab delimited text, space delimited text,
and dBase)

• Displays which SAS data libraries exist on OS/390 for a
given research project code

• Displays which SAS datasets are available within a
selected SAS library

• Source data can be moved immediately, any time of
the day, any day of the week

• Common tool used across the organization (and
around the globe)

• Source data can be OS/390 SAS, DB2 views, and
Oracle views

• Leverages capabilities of OS/390 and UNIX
• Allows user to specify subsetting criteria by columns

and rows
• Provides a verification report that addresses the

integrity of the transferred data and that can be
submitted to a regulatory authority.

• Provides transfer progress monitoring (color-coded)
• Provides users instant access to SAS datasets on the

platform they prefer and in the format they choose
• Adheres to all corporate security standards
• Provides metrics reports on the number of transfers,

what data was transferred and where, who transferred
the data, what formats were used, etc.

• Uses batch mode for multiple transfers

REFERENCES

Curnutt, R., Pell, M., LaBore, J., “Integrating SAS/Connect� with
JavaTM”, These Proceedings.

Buchecker, M. M. 1996. "%FLATFILE, and Make Your Life
Easier," Proceedings of the Twenty-First Annual SAS Users
Group International Conference, 21, 178-180.

SAS Institute Inc. (1996), SAS Companion for the Microsoft
Windows Environment, Cary, NC: SAS Institute Inc.

SAS Institute, Inc. (1996), SAS Companion for the MVS
Environment, Version 6, Second Edition, Cary, NC: SAS Institute
Inc.

SAS Institute Inc. (1993), SAS Companion for Unix
Environments: Language, Version 6, First Edition, Cary, NC:
SAS Institute Inc.

SAS Institute Inc. (1994), SAS/Connect Software: Usage and
Reference, Version 6, Second Edition, Cary, NC: SAS Institute
Inc.

SAS Institute Inc. (1990), SAS Guide to Macro Processing,
Version 6, Second Edition, Cary, NC: SAS Institute Inc.

SAS Institute Inc. (1989), SAS Guide to the SQL Procedure:
Usage and Reference, Version 6, First Edition, Cary, NC: SAS
Institute Inc.

TRADEMARK NOTICE

SAS is a registered trademark of the SAS Institute Inc, Cary, NC
and other countries. Other brand and product names are
registered trademarks or trademarks of their respective
companies.

ABOUT THE AUTHORS

Randy Curnutt, Solutions Plus, Inc. (http://www.sol-plus.com)
Randy Curnutt is the president of Solutions Plus, Inc., a software
consulting company that specializes in applying leading edge
technologies in order to provide comprehensive solutions to its
clients. He focuses on client/server solutions, especially object
oriented technology, and relational database management
systems. He has experience with Java, Smalltalk, Visual Basic,
C, C++, Oracle, MS SQLServer, and numerous other
development languages. Randy may be reached via email at

rcurnutt@sol-plus.com.

Michael Pell, Solutions Plus, Inc. (http://www.sol-plus.com)
Michael Pell is a consultant at Solutions Plus, Inc., a software
consulting company that specializes in applying leading edge
technologies in order to provide comprehensive solutions to its
clients. He focuses on the analysis, design, and implementation
of object oriented technology client/server solutions. Michael has
2-3 years of Java development experience, and spent 6 years as
an IBM consultant prior to joining Solutions Plus, Inc. Michael
may be reached via email at mjpell@sol-plus.com.

John LaBore, Eli Lilly And Company (http://www.lilly.com)
John LaBore is the SAS and JMP Coordinator for Eli Lilly and
Company, a leading innovation-driven pharmaceutical
corporation. He is responsible for supporting SAS and JMP use
by Lilly staff worldwide. John has been a SAS software user for
more than 20 years, and has authored numerous SAS technical
papers for SUGI, PharmaSUG, SEUGI, and other SAS user
group conferences.

CONTACT INFORMATION

Your comments and questions are valued and encouraged.
Contact the authors at:

Randy Curnutt
Solutions Plus, Inc.
10401 North Meridian, Suite 300
Indianapolis, IN 46217
(317) 848-3081
rcurnutt@sol-plus.com
http://www.sol-plus.com

Michael Pell
Solutions Plus, Inc.
10401 North Meridian, Suite 300
Indianapolis, IN 46217
(317) 848-3081
mjpell@sol-plus.com
http://www.sol-plus.com

John LaBore
Eli Lilly And Company
Lilly Corporate Center
Drop Code 6334
Indianapolis, IN 46285
(317) 277-6387
jml@lilly.com
http://www.lilly.com

APPENDIX

The generated PC-SAS program can be written to a temporary file, then PC-SAS can be run using the generated PC-SAS program (all done
in the Java method as shown below).

/**
* Writes the PC-SAS program to disk, then runs it.
* @param sasProgramString String of the SAS program to be executed
* @return int the return code returned by the executed SAS program
*/

public int runSasProgram(String sasProgramString) throws TransportFailedException
{

int returnCode = 0;
try
{

//Write the file to disk
File sasProgramFile = new File("C:\\SAS\\GenProg.sas");
BufferedReader buffReader = new BufferedReader(new StringReader(sasProgramString));
PrintWriter sasProgOut = new PrintWriter(new FileOutputStream(sasProgramFile));
printDIStreamOnPrintWriter(buffReader, sasProgOut);
Runtime rt = Runtime.getRuntime();
sasProgOut.close();

//Now run the program using PC-SAS. This is equivelant to starting PC-SAS from a
//DOS command line
StringBuffer programSb = new StringBuffer("C:\\SAS");
programSb.append("\\SAS.exe -NOSPLASH -ICON -SYSIN \"");
programSb.append(sasProgramFile.getPath());
programSb.append("\"");
Process myProc = rt.exec(programSb.toString());
returnCode = myProc.waitFor(); //wait here until SAS is done running
SasProgramFile.delete(); //be a good neighbor and clean up

}
catch (Exception e)
{

throw new TransportFailedException("Error communicating with PC-SAS software.");
}
return returnCode;

}

The Role of SAS/IntrNet* in a Web-Enabled Database System
John R. Copeland, David W. King, Paul C. Gangarosa; CDC, Atlanta, GA

ABSTRACT

The Centers for Disease Control and
Prevention (CDC) has implemented an
application, known as the New Vaccine
Surveillance Network (NVSN) data system,
to study the impact of new vaccines,
specifically influenza and pneumococcal.
The system allows investigators in
Rochester, NY and Nashville, TN to enter
patient data, generate reports and graphs,
and download data, using only a web
browser.

The NVSN data system allows users to
store and retrieve data from a SQL Server 7
database. SAS/IntrNet, along with HTML,
JavaScript, Java applets, and Java
Database Connectivity, are used for data
extraction and analysis. The SAS Output
Delivery System is used to send SAS
output to users’ web browsers. The system
employs a Compaq 7000 for data storage
and a Sun E5500 for SAS/Intrnet
processing.

The NVSN data system demonstrates the
ability of the SAS/IntrNet* product,
combined with other Web and networking
technologies, to provide remote users with
a myriad of reports, graphs, and statistical
analyses - any task that the SAS System
can perform - as well as to extract their own
data to perform independent analyses.

INTRODUCTION

In November 1999, the National
Immunization Program (NIP) of the CDC
implemented the NVSN. The initial purpose
of NVSN was to measure incidence of
acute respiratory infections (ARI) in children
less than five years of age, with plans to
study how the introduction of new vaccines
(such as influenza and pneumococcal)
affect ARI incidence. It was decided that

first a system would be put in place to
record ARI’s from hospital admissions, and
later a study involving outpatient ARI’s
would be added.

NIP enlisted Vanderbilt University in
Nashville, Tennessee and The University of
Rochester in Rochester, New York to
recruit hospital patients to consent to
having certain information submitted
anonymously to this study. Vanderbilt
University has access to three Nashville
area hospitals and The University of
Rochester has access to two Rochester
area hospitals. Medical personnel and
epidemiologists from NIP, Vanderbilt, and
Rochester devised several forms, to be
completed by Vanderbilt and Rochester
personnel, to provide the information
needed for this study. The forms were
designed to collect demographic
information, as well as information from
hospital charts and laboratory tests.

Once the content of the forms was
determined, the method by which the data
would be delivered to NIP and stored had to
be decided. Three methods were
suggested. One suggestion was that
Vanderbilt and Rochester would each enter
their form data into Epi Info screens. (Epi
Info is a thick-client application for data
entry and some data analysis. It is widely
used in the Epidemiology field.) The
resulting data tables would then have to be
sent to NIP by FTP, or by storing the data
on compact disk and sending the disk by
mail. Another suggestion was that NIP
would develop software for entry and
storage of the form data. This method
would also require a means of transporting
the data to Atlanta. The other suggestion
was that NIP would develop a database
and enable Vanderbilt and Rochester

personnel to, using only a Web browser,
enter the data over a secure data network.

This presentation is part of the “Internet,
Intranet, and Web” section of the
conference, so obviously the secure data
network is the method that was chosen.
Several advantages were noted for using a
secure data network over the other two
methods:

• Ensures data consistency between
the two sites

• Provides most rapid delivery of data
to NIP

• Requires no on-site installation of
software

• All upgrades can be made at NIP
without having to ship subsequent
versions of software

NVSN DATABASE

A relational database was developed using
Microsoft� SQL Server. The NVSN
database contains eight tables (one for
each form), and the tables are linked by a
unique ID variable. Staff at Vanderbilt and
Rochester enter the data from the forms
using Active Server Pages, also designed
by NIP. SAS/IntrNet is used to allow NIP,
Vanderbilt, and Rochester personnel to
view reports and graphs; and to allow
Vanderbilt and Rochester to retrieve their
own data in comma-separated-values
format, so that they can generate their own
analyses.

SAS/ACCESS

SAS� Version 8.1, which is the version
currently being used by NIP, allows tables
of relational databases to be read as SAS
datasets. Reading MS SQL Server tables
requires first creating an ODBC connection
from the machine running the SAS session
to the database. Once this is
accomplished, the SQL Server tables may
be accessed as if they were SAS datasets
by simply submitting a libname statement

designating ODBC as the engine. The
statement is of the form:

libname sqldata odbc
noprompt=”uid=userid;pwd=password

;dsn=odbcsourcename;”;

where userid is an account with read
access to the SQL Server database,
password is the corresponding password for
userid, and odbcsourcename is the name of
the ODBC data source chosen when the
ODBC connection was created. The
process of accessing the SQL Server tables
with SAS is slightly more complicated in the
NVSN data system because the
SAS/IntrNet product runs on a Sun� E5500
server with the Solaris 2.6 operating
system, and ODBC is a Microsoft feature.
This problem was solved by scheduling a
SAS batch job to run every night on the MS
NT Compaq� 7000 server which houses the
SQL Server database, utilizing
SAS/CONNECT* to copy all of the NVSN
tables to the SAS/IntrNet server as SAS
datasets.

Another attempted method of solving this
access problem was to write a Java
application that, when invoked by a SAS
program, would read the appropriate SQL
Server table and write its contents to the
SAS/IntrNet server as a delimited text file.
This text file could then be read by SAS
with an infile statement. This method
had the advantage of allowing SAS/IntrNet
to capture the most recently recorded data,
whereas the SAS/CONNECT method only
allows SAS/IntrNet to report data that was
entered as recently as the previous day.
However, for simplicity’s sake, the
SAS/CONNECT method is the one that is
being used.

SETTING UP SAS/INTRNET

To take advantage of the SAS/IntrNet
product, we first had to install SAS version
8 on the SAS/IntrNet server. We followed

the recommendation of the installation
program and installed SAS in the OPT
directory on our Sun server. Then the
IntrNet product itself was installed. A Pearl
script file (/opt/sas8/utilities/bin/inetcfg.pl)
comes with SAS/IntrNet and performs initial
setup. When executed, this program
creates subdirectories, sets up a port for
default service, and builds the start.pl file.
The start.pl file starts the SAS/IntrNet
session and names the appropriate
Appstart file. We customized the Appstart
file to create the libraries to be later used in
SAS programs written for SAS/IntrNet.

After the SAS/IntrNet server was
configured, our Web server had to be set
up to work properly with the SAS/IntrNet
server. The same Sun E5500 is used for
both the SAS/IntrNet server and the Web
server, but this is not a requirement. We
use Apache Web server which, after a
separate setup program shipped with
SAS/IntrNet is run, houses the Broker
executable and the broker.cfg file in its cgi-
bin directory. The broker.cfg file contains
information about our Web server’s
directory structure and had to be
customized for SAS/IntrNet to function
properly.

SAS/INTRNET TASKS

The NVSN data system employs a Sun
E5500, which serves as a Web server, a
SAS/IntrNet server, and houses SAS
datasets that contain the same data as the
SQL Server tables. What do we want to do
with it? What can we do? It was soon
discovered that there is little that anyone
wants that we cannot provide using
SAS/IntrNet, especially when we combine
SAS/IntrNet with Java and JavaScript. One
of the earliest concerns about the NVSN
data was, “is the data being entered
logically?”. For instance, is the patient’s
admission date before the discharge date?
Or, is the difference between the patient’s
admission date and birth date within a
month of what was entered as the patient’s

age? The SAS/IntrNet product provides a
convenient way for project scientists to
check questions such as these with the
click of a mouse. A long list of such logic
checks was devised for each NVSN form
(some checks involve items from more than
one form) and SAS programs were written
to subset the NVSN datasets to include
records where errors were found, and
display the erroneous records in the
requestor’s Web browser.

Other items of interest on a daily basis are
questions about enrollment and parental
consent, and the age of patients
participating in the study. These are issues
that can be effectively addressed with
charts and plots. The second NVSN
SAS/Intrnet task is to graphically display
simple statistics such as frequencies,
percents, means, and quartiles.

The third task of SAS/IntrNet within the
NVSN data system is to allow the remote
sites (Vanderbilt and Rochester) to retrieve
their own data, so that data analysts at
each site can perform more complex and
site-specific analyses of interest to them.

LOGIC CHECKS

As was stated before, a long list of logic
checks was compiled for the seven main
NVSN forms. To perform the checks, SAS
data steps were used to subset the data,
retaining records that do not pass the logic
checks. Then proc print, along with the
Output Delivery System (ODS) directing
HTML output to the _webout location is
used to print the results to the web browser.
For instance, to check for records showing
a discharge date before the admission date,
code similar to the following is used:

ods listing close;
ods html body=_webout (dynamic nobot)
 rs=none;
data screening;
 set nvsnd.screening;

 keep caseid admitdate whoisit
timestamp;
proc sort;
 by caseid;
data chart;
 set nvsnd.chartrev;
 keep caseid dischargedate;
proc sort;
 by caseid;
data screening;
 merge screening (in=a) chartrev
(in=b);
 by caseid;
 if a and b;
data screening2;
 set screening;
 if input(admitdate,mmddyy10.) gt
input(dischargedate,mmddyy10.);
proc print;
 var caseid admitdate dischargedate
whoisit timestamp;
 title ‘Admit Date After Discharge
Date’;
run;

The nvsnd data library is assigned in the
Appstart program. A label statement is
also included in the last data step, but was
omitted here for brevity. The variable,
whoisit indicates the person who entered
the record and timestamp is the date and
time that the record was entered. The
caseid variable is a unique identifier by
which datasets may be merged. All other
logic checks, such as making sure fields
are the correct length and ensuring that age
is consistent with birth and admission
dates, are performed using this simple
method of subsetting and printing with
ODS.

GRAPHS

SAS/IntrNet provides a choice of ways to
display graph output in a Web browser.
ODS can convert output from SAS/Graph*

to graphics interchange format (GIF) and
include the image in a web page.
SAS/IntrNet also offers the use of the

%ds2graf(data=dataset, other
parameters) macro. This macro sends an
applet that displays a histogram, pie chart,
or scatter plot, to the Web browser. The
variables of interest, as well as information
about chart type and chart size, are passed
as macro parameters. The applet is
interactive: placing the mouse over a
component of the graph displays
information (variable levels and statistics)
about that component; and a right mouse
click displays popup menus to allow the
user to change items such as graph type,
3D/2D, horizontal/vertical, and colors.

When these two methods, GIF and applet,
were demonstrated to NIP, the applet was a
big hit. It was decided that applets should
be used whenever possible. (Loading
times associated with dial-up connections
may require us to rethink this decision.)
The demonstrations to NIP staff elicited
suggestions for types of graphs to show.
One suggestion was a box plot showing
age statistics for Vanderbilt and Rochester.
SAS proc boxplot can fulfill this request,
but since we are applet fans here at NIP,
another method was needed to generate an
applet displaying the requested box plot.
With %ds2graf as inspiration, the %ds2box
macro was written.

Developing this macro was a long process
for a beginning Java programmer. The first
step was to write an applet to display box
plots with specific values for minimum,
maximum, first and third quartiles, median,
mean, and axis labels. Then, these values
were replaced with the getParameter(String
name) method; and the HTML that
displayed the applet was changed to pass
the necessary parameters. (This is the
technique used by the %ds2graf macro.)
Finally, proc univariate, proc means, and
data steps were used to calculate these
parameters and, using put statements, to
write the HTML that displays the applet and
passes the needed parameters. These

data steps were encased in the %ds2box
macro, which only requires three
parameters: a dataset name, a dependent
variable, and an independent variable. So
a SAS/IntrNet program that calls the
%ds2box macro produces an applet,
displaying box plots determined by the
parameters passed to the macro. The
applet is interactive, displaying precise
values when the mouse pointer is placed
over a portion of a box plot that represents
a statistic. A right mouse-click opens a
pop-up menu, allowing the user to change
the applet colors.

DATA RETRIEVAL

SAS/IntrNet provides an easy way to
download data to a client PC. The %ds2csv
macro opens a dialog box that displays the
user’s directory tree. It allows the user to
choose the name and location of the data
file to be downloaded, and then writes the
data to a comma-delimited text file. A file in
this comma-separated-values format can
be easily opened with Microsoft� Excel*

and/or converted to a SAS dataset.

PUTTING IT ALL TOGETHER

Once the SAS/IntrNet product has been
installed on the server, the broker.cfg file
has been customized for the server, and

the Appstart file has been edited to create
program and data libraries, one needs only
to know a little HTML to develop a
functional Web-based data analysis and
reporting system. For the NVSN system,
the Appstart program designates a directory
as the SAS program library, called NVSNP.
All NVSN SAS programs are stored in this
directory. The appstart program designates
a directory to be the SAS data library called
NVSND. All of the NVSN datasets are
stored in this directory and the NVSND
library is referenced in each program
without submitting a libname statement.
The SAS programs are run by executing
the broker using common gateway interface
(CGI) technology, and stipulating the
desired port service and program. The
NVSN data system uses two methods for
accomplishing this. One is to simply write a
hyperlink to call the application broker and
designate the program. In each NVSN SAS
program, except for one, the program that
downloads the comma-separated-values
file, this method is used. For example, the
SAS program that performs the logic
checks on the “screening” form data is run
by writing the following HTML anchor tag:

<a href=”http://directory/cgi-bin/broker?
_service=default&
_program=nvsnp.screening_checks.sas>
Screening

where directory is the root URL for our
SAS/IntrNet system.

To download a file, the requestor needs to
submit more information than for viewing a
graph. The user must specify the site
whose data are requested. The user must
also specify which of the seven tables is
wanted, and they also must submit their
site’s password. The NVSN system uses
an applet to collect and submit this
information. The site and table are selected
from choice menus, and the password is
typed into a text field. The applet will not

run the SAS program if any of these three
fields are blank. The SAS program that
contains the %ds2csv macro also performs
the password validation. If the requestor
submits the correct password, then the
%ds2csv macro is executed. Otherwise, a
SAS program is run that returns an HTML
file stating that the password is incorrect.
This task of selecting the site and table and
entering the password could be more easily
accomplished with an HTML form; however,
the NVSN system is using an applet due to
the programmer’s short-lived experiment
with client-side password validation. When
executed, the applet points to the following
URL:

http://directory/cgi-bin/broker?
_service=default&
_program=nvsnp.download.sas&
psswd=password&
location=location&
form=dataset

This is the same format as with the other
NVSN SAS programs, except that values
for the macro variables “psswd”, “location”,
and “form” are passed to the download.sas
program.

CONCLUSION

Web technologies provide a convenient and
effective way of transmitting and storing
data collected by NIP and its research
partners. SAS/IntrNet, along with the ability
of SAS to easily read data in a variety of
commercial databases, provides an
excellent mechanism for retrieving data in a
Web browser. The data can be retrieved in
the form of lists, tables, graphs, or any type
of statistical analysis that SAS can perform.
SAS/IntrNet also provides an easy way of
delivering raw data to analysts who wish to
perform their own analyses.

The development of the NVSN data system
has been an excellent educational
experience for everyone involved. It has
also served as a demonstration tool to

show NIP what we can do with relatively
new technologies and it has given us a
model on which we can base future
projects.

RESOURCES

We took advantage of SAS training to learn
some of the skills needed for this project.
“SAS Web Tools: SAS/IntrNet
Administration”, and “SAS Web Tools:
Static and Dynamic Solutions Using
SAS/IntrNet Software” provided the
knowledge needed to begin the SAS
portion of the NVSN project. “SAS Web
Tools: Advanced Dynamic Solutions Using
SAS/IntrNet Software” covers the more
advanced features such as the applet and
comma-separated-values generating
macros. The course notes from all three of
these courses provide excellent references
and the Web page,
http://www.sas.com/rnd/web/intrnet/format/i
ndex.html is also a useful reference.

ACKNOWLEDGEMENTS

We would like to thank Henry Rolka, David
Walker, and Gay Allen of NIP for making
this project happen, Kimp Walton of NIP for
sharing his SAS programming knowledge,
and Fran Walker of NIP for helping to
determine the reports to be generated.

CONTACT INFORMATION

John Copeland can be reached by phone at
404-639-8866, or by email at
Jcopeland@cdc.gov.

SAS is a registered trademark in the USA and other
countries. * indicates USA registration.

Microsoft and SQL Server are either registered
trademarks or trademarks of the Microsoft
Corporation in the USA and/or other countries.

Compaq is a trademark or registered trademark or
service mark of Compaq.

Sun is a trademark or registered trademark of Sun
Microsystems, Inc.

Paper P316

The Beauty of OUT2HTM with Proc Report
David Steves, Suntrust Banks Inc., Atlanta, Georgia U.S.A.

ABSTRACT
Using Proc Reports to Create HTML pages via % OUT2HTM is very
easy. This paper describes how Suntrust Bank utilizes this SAS tool
to provide its internal customers from over 3600 Bank Branches with
product information via the WEB.

INTRODUCTION
The use of Proc Reports is widely accepted as an excellent report
generator. Many SAS programmers have wanted to create these
reports out on the WEB. The publication of these reports on the
Intranet has enabled the business analysts to quickly review the
results.
Suntrust Bank developed the weekly open/closed report to closely
monitor its growing deposits. The report provides information on
deposit account activity from a holding company view at its highest
level to a branch view at its lowest level. This type of information will
help management understand the weekly trends and performance in
deposit product balances. Branch managers can review the state of
deposits for their holding company, state, region, division, state, and
branches.
Version 8 of SAS has an HTML formatting macro called %OUT2HTM
to produce these Reports out to the WEB without having to know a
large amount of HTML(Hypertext Markup Language). This paper
focuses on how Suntrust Bank created over 3600 branch reports on
the Intranet, as well as, little HTML tidbits that can make the report
more attractive.

HTML FORMATING TOOLS

 PICTURE 1

 PICTURE 2

HTML Formatting Tools are a group of SAS macros that
consist of (%OUT2HTM, %DS2HTM, and %TAB2HTM). The
collection of macros enable the programmer to format and
save SAS output for viewing in a WEB browser. The macros
assign valid HTML tags creating HTML files. The HTML
files that are created are static pages which can be pushed
to the Intranet Server. Once on the Intranet server the SAS
output can be viewed. The macro %OUT2HTM is a great
formatting tool to get started in creating HTML pages.
PICTURES 1 and 2 are HTML examples using
%OUT2HTM.

SOURCE CODE FOR PICTURES 1 and 2:

/* use FORMCHAR='|----|+|---+=|-/\<>*’ otherwise
characters that you use may look unusual depending on
your browser and the operating system used */

options ls=195 missing = '0' ps=100 nodate nonumber
 FORMCHAR='|----|+|---+=|-/\<>*';

data bccom;
set wext.bc wext.cdbc;
format nord 8.;
nord = prodord;
run;

data accom;
set wext.ac wext.cdac;
format nord 8.;
nord = prodord;
run;

proc sort data=bccom;
by acctbank grpord nord ;
run;

proc sort data=accom;
by acctbr grpord nord ;
run;

/* used for date in the title of the proc
report */
data _null_;
x=&lastfri.;

call symput('dttitle',put(x,mmddyy10.));
run;

/* create proc format bank name commercial
data bktab1(keep = acctbank bankname);
set bccom(keep=acctbank bknam);
bkn = substr(bknam,1,3);

if bkn in ('STB') then do;
bankname = substr(bknam,5,40);
end;
else do;
bankname = bknam;
end;

run;

proc sort data=bktab1 nodupkey;
by acctbank bankname;run;

/* creates format for Bank names */
data bankc;
 set bktab1(rename=(acctbank=start
bankname=label));
 fmtname='bankcom';
 type='C';
 keep fmtname label start type;
 run;

proc format cntlin=bankc;run;

***** branch section *****;
***** branch retail *****;

data branch(keep=acctbank acctbr brnam);
 set accom;
 run;

proc sort data=branch nodupkey;
by acctbank acctbr brnam;run;

/* very important step because it creates the
count needed for how many times the proc report
has to run – note the count and places names
for banks and branches */
data _null_;
 set branch end=no_more;
 call symput('ab'||left(_n_),acctbank);
 call symput('abn'||left(_n_),
 put(acctbank, $bankcom.));
 call symput('br'||left(_n_),acctbr);
 call symput('brn'||left(_n_),brnam);
 if no_more then call symput('count',_n_);
run;

/* macro needed for the 3600 branches that
 Suntrust Banks have */

%macro putloop;
 %local i;
 %do i=1 %to &count;

%macro
Branches(fdata,fname,brnam,hf,dlxls,namxls);

/* beginning of %OUT2HTM starts capturing
data */
%out2htm(capture=on);

/* note beginning proc report options
1. ls=195 the linesize max a report can
take for the web
2. nowindows is used so that the display
window for the proc report will not
produce an error during the running of
report */
proc report data=&fdata. split='*' ls=195
headline missing out=&dlxls. nowindows;
/* the basefont is used to make sure a
certain font is used to view the report */
title1 "<BASEFONT size=1.5>";

/* the following titles all use some HTML
in order to make sure the titles are
centered. Font size 3 is used for Letters
to appear bigger. The color blue is used
for the lettering */
title2 "<CENTER><FONT FACE=ARIAL SIZE=3
COLOR=BLUE>SUNTRUST - Bank -
&fname.</CENTER>";
title3 "<CENTER><FONT FACE=ARIAL SIZE=3
COLOR=BLUE>Branch - &&br&i
"&brnam."</CENTER>";
title4 "<CENTER><FONT FACE=ARIAL SIZE=3
COLOR=BLUE>Personal Deposits Open/Close
Weekly Report</CENTER>";
title5 "<CENTER><FONT FACE=ARIAL SIZE=3
COLOR=BLUE>Week Ending: &&dttitle.
</CENTER>";
title6 "<CENTER><FONT FACE=ARIAL SIZE=3
COLOR=BLUE>Note: All balances are in 000's
</CENTER>";

/* the following footnotes are hyperlinks
which are used in PICTURE2.
footnote1 is a hyperlink to a CSV file
which can be brought up in EXCEL.
footnote2 is a hyperlink to a USER GUIDE*/
footnote1 "<CENTER><FONT FACE=ARIAL SIZE=3
COLOR=BLUE>DOWNLOAD
FILE</CENTER>";
footnote2 '<CENTER><FONT FACE=ARIAL SIZE=3
COLOR=BLUE><A
HREF="http://www.suntrust.com/WeeklyUserGu
ide.doc">HELP</CENTER>';

column grpord prodgrp prodroll onumcls
onumnew onumexs onumconv onumdcnv
 onewbal oexsbal oconvbal numcls
clsbal numnew newbal numexs
 exsbal numconv convbal numdconv
dconvbal
 ("_Total Accounts_" totaccts chg1b
totbals chg2b)
 ("_Opened Accounts_" numcon1
convbal1 numnew1 newbal1 chg3b)
 ("_Closed Accounts_" numdcon1
dconvbl1 numcls1 clsbal1 chg4b) ;
define grpord /order noprint;
define prodgrp /order noprint;
define prodroll / display format= $20.
width=20 'Deposits' left ;

define onumcls / sum noprint;
define onumnew / sum noprint;
define onumexs / sum noprint;
define onumconv / sum noprint;
define onumdcnv / sum noprint;
define onewbal / sum noprint;
define oexsbal / sum noprint;
define oconvbal / sum noprint;
define numcls / sum noprint;
define clsbal / sum noprint;
define numnew / sum noprint;
define newbal / sum noprint;
define numexs / sum noprint;
define exsbal / sum noprint;
define numconv / sum noprint;
define convbal / sum noprint;
define numdconv / sum noprint;
define dconvbal / sum noprint;
define totaccts / computed format=comma10.
width=10 "**Number" right;
define chg1b / computed format=percent7.1 width=8
"% Change*over*prior*week";
define totbals / computed format=dollar14.
width=14 "**Balances" right;
define chg2b / computed format=percent7.1 width=8
"% Change*over*prior*week";
define numcon1 / computed format=comma11.
width=11 '# Converted' right;
define convbal1 / computed format=dollar10.
width=10 "Converted*Balances" right;
define numnew1 / computed format=comma9. width=9
"# New";
define newbal1 / computed format=dollar10.
width=10 "New *Balances";
define chg3b / computed format=percent9.1
width=12 "% Change in*Total New*over*prior week";
define numdcon1 / computed format=comma13.
width=13 '# Deconverted' right;
define dconvbl1 / computed format=dollar11.
width=11 "Deconverted*Balances" right;
define numcls1 / computed format=comma9. width=9
"# Closed";
define clsbal1 / computed format=dollar10.
width=10 "Closed*Balances";
define chg4b / computed format=percent9.1
width=12 '% Change in*Total Closed*over*prior
week';

compute totaccts;
totaccts = numnew.sum + numexs.sum + numconv.sum;
endcomp;

compute totbals;
totbals = (newbal.sum + exsbal.sum +
convbal.sum)/1000;
endcomp;

compute numcon1;
numcon1 = numconv.sum;
endcomp;

compute convbal1;
convbal1 = (convbal.sum)/1000;
endcomp;

compute numnew1;
numnew1 = numnew.sum;
endcomp;

compute newbal1;
newbal1 = (newbal.sum)/1000;
endcomp;

compute numdcon1;
numdcon1 = numdconv.sum;
endcomp;

compute dconvbl1;
dconvbl1 = (dconvbal.sum)/1000;
endcomp;

compute numcls1;
numcls1 = numcls.sum;
endcomp;

compute clsbal1;
clsbal1 = (clsbal.sum)/1000;
endcomp;

compute chg1b;
if (onumnew.sum + onumexs.sum +
onumconv.sum) > 0 then do;
chg1b = (numnew.sum + numexs.sum +
numconv.sum - onumnew.sum - onumexs.sum -
onumconv.sum)/(onumnew.sum + onumexs.sum +
onumconv.sum);
end;
else do;
chg1b = 0;
end;
endcomp;

compute chg2b;
if (onewbal.sum + oexsbal.sum +
oconvbal.sum) > 0 then do;
chg2b = (newbal.sum + exsbal.sum +
convbal.sum - onewbal.sum - oexsbal.sum -
oconvbal.sum)/(onewbal.sum + oexsbal.sum +
oconvbal.sum);
end;
else do;
chg2b = 0;
end;
endcomp;

compute chg3b;
if (onumnew.sum) > 0 then do;
chg3b = (numnew.sum -
onumnew.sum)/(onumnew.sum);
end;
else do;
chg3b = 0;
end;
endcomp;

compute chg4b;
if (onumcls.sum) > 0 then do;
chg4b = (numcls.sum -
onumcls.sum)/(onumcls.sum);
end;
else do;
chg4b = 0;
end;
endcomp;

break before prodgrp / ;
break after prodgrp / ol skip summarize ;

compute before prodgrp;
line @1 prodgrp $20. ;
endcomp;

compute after prodgrp;
prodroll = trim(prodgrp)||' Sub-Total';
endcomp;

rbreak after / ol skip summarize ;

compute after;
prodroll = 'Total';
endcomp;
run;

/* the final 4 lines of %out2htm.
capture=off – stops capturing output.
encode=n lets the browser render the title with
attributes specified.
htmlfile – lets you name the HTML file.
ttag= no formatting – tells the output formatter
not to assign any HTML tags.
** you could also add bgtype=image which
indicates an image as a background type, then
specify the name of image in the BG argument.
*/
%out2htm(capture=off,
 encode=n,

 htmlfile=/gs/&hf. ,
 ttag=NO FORMATTING);

/* this section is used to rename the variables
that will be used for a CSV file which can be
displayed in EXCEL */

data b&dlxls.(drop= totaccts chg1b totbals chg2b
numcon1 convbal1 numnew1 newbal1 chg3b
 numdcon1 dconvbl1 numcls1
clsbal1 chg4b);
set &dlxls.(drop =grpord onumcls onumnew onumexs
onumconv onumdcnv
 onewbal oexsbal oconvbal numcls clsbal
numnew newbal numexs
 exsbal numconv convbal numdconv dconvbal
break);
if prodroll in (' ') then delete;
total_num_accts = totaccts;
tot_acct_perc_chg = chg1b;
total_balances = totbals;
tot_bal_perc_chg = chg2b;
num_converted = numcon1;
converted_balances = convbal1;
num_new = numnew1;
new_balances = newbal1;
new_perc_chg = chg3b;
num_deconverted = numdcon1;
deconverted_balances = dconvbl1;
num_closed = numcls1;
closed_balances = clsbal1;
closed_perc_chg = chg4b;
run;

/* the creation of the CSV file used
 in the HYPERLINK on the HTML page. */
PROC EXPORT DATA= b&dlxls.
 OUTFILE="/gs/&namxls..csv"
 DBMS=CSV REPLACE;

RUN;

/* macro branches ending - which is used for
selection of acctbank and branch, name of
acctbank, name of branch, HTML file name, and
CSV file name */
%mend branches;
%branches(accom(where=(acctbank in("&&ab&i")and
acctbr in ("&&br&i"

))),&&abn&i,"&&brn&i",RET&&fdt.Dep&&ab&i.&
&br&i...html,t1,RET&&fdt.Dep&&ab&i.&&br&i.
);
%end;

%mend putloop;
%putloop;

The above code creates the following HTML code:

which appears on the web like this:

The hyperlinks are at the bottom of each report:

Once the download file hyperlink is clicked it
appears as:

Select the ‘Open this file from its current
location’ option and it appears as:

Once the HELP hyperlink is clicked it
 appears as a word document:

CONCLUSION

SAS version 8 provides an excellent tool for producing Proc
Reports on the WEB. The %OUT2HTM macro is a very
helpful HTML formatting tool that is beneficial to Suntrust
Bank. Quite easy to use, 5 lines of codes can convert a
simple Report to an HTML page with similar characteristics
as the non-HTML type report. Remember, to first write the
PROC REPORT then add the SAS macro %OUT2HTM .
Next, add some HTML to your own specifications for your
desired results.

ACKNOWLEDGEMENTS

SAS is a registered trademark of SAS Institute Inc. in the
USA and other countries.

REFERENCES

SAS online support.

CONTACT INFORMATION

Your comments and questions are valued and encouraged.
Contact the author at:

David Steves
Suntrust Banks Inc.
P.0 Box 4418
Atlanta, Georgia 30302
Work Phone: (404) 827-6581

Email: david.steves@suntrust.com

Paper P317

Web Based Report Ordering combined with Base/SAS® Mainframe Batch Processing
Andre Brainard, Systems Engineering Services Corp., Reston, VA

ABSTRACT

This paper presents a web-based on-demand report
ordering system that uses UNIX System Services (USS)
and WebSphere to update and report data stored on an
IBM OS/390 mainframe. The business user issues a
request from a desktop PC and gets the results delivered
via e-mail and imbedded URL hyperlinks.

INTRODUCTION

The Management Analytics Reporting System (MARS)
was developed in response to a need for a centralized
reporting system that would allow business users to
request ad-hoc reports in an automated fashion.

Prior to the implementation of this system, ad-hoc
reporting relied upon informal request procedures
between business users and an often limited number of
technical resource personnel. This approach made the
process more error prone and time consuming. In
addition, users from different business areas often
duplicated requests, which resulted in higher costs and at
times,inconsistent results.

NEW SYSTEM REQUIREMENTS

A new system would require the following capabilities:
� The ability for users corporate wide to access the

report ordering facility
� The ability for the user to specify varied and

multiple selection criteria such as date ranges,
customer identification, and product identification

� The ability to query large volume mainframe data
stored on multiple mediums including DASD and
magnetic tape

� The ability to query data stored in various forms
including relational database, VSAM files, GDG
flat files, and IMS database

� The ability to query data residing on multiple
platforms including mainframe and UNIX.

� The ability to query data using different access
protocol such as Sybase, UDB/DB2, IMS, VSAM,
SAS, flat files, GDG datasets, and PDS datasets

� The ability to leverage reuse of legacy mainframe
ad-hoc reporting code including COBOL, SAS,
and SAS format libraries

� The ability to provide automated delivery of the
ordered report results to the user

� The ability to provide automated notification of
job failures

THE FRONT-END – A WEB BASED USER INTERFACE

The Web browser, e-mail and spreadsheet were the
three tools chosen to meet the front-end user interface
requirements for several reasons:

� On an enterprise level these familiar and friendly
tools were already in place and being used on a
daily basis by the business areas.

� Little or no training would be necessary for the
users and no installation or maintenance would
be required for the users’ PCs.

� The use of HTML and JavaScript would allow the
technician to easily develop input forms for the
query selection criteria.

� E-mail would provide both the automated
notification and delivery of the query results via
imbedded URL hyperlinks.

� Business users agreed that it would be desirable
to receive the query results in spreadsheet form,
which would facilitate viewing, printing, and
further analysis.

THE BACK-END – BASE/SAS AND OS/390

The back-end tools and environment chosen were
Base/SAS running on an OS/390 Enterprise Server
(formerly known as the mainframe) with MVS, OpenMVS,
UNIX System Services (USS), and WebSphere.

SAS batch processing running in the OS/390 MVS
environment would provide the flexibility and power to
process large volume data on multiple platforms residing
in diverse storage form using a variety of access
protocols. SAS also would provide the ability to easily
sort, merge, and summarize large volume complex data.

The robust OS/390 MVS environment would provide the
necessary system memory, disk workspace and
processing power to accomplish complex queries in a
reasonable time frame. OS/390 USS and WebSphere
would provide the critically important bridge between the
mainframe environment and the corporate wide intranet.

SAMPLES OF CRITICAL CODE

The body of this paper provides samples of the front-end
JavaScript code, the back-end MVS JCL with associated
PROCS, and the back-end Base/SAS code necessary for
the development of a similar web-based on-demand
report ordering system.

The complete REXX CGI script will be provided upon
request.

JAVASCRIPT CALL OF WEBSERVER CGI SCRIPT

The front-end JavaScript does the following:
� Establishes input variables from Web page forms
� Performs minimal validations
� Assembles a delimited parameter list to be

passed to the mainframe CGI script
� Substitutes imbedded space characters with a

“+” in the parameter list
� If all data is valid, calls mainframe CGI script

residing on the OS/390 OpenMVS webserver

function submitJob()
 { var validData = true;

 var e = document.forms[0].seller;
 var seller = e.value;
 if (seller == "") {var seller = "*";}

 if (validData && seller != "*" &&
 (isNaN(seller) || seller.length != 6 || seller < "000001"))
 { alert("Enter a valid Seller Number"); var validData = false;}

 var parmList = "?" + "MARS.CNTL(MARS001)" +
 "?" + "MARS0001" + "?" + startdate +
 "?" + enddate + "?" + seller + "?" + reportby;

 out = " "; // replace this
 add = "+"; // with this
 temp = "" + parmList; // temporary holder
 while (temp.indexOf(out)>-1)
 { pos= temp.indexOf(out);
 temp = "" + (temp.substring(0, pos) + add +
 temp.substring((pos + out.length), temp.length)); }

 var parmString = temp;
 var webServer = "http://omvs2.company.com/cgi-bin/";
 var cgiScript = "webparms.cgi";

 if (validData) { alert("Your query results will be sent via e-
mail.");
 window.open(webServer + cgiScript + parmString) }
 }

THE CGI SCRIPT EDIT AND JOB SUBMISSION

The called CGI script written in the REstructured
eXtended eXecutor (REXX) language performs the
following:

� Retrieves the targeted mainframe job from the
specified MVS library

� Edits the JCL scanning for the anchor point
statement “//JS00 EXEC WEBPARMS” which is
replaced with the following JCL and the
parameters passed by the JavaScript

� Submits the edited Jobstream to the OS/390
MVS Job Entry System (JES) internal reader

� Returns notification of either success or failure to
requesting user

//*** THE FOLLOWING INSERTED BY CGI SCRIPT ***
//WEBPARMS EXEC PGM=IEBGENER
//SYSUT1 DD *
 LIBRARY(JOBNAME)
 USERID
 CCYYMMDD
 HH:MM:SS
 Parm(s) each on separate line, start cc 2, max 70 char
/*
//SYSUT2 DD DSN=&&WEBPARMS

// DISP=(NEW,PASS,DELETE),
// SPACE=(TRK,1),UNIT=SYSDA,
// DCB=(LRECL=80,BLKSIZE=0,RECFM=FB)
//SYSPRINT DD SYSOUT=*
//SYSIN DD DUMMY

THE TARGET JCL STRUCTURE

The following mainframe batch Job Control Language
(JCL) example would be stored as a member of an
OS/390 MVS mainframe Partitioned Data Set (PDS)
library. The JBS bind statement is essential to insure that
the JES binds these jobs to the appropriate MVS
environment, in this case production.

//MARS0001 JOB (000,RK),'MARS',CLASS=M,MSGCLASS=P
//*+JBS BIND SERVER.USSM2
//*
//*** ESTABLISH INPUT WEB PARMS ***
//JS00 EXEC WEBPARMS <<== anchor for cgi script
//*
//*** SAS QUERY PROCESSING ***
//JS10 EXEC SAS
//SYSIN DD DSN=MARS.SOURCE(MARS001S), DISP=SHR
//JOBINFO DD *
//WEBPARMS DD DSN=&&WEBPARMS,DISP=SHR
//OMVSXFER DD DSN=&&OMVSXFER, DISP=(NEW,PASS),
// UNIT=…,SPACE=…,DCB=(……)
//EMAILTO DD DSN=&&EMAILTO, DISP=(NEW,PASS),
// UNIT=…,SPACE=…,DCB=(……)
//*** INSERT DD STATEMENT(S) FOR ANY INPUT FILES
//*
//*** XFER RESULTS TO WEBSERVER USING OPUT ***
//JS20 EXEC WEBDATA,COND=(4,LT)
//SYSTSIN DD DSN=&&OMVSXFER,DISP=SHR
//*
//*** SEND EMAIL QUERY RESULTS TO USER ***
//JS30 EXEC SENDMAIL,COND=(4,LT)
//SYSTSIN DD DSN=&&EMAILTO,DISP=SHR
//*
//*** Optional Failure Notification goes here (refer later)

THE STORED JCL PROCEDURES

The following three mainframe JCL procedures will need
to reside as members of the production OS/390 MVS
PROC library.

//*** PROC: WEBPARMS ***
//WEBPARMS PROC
//WEBPARMS EXEC PGM=IEBGENER
//SYSUT1 DD DUMMY
//SYSUT2 DD DSN=&&WEBPARMS, DISP=(NEW,PASS),
// UNIT=SYSDA, SPACE=(80,(1,1)),
DCB=(BLKSIZE=0,DSORG=PS)
//SYSPRINT DD SYSOUT=*
//SYSIN DD DUMMY

//*** PROC: WEBDATA ***
//WEBDATA PROC
//WEBDATA EXEC PGM=IKJEFT01
//SYSPROC DD DISP=SHR,DSN=SYS2.CLIST
//SYSTSPRT DD SYSOUT=*
//SYSPRINT DD SYSOUT=*
//SYSTSIN DD DUMMY <== USER OVERRIDES

//*** PROC: SENDMAIL ***
//SENDMAIL PROC
//SENDMAIL EXEC PGM=IKJEFT01
//SYSPROC DD DISP=SHR,DSN=SYS2.CLIST
//SYSTSPRT DD SYSOUT=*
//SYSPRINT DD SYSOUT=*
//SYSTSIN DD DUMMY <== USER OVERRIDES
//**
//* PURPOSE: TO SEND E-MAIL FROM THE MAINFRAME
//* ---
//* SYSTSIN DD MUST BE OVERRIDDEN BY USER SYSTSIN
//* WITH EITHER A REAL OR TEMPORARY DSN.
//* TEMPLATE OF SYSTSIN INPUT AS FOLLOWS:
//* ---
//* SENDMAIL TO(SOME_ONE@COMPANY.COM) +
//* CC(SOMEBODY_ELSE@COMPANY.COM) +
//* SUBJECT(SUBJECT MATTER) +
//* DATASET(‘DSN FOR E-MAIL BODY’) +
//* BATCH
//**

THE SAS QUERY
PART 1 - PICKUP SYSTEM ASSIGNED JOB-ID

The first section of code performs the initialization
necessary to support the remaining processing. In order
to provide the pertinent job identification information in the
e-mail notification, the MVS JOB-ID is picked up from the
Job File Control Block (JFCB) by using a dummy DD JCL
statement.

/* INITIALIZE: PICKUP JOB-ID EXECUTION INFO */
DATA _NULL_;
INFILE JOBINFO JFCB=JFCB; JOB_ID=' ';
IF INDEX(JFCB,'.JOB')
 THEN
JOB_ID='J'||SUBSTR(JFCB,(INDEX(JFCB,'.JOB'))+4,5);
CALL SYMPUT('JOB_ID',JOB_ID);
RUN;

PART 2 - WEB PARMS INTO GLOBALS

As part of initialization, this code inputs each Web
parameter and converts it into a global variable to enable
usage by the processing code sections that follows.
Adding PUT PARMVAR= statements for each input parm
would provide a nice audit trail in the SASLOG file.

/* INITIALIZE: INPUT WEB PARMS AS GLOBAL VARIABLES
*/
DATA _NULL_;
INFILE WEBPARMS MISSOVER END=ENDPARMS;
IF _N_ = 1 THEN DO; /* LIBRARY(MEMBER) */
 INPUT @2 JOB_RUN $50.;
 L_PAREN=INDEX(JOB_RUN,"(");
 R_PAREN=INDEX(JOB_RUN,")");
 JOB_LNTH=(R_PAREN - L_PAREN) -1;

JOB_NAME=SUBSTR(JOB_RUN,L_PAREN+1,JOB_LNTH);
 CALL SYMPUT('JOB_RUN',JOB_RUN);
 CALL SYMPUT('JOB_NAME',JOB_NAME);
 END;
IF _N_ = 2 THEN DO; /* MAINFRAME USER-ID */
 INPUT @2 USER_ID $7.;
 CALL SYMPUT('USER_ID',USER_ID);
 END;

IF _N_ = 3 THEN DO; /* DATE STAMP CCYYMMDD */
 INPUT @2 IN_DATE $8.;
 CALL SYMPUT('IN_DATE',IN_DATE);
 END;
IF _N_ = 4 THEN DO; /* TIME HH:MM:SS */
 INPUT @2 IN_TIME $8.;
 CALL SYMPUT('IN_TIME',IN_TIME);
 END;
IF _N_ = 5 THEN DO; /* MARS REPORT-ID */
 INPUT @2 MARS_ID $8.;
 CALL SYMPUT('MARS_ID',MARS_ID);
 END;

 /* -- USER INPUT PARAMETERS FOLLOW -- */
IF _N_ = 6 THEN DO; /* BEGIN DATE */
 INPUT @2 IN_BEGDT $8.;
 CALL SYMPUT('IN_BEGDT',IN_BEGDT);
 END;
IF _N_ = 7 THEN DO; /* END DATE */
 INPUT @2 IN_ENDDT $8.;
 CALL SYMPUT('IN_ENDDT',IN_ENDDT);
 END;
IF _N_ = 8 THEN DO; /* Seller Number */
 INPUT
 @002 FOR_SLR $6.;
 CALL SYMPUT('FOR_SLR',FOR_SLR);
 END;
IF _N_ = 9 THEN DO; /* Report-By Offering */
 INPUT
 @002 RPT_BY $3.;
 CALL SYMPUT('RPT_BY',RPT_BY);
 END;
IF ENDPARMS THEN DO; /* Verify Parm Count */
 IF _N_ < 9 THEN ABORT ABEND 255;
 STOP;
 END;
RUN;

PART 3 – MAIN DATA QUERY PROCESSING

This section should include the queries, data extracts,
sorting, merging and summarization to produce the
specific request results. The power of SAS batch
mainframe processing allows tremendous flexibility to
access diverse and large sources of data residing on
DASD, magnetic tape, and remotely via SAS/Connect.

/* PROCESS: QUERY and DATA EXTRACT */

/* PROCESS: SORT, MERGE, SUMMARIZE, ETC. */
DATA RESULTS;

PART 4 - ALLOCATE OUTPUT RESULTS FILE

This code allocates the output file dynamically in the SAS
code in order to generate a unique “DELETE.USERID.*”
DSN thus avoiding duplicate DSN conflicts.

Important reminders:
� The OPUT transfer command must reference a

system catalogued dataset.
� Use of delete.userid. catalogued datasets are

permitted for any user-id with only minimal
security access.

� Use of delete.userid. datasets facilitates
automatic file cleanup by MVS.

� Be sure to allow both an adequate logical record
length (LRECL=) and an adequate DASD file
space (SPACE=) as output needs dictate.

/* INITIALIZE: ALLOCATE UNIQUE DSN RESULTS FILE */
DATA _NULL_;
MARS_DAT = "'DELETE.&SYSUID..D&RUN_JDAY..T" ||
 COMPRESS("&RUN_TIME",':') ||
".&MARS_ID..DAT'";
MARS_DAT = UPCASE(COMPRESS(MARS_DAT));
CALL SYMPUT('MARS_DAT',MARS_DAT);
RUN;

DATA _NULL_;
FILENAME &MARS_ID &MARS_DAT NEW
 DISP=(NEW,CATLG,DELETE) SPACE=(TRK,(100,10),RLSE)
 UNIT=SYSDA LRECL=800 BLKSIZE=0 RECFM=FB
DSORG=PS;
RUN;

PART 5 – GENERATE OUTPUT .CSV RESULTS

This code generates the output results data as a Comma
Seperated Values (CSV) file. The .CSV file type
extension is critical for enabling the Web browser to
recognize this file type belongs to the spreadsheet
application. When the user clicks on the results_file.csv
hyperlink, inserted into the body of the e-mail, the browser
will pass the .CSV file from the Webserver directly into the
spreadsheet application.

/* OUTPUT RESULTS AS COMMA DELIMITED FILE */
DATA _NULL_;
SET RESULTS;
FILE &MARS_ID NOPRINT;
PUT ,,,,,, comma delimited output ,,,,,
RUN;

PART 6 - GENERATE FILE TRANSFER COMMANDS

The following SAS code will generate the OPUT command
necessary for transferring the MVS output results over to
the OpenMVS USS WebSphere area. The new file
resides as an HFS file under WebSphere available for
user access via the imbedded URL in the e-mail body.

/* OUTPUT COMMAND FILE FOR XFER TO WEBSPHERE */
DATA _NULL_;
MARS_CSV = "&SYSUID._d&RUN_JDAY._t" ||
 COMPRESS("&RUN_TIME",':') || "_&MARS_ID..csv";
MARS_CSV = LOWCASE(COMPRESS(MARS_CSV));
CALL SYMPUT('MARS_CSV',MARS_CSV);
PUT MARS_CSV=;
RUN;

DATA _NULL_;
 IF &TRANOUT = 0 THEN STOP;
 OUT_UNIX = TRIM("&MARS_CSV");
 FILE OMVSXFER NOPRINT;
 PUT " oput &MARS_DAT +";
 PUT " '/u/mars/prod/reports/ondemand/" OUT_UNIX +(-1) "'";

PART 7 - GENERATE E-MAIL NOTIFICATION

This final section of the SAS Query program code
generates the e-mail that serves as the notification and
delivery vehicle of the query results. Assuming a
successful query, the body of the e-mail will contain an
imbedded hyperlink which the business user will click-on
to conveniently have the results delivered directly in
spreadsheet form.
Important points:

� The SENDMAIL command must reference a
system catalogued dataset for the e-mail body

� The e-mail body DSN must exist after the job
completes and be available to the queued
SENDMAIL (up to 2 minutes)

/* GENERATE ROUTING AND BODY OF E-MAIL MESSAGE */
DATA _NULL_;
MARS_MSG = "'DELETE.&SYSUID..D&RUN_JDAY..T" ||
 COMPRESS("&RUN_TIME",':') ||
 ".&MARS_ID..MSG'";
MARS_MSG = UPCASE(COMPRESS(MARS_MSG));
CALL SYMPUT('MARS_MSG',MARS_MSG);
RUN;

DATA _NULL_;
FILENAME EBODY &MARS_MSG NEW
 DISP=(NEW,CATLG,DELETE) SPACE=(TRK,(1,1),RLSE)
 UNIT=SYSDA LRECL=100 BLKSIZE=0 RECFM=FB
DSORG=PS;

DATA _NULL_;
 FILE EMAILTO NOPRINT;
 USER_ID = PUT("&USER_ID",$MARSUSR.);
 IF USER_ID = 'MISSING'
 THEN EMAIL_TO = "mars_project@company.com";
 ELSE EMAIL_TO = USER_ID||"@company.com";
 MARS_MSG = TRIM("&MARS_MSG");
 PUT " SENDMAIL TO(" EMAIL_TO +(-1) ") +";
 PUT " CC(MARS_PROJECT@company.COM) +";
 IF USER_ID = 'MISSING'
 THEN PUT " SUBJECT(*ERROR* id: &USER_ID "
 "missing from MARS e-mail user table) +";
 ELSE IF &TRANOUT > 0
 THEN PUT " SUBJECT(*SUCCESS* YOUR MARS0001
RESULTS ARE READY) +";
 ELSE PUT " SUBJECT(*NOTICE* NO RESULTS RETURNED
FOR MARS0001) +";
 PUT " DATASET(" MARS_MSG +(-1) ") +";
 PUT " BATCH";

DATA _NULL_;
 FILE EBODY NOPRINT;
 SET CDW_FHA;
 IF _N_ = 1 THEN DO;
 PUT "Management * Analytics * Reporting * System" /;
 PUT "OS/390 ENTERPRISE SERVER: "
 "MVS JOBNAME=&SYSJOBID JOBID=&JOB_ID
USERID=&SYSUID";
 REQ_DATE = INPUT("&IN_DATE",YYMMDD8.);
 PUT "SUBMITTED ON: " REQ_DATE WEEKDATE29. " at:
&IN_TIME"
 " by USER-ID: &USER_ID " /;
 PUT "REPORT: *MARS0001* REPORT TITLE" /;
 IF INPUT("&FOR_SLR",$1.) ne '*'
 then do;
 SELLER = TRIM(PUT("&FOR_SLR",$SLRNAM.));
 PUT 'FOR SELLER: ' SELLER;
 end;

 IF INPUT("&RPT_BY",$1.) NE '*'

 THEN BYDESC =
TRIM(PUT(INPUT("&RPT_BY",$3.),$RPTBY.));
 ELSE BYDESC = 'All Flow Offerings';
 PUT 'REPORT-BY: ' BYDESC;
 PUT "PERIOD: &BEG_DATE TO &END_DATE ";
 CUR_DATE = TODAY();
 PUT "STATUS AS OF: " CUR_DATE MMDDYY10. /;

 IF &TRANOUT > 0 THEN DO;
 PUT "CLICK ON LINK TO VIEW RESULTS:";
 PUT "http://omvs2.company.com/marsreportsp/&MARS_CSV"
/;
 END;
 ELSE DO;
 PUT "*NOTICE* NO RESULTS RETURNED FROM THIS
QUERY!" /;
 END;
RUN;

JOB FAILURE NOTIFICATION – JCL CODE

Add the following jobs steps to the end of the targeted
JCL for the purpose of generating and sending e-mail
notification of a job failure. Inclusion of job specific
information, i.e. Job name and system assigned Job-ID,
will help with providing efficient production support.

//*
//*** HANDLE JOB FAILURE NOTIFICATION ***
//JC01 IF ABEND=TRUE OR RC > 4 THEN
//*
//*** CREATE E-MAIL NOTIFICATION OF JOB FAILURE ***
//JS40 EXEC SAS
//SYSIN DD DSN=MARS.SOURCE(MARS911S),DISP=SHR
//JOBINFO DD *
//WEBPARMS DD DSN=&&WEBPARMS,DISP= DISP=SHR
//NOTIFY DD DSN=&&NOTIFY,DISP=(NEW,PASS),
// UNIT=…,SPACE=…,DCB=(……)
//*
//*** SEND E-MAIL NOTIFICATION OF JOB FAILURE ***
//JS50 EXEC SENDMAIL
//SYSTSIN DD DSN=&&NOTIFY,DISP=SHR
//*
//JC01 ENDIF

JOB FAILURE NOTIFICATION – SAS CODE

The SAS program MARS911S code necessary for
generating the e-mail notification of job failure is easily
replicated from the first and last sections of the
MARS001S SAS Query program code.

SAS NOTIFY
Part 1 – Pickup System Assigned Job-ID
Copy the “Part 1- Pickup Job-ID“ SAS code from the MARS001S
SAS Query program above.

Part 2 – Web Parms into Globals
Copy the “Part 2 - Web Parms into Globals“ SAS code from the
MARS001S SAS Query program above.

Part 3 – Generate E-mail Notification
Copy the “Part 7 - Generate Delivery E-mail” SAS code from the
MARS001S SAS Query program above and then modify the
subject and body to announce job failure along with action to be
taken and relevant contact information.

CONCLUSION

The MARS project provides an enterprise level solution
that has not only brought ad-hoc reporting under control,
but also has established a new technical infrastructure
paradigm. Centralizing ad-hoc reporting on the corporate
intranet opens it to the widest possible audience, while at
the same time dramatically reducing future development
costs. Accessibility of existing ad-hoc reports encourages
their reuse and helps to avoid duplication. With the
business user now able to independently order ad-hoc
reports using flexible selection criteria, the need for doing
“what if” scenarios has been made easier and faster. And
finally, the new technical architecture and toolset
improves the collaborative JAD/RAD approach to meet
future ad-hoc reporting needs.

ACKNOWLEDGMENTS

Thanks to William A. Mitchell, Lead Tech Analyst, Freddie
Mac Corporation, MacLean, VA for developing the REXX
CGI script and for providing invaluable technical support.

Thanks to Michael G. Sadof, a SAS Quality Partner, MGS
Associates, Bethesda, MD for encouraging me to present
this paper.

SAS, BASE/SAS are registered trademarks or
trademarks of SAS Institute, Inc. in the USA and other
countries. ® indicates USA registration.

IBM, OS/390, REXX, and WebSphere are registered
trademarks or trademarks of International Business
Machines Corporation in the USA and other countries.

CONTACT INFORMATION

For those interested in attaining full version copies of the
code, including the REXX CGI script , please make
request to the e-mail address that follows.

Andre W. Brainard,
e-mail: andretech@onebox.com
Systems Engineering Services Corp.
On the Web at: http://www.sesc.com

A Generic Solution to Running the SAS® System on the Web Without SAS/Intrnet®
David L. Ward, InterNext, Inc., Somerset, NJ

ABSTRACT
Many organizations are not able to afford SAS/IntrNet but
desperately need to provide dynamic web-based content to
users, usually in the form of on-line reports. Sample CGI
scripts that invoke the SAS system have been offered at
various user group conferences, but a complete alternative
has not been available. This paper will demonstrate the
installation and usage of this alternative, as well as show
examples of reports generated real-time in a web-browser
using only Base/SAS. You will learn to create HTML forms
that pass parameters to a SAS program that displays a table
or graph according to what a user has chosen. You will also
learn to use ODS to generate presentation-quality output.

INTRODUCTION
This paper will serve to show a number of things. First, the
power and flexibility of the SAS System, specifically
SAS/AF, in building complex Internet-based applications
that communicate in a client-server architecture. Second, it
will exhibit InterNext's product Onyx, including installation,
administration, usage, and advanced features. Third,
readers will see examples of how to build web-based SAS
programs using either Onyx or SAS/IntrNet. ODS,
SAS/Graph, and other techniques will be discussed.

OVERVIEW OF CONCEPTS
Before we explore the details of using SAS with the web you
should familiarize yourself with some concepts pertinent to
the topic at hand.

1. Web Server: A software application that allows
users to connect to a computer and request web
pages from it. Most web servers also allow users
to request not only files but also the output of
programs that are executed at the time the user
makes the request.

2. Common Gateway Interface (CGI): This refers to
a standard protocol that web servers use to invoke
a program that a user requests. It does not
actually refer to a specific programming language,
but can be implemented in almost any. CGI
defines what environment variables are passed to
the program (usually called a script) so that it can
process a user's request properly. The most
popular CGI programming language is called Perl
(the Practical Extraction and Reporting
Language). Perl can be obtained freely and runs
on virtually any computing platform.

3. Web Page: Refers to an HTML (Hypertext
Markup Language) document usually given to a
web browser from a web server. The HTML
document can either exist on the web server or be
the output from a CGI program.

4. Dynamic Web Page: An HTML document that
does not exist on the web server, rather, it is
generated by a program and returned to the user
when requested.

5. TCP/IP Socket: A software object that allows one
computer to communicate with another. TCP/IP
sockets are how all Internet servers communicate
with Internet clients (like web browsers). They can
also be used to allow SAS to communicate with a

web server to return the output of a SAS program
very quickly.

WEB-ENABLING YOUR SAS PROGRAMS
This paper will use the term "web-enabling" to refer to
moving functionality that exists in Base/SAS, SAS/Macro, or
SAS/AF programs or applications into an environment where
it can be executed on another computer by user via a web
browser. The user would presumably not have the SAS
System installed, and would not specifically need it to be.
You may already have Base/SAS reports using data steps
and procedures that users run either through a command-
line interface or through the SAS display manager on hosts
that support it. Users who submit these programs typically
need to be familiar with the SAS system and somewhat
technical, especially if parameters need to be passed to the
program or set in the code. Web-enabling your programs
can afford you with several key advantages:

1. Deployment flexibility. You have a number of
options on how to build a front end for your
application or reports. You can provide a web
page or Java applet that allows your users to
provide input, and that content can be accessible
to users across operating systems and browser
types.

2. Less training/software required. Users do not
need access to SAS software or the data on their
local machines. If you have many users
accessing your application, this can be very
important. The web has become a very familiar
environment in which computer users feel
comfortable submitting information and retrieving
results. By letting them use this familiar
environment, you reduce the amount of training
needed for your specific application.

3. Less SAS licenses are required. Though you do
need a server license of SAS to accommodate
many users querying SAS software on one
machine, this will typically be less expensive than
purchasing individual client licenses.

REQUIREMENTS
What software and hardware is required to build an
environment to execute web-based SAS applications? You
need a web server, SAS software running on either this
same server or another physical machine, and a way to
pass requests from the web server to the SAS System.
SAS/Intrnet, the Institute's solution, uses CGI. The product
that is the focus of this paper, Onyx, takes a more "open"
approach, allowing communication between the web server
and SAS by either CGI or other technologies including Sun's
Java Servlets or Java Server Pages, Microsoft's Active
Server Pages, and others. Many of these approaches are
superior to CGI because they do not invoke a separate
process for each request, allowing many more concurrent
requests to be handled. Onyx offers a documented protocol
for communication with the SAS system called the Onyx
SAS Application Protocol (OSAP).

ABOUT ONYX

WHAT IS ONYX?
Onyx is a full-featured application server that can be used to
control the SAS system in a unique way from any other
software application, even on remote machines. Onyx fully
and in a special way supports communication with the web.
An advanced multi-threaded application server running in
Java provides a transparent and load-balanced way to
process SAS requests on any number of servers.

Onyx gives you the power to run your SAS applications
using any kind of front-end you desire, whether it be web
pages (HTML and a scripting language), Java applets,
Client-side applications, or anything else. It can also run on
any operating system that the SAS system can run in.

SOME FEATURES OF ONYX
• Includes an integrated, extremely fast, web server,

making it very easy to develop and test SAS®
code on individual PCs or laptops.

• Allows application developers to re-distribute their
applications to sites that do not have Onyx
licensed, giving you the freedom to require only
base SAS® for your web applications.

• SAS® can be run from any number of different
computers, even running different operating
systems, with a load-balancing algorithm to
distribute processing over the machines evenly.

• Comes with a built-in interpreter for the Onyx
Dynamic HTML syntax which lets users use HTML
editors to build pages that have embedded SAS®
code within familiar <% %> tags.

• Is administered either via telnet or a web browser.
Users can drop or add pooled SAS® sessions and
check on the status of requests.

• Can easily be customized by SAS®/AF
developers on the server side by adding new
request types as SCL entries.

• Will run on any operating system that SAS® is
licensed for.

• Requires nothing more than base SAS®.

Each of these features will be presented and discussed
throughout the rest of this paper.

HOW ONYX WORKS
If you are familiar with the way in which SAS/Intrnet works,
you should take special notice that Onyx has been designed
with a different structure. Onyx includes a program called
the "Application Dispatcher", which serves as the central
nervous system and point of entry for making requests. The
Application Dispatcher (hereafter referred to as simply the
Dispatcher) functions almost exactly like a web server in that
it waits for requests via the standard networking protocol
TCP/IP, and allows a client to submit a request. In fact, the
Dispatcher includes a built-in web server, which we will
examine later. Here is an illustration to help you understand
what happens when a user makes a request from Onyx:

This diagram illustrates how the various software
applications that provide a link from the web to the SAS
system function and in what order. It can also be misleading
in that each step of the process is depicted as being
handled by separate machines. In reality, every part of the
process from the web browser to the SAS sessions can be
run on one computer.

In Onyx terminology, SAS sessions that are configured to
communicate with the Dispatcher are referred to as Drones,
because they exist solely to do the bidding of the
Dispatcher, their "queen". A significant difference between
the architecture of Onyx and SAS/Intrnet arises from the fact
that these Drones function as TCP/IP clients instead of
servers. This means that each Drone connects to the
Dispatcher and is immediately terminated if the Dispatcher
application is halted. This can sometimes be beneficial to
setting up a secure networking environment.

WHY SO MANY SAS SESSIONS?
You may wonder why several SAS sessions are depicted in
the above diagram. The SAS System, up to the most recent
version 8.2, has always been "single-threaded." This means
that an individual SAS session is unable to run a procedure
or data step and be waiting for another request at the same
time. Nor is it able to run two separate data steps at once.
This has the negative effect of requiring a separate SAS
session for each concurrent request made to Onyx. If you
had 10 users request a program at once, you would need 10
SAS sessions to serve these users instantly, or some users
would have to wait until a SAS session finished processing
the request of another user.

Unfortunately, an individual SAS session consumes a great
deal of memory that cannot easily be controlled or limited
without severely crippling the session. In order to allow
many Drones to execute, even while each may consume a
large amount of memory, Onyx allows the Drones to run on
separate physical machines than the Dispatcher. In fact,
you could even run Drones on machines all around the world
via the Internet. The Dispatcher makes decisions about
which computer and session to send a request to.

Even though you can run multiple SAS sessions that are all
connected to the Dispatcher, you still may not be able to
accommodate a large number of concurrent users. To solve
this problem, the Dispatcher allows an option to be set that
will cause users to wait for a specified length of time for an
available session, after which they will receive a
customizable busy message.

HOW IS ONYX DEVELOPED?
Only two programming languages are used in the
development of Onyx, SCL and Java. In fact, they share so
many similar features that they naturally work well together.
Both SCL and Java can be compiled into operating system
independent "byte-code", which allows multi-platform use.
The syntax of the two is even strikingly similar. A key
difference between them is the fact that Java applications
can be run without purchasing Java while SCL applications
require the SAS System. The simple CGI script included
with Onyx is written in the ubiquitous scripting language
called Perl. Perl is freely available and is installed on most
web servers in the world.

WHAT INSTITUTE PRODUCTS CAN ONYX MIMIC?
Because Onyx provides a TCP/IP application server with no
specific or forced client, it can be used in many different
ways. The key comparison is, of course, SAS/Intrnet, but
the functionality of SAS/Connect, WebAF and Integration
Technologies can also be utilized with Onyx. The key
feature of Onyx that enables this kind of connectivity is the
Onyx SAS Application Protocol (OSAP).

ONYX SAS APPLICATION PROTOCOL
Virtually all Internet servers (web server, mail server, ftp
server, etc.) use what is called a TCP/IP protocol to define
the syntax of how clients and servers can understand each
other. These protocols are typically created by panels of
volunteers in documents called Request for Clarifications
(RFCs). If application vendors use a standard protocol
when designing a server, anyone can write a client that
knows how to communicate with it. The same model has
been used in developing Onyx. A custom, text-based
protocol has been created so that anyone or anything can
communicate with the SAS system in an easy and intuitive
way. Such a protocol makes configuring firewalls easier as
well because the syntax of messages can be anticipated.

What does an OSAP request look like? Well, it looks a lot
like an HTTP request if you have ever seen one. Hypertext
transfer protocol (HTTP) is the language that web browsers
use to communicate with web servers. A typical request
looks something like this:

GET /index.html HTTP/1.0
Host: 102.3.55.61

This instructs the web server to return the contents of the file
named index.html to the host computer whose number is
listed. An Onyx request looks like this:

OSAP/1.0 Request:
Program=/home/dward/run.sas
Session: 18931707154183480915056273279
Content-Length: 2

State=NC
Product=Onyx

The first line (split into two to fit in a single column) always
indicates that the client is making a request and includes the
details of that request (the program run.sas). The concept
of sessions (on the second line) will be introduced later. The
remaining lines indicate input parameters that the user
wishes to send to the program run.sas.

So what can you do with OSAP? Users can now telnet
directly to the Dispatcher and submit requests. Onyx
includes 5 built-in request types: PROGRAM (shown above),
SQL, CODE, MACRO, and MACROVAR. Each one
performs separate actions based on the content sent to it.
The Program request type is used for web requests and
would usually return HTML or graphic output. The SQL
request type assumes that the content will include an SQL
statement and the request details should include information
about which format the user wants the results returned in.
CODE allows users to submit either Base/SAS or SCL code
directly to Onyx and have the results returned. MACRO
allows users to request a SAS/Macro to be executed with
the parameters named in the content of the request, while
MACROVAR returns some or all macro variables from the
SAS System. SAS/AF developers can write custom
request types that respond to OSAP requests in any way
they choose, making Onyx infinitely extendable.

INSTALLING ONYX
Onyx is very simple to install, particularly on Windows hosts.
Simply run the Onyx installation program and follow the
wizard that will guide you through setup. The installation
wizard will perform the following actions:

1. Install the Java Runtime Environment, if it is not
already installed

2. Copy all system files to the local computer
3. Modify configuration files with default settings and

let the user change them if desired
4. Install a Windows NT/2000 service if desired

Here is a sample screen shot of the installation wizard:

After clicking on the Onyx shortcut that is placed on your
desktop during installation, a command prompt window
should show up in the Windows taskbar. Clicking on the
window will reveal the following screen:

Once you see the message
ONYX Application Dispatcher v1.0 On-Line
Copyright 2000-2001 InterNext, Inc.
(http://www.internext-inc.com)

you know that Onyx is running. Onyx can be run even with
the default settings. The test and demonstration programs
will execute, all through the built-in web server. Once
installed, simply navigate your browser to
http://localhost:5000/ and enter the username "admin" and
password "onyx". You will immediately see the Onyx web-

based administration utility, described in the next section.

ADMINISTERING ONYX

VIA THE WEB
Once you have Onyx installed and running, navigating your
browser to http://localhost:5000/ as mentioned above will
display the Onyx administration utility. It is from this
interface that you can drop and add Drones (you can only
add Drones running on the same machine as the
Dispatcher) and check on the status of requests. A typical
screen looks something like this:

Though you can't see it well at this size, this web page
indicates that there are 4 Drones available. The number of
requests each one has handled and the amount of memory
each uses is displayed. Also indicated is a date/time value
that the Drone began processing a request on. You can use
this value to see if any Drones are currently busy (as the last
one is in the screen shot). From this interface you can kill or
drop existing Drones, add new ones (start new SAS
sessions on the machine), and "release" Drones (discussed
in detail later).

VIA TELNET
If administering the server through a web browser is not
acceptable to you, you can choose to use the standard
telnet utility to display a similar text-based interface. A
sample telnet session:
>Enter Onyx Admin Command:
show
>
> Currently Running Drones
>
Address/Started/Requests/Memory/Busy/Captured
>==
=======>Machine #0: 127.0.0.1/127.0.0.1
> #0: 1344/Fri Apr 06 13:08:57 EDT 2001/0/0//
> #1: 1347/Fri Apr 06 13:09:14 EDT 2001/0/0//
>
>Enter Onyx Admin Command:
kill 0.0/ (kill machine 0 drone 0)
kill 0.0/0.1 (kill machine 0 drones 0 and 1)
kill (kill all drones)
start 2 (start 2 drones)
start (start 1 drone)
release 0.0/ (release machine 0 drone 0)

In this case the administrator viewed available Drones,
killed, started, and released several Drones.

USING ONYX
Enough super-techno babble. Let's get to some SAS
programming! Onyx can be used to run existing SAS/Intrnet
programs, or to create new programs that make use of more
advanced features of Onyx. This paper will start with
base/SAS programs then look at how to write SCL programs
for use with the web.

BASE/SAS PROGRAMS
Our example Base/SAS programs will show how to pass
form parameters to SAS, how to use ODS to generate
advanced HTML output, how to use sessions, explain the
special syntax known as Onyx Dynamic Html, and show
unique debugging features of Onyx.

PASSING FORM PARAMETERS TO SAS
Just like SAS/Intrnet, HTML form parameters are sent to
SAS as macro variables. In fact, web server environment
variables and cookies are also sent as macro variables.
Consider the following HTML form:

<FORM ACTION="report.sas" METHOD="GET">
<SELECT NAME="country">
<OPTION>USA<OPTION>Canada
<OPTION>Mexico
</SELECT> <INPUT TYPE="submit" value="Show
Report">
</FORM>

When this form is submitted to the program "report.sas",
Onyx creates the following SAS macro variables:

GLOBAL _IP 127.0.0.1
GLOBAL _BROWSE Mozilla/4.0 (compatible;
MSIE 6.0b; Windows NT 5.0)
GLOBAL ONYXSESSIONID
369802410416145830052829111801727
GLOBAL COUNTRY Canada
GLOBAL ONYXSESSIONID_ C
GLOBAL _IP_ E
GLOBAL _BROWSE_ E
GLOBAL COUNTRY_ G

You will immediately notice that the form parameter named
"country" has generated two macro variables, COUNTRY
and COUNTRY_. COUNTRY holds the value chosen by the
user and COUNTRY_ contains one letter indicating what
type of information the macro variable COUNTRY holds. In
this case the G indicates that it is form data sent via the
GET method (indicated in the FORM tag). The other
variables marked as E indicate that they are environment
variables (notice the browser type). You can use these
macro variables just as you would any other:

libname sasdata 'my-data-directory';
ods html file=_webout (dynamic);
proc means data=sasdata.sales;
title "Sales summary for country

&country";
where country="&country";
var amount; run;

ods html close;
This simple proc means uses the macro variable to create a
title and form a where clause. One item to note: using
macro variables in this way poses a security risk. Since
macro variable references with ampersands are compiled as
part of the SAS code at run time, a malicious user could
enter macro statements, unbalanced quotes, even their own
procs or data steps directly into the variable. To check the
contents of a parameter before using it you can use the
symget()/symput() functions in a data step. These functions
store the macro variables as data step variables which are
immune to the same compiler dangers.

USING ODS TO GENERATE ADVANCED HTML OUTPUT
Since the birth of ODS in version 7 of the SAS System,
there have been many conference papers, books, and
tutorials explaining the details of how to use it. Instead of
focusing on ODS this paper will simply present how to use it
in conjunction with Onyx or SAS/Intrnet. A simple example
was presented above. The proc means was enclosed in two
ods statements, ods html file, and ods html close. Use
the first statement to begin capturing procedure output and
the second to finish capturing it. The keyword dynamic is
important. It tells ODS to add a required HTTP header to
the output it generates. See the SAS Online Doc for
complete documentation on ODS. It includes many options
and is a very powerful way to create HTML (and other
formats) output.

USING SESSIONS
An inherent problem with web-based applications lies in the
fact that they are "stateless". That is, each time a user
requests a web page from a web server, the web server
does not know it is the same person or "session" making
another request. So how do programs on the server know
that the same user is requesting a report that has just
logged in? The simplest way that web applications track this
information is through the use of cookies. Most of us are
familiar with the cute term by now because of the issue of
security. Web sites actually store information on our own
hard drives and can read that information each time we
request a page from their sites. Onyx uses only one cookie:
the Onyx session ID. This value lets Onyx know which
parameters and/or data sets correspond to the current user.

All information gathered during a session is stored in a
directory on the server and assigned the libname SESSION.
Thus, SAS programs can store data sets or other items in
this libname and it will be available each time the user
requests pages from the same browser and computer.
Additionally, SAS macro variables are saved across
requests in the same session if the special prefix
_ONYXSESSION is used for each variable. Thus you could
have one page that checks a username and password and if
successful could store a session variable with the
username. Any subsequent programs could check to make
sure that session variable exists before granting rights to run
the program. Sample code:

data _null_;
length username password $50

where $100;
username=symget('username');
password=symget('password');
where='username='||quote(username)||

' and password='||
quote(password);

dsid=open(
'sasdata.users(where=('||
trim(where)||'))');

if dsid then do;
if attrn(dsid,'ANY') then
call symput(
'_onyxSessionUsername',
username);

rc=close(dsid);
end;

run;

Another program could then check the value of
&_onyxSessionUsername:

%macro report;
%if %length(&_onyxSessionUsername)=0

%then %do;
data _null_;
file _webout mod;
put 'Access Denied!';

run;
%end;
%else %do;
** REPORT CODE HERE **;

%end;
%mend;
%report;

USING ONYX DYNAMIC HTML
A unique and exciting feature of Onyx is the built-in support
for the Onyx dynamic HTML syntax. This syntax lets
programmers develop HTML pages with Base/SAS code
embedded directly in the HTML. Simply enclose your SAS
code in the now familiar <% %> tags (similar to Java Server
Pages and Active Server Pages). Macro variables can also
be resolved directly in HTML! Here is a sample of an
ODHTML page:

<HTML>
<HEAD>
<TITLE>My page</TITLE>

</HEAD>
Date/Time program executed:
%sysfunc(datetime(),datetime.)

Date SAS session was started:
&sysdate9

<%
proc sql noprint;
select nobs into :nobs from

dictionary.tables where
libname='DATA' and memname='CONTACTS';

quit;
%>
Observations: &nobs
Proc freq:
<%
ods html file=_webouta;
proc freq data=sasdata.contacts;
table first last;

run;
ods html close;
%>
</HTML>

A major advantage to using this syntax is that developers
can use standard web-page editors to build pages. Many
commercial and free editors recognize the <% %> tags as
server-side scripts and simply ignore the contents at design
time. ODHTML also makes use of the natural iteration of
the data step that allows HTML to be embedded directly into
the data step itself. See the Onyx documentation for
examples of this powerful feature.

DEBUGGING PROGRAMS WITH ONYX
Special consideration has been taken for debugging
programs with Onyx. Simply include the following line of
code in your program to return the SAS log to the browser:

%put NOTE: ONYX LOG;
Or if you would like to see the SAS log only if an error
occurs:

%put NOTE: ONYX ERROR LOG;

After the program runs, the log is scanned for errors. If an
error is found and the appropriate debugging directives are

found the log will be returned to the user. This is extremely
helpful in testing your programs.

WRITING SCL PROGRAMS
Onyx fully supports the use of the SAS Component
Language to develop web-based programming content.
SCL is a rich language that allows rapid development of
programs and is well suited for this kind of programming.
We will take a look at obtaining form parameters via an SCL
list, the structure of the Onyx Drone object, and how to use
submit blocks effectively to generate HTML output or submit
Base/SAS code.

OBTAINING FORM PARAMTERS FROM A LIST
Each time a user makes a request via the PROGRAM
request type, SCL lists are generated that contain all
parameters sent to Onyx. These values correspond to the
macro variables created, in fact, they are used to create the
macro variables. The list you can access is stored in the
local environment list and is named simply ONYX. SCL
code to obtain these values:

Dcl char username;
init:
onyx=getiteml(envlist(),'ONYX');
username=getnitemc(

getniteml(onyx,'P'),
'username');

return;
You can see from this example that the ONYX list is made
up of sub-lists corresponding to the type of data being sent.

THE DRONE OBJECT
Because Onyx is developed using SCL, it is tightly
integrated into the SAS/AF environment by exposing internal
methods and properties of the Drone object to user
programs. The Drone object is what powers each drone and
contains a number of useful methods and properties that
your programs can access. Two examples we will look are
the methods clientData() and getVarS():

Dcl object drone;
Dcl char username password loggedin;
init:
drone=getnitemo(envlist(),'Drone');
** GET SESSION VARIABLE LOGGEDIN **;
drone.getVarS('loggedin',loggedin);

** GET USERNAME AND PASSWORD FROM FORM
**;
drone.clientData(
'username password',
username,password);

drone.clientData('G',
'username password',
username,password);

return;

Many other methods and properties are available. If you are
interested, they are described in the Onyx documentation.

USING SUBMIT BLOCKS EFFECTIVELY
SCL submit blocks are a powerful feature of the SCL
language. Most often, they are used to submit base SAS
code or SQL code (hence the name "submit" block). But
when used with no qualifier, the submit statement actually
only places text into what is called the preview buffer. A
buffer of text is stored in memory and the preview() function
can manipulate that text. Submit blocks can also resolve
SCL variables preceded by an ampersand. Here is a simple
program that uses submit blocks to write an HTML page:

Dcl char date;
init:
control asis;
date=putn(datetime(),'datetime.');
submit;
<HTML>
My web page here – created on
&date
</HTML>
endsubmit;
rc=preview('file','_webout','append');
rc=preview('clear');
return;

A very important option when using submit blocks is to
include the control asis statement (in bold above). This tells
the submit blocks to leave the contents formatted as-is.
Otherwise, it will attempt to format it optimally for SAS code,
which may severely alter the HTML you wish to write.
Submit blocks can be used inside of do loops and be
executed conditionally, making them a powerful choice for
HTML development.

ADVANCED FEATURES

CUSTOMIZING ONYX
Another exciting feature of Onyx is the ability for SAS/AF
developers to change existing request types or add new
ones. This means that new features can be added to Onyx.
When customized, Onyx acts simply to connect the remote
user to the SAS System and individual developers can
decide how to act on the OSAP request. A number of built-
in request types come with Onyx, described previously,
which can be enhanced as desired.

USING OTHER CLIENTS THAN THE WEB
As mentioned on the first page of this paper, the use of the
Application Dispatcher does not apply just to a CGI script on
a web server. Users can telnet to the Dispatcher and enter
OSAP requests directly, or other clients can use TCP/IP
socket programming just like when reading from web sites.
InterNext plans to develop a Java Servlet in the near future
that will communicate with Onyx. Other products that could
easily communicate with Onyx include Microsoft Office
(through the use of Visual Basic), SAS (through the socket
access method), or C/C++.

RE-DISTRIBUTING APPLICATIONS
A unique and powerful feature of Onyx is its re-distribution
support. Built with the developers in mind, any license holder
of Onyx can distribute applications to sites that do not have
Onyx licensed. A special set of keys called app keys are
generated that encrypt the program names, other program
information, Onyx license holder information, and
(optionally) the client SAS site ID. Thus you can develop
web-based applications in SAS for clients that do not have
any web product licensed.

Only SAS catalogs can contain app keys. If your
applications makes use of Base/SAS programs (like in .sas
files), place them in .source entries in a catalog. When your
users request a .sas file from their web server, Onyx will
automatically convert the reference into a .source reference
and will be able to find your programs.

CUSTOMIZING ERROR MESSAGES
System error messages are taken from HTML files in the
Onyx\Java\Errors\ directory. To customize the error
messages change those files. AF developers can also add
new error files and call them explicitly in their code by using
Onyx.Main.Error.Scl. See the documentation for details.

CAPTURING DRONES
Onyx gives programmers the ability to "capture" a drone so
that it can only be used by one session. You may want to
capture a drone if you want to make sure a user will never
have to wait for a session, or to save SCL lists or macro
variables in memory or datasets or catalogs in the work
directory. Captured drones are not cleaned up in between
requests, so libnames, filenames, macro variables, etc.
remain undeleted.

Since you are guaranteed the same session for each
request, you can use SCL lists, but keep in mind that the
lists may not get deleted properly when the capture is lost so
you may consume unnecessary memory. The Application
Dispatcher controls who has access to the captured drone.
If no request has been sent to a captured drone for an
indicated timeout period the capture will be released and a
command is sent to the drone to clean itself up. The next
time the client tries to use a captured drone they will
potentially get another drone so you will need to check to
make sure the drone is still captured by the intended user.

To capture a drone simply set the macro variable
_onyxCapture to "Capture" or "Release" and the specified
action will be performed:

%let _onyxCapture=Capture; * Capture a
drone ;
%let _onyxCapture=Release; * Release a
drone ;

DEMONSTRATION APPLICATIONS
Onyx includes two demonstration applications with source
code so that you can test Onyx and learn how to write web-
based SAS programs. The first application is the Onyx
explorer. This SCL application shows how to use SCL to
develop web content. The explorer displays all data sets,
catalogs, and catalog entries defined in a Drone. Upon
clicking on individual items, users can view details such as
proc contents, catalog entry contents, and actual
observations from data sets. Here is a screen shot:

The second demonstration program is a simple report
builder using data included with the SAS System installation.
Users can choose which variables they would like displayed

down the table, across the table, which analysis variables,
and what statistics they would like. A proc tabulate is
executed with the users choices:

And the output of the proc tabulate:

CONCLUSION
Though many organizations are unable to obtain
SAS/Intrnet, there are still alternatives for dynamic
publishing of SAS information via the web. One such
alternative, a fully supported product, is Onyx. This paper
has presented an overview of Onyx and examples that take
advantage of unique features it has to offer. Whether it is
via SAS/Intrnet, Onyx, or some other method, you are
encouraged to begin developing web-based content with the
SAS System!

OBTAINING ONYX
We will have CDs available at the conference, or you can
obtain Onyx software through the InterNext website at
http://www.internext-inc.com. You can both download the
software and obtain an evaluation key that will allow you to
develop SAS programs for 30 days. You can contact the
author with further questions.

ACKNOWLEDGMENTS
SAS and SAS product names are registered trademarks of
the SAS Institute. Other trademarks are the properties of
their respective owners.

CONTACT INFORMATION
Your comments and questions are valued and encouraged.
Contact the author at:

David L. Ward
InterNext, Inc.
254 Resnik Ct.
Somerset, NJ 08873
Work Phone: (732) 745-9823
Email (preferred): dward@sashelp.com

SECTION CHAIRS

Imelda Go
 Lexington County School District One

Andrew T. Kulogowski
Neilsen Media Research

Thomas Winn, Jr.
Texas State Auditor’s Office

IN

T
R

O
D

U
C

T
IO

N
 T

O
 S

A
S

INTRODUCTION TO SAS

Introduction to the SAS® Programming Language
Thomas J. Winn, Jr.

Texas State Auditor’s Office, Austin, Texas

[SAS is a registered trademark of SAS Institute Inc. in the USA and other countries. ® indicates USA registration.]

Abstract

This short paper is first in the “Introduction to SAS”
sequence of papers. It includes some of a
programmer's first steps toward learning SAS. The
paper provides a brief overview of the SAS System, as
well as an outline of the basic structure of the SAS
programming language. In particular, it covers
preliminary concepts regarding DATA and PROC steps,
the different kinds of data, and SAS data files. This
paper, and the associated presentation, is intended to
provide a foundation for the next step of learning SAS,
that of creating SAS data sets, using the INPUT
statement and INFILE options.

A Very Brief History of SAS

While a graduate student in statistics at NCSU, Jim
Goodnight wrote a computer program for analyzing
agricultural data. After a few years, Jim’s application
had attracted a diverse and loyal following among its
users, and the program’s data management and
reporting capabilities had expanded beyond Jim’s
original intentions. In 1976, Jim decided to work at
developing and marketing his product on a full time
basis, and SAS Institute was founded. Since its
beginning, a distinguishing feature of the company has
been its attentiveness to users of the software. Today,
SAS Institute is the world’s largest privately-held
software company, and Dr. Jim Goodnight is its CEO.
He continues to be actively involved as a developer of
SAS System software.

The SAS System

The SAS System is an integrated suite of information
delivery software products. It is a library of modular
components, that are tied together by a central
supervisory program. Applications of the SAS System
include executive information systems; data entry,
retrieval, and management; report writing and graphics;
statistical and mathematical analysis; business
planning; forecasting, and decision support; operations
research and project management; statistical quality
improvement; computer performance evaluation; and
applications development.

Originally, ”SAS” stood for “Statistical Analysis System”,
however, the applicability of SAS has grown far beyond
that single purpose. Today, SAS is not an acronym for
anything. Besides statistics, elements of the SAS
System also include web enablement, data mining, data
warehousing, and business intelligence solutions, a
variety of industry-specific and business functional-area
products (for managing organization, customers, and
suppliers), as well as state-of-the-art applications
development tools. Today, the SAS System is a
comprehensive system for data management and
analysis.

SAS software collects data from almost any platform
and data format; it cleans and transforms the data into
information which decision makers will understand; and
it stores the information in an open and efficient data
storage structure. To explore information, SAS
software provides multidimensional data analysis, query
and reporting, executive information systems, data
mining, data visualization, and applications
development capabilities. SAS solutions are
client/server- and Web-enabled. SAS says about itself,
“The Power to Know.™”

Components of the SAS System include (partial listing):

- Base SAS - SAS/LAB
- SAS/ACCESS - SAS/MDDB Server
- SAS/AF - SAS/OR
- SAS/ASSIST - SAS/QC
- SAS/CONNECT - SAS/SHARE
- SAS/EIS - SAS/SPECTRAVIEW
- SAS/ETS - SAS/STAT
- SAS/FSP - SAS/TOOLKIT
- SAS/GIS - SAS/AppDev Studio
- SAS/GRAPH - SAS/Enterprise Guide
- SAS/IML - SAS/Enterprise Miner
- SAS/INSIGHT - SAS Universal ODBC Driver
- SAS/IntrNet - SAS/Warehouse Administrator

The “Introduction to SAS” section is designed to cover
the fundamental elements of the SAS programming
language. It includes elementary DATA step, and
Base/SAS PROCedure programming.

Introduction to SAS Programming

All SAS jobs are a sequence of SAS steps, which are
made up of instructions, which are called SAS
statements. There are only two kinds of SAS steps:
DATA steps are used to read, edit, and transform data
(raw data or SAS data files), to prepare SAS data sets,
PROC steps are ready-to-use procedures which
analyze or process SAS data sets. In general, data
must be in a SAS data file before they can be
processed by SAS procedures.

Without going into the details at this time, here is a
skeletal example of a SAS job:

DATA STUDENTS;
 INPUT NAME $ 1-14 SEX $ 15

 SECTION $ 17-19 GRADE;
 DATALINES;
 . . . data lines . . .
 ;
 PROC SORT DATA=STUDENTS;
 BY SECTION DESCENDING GRADE;

PROC PRINT DATA=STUDENTS;
 BY SECTION;

RUN;

There are two kinds of SAS data sets: SAS data files
(or tables), and SAS data views. A SAS data file
contains: the descriptor portion, which provides SAS
procedures and some DATA step statements with
descriptive information (data set attributes and variable
attributes) about the data , and the data portion, a
rectangular structure containing the data values, with
rows (customarily called observations), and columns
(customarily called variables); and which is passed to
most procedures, observation by observation. A SAS
catalog is a type of SAS file which stores many different
types of information used by the SAS System. All SAS
files reside in a SAS data library.

The SAS System processes the program in two steps:
(1) it compiles the program, and (2) it executes the
program. When the program is compiled, a program
data vector (PDV) is constructed for each DATA step.
It is an area of memory which includes all variables
which are referenced either explicitly or implicitly in the
DATA step.

At execution time, the PDV is the location where the
current working values are stored as they are
processed by the DATA step. Variables are added to
the PDV sequentially as they are encountered during
parsing and interpretation of SAS source statements.
Each step (DATA or PROC) is compiled and executed
separately, in sequence. And at execution time within
each DATA step, each observation is processed
iteratively through all of the SAS programming
statements of the DATA step.

SAS procedures (PROCs) are programs that are
designed to perform specific data processing and
analysis tasks on SAS data sets. Base/SAS
procedures fall into the following categories:
SAS Utilities -- APPEND, CATALOG, CIMPORT,
COMPARE, CONTENTS, COPY, CPORT, DATASETS,
DBCSTAB, DISPLAY, EXPLODE, EXPORT, FORMAT,
FSLIST, IMPORT, OPTIONS, PMENU, PRINTTO,
RANK, REGISTRY, SORT, SQL, STANDARD,
TRANSPOSE, TRANTAB;
Descriptive Statistics -- CORR, FREQ, MEANS, SQL,
SUMMARY, TABULATE, UNIVARIATE;
Reporting -- CALENDAR, CHART, FORMS, MEANS,
PLOT, PRINT, REPORT, SQL, SUMMARY,
TABULATE, TIMEPLOT.

Creating SAS Data Files

Since SAS procedures can operate only on SAS data
sets, then the first step in processing any raw data
using SAS will be to transform them into a SAS data
set. Whenever the SAS System creates a SAS DATA
file, it does the following:
1. it reads the DATA statement, creates the structure

of a SAS data set, and marks the statement as the
place to begin the processing of each line of data;

2. it uses the description of the data in the INPUT
statement to read the data line, and to produce an
observation;

3. it uses the observation to execute any other SAS
statements that are in the DATA step;

4. it adds the observation to the data set being
created; and

5. it returns to the beginning of the DATA step for the
processing of the next observation.

All SAS DATA step statements are executed once for
each observation.
All SAS statements begin with an identifying keyword,
and end with a semicolon. SAS statements are free-
format.

They can begin anywhere, and end anywhere. A single
statement may continue over several lines. Several
statements may be on a single line. Blanks (as many
as desired) are used to separate fields. Other special
characters also may be used to separate fields.

The data portion of a SAS data file is a collection of
data values arranged in a rectangular table. The rows
in the table are called observations. The columns in the
table are called variables. There are two kinds of
variables: character variables, and numeric variables.
Each variable has a name.

There are rules for naming SAS data sets and
variables: 1 to 32 characters in length (8 character
maximum in Version 6 and earlier versions), start with
A-Z or _ (underscore), continue with letters, numbers,
or underscores. It is recommended that you choose
meaningful names.

Character data can consist of up to 32,767 characters
(max. of 200 characters in Version 6 and earlier
versions). Character values may include letters,
numbers, blanks and special characters, although
generally you should not include any semicolons within
the data. Numeric data values must be numbers, and
they may be preceded by a + or -. Unless the data are
being read using a special SAS informat, do not include
commas or dollar signs in numeric data values. SAS
assigns the value of a decimal point (“.”) to missing
numeric values, and a blank (“ ”) to missing character
values. You can enter these values into your data to
indicate missing values.

Every SAS data set has a name and is physically
stored on some type of media (disk, tape, etc.). In
simple jobs, the SAS data sets are stored on temporary
space, but they can be stored “permanently”. A
temporary SAS data set exists only for the duration of
the current SAS job, or interactive SAS session. A
permanent SAS data set exists after the end of the
current SAS job or interactive SAS session. Both types
of SAS data sets have two-level names, of the form
libref.data-set-name, where libref is a reference to the
name of a SAS data library (a collection of SAS files).

With temporary SAS data sets, the SAS System
automatically assigns the libref WORK and you specify
the data set name. When you create a permanent SAS
data set, you must specify both the libref and the data
set name. The SAS System does not assign the libref
for you. Although there are other methods for certain
operating environments, the LIBNAME statement is the
most universal method of assigning a libref. The
general form is

 LIBNAME libref ‘SAS-data-library’;

Here is an example of a LIBNAME statement in the
Windows environment:

 LIBNAME mylib1 ‘C:\mySASlib’;

Here is an example of a LIBNAME statement in certain
mainframe environments:

 LIBNAME mylib2 ‘data.set.name’;

Here is an example of reading data from a “permanent”
SAS data set (in the SAS data library whose previously
defined libref is ‘MYLIB’):

 DATA EXAMPLE;
 SET MYLIB.STUFF;

Here is an example of creating a “permanent” SAS data
set (also in the SAS data library whose previously
defined libref is ‘MYLIB’):

 DATA MYLIB.TESTDATA;
 SET SAMPLE1;

A SAS DATA statement instructs the SAS System to
create and name a SAS data set. It has the general
syntax:

 DATA data-set-name-1 (options-1)
 data-set-name-2 (options-2)
 . . .
 data-set-name-k (options-k) ;

Many SAS data sets can be created in a single DATA
step. DATA step options include such things as:
DROP= , IN= , FIRSTOBS= , KEEP= , OBS= ,
RENAME= , WHERE= , and others.

The two major functions of the DATA statement are: to
signal the beginning of the DATA step, and to name the
data set(s) being created.

When creating temporary SAS data sets, the data set
name can be supplied by the programmer:

 DATA STUDENTS;
 INPUT NAME $ 1-14 SEX $ 15

 SECTION $ 17-19 GRADE;
 DATALINES;
 . . . data lines . . . ;

or, if the name is omitted in the DATA statement, the
SAS System will provide a name (DATA1, DATA2,
etc.):

 DATA ;
 INPUT NAME $ 1-14 SEX $ 15

 SECTION $ 17-19 GRADE;
 DATALINES;
 . . . data lines . . . ;

A Few Words About Working With Dates and Times
Using SAS

Whenever SAS reads date value inputs, it converts
them into integers. SAS dates are positive or negative
integers representing the number of elapsed days
between January 1, 1960 and the specified date.
Similarly, SAS converts time values into the number of
seconds since midnight of the current day. SAS
datetime values are the number of seconds since
midnight on January 1, 1960. Since dates and times
are numeric entities, one may use ordinary arithmetic to
determine elapsed time, or future/past dates and times.

For examples,

 AGEDAYS = THISDATE - BIRTHDATE;
 AGEYRS = AGEDAYS / 365.25;

You may use date constants or time constants in a SAS
expression by writing the date or time enclosed in
quotes, and followed by a D (date), a T (time), or DT
(date:time).

 THISDATE = ‘20Aug2001’D;
 SLEEPTIME = ‘23:59:59.9’T;
 FAISDODO = ‘21Aug2001 20:30’DT;

To read data that are date or time values, SAS has a
variety of informats. To write date or time values in
reports, SAS has numerous formats. SAS also has
several special functions for working with date or time
values. We’ll learn more about informats, formats, and
functions in another presentation.

Summary

This short paper included some of a programmer's first
steps toward learning about the SAS programming
language. In particular, it covered the following items:
an overview of the SAS System, a few fundamental
ideas regarding SAS data sets, some preliminary
concepts regarding DATA and PROC steps, and the
different kinds of data in SAS.

Suggested References:

Ronald P. Cody & Raymond Pass, SAS Programming

By Example (1995)
Lora D. Delwiche & Susan J. Slaughter, The Little SAS

Book: A Primer, Second Edition (1998)
Frank DiIorio, SAS Applications Programming: A Gentle

Introduction
SAS Institute Inc., SAS OnlineDoc, Version 8
SAS Institute Inc., Getting Started With the SAS

System, Version 8
SAS Institute Inc., SAS Language Reference:

Concepts, Version 8
SAS Institute Inc., SAS Language Reference:

Dictionary, Version 8, Volumes 1 and 2
SAS Institute Inc., SAS Procedures Guide, Version 8,

Volumes 1 and 2

Author Information.

Tom Winn
Texas State Auditor’s Office
P.O. Box 12067
Austin, TX 78711-2067

phone: 512 / 936-9735
e-mail: twinn@sao.state.tx.us

The Input Statement: Where It's @
Ronald Cody, Ed.D., Robert Wood Johnson Medical School, Piscataway, NJ

Introduction

One of the most powerful features of SAS
software is the ability to read data in almost any
form. For example, you can have data values
separated by blanks or other delimiters or you
can arrange your data in columns, using one or
more lines of data for each subject. You can
also read selected data fields and then decide
how to read the remaining data values.

This tutorial will give you an overview of the
immense power and flexibility of the SAS
INPUT statement.

Reading Space Delimited Data

A common form of data entry is to separate
each data value by one or more spaces. This is
handy for small data sets that are entered by
hand, especially for test purposes. This
arrangement of data is often called "list
directed" data. The rule here is that you must
specify all the variables in the data lines and all
the data values must be separated by one or
more spaces. You must also indicate which
variables are to be read as character data.
Look at the following example:

***LIST DIRECTED INPUT;
DATA LIST;

INPUT X Y A $ Z;
DATALINES;
1 2 HELLO 3
4 5 GOODBYE 6
;
PROC PRINT DATA=LIST;

TITLE 'LIST DIRECTED INPUT';
RUN;

Notice that you need to list the variable names
on the INPUT statement and to place a dollar
sign ($) after any variable that is to hold
character values. Also notice that the second
line of data which has multiple spaces between
each data value causes no problems at all.

Delimiters Other Than Spaces

With just a small change to the program, you
can indicate any delimiter you like, in place of
the default blank. To understand how this
works, we need to jump ahead a bit to see how
a SAS program reads data from an external
data file (as opposed to data following a
DATALINES statement). You do this by
including an INFILE statement which tells the
program where to find the data. The INFILE
statement has several options that provide
additional information on how to read these
external data lines, one of them being an option
to define a delimiter other than a blank. The
option has the form: DLM= 'your_delimiter'.
Since we want to demonstrate this option with
"in-stream" data, we use the reserved fileref
(file reference) DATALINES. This allows you to
supply INFILE options with "in-stream" data.
Here is the program:

***OTHER DELIMITERS;
DATA DELIM;

INFILE DATALINES DLM='#';
INPUT X Y A $ Z;

DATALINES;
1#2#HELLO#3
4 # 5 # GOODBYE # 6
;
PROC PRINT DATA=DELIM;

TITLE 'OTHER DELIMITERS';
RUN;

In this example, we use a number sign (#) as
the data delimiter. The INFILE statement uses
the reserved fileref DATALINES followed by the
DLM= option.

Special Case of Comma Delimited Files

There is a common data arrangement used by
many personal computer applications. That is,
to separate data values by commas and to
place string values in double quotes.
Furthermore, two commas together indicate
that there is a missing value. The INFILE
option DSD takes care of all of these features.
Besides allowing commas as the data delimiter,
this option reads character strings enclosed in

double quotes and strips off the quotes before
assigning the value to the character variable. It
also allows you to include commas within a
character string. Finally, two commas together
are interpreted as a missing value. The
program that follows demonstrates all these
features:

***SPECIAL COMMA DELIMITED FORMAT;
DATA SPECIAL;

INFILE DATALINES DSD;
INPUT X Y A $ Z;

DATALINES;
1,2,HELLO,3
4 , 5 , GOODBYE , 6
7,,"HI THERE",8
9,10,"HI,THERE",11
;
PROC PRINT DATA=SPECIAL;

TITLE 'SPECIAL COMMA DELIMITED
FORMAT';
RUN;

To see that this program is working as
expected, here is the output from PROC
PRINT:

Special Comma Delimited Format

OBS X Y A Z

 1 1 2 HELLO 3
 2 4 5 GOODBYE 6
 3 7 . HI THERE 8
 4 9 10 HI,THERE 11

When you use the DSD INFILE option, the
default delimiter is a comma. You may use the
DSD and DLM= options together to allow all the
features just discussed but with a delimiter
other than a comma.

Data Arranged in Columns

One of the most common forms of data entry is
to arrange the data values in specified columns.
This has several advantages over space or
comma delimited data. First, you can pack
more data values together without wasting
space. Second, you can read only those
columns of data that you want, and third, you
can read the data values in any order you
choose. Let's look at a SAS program that reads
data arranged in columns:

***COLUMN INPUT;
DATA COL1;

INPUT X 1-2
Y 3
A $ 4-10
Z 11;

DATALINES;
12HELLO 3

4 5GOODBYE6
;
PROC PRINT DATA=COL1;

TITLE 'COLUMN INPUT';
RUN;

The rules are very simple. You list each of the
variable names followed by the starting and
ending columns (or just the starting column if
there is only one column). You also place a
dollar sign after any variable name that will hold
character data. Notice the value of X in the two
lines of data in this example. It doesn't matter
whether this value is right adjusted (placed in
the right-most columns of the field) or not.
Good programming practice dictates that
numbers should be right adjusted but SAS will
read numbers correctly regardless.

Reading Only Selected Variables

As we mentioned earlier, once you have
arranged your data values in columns, you can
read only those variables that you need. So,
using the same data lines as above, here is a
program that only reads values for variables X
and Z:

***COLUMN INPUT (SELECTED VARIABLES);
DATA COL2;

INPUT X 1-2
Z 11;

DATALINES;
12HELLO 3

4 5GOODBYE6
;
PROC PRINT DATA=COL2;

TITLE 'COLUMN INPUT';
RUN;

It's just as easy as that. You can also read
these variables in any order you choose as
demonstrated in the program below:

***COLUMN INPUT (DIFFERENT ORDER);
DATA COL3;

INPUT Y 3
A $ 4-10
Z 11
X 1-2;

DATALINES;
12HELLO 3

4 5GOODBYE6
;
PROC PRINT DATA=COL3;

TITLE 'COLUMN INPUT';
RUN;

Using Pointers and INFORMATS to Read
Data

As an alternative to using column
specifications, you can use column pointers and
INFORMATS. This method is actually more
flexible than using column specifications since
you can use a SAS INFORMAT or a user-
defined INFORMAT to specify how a data value
is to be read. The example that follows uses
almost the same data arrangement as the
program that used column specifications except
for the addition of a date value. We added that
to demonstrate the advantage of this method.

***POINTERS AND INFORMATS;
DATA INFORM1;

INPUT @1 X 2.
@3 Y 1.
@4 A $7.
@11 Z 1.
@12 DATE MMDDYY10.;

FORMAT DATE DATE9.;
DATALINES;
12HELLO 310/21/1946

4 5GOODBYE611/12/1997
;
PROC PRINT DATA=INFORM1;

TITLE 'POINTERS AND INFORMATS';
RUN;

The @n symbols are columns pointers. For
example, @3 says to move to column 3. The
INFORMAT following the variable name tells
the program how many columns to read and
how to read the data value. The INFORMAT n.
indicates a numeric variable occupying n
columns. The $n. INFORMAT is used for
character variables and the MMDDYY10.

INFORMAT converts dates in the form
MM/DD/YYYY to a SAS date value (that's a
topic for another talk). We chose MMDDYY10.
instead of the more traditional MMDDYY8.
because the year 2000 is fast approaching and,
even with the YEARCUTOFF option, it is a
good idea to use 4-digit years.

Using INFORMATS with List-Directed Input

You may want to read list-directed or some
form of delimited data and still provide an
INFORMAT. For example, you may want to
read a character variable more than 8 bytes in
length or one of the data values might be a date
which needs an INFORMAT to be read
correctly. Here comes the colon modifer to the
rescue! By placing a colon (:) after the variable
name, you can then supply an INFORMAT to
be used. The program will search for a
delimiter and begin reading the first non-blank
data value according to the INFORMAT you
supply. Look at the following example:

***USING INFORMATS: LIST DIRECTED
DATA (COLON MODIFIER);

DATA COLON;
INPUT X : 2.

Y : 1.
A : $11.
Z : 1.
DATE : MMDDYY10.;

FORMAT DATE DATE9.;
DATALINES;
1 2 HELLO 3 10/21/1946
4 5 ARRIVEDERCI 6 11/12/1997
;
PROC PRINT DATA=COLON;

TITLE 'INFORMATS: COLON MODIFIER';
RUN;

Notice that variable A is now 11 bytes and the
variable DATE will be a true SAS date.

An Alternate Method for Supplying
INFORMATS

An alternative to the program above is preceed
the INPUT statement with an INFORMAT
statement, associating each of the variables
with an INFORMAT. The program below will

produce exactly the same data set as the one
above. Which method you choose is up to you.

***USING INFORMATS: LIST DIRECTED
DATA (INFORMAT STATEMENT);

DATA INFORM2;
INFORMAT X 2. Y Z 1. A $11.

DATE MMDDYY10.;
INPUT X Y A Z DATE;
FORMAT DATE DATE9.;

DATALINES;
1 2 HELLO 3 10/21/1946
4 5 ARRIVEDERCI 6 11/12/1997
;
PROC PRINT DATA=INFORM2;

TITLE 'INFORMAT STATEMENT';
RUN;

Space Delimited Data Values Containing
Blanks

What happens if you are using blanks as data
delimiters and you have a character value that
contains a blank, such as a first and last name?
By replacing the colon modifer with an
ampersand (&), the system will continue
reading a character value, even if it contains
single blanks. The program will know that a
data value is finished when it encounters two or
more blanks. Notice variable A in the program
below and the values of "HELLO THERE" and
"A BIENTOT" in the data lines. When you use
the ampersand modifier, be sure to remember
to follow the variable with two or more blanks.

***USING INFORMATS: LIST DIRECTED
DATA (AMPERSAND MODIFIER);

DATA AMPER;
INPUT X : 2.

Y : 1.
A & $11.
Z : 1.;

DATALINES;
1 2 HELLO THERE 3
4 5 A BIENTOT 6
;

PROC PRINT DATA=AMPER;
TITLE 'AMPERSAND MODIFIER';

RUN;

A Shortcut Way of Specifying Variable
Names and INFORMATS

First, look at the rather long and inelegant
program below:

***WITHOUT VARIABLE AND INFORMAT
LISTS;

DATA NOINLIST;
INPUT @1 Q1 1.

@2 Q2 1.
@3 Q3 1.
@4 Q4 1.
@5 Q5 1.
@6 A $1.
@7 B $1.
@8 C $1.;

DATALINES;
12345XYZ
;
PROC PRINT DATA=NOINLIST;

TITLE 'WITHOUT VARIABLE AND
INFORMAT LISTS';
RUN;

Even beginning SAS programmers know that
whenever a program gets tedious to write, there
is usually a better and shorter way to
accomplish the same thing. In this case, you
can use a variable list and an INFORMAT list to
shorten the program. Take a look at this
program:

***VARIABLE AND INFORMAT LISTS (1);
DATA INLIST1;

INPUT @1 (Q1-Q5 A B C)
(5*1. 3*$1.);

DATALINES;
12345XYZ
;
PROC PRINT DATA=INLIST1;

TITLE 'VARIABLE LISTS (1)';
RUN;

You can place a list of variables, including the
basen-basem notation (Q1-Q5 for example), in
parentheses followed by a list of INFORMATS,
also placed in parentheses. The notation 5*1.
or 3*$1. means to repeat the INFORMAT 5 or 3
times respectively. Each variable in the
variable list is read with the corresponding
INFORMAT in the INFORMAT list. If the
INFORMAT list is shorter than the variable list,
the program will "recycle" the INFORMAT list,
that is, go back to the first INFORMAT in the list
and go through the list as many times as

necessary. You can take advantage of this
feature to simplify the program like this:

***VARIABLE AND INFORMAT LISTS (2);
DATA INLIST2;

INPUT @1 (Q1-Q5)(1.)
@6 (A B C)($1.);

DATALINES;
12345XYZ
;
PROC PRINT DATA=INLIST2;

TITLE 'VARIABLE LISTS (2)';
RUN;

By grouping variables together that use the
same INFORMAT, you can list the INFORMAT
just once and it will be used for each of the
variables in the list.

Skipping Around Using Relative Column
Pointers

Suppose you have several X,Y pairs (X1,Y1;
X2,Y2; and X3,Y3 for example). You might
think the only way to read these data would be
an INPUT statement that looked like this:

INPUT X1 1 Y1 2 X2 3 Y2 4 X3 5 Y3 6;

OR

INPUT (X1 Y1 X2 Y2 X3 Y3)(1.);

Well, there is an easier way. By using a relative
columns pointer (a + sign), you can move the
column pointer right or left, relative to its last
position. You can use this to read each of the
X-values first, skipping over the columns
occupied by the Y-values and then go back to
column 2 (where the Y-values start) and read
all the Y-values, skipping over the columns
occupied by the X's. Here is the program:

***RELATIVE COLUMN POINTERS;
DATA RELATIVE;

INPUT @1 (X1-X3)(1. + 1)
@2 (Y1-Y3)(1. + 1);

DATALINES;
123456
;
PROC PRINT DATA=RELATIVE;

TITLE 'RELATIVE COLUMN POINTERS';

RUN;

The INPUT statement above says to start
reading in column 1 (@1) and then read a
single digit value (1.) and then skip a column
(+1). Do this for all the X-values. When you
are finished, go back to column 2 (@2) and
read the Y-values in the same way. If you had
more than three X's and Y's, this technique
could save you lots of typing.

Using a Text Pointer

There is an obscure but really useful way to
read data values when you are unsure of where
to find the data. This may seem impossible, but
using a text pointer can sometimes solve this
problem. A text pointer is of the form:

@"text_string" variable_name

The column pointer will be placed to the right of
the text string (if found) and the next value on
that line will be read into variable_name. An
example should make this clear. Look at the
following program:

DATA TEST;
INPUT @ "XYZ" VALUE;

DATALINES;
THIS LINE HAS XYZ 76 NUMBERS
NONE ON THIS LINE
XYZ 20

The first line of data contains the string "XYZ,"
so the variable called VALUE will be 76. In the
second line, there is no "XYZ" so no data
values are read. Finally, in line three, VALUE
will be 20. This method of input is especially
useful when you are trying to extract numbers
from SAS output (or output from some other
program) where you can choose some key
word that you know comes right before the
value you want. Before ODS became available
in version 8, using a text pointer with PROC
PRINTTO was especially useful.

Reading Data from an External File

So far, all our examples used data lines "in-
stream" or part of the program. Most SAS
programmers, especially when large amounts

of data are involved, keep the data separately
from the program. It is quite simple to have the
program read data from an external raw data
file instead of "in-stream" data. First, you use
an INFILE statement to point to the data file
and, second, you remove the DATALINES
statement. It's as easy as that.

There are two ways that an INFILE statement
can point to a file. The first is to name the file
directly in the INFILE statement as follows:

***READING FROM AN EXTERNAL FILE
(METHOD 1);

DATA EXTERN1;
INFILE 'C:\SASTALKS\DATA1';
INPUT X Y A $ Z;

RUN;

PROC PRINT DATA=EXTERN1;
TITLE 'DATA IN AN EXTERNAL FILE';

RUN;

Notice that the file name is place in quotes
(single or double). If the file is in the same
subdirectory as the program, you can omit the
full path description and just supply the file
name. We prefer that you include the entire
path and file name as above so that the
program is transportable and can be run from
another subdirectory without changes. A
second method of supplying the file name is to
first define a fileref (file reference) with a
FILENAME statement. This fileref is then
named on the INFILE statement. The very
important difference between this method and
the previous method is that the fileref is not
placed in quotes on the INFILE statement.
Here is an example of this method of specifying
an external file:

***READING FROM AN EXTERNAL FILE
(METHOD 2);

DATA EXTERN2;
FILENAME PAT 'C:\SASTALKS\DATA1';
INFILE PAT;
INPUT X Y A $ Z;

RUN;

PROC PRINT DATA=EXTERN2;
TITLE 'DATA IN AN EXTERNAL FILE';

RUN;

INFILE Options

Whether you are reading data following a
DATALINES statement or from an external file,
you may need to exercise some control on how
the data values are read. There are a number
of INFILE options that are useful. We will only
discuss a few here. If you read complicated
data structures or read data from multiple files,
you will want to investigate all the possible
INFILE options available to you.

The first option we will show you concerns data
lines, either "in-stream" or from external files,
that may be missing data values at the end of a
line of data. In the example below, line 2 only
contains 3 values (for X, Y, and A). When the
program attempts to read this list-directed data,
it goes to the third line to find a value for Z.
Then, when the data step iterates again, the
pointer tries to move to the next record but
meets an end-of-file instead and the data step
stops. To see this clearly, look at the output
from PROC PRINT shown following the
program.

***INFILE OPTIONS;
DATA INOPT1;

***PROGRAM WITHOUT MISSOVER;
INPUT X Y A $ Z;

DATALINES;
1 2 HELLO 3
4 5 GOODBYE
7 8 LAST 9
;
PROC PRINT DATA=INOPT1;

TITLE 'INFILE OPTIONS';
RUN;

Infile Options

OBS X Y A Z

 1 1 2 HELLO 3
 2 4 5 GOODBYE 7

To solve the problem of missing data at the end
of a line, when using list-directed data entry,
use an INFILE option called MISSOVER. The
program below uses the reserved fileref
DATALINES on the INFILE statement. If you
are reading data from an external file, the
MISSOVER option is used in the same way.

This option instructs the program to set any
variables to a missing value if the end of a line
(or record) is reached and values have not
been read for all the variables in the INPUT list.
Look at the program below and the resulting
output.

***INFILE OPTIONS: MISSOVER;
DATA INOPT2;

***PROGRAM WITH MISSOVER;
INFILE DATALINES MISSOVER;
INPUT X Y A $ Z;

DATALINES;
1 2 HELLO 3
4 5 GOODBYE
7 8 LAST 9
;
PROC PRINT DATA=INOPT2;

TITLE 'INFILE OPTIONS';
RUN;

Infile Options

OBS X Y A Z

 1 1 2 HELLO 3
 2 4 5 GOODBYE .
 3 7 8 LAST 9

With column oriented data or when you use
pointers and INFORMATS, the same problem
can occur. The PAD option is the best choice
for resolving this problem. This option says to
PAD out short data lines with blanks to the
length of the logical record (set by default or by
the LRECL option).

***INFILE OPTIONS: PAD;
DATA INFORM;

INFILE DATALINES PAD;
INPUT X 1-2

Y 3
A $ 4-10
Z 11;

DATALINES;
12HELLO 3

4 5GOODBYE
78LAST 9

;
PROC PRINT DATA=INFORM;

TITLE 'USING THE PAD OPTION';
RUN;

Reading Data "Blindly"

Suppose you have a data file and are not given
information on the data layout. Are you dead in
the water, finished, kaput? Not at all. Use the
strange looking program below to first take a
look at the file. Notice that there are no
variables listed on the INPUT statement. This
form of the INPUT statement will read an entire
logical record (or line of data) but will not assign
any values to variables. This does not seem
very useful except for the fact that you can use
a PUT statement with the keyword _INFILE_ to
write out the contents of the data record to the
log (the default output location) or to your
output window (by using a FILE PRINT
statement). Look at the program below and the
resulting log file. (Note: this form of INPUT
statement is obviously useful when you are
reading data from and external file. The
instream data in this example is for illustrative
purposes only.)

***NO VARIABLES LISTED;
DATA READIT;

INFILE DATALINES;
INPUT;
PUT _INFILE_;

DATALINES;
12345ABCDEXYZ
1122334455667
12HELLO 310/21/1946

4 5GOODBYE611/12/1997
;

Here is a listing of the SAS log after running the
program above:

 44 DATA READIT;
45 INFILE DATALINES;
46 INPUT;
47 PUT _INFILE_;
48 DATALINES;

12345ABCDEXYZ

1122334455667

 12HELLO 310/21/1946

4 5GOODBYE611/12/1997

NOTE: THE DATA SET WORK.READIT HAS 4
OBSERVATIONS AND 0 VARIABLES.
NOTE: THE DATA STATEMENT USED 0.17 SECONDS.

Using More than One INPUT Statement: The
Single Trailing @

There are times when you want to be able to
read one or more values from a data line and
then, depending on the value, decide how to
read the remaining values. In the example that
follows, there are two data layouts in a single
file. Type 1 records have age in columns 1 and
2; type 2 records have age in columns 3 and 4.
The record type is stored in column 6. You want
to be able to read the record type first and then
decide where to read the age value. If you use
two INPUT statements like this:

INPUT @6 TYPE $1.;
IF TYPE = '1' THEN INPUT AGE 1-2;
ELSE IF TYPE = '2' THEN INPUT AGE 3-
4;

it will not work. After the first INPUT statement
is executed, the pointer moves automatically to
the next line. Age values are then read from
the wrong line. You want to tell the program to
"hold the line" after reading the value for TYPE.
You do this with a single trailing @ as shown
next:

***WHERE IT'S @;
DATA TRAILING;

INPUT @6 TYPE $1. @;
IF TYPE = '1' THEN INPUT AGE 1-2;
ELSE IF TYPE = '2' THEN

INPUT AGE 3-4;
DROP TYPE;

DATALINES;
23 1

44 2
;
PROC PRINT DATA=TRAILING;

TITLE 'SINGLE TRAILING @';
RUN;

After a value is read for TYPE, the trailing
single @ tells the program not to go to the next
data line for the next INPUT statement in the
data step. When the data step finishes, the
pointer will then move to the next line of data for
another iteration of the data step.

A very useful application of the single trailing @
is to decide whether to read a line of data or

not. For example, suppose you only want to
read data on females from a raw data file. One
way to do this is to read a line of data in the
usual way and to delete all observations where
the value of GENDER is not equal to 'F'. A
much more efficient way is to first read the
value of GENDER and only read the remaining
values if GENDER is female. Here is how it's
done.

***ANOTHER @ EXAMPLE;
DATA TRAIL2;

INPUT @1 GENDER $1. @;
IF GENDER NE 'F' THEN DELETE;

INPUT @3 AGE 2.
@5 HEIGHT 2.;

DATALINES;
M 2368
F 4462
;
PROC PRINT DATA=TRAIL2;

TITLE 'ANOTHER @ EXAMPLE';
RUN;

If there are a lot of variables in each
observation this method can save considerable
computer time. Remember that when the
DELETE statement is executed, control returns
to the top of the DATA step.

Creating Several Observations from One
Line of Data: The Double Trailing @

What if you want to create several observations
from a single line of data? In the example
below, several X,Y pairs are placed on a single
line to save space. A single trailing @ would
not help here. After a value was read for X and
Y, the data step would iterate again and the
pointer would move to a new line. Try it. You
will have only two observations, the first with
X=1, Y=2 and the second with X=7, Y=8. To
hold the line for multiple iterations of the data
step, use the double trailing @ as shown in the
example below:

***WHERE IT'S REALLY @@;
DATA DOUBLE;

INPUT X Y @@;
DATALINES;
1 2 3 4 5 6
7 8

;
PROC PRINT DATA=DOUBLE;

TITLE 'DOUBLE TRAILING @';
RUN;

Reading Multiple Lines of Data for a Single
Observation

What do you do when you have more than one
line of data for each observation you want to
create? You use a line pointer #. In the
example below, there are two lines of data for
each observation. The line pointer, #, is used
to tell the program that ID and DOB are on the
first line and HEIGHT and WEIGHT are on the
second line.

***READING MULTIPLE LINES FOR ONE
OBSERVATION;
DATA MULT1;

INPUT #1 @1 ID $11.
@13 DOB MMDDYY8.

#2 @5 HEIGHT 2.
@8 WEIGHT 3.;

FORMAT DOB MMDDYY10.;
DATALINES;
123-45-6789 10211946

68 158
253-65-5455 11111960

62 102
;
PROC PRINT DATA=MULT1;

TITLE 'READING MULTIPLE LINES';
RUN;

If you only want to read the first two lines of
data but you have more than two lines of data
for each subject, make sure you include a #n at
the end of your INPUT statement, where n is
the number of data lines for each subject (it
must be the same for each subject). The
program below demonstrates this with 4 lines of
data for each subject with values being read
from only the first 2.

***READING MULTIPLE LINES FOR ONE
OBSERVATION;
DATA MULT2;

INPUT #1 @1 ID $11.
@13 DOB MMDDYY8.

#2 @5 HEIGHT 2.
@8 WEIGHT 3.

#4;
FORMAT DOB MMDDYY10.;

DATALINES;
123-45-6789 10211946

68 158
9879876987698769876987
0987098709870987098709
253-65-5455 11111960

62 102
9876987698769876987698
0987098709870987098709
;
PROC PRINT DATA=MULT2;

TITLE 'READING MULTIPLE LINES';
RUN;

Suppressing Error Messages in the SAS
LOG

For our last two examples, we will show you
how to eliminate error messages from being
written to the SAS log when bad data values,
such as character data in a numeric field, are
encountered. In the example that follows,
values of 'NA' and '?' indicate that a value was
missing. A normal INPUT statement generates
NOTES and listings of the offending data lines
in the SAS log. The following program
generates such error messages:

***SUPRESSING ERROR MESSAGES;
DATA ERROR;

INPUT X Y Z;
DATALINES;
1 NA 3
4 5 ?
;
PROC PRINT DATA=ERROR;

TITLE 'SUPRESSING ERROR MESSAGES';
RUN;

Here is a listing of the SAS log from the
program above:

56 ***Suppressing Error Messages;
57 DATA ERROR;
58 INPUT X Y Z;
59 DATALINES;

NOTE: Invalid data for Y in line 60 3-4.
RULE:----+----1----+----2----+----3----+----4--
60 1 NA 3
X=1 Y=. Z=3 _ERROR_=1 _N_=1
NOTE: Invalid data for Z in line 61 5-5.
61 4 5 ?
X=4 Y=5 Z=. _ERROR_=1 _N_=2

NOTE: The data set WORK.ERROR has 2 observations
and 3 variables.
NOTE: The DATA statement used 0.22 seconds.

If you know the there are invalid data values,
such as NA (not applicable) in a numeric field
and you want to avoid all the NOTES in the
SAS log, use a ? modifier in your INPUT
statement. A single ? following the variable
name tells the program to omit the NOTES from
the log. Look at the program below and the
resulting log.

***SUPRESSING ERROR MESSAGES;
DATA NOERROR1;

INPUT X ? Y ? Z ?;
DATALINES;
1 NA 3
4 5 ?
;
PROC PRINT DATA=NOERROR1;

TITLE 'SUPRESSING ERROR MESSAGES';
RUN;

67 ***Suppressing Error Messages;
68 DATA NOERROR1;
69 INPUT X ? Y ? Z ?;
70 DATALINES;

RULE:----+----1----+----2----+----3----+----4---
71 1 NA 3
X=1 Y=. Z=3 _ERROR_=1 _N_=1
72 4 5 ?
X=4 Y=5 Z=. _ERROR_=1 _N_=2
NOTE: The data set WORK.NOERROR1 has 2
observations and 3 variables.
NOTE: The DATA statement used 0.16 seconds.

Finally, to completely eliminate both the NOTES
and the data listing, use a double ?? following
the variable name like this:

***SUPRESSING ERROR MESSAGES;
DATA NOERROR2;

INPUT X ?? Y ?? Z ??;
DATALINES;
1 NA 3
4 5 ?
;
PROC PRINT DATA=NOERROR2;

TITLE 'SUPRESSING ERROR MESSAGES';
RUN;

Notice that the SAS log (following) indicates no

errors. Use this with caution! Make sure you
understand your data before overriding error
messages.

78 ***Suppressing Error Messages;
79 DATA NOERROR2;
80 INPUT X ?? Y ?? Z ??;
81 DATALINES;

NOTE: The data set WORK.NOERROR2 has 2
observations and 3 variables.
NOTE: The DATA statement used 0.11 seconds.

One final example shows how a double ?? can
allow you to read a date field with invalid dates
such as 99/99/99, or MISSING, in place of a
valid date.

***SUPRESSING ERROR MESSAGES;
DATA NOERROR3;

INPUT @1 DATE ?? MMDDYY8. @10 X;
FORMAT DATE MMDDYY8.;

DATALINES;
10/21/46 3
MISSING 4
99/99/99 5
;
PROC PRINT DATA=NOERROR3;

TITLE 'SUPRESSING ERROR MESSAGES';
RUN;

Conclusion

We have demonstrated some of the power and
versatility of the seemingly simple INPUT
statement. Remember that the INPUT
statement is one of the strengths of the SAS
language that allows you to read such diverse
types of data easily.

SAS is a registered trademark or trademark of SAS
Institute Inc. in the USA and other countries, ® indicated
USA registration.

Ronald P. Cody, Ed.D.
Robert Wood Johnson Medical School
Department of Environmental and Community Medicine
675 Hoes Lane
Piscataway, NJ 08822
(732)235-4490

cody@umdnj.edu

Manipulating Data:
 Elements of the DATA Step Language

Paul M. Dorfman
 CitiCorp AT&T Universal Card

Jacksonville, FL

ABSTRACT

In the SAS� DATA step, you can manipulate data by instructing
SAS what to do. However, SAS understands only instructions given
in its own tongue. The DATA step language (SAS DSL) is simple
and powerful, its syntax is crisp and highly readable, and it is easy
to learn. In this presentation, we will try to introduce the basics of
speaking SAS. Just like in any language, a valid SAS phrase
contains meaningful expressions that follow an intelligible
sequence. These two principal parts will be considered one at a
time:

1. Expressions - basic blocks from which statements are built:
Constants - Variables- Arrays- Assignment and Sum-
Operators- Functions.

2. Control Flow - the order of execution of instructions:
Conditional execution-Branching-Repetition. The presentation
should provide an idea about the overall structure and main
building blocks of the language used in the SAS DATA step.
Some aspects (functions, specific statements) will be touched
just briefly as part of the big picture and covered in detail in
other Intro to SAS presentations.

I. INTRODUCTION

In a software package as diverse as the SAS System, it would
seem to be difficult to pinpoint the most important part. Yet in
reality, it is surprisingly easy: The single most powerful element of
the entire system is the SAS DATA step. The reason is simple:
While SAS procedures and other pre-programmed SAS modules
can be applied to solve a variety of particular problems incredibly
well, none of them can do it all. Because the language of the SAS
DATA step (from now on referred in this paper as SAS DSL: SAS
DATA step Language) is an entire language in its own right, you
could use it, in principle, to implement just about any
programming algorithm of your own (whether it actually makes
sense in a particular situation is a different story!). Thus in the
Base SAS, the DATA step is the place where programming in its
strict sense mainly occurs.

Becoming a professional SAS DSL speaker (or writer if you will)
comprises two complementary components that should be
embraced simultaneously: Applying it as quickly and as extensively
as possible to solve a variety of practical tasks and learning SAS
DSL grammar and usage. Restricting the learning process to the
former will most probably result in a large amount of distasteful
and inefficient code, while the reverse will make one a chef who
knows all the recipes but has never actually cooked. Luckily, which
part to start with is not a chicken-or-egg question, for it is
impossible to speak a foreign language without learning a word.
Likewise, you cannot dive head first into the SAS DSL
programming without having digested at least a marginal amount
of its vocabulary and grammar beforehand.

This is what we are going to concentrate on in this tutorial:
Learning the basics of SAS DSL grammar and usage.

II. FACTS

1. WHAT KIND OF LANGUAGE IS SAS DSL?

Historically, SAS DSL has its roots buried in PL/I and resembles its
syntax very closely. It seems all the more logical that initially, the
SAS System was mainly written in PL/I as its underlying software.
Whether by chance or on purpose, this choice has proven to be
extremely successful. In many (not so humble) opinions, PL/I is
the best and most powerful third generation language (3GL) ever
created, and of all languages, its syntax, and therefore that of SAS
DSL, is most wonderfully balanced. It is crisp and clear. It is
English-like without the viscous wordiness of COBOL and
technically concise without being cryptic like C.

From the standpoint of the language generation, it is hard to
classify SAS DSL in any clear-cut way. It definitely possesses
practically all the features of a 3GL, its level being sufficiently low
for implementing just about any common algorithm - although not
as low as that of PL/I or C. On the other hand, it is laden with 4GL
features such as automatic control flow, list processing, and
Output Delivery System.

Besides, SAS DSL comes equipped with an incredible number of
ready-to-go programs on call, such as functions, call routines,
formats, and informats. They make it possible to achieve, in a few
keystrokes and with the utmost confidence in the final correct
result, many programming goals that in other 3GLs have to be
attained through tedious coding, whose actual quality, being
dependent on the local programming expertise, very often goes
very wrong. Thus, the variety of powerful and versatile programs
on call is, in a sense, a 4GL feature as well.

2. WHAT IS THE SAS DATA STEP?

From the standpoint of a typical multi-step SAS program, the
DATA step, along with SAS procedures, is one of separately
compiled, top-down executed programs. From the standpoint of
general programming, the DATA step is a complete, stand-alone
computer program. As such, it has its memory managed
separately from any other step, and, all by itself, the DATA step
constitutes a complete programming environment equivalent to
that of a whole language. For example, any COBOL program can
be replicated in a single DATA step (only it is likely to have 1/5 the
lines of code, take 1/5 the time to write, and work right the first
time).

3. COMPILATION AND EXECUTION

Just as any other general computer program, the DATA step has
two distinctive phases:

1. Compilation.
2. Run.

The compilation phase is necessary to do the following:

1. Check the program syntax and translate SAS DSL instructions
into machine language (the one the computer understands).

2. Acquire enough computer memory necessary to run the step
and organize it appropriately.

3. Perform actions and execute the instructions that should be
carried out before the step has begun to run, for example,
initialize selected variables and/or arrays.

The only difference between this process and a similar process
used in other languages is that the object of compilation
(executable file or load module) cannot be saved and
subsequently run without the source code and SAS being active on
the machine. This means (apart from the special way the SAS
software is made available for use) that each time a DATA step is
submitted, it has to be recompiled, and that once the source code
is lost, the program cannot be run. However, neither could be
considered a disadvantage. SAS DATA step compiler is extremely
fast, and the compilation time is usually infinitesimally short, even
for large DSL programs. As to the ability to run a program without
the source code, it is considered insane even in the shops using
languages that do provide for it, because it makes it impossible to
change, update, correct – in other words, maintain the program.

4. THE SHELL

Any DATA step begins with the keyword DATA and ends when it
has encountered the keyword RUN. It will also stop if it sees
another keyword DATA or keyword PROC, or if it is the end of the
entire batch SAS program, because in this case the SAS Supervisor
(the internal program SAS uses to coordinate all steps)
understands that either the next step is about to begin, or the
current step is final.

There are plenty of good reasons to always finish a step up with
the RUN keyword. For instance, if you are running SAS
interactively, and the last step in the program is not closed with
RUN, you will be waiting forever before seeing a result, even
though there is a message displayed telling that the step is
running. There also exist situations when establishing an explicit
step boundary with RUN is required for other things to happen
after the step has executed. Here it is assumed that it is always
the case, and each DATA step has RUN as its last statement. In
other words, we will view the space between the DATA and RUN
keywords as a shell, within which a DSL program is written.

Hence, in principle, any conceivable DATA step program looks like
this:

Data < output SAS data set list > ;
 …
 < SAS DSL program instructions >
 …
Run ;

In the simplest case, when no output SAS data sets are to be
created, it is indicated by the keyword _NULL_. The simplest DATA
step program containing no instructions at all is thus:

Data _Null_ ;
Run ;

III. THE COMPONENTS

1. AB OVO

The usefulness of the program above is somewhat limited by the
fact that at run time, it does nothing, for there are no instructions
to execute. However, for our current purposes, it is not completely
useless, because there are a number of things one can ascertain
from it.

First of all, there are two distinct language statements starting
with DATA and RUN.

Secondly, each statement is separated from the subsequent
statements with a semicolon. And, in fact, one of the fundamental
SAS syntax rules mandates, that, yes,

� Each DSL statement must end with a semicolon.

Thirdly, there are certain words in DSL that mean something
special to the DATA step compiler; that is, unlike other words,
they tell the compiler to do concrete things. Such words are called
keywords. SAS relies on their presence, sequence, and place in the
program to figure out what it is that you are trying to tell the
software to do.

Finally, if we change the entire program to the upper case, or
reverse the case of each letter, it will still run the same way. To
SAS, the words case, Case, and CASE all mean the same. In other
words:

� You can write a DATA step program in any case you want -
SAS could not care less.

Now let us write a more involved (and useful) program that will let
us notice, examine, and learn more interesting things. Suppose
you want to submit a SAS program at any time during the working
hours, and you want it to tell you, depending on the current time,
what action to take and how much money you have earned so far,
given an hourly rate. Here it is:

Data _Null_ ;
 Retain Hour_Rate 100.00
 Start_Time '09:00't ; Length Message $ 15 ;

 Hours_Worked = (Time() - Start_Time) / 3600 ;
 Money_Earned = Round (Hours_Worked*Hour_Rate, 0.01) ;

 If Hours_Worked => 8 Then Message = 'Go Home!' ;
 Else If Hours_Worked => 4 Then Message = 'Lunch!' ;
 Else Message = 'Keep Coding!' ;

 Put Message Money_Earned = Dollar7.2 ;
 Run ;

This, still a very basic program, already incorporates almost all
components shared with its more complex siblings.

2. FREE-FORM

First, let us notice two quite convenient features of SAS DSL:

� There is no particular column in the code where a statement
must begin.

� A statement can be split between two (or more) lines of
code.

� More than one statement can be located on a single line, as a
semicolon delimits the statements from each other.

So, even though it is a good programming practice to have one
statement (or several short statements with identical meaning) per
line, this discretion belongs to the programmer, not the compiler.
To the latter, a statement is a group of symbols between two
semicolons; the rest is up to the programmer. All this can be
summed up as follows:

� SAS DSL is a free-form language.

Being free form is an extremely important and convenient feature
of the language. It lets you decide what style of coding – spacing,
indentation, blocking – you prefer, and it does not force you to
start certain statements in certain columns. Just ask any SAS or
PL/I programmer who has also programmed in COBOL.

3. TOKENS

Looking at the above program, a naked human eye will
immediately distinguish a variety of different things seeming to
possess an intrinsic meaning. For example, in the group

Hours_Worked*Hour_Rate,

Hours_Worked, the asterisk, and Hour_Rate all appear to mean
something specific, although there are no blanks between them to
tell them apart. In part, the SAS compiler thinks the same way.
When it looks at the program, it separates the asterisk, based on
its special meaning, from the rest of the words, and interprets
them based on the syntax rules and context.

Such smallest program unit, which SAS compiler perceives as
having an intrinsic meaning, is called a token. There are only three
types of tokens in SAS DSL:
� Words
� Symbols
� Constants

Words differ in nature, depending on whether they are keywords
or names. Names and symbols combine in expressions. Keywords
and expressions make up statements. Let us consider the SAS DSL
elements one at a time.

4. WORDS

As noted above, all words in a DATA step program fall into two
distinct categories:

� Keywords
� Names

5. KEYWORDS

Keywords are words that have a special predefined meaning to the
SAS compiler – and hence in the SAS syntax. Most often a
keyword is used to begin a SAS statement, but they also occur at
particular locations inside statements. In the sample program
above, the keywords are DATA, RETAIN, LENGTH, ELSE, PUT,
RUN (at the beginning of statements), IF (at the beginning and
inside statements), and _NULL_ (inside the DATA statement).
There are dozens of other keywords in SAS DSL – listing all of
them here would mean retyping a good chunk of the SAS
Language reference, and it is not the goal here. However, we will
meet more keywords while discussing other language elements
and sequence control.

6. NAMES

A name in a SAS DATA step program is a word the programmer
comes up with to identify an object intended to be utilized or
manipulated by the program. Looking a bit forward, such objects,
for instance, may include variables, SAS data sets, statement
labels, and arrays.

This definition does not imply, however, that any collection of
symbols of any length can be used for a name: The name must at
least be a valid SAS name, plus other limitations may apply,
depending on the object type.

What is a valid SAS name? It is an identifier that:

1. Is no longer than 32 characters.
2. Begins with a letter or underscore.
3. For other characters, has letters (A-Z, any case), digits (0-9),

or underscores.

For example, the names used in the sample program and shown
below on the left are valid; a slight alteration in the direction of
not complying with the rules above (the column on the right
below) makes them invalid:

Valid Names Invalid Names
------------------ ------------------
Hour_Rate Hour Rate
Start_Time Start-Time

Message 1Message
Hours_Worked #HoursWorked
Money_Earned Money$Earned

Note that the case of the identifiers is irrelevant: They can be all in
upper case, lower case, title case, sentence case, or mixed.

As mentioned, there are objects whose naming conventions are
even more restrictive than a valid SAS name. Such is the case with
formats and informats allowing only 6 to 7 characters in their
names. File references (filerefs), i.e. names used to point to
external files, mainly have to conform to the naming conventions
of the operating system used. Thus, under OS/390 (or z/900, for
that matter), they are limited to 8 characters, allowing, on the
other hand, the dollar and pound signs in the names of filerefs.

At the first glance, the rules above seem to impose a lot of
restrictions on SAS names. However, it is a wrong impression.
They are no more restrictive than names in other languages, yet
enjoy a tremendous privilege: SAS DSL has virtually no reserved
words. That is, the SAS compiler is smart enough to understand
the phrase like

IF THEN = 10 THEN IF = THEN

unambiguously from the context, by identifying the first IF and
second THEN as a keyword, and giving the first and third THEN
the meaning of a variable. Note that even though it is not
recommended to code this way, the feature completely rids the
SAS programmer of the pesky burden imposed by hundreds of
reserved words in some other languages (notably COBOL), where
using a reserved word for a user-defined name means a failure to
compile. Once again, SAS shifts the responsibility of maintaining
the correct syntax from the programmer to the compiler. Let us
summarize it as another SAS DSL advantage:

� SAS DSL has virtually NO reserved words to remember
and/or to avoid.

6.1. SPECIAL NAMES

The above notion is all the more amazing in the light of the fact
that there are also dozens of special names in DSL that SAS uses
for its internal purposes. Most of them begin and end with an
underscore, but only few of them are genuinely reserved, that is,
a programmer cannot use them arbitrarily as user-defined names.
However, even in these cases, there is usually a highly logical
reason for having it this way. For example, such reserved words
as _ALL_ (points to all variables currently in memory), _ NUMERIC
_ (the same for all numeric variables) cannot be used as a variable
name - but it is illogical to use a name for a single variable and a
collection of variables at the same time, hence such usage is
banned. On the other hand, such reserved names as _N_,
IORC, _I_, and numerous others can be actually used by a
programmer for uses other than intended (sometimes, it makes
sense) with no harmful consequences whatsoever.

7. EXPRESSIONS

An alert reader has no doubt noticed that symbols and constants
have been left out of discussion so far, even though the logic
would certainly dictate it. This is because it appears even more
logical to discuss them while considering SAS DSL expressions –
the largest meaningful blocks of which SAS statements are
composed.

A natural language sentence consists of one or more expressions.
A natural expression is, loosely speaking, a group of words and
punctuation symbols, collectively bearing a concrete meaning. The
same is basically true about a SAS DSL statement. Defined in a
more formal manner, an expression is a group of words and
symbols resolving to a concrete value.

Let us identify a couple of expressions in the sample code above:

(Time() - Start_Time) / 3600
Round (Hours_Worked*Hour_Rate, 0.01)

Actually, each of these expressions are composite expressions,
because they are in turn composed of expressions conjugated by
SAS operators - in the case above, arithmetic operators (-, /, and
*). So, the question is, what kind of tokens can a simple
expression contain? A simple expression can only incorporate:

� Constants
� Variables
� Array references
� Function calls

Any expression, by its definition, resolves to a value. But in SAS,
all values are of two data types only: Numeric and character.
Accordingly, there are only two types of SAS expressions:

� Numeric, i.e. resolving to a number.
� Character, i.e. resolving to a character string.

For instance, both expressions given as an example above are
numeric. However, in the expression

‘Character ‘ || ‘expression’ ,

the concatenation operator || combines two character constants
producing a (longer) character value; hence, this is a character
expression. Now let us look at the components making up
expressions separately.

7.1. CONSTANTS

A constant is a value in a DATA step program that the program
cannot change. Once again, as it is the case with all SAS values,
there are two major types of constants: Numeric and character. In
the sample program above, all of the

100.00, ’09:00’T, 15, 3600, 0.01

are numeric constants, while all of the

‘Go Home!’
‘Lunch!’
‘Keep Coding!’

represent character constants. In turn, each constant type has
several subcategories. First, let us consider numeric constants.

7.1.1 Numeric Constants

When you code something like 0.035, or ‘05AUG2001’D, or even
1.34E-15, its meaning is obvious to you, but the compiler first
must convert each of these things into a form suitable for SAS
internal consumption. SAS interprets them using special
subroutines called informats. At compilation time, the informats
take numeric constants coded in the program and convert them
into 8-byte floating point numbers. Numeric constants can be one
of the following:

1. Decimal/scientific notation. This is a conventional way you
would write a number using a decimal point and a leading
sign if necessary, with no commas separating orders of
magnitude. Or, if a number is quite large, you may choose to
write 1230000000, say, as 1.23E+10 (plus sign is not
mandatory). E.g., 1.234, 2.34, -3.1416, 0.001956, 1.6E-19,
4.8E+13 are all valid decimal/scientific notation constants.
SAS interprets their meaning using a standard numeric
informat W.D.

2. SAS date. Date constants are written as ‘05aug2001’D or
‘17jan97’D. SAS uses DATE9. and DATE7. informats to
convert date constants into the number of days since the

beginning of 1960, and then stores the number internally,
just as it would store any numeric value.

3. SAS time. When you write ’23:10:44.123’T, you are telling
SAS that it is 23 hours, 10 minutes, 44 seconds, and 123
milliseconds since the beginning of the day. However, SAS
must understand it only as the number of seconds since the
beginning of the day – and hence performs the necessary
transformation using its TIME. informat before the constant
can be used in the running program. The number of seconds
thus obtained is stored internally as a numeric variable.

4. SAS datetime. This is written as, for example, ‘31aug2000
18:27’DT, and its meaning is obvious for a human. SAS
makes it obvious to the computer by turning it into the
number of seconds from the beginning of 1960 using the
informat DATETIME15. Then it stores the number internally.

5. Hexadecimal. If you have a constant number in the
hexadecimal notation and need to use it in a program, SAS
will use its HEX. informat to interpret it for you (so you do
not have to convert it to a decimal or binary base yourself)
and store it appropriately. Just append an X to the end of the
number; and if it starts with a letter (letters from A through F
used as digits from ten to fifteen in hex), precede it with a 0
– otherwise the compiler will be confused thinking that it is a
valid SAS name. Thus, 5A7F8x is a valid hex constant, but
the hex number DEC45x is not. To make it valid, write it as
0DEC45x.

SAS DSL approaches the issue of interpreting constants quite
efficiently, by converting them to their proper internal
representations at compile time. It makes it unnecessary to do the
transformations at run time – possibly many times if, as it often
happens, a statement containing a constant is executed
repeatedly.

7.1.2. Character Constants

There are only two kinds of character constants:

1. Character literal. It is the most usual character constant
written as a character string enclosed in single or double
quotes. ‘I am hungry…’, ‘12345’, ‘SAS Version 9’ are
examples of character literals, called literal perhaps because
they are literally the values they represent – not just values
whose actual meaning to the computer must be further
interpreted.

2. Character hexadecimal. Each character in a character string
has a predefined number (rank) from 0 to 255 in a so-called
collating sequence. Any number up to 255 can be written as
a 2-position hexadecimal number. The lowest character is
thus ranked 0, and it is 00 in hex. The highest character is
ranked 255, which is FF in hex (16*15+15). So, each
character can be written as a 2-position hex number. A
character hex constant thus always has an even number of
hex digits enclosed in quotes and is marked with the letter X
at the end. For example, ‘000000’x, ‘FFFFFFFF’x, ‘40’x are
valid character hex constants. Most often, such constants are
used to indicate unprintable characters that, by their nature,
cannot be typed in the program explicitly.

7.2. VARIABLES

To manipulate data, the programmer needs a data object whose
memory contents can be changed, altered, replaced, copied, or
erased by a program. This all-important purpose is served by SAS
variables.

What is a variable? The loose definition just given is actually not
all that bad. But let us take a little bit more mechanical approach
and examine the first three statements after the DATA statement
in the sample program:

Retain Hour_Rate 100.00 Start_Time '09:00't ;
Length Message $ 15 ;
Hours_Worked = (Time() - Start_Time) / 3600 ;

7.2.1. Variable Mechanics

The SAS compiler parses the program in a strictly top-down
manner. From the context of the first statement, it understands
that RETAIN is a keyword, and 100.00 and ’09:00’T are constants.
Hour_Rate is the first valid SAS name in a right place to be
interpreted as a variable. It is the first variable in the entire
program; it has not been referred before; and it is being asked
that it should be assigned a numeric value. To SAS, that means an
order to organize an 8-byte cell for a numeric variable in the area
of memory where retained numeric variables should dwell. Boxes
in memory have no names, but only numbers called addresses.
Thus SAS must prepare a table in memory where the number of
the cell allocated for Hour_Rate will be associated with this name.
Being logical, SAS stores some other useful information in the
table together with the name and address – in this case, that the
variable is numeric, and hence it is 8 bytes long. The table (called
symbol table) is organized in such a way that given a variable
name, all associated information can be retrieved almost instantly.
Having been done with all that important work, SAS can now
convert 100.00 to its 8-byte internal number and move it into the
cell in memory it has prepared for it.

Essentially the same process will be repeated with Start_Date;
only because it is not named in any RETAIN statement, nor is it
retained by default, SAS allocates a cell for it at the beginning of a
different area in memory, where all non-retained numeric
variables belong. Yet another memory area will be used to store
the variable Message. Upon seeing that in the LENGTH statement,
Message is declared as character (because of the dollar sign
preceding it), SAS allocates a 15-byte long cell in the domain
where non-retained character variables will dwell. At this time,
SAS does not yet know what to move there (the value is missing),
so it uses blanks – standing as missing values for character
variables.

A similar situation occurs with Hours_Worked. SAS knows that it is
numeric because there is a numeric expression waiting to be
resolved and assigned to it, but it can only happen at the run time
– the TIME() function returns the time at the moment when the
instruction is being executed. Therefore, so far, at compile time,
the value for Hours_Worked is missing. This variable is numeric,
so the corresponding missing value should be numeric. For this
purpose, SAS uses one of the special NAN (not a number) binary
values called standard numeric missing value and moves it into the
cell (now residing in the non-retained numeric area of memory)
prepared for Hours_Worked. Using its standard numeric format,
SAS prints it as a period (.). This very period should be used as a
constant if you want to explicitly initialize a variable to a standard
missing value during compile time.

7.2.1. Automatic Variables

You may not have defined any variables in your DATA step
program, yet there are always at least three automatic variables in
the step DSL allocates no matter what: _N_, _ERROR_, and
IORC. At compile time, _N_ and _IORC_ are set to 1, and
ERROR is set to 0. At run time, _ERROR_ is changed to 1 if
either a run-time error condition occurs, or an I/O operation sets
IORC to a value other than 0. _N_ is assigned the number of
times (accumulated independently in some internal variable)
program control is transferred to the instruction immediately
following the DATA statement.

Also, the DATA step compiler creates other automatic variables,
such as _I_ and _IORC_, and many others when it detects certain
statements in the step.

Automatic variables reside in areas of memory from where nothing
is written to any output SAS data set - which is another way to say
that they are automatically dropped.

7.3. ARRAYS

In most cases, variables in a program are called by name when
they are incorporated in an instruction prescribing what to do with
their values. The same most often happens in life with things less
abstract than SAS variables, for example, with months, when we
mark dates in a calendar. However, one may find it more
convenient to call the months by their ordinal number instead of
by name. SAS arrays provide an opportunity to do exactly that
with SAS variables in a program.
For example, if we have seven variables SUN, MON, TUE, WED,
THU, FRI, SAT, and if we need to do something with them in a
program, we could call them only by their names. However, if we
add one of the statements
ARRAY Day (*) SUN, MON, TUE, WED, THU, FRI, SAT ;
ARRAY Day (7) SUN, MON, TUE, WED, THU, FRI, SAT ;

before any of the variables above have been referenced, we will
be able to refer to them both by their native name and ordinal
number. To SAS, SUN and Day(1), TUE and Day(3), and so on,
will mean all the same. The number inside the parentheses is
called array index or subscript. It does not have to be a constant;
instead, it can be any numeric expression resolving to a number
between 1 and 7. Note that the array bounds are set at compile
time, and they must be integer constants (or macro variables
resolving to such) – the compiler does not tolerate even a decimal
point.

Array references can be used in expressions just as well as
variables. Their advantage over non-arrayed variables is that
references to arrayed variables can be made dynamic by changing
the value of the index. For instance, if at run time, you need to
move the value of 123 to all seven variables, you can set X to 1,
and then instruct SAS to repeat the instruction Day(X)=123 seven
times, each time changing the value of X up by a unity.

Arrays are data structures so powerful and with so many more
features and uses in SAS DSL that this little array subsection could
be easily expanded into a thick tome. Here, we have just enough
room to briefly sketch where arrays belong in the DATA step.

7.4. FUNCTIONS

A function is an encapsulated stand-alone program that return a
value given (an)other value(s) called argument(s). In real-word
SAS programming, it is quite difficult to find an expression without
a function call. Even in the program as basic as the one being
used as a sample, TIME() and ROUND() are both function calls.

There are no user-defined functions in SAS DSL (which is certainly
a disadvantage compared to some other tongues, notably PL/I or
C). However, this is to a large degree compensated by the fact
that SAS provides hundreds of intrinsic (i.e. coming with the
language, pre-programmed, guaranteed-to-work-right) functions,
from finding a character in a string, to evaluating the distance
between words, to computing almost anything that could be
thought of being necessary to calculate in business and statistics.

7.5. OPERATORS

To make a new expression out of several existing expressions in a
natural language, people use prepositions. In programming in
general and SAS DSL in particular, this role is played by the tokens
called operators. Expressions they conjugate are called operands.
In the sample program, for example, the function Time(), variable
Start_Time, and constant 3600 are all elementary expressions
(consisting of a single element). The subtraction operator creates
the expression Time() - Start_Time, and then the division operator
uses it and 3600 as operands to create the expression (Time()-
Start_Time) / 3600. Finally, the assignment operator (=) tells SAS
to take the value, to which the expression on the right resolves,
empty the memory cell belonging to the variable Hours_Worked,
and fill it with the resolved value instead.

Operators discussed above are represented by symbols, but it
does not have to be the case. They can also be keywords. For
instance, MAX, NOTIN, AND, OR operators are keywords.
However, they, as well as many others, can also be written as
symbols. Thanks to the wisdom of DSL developers, the symbols
and keywords used for SAS operators make their purpose pretty
much self-explanatory. The way arithmetic operators are used in
formulae, such as shown above, conforms to the standard
algebraic rules, as well as the priority of their evaluation. If there
is any question about the default priority of evaluating an
expression, it can be always enclosed in parentheses, which will
force SAS to evaluate it first.

7.6. ASSIGNMENT

Assignment statement is used to replace the value of a variable in
its memory cell. The assignment operator looks like an equal sign,
but by no means is it an equivalent of an ordinary algebraic
assignment. This is compounded by the fact that in SAS, an equal
sign may be also used as a comparison operator, also written as
EQ. The general assignment form is as follows:

< Variable > = < Expression > ;

What occurs here is basically very simple:

1. The expression on the right is evaluated.
2. The resulting value is stored in some intermediate memory

location.
3. The content of the variable cell is erased.
4. The new value is moved to the variable cell.

For example, in the light of this process, let us dissect an
assignment operation

X = X * Y ,

Algebraically, it is meaningless. However, it is perfectly meaningful
programmatically: It retrieves the value of X from the X-cell and
multiplies it by the value extracted from the Y-cell; then the result
is used to replace whatever value originally resided in the X-cell
(and was multiplied by Y) before. Any confusion can be avoided if
the above ‘formula’ is thought of as ‘Set X to the product of X and
Y’.

7.7. SUM STATEMENT

There is another form of assignment statement pertaining to
addition only (or subtraction, for that matter):

< Variable > + < Expression > ;

When the compiler sees such a thing, it:

1. Allocates a cell for the variable in the area of memory
segregated for retained numeric variables.

2. Moves 0 to the cell.

This is logical because in most cases, the SUM statement is used
to accumulate numeric stuff, and such fields are usually zeroed
out before the accumulation begins. At run time, the expression
on the right of the plus sign is evaluated, the result is added to the
value of the variable, and the sum is assigned to the variable.

If instead of adding the value to the variable, the same amount
needs to be subtracted, a unary operator can be appended to the
left of the operand-expression:

< Variable > + - < Expression > ;

Those who care about the symmetry and would like to make SUM
statements stand out in the code more prominently, might want to
double the single plus used in the additive statement:

< Variable > ++ < Expression > ;

It has the same effect, as a single plus but is very easy to spot.
And, of course, any C/C++ programmer will understand its
meaning without saying.

II. CONTROL FLOW

Now that we have seen, albeit briefly, what sort of stuff SAS DSL
instructions comprise, it is necessary to get an idea how to control
the order in which they are executed at run time. Such order is
called control flow. The instruction currently being executed is said
to have control. After it has been executed, control is transferred
in the top-down manner straight to the next instruction, in the
absence of special branching instructions altering the top-down
sequence control.

1. SELECTION

The sample program we started with contains no such provisions
until the IF-THEN-ELSE structure is encountered:

If Hours_Worked => 8 Then Message = 'Go Home!';
Else If Hours_Worked => 4 Then Message = 'Lunch!' ;
Else Message = 'Keep Coding!' ;

At this point, depending on the time of the day, one of the three
instructions is performed. This is termed conditional execution;
and such a structure itself is called selection. After the selection
has been made, the remaining instructions are executed in a
straight sequence, control reaches the bottom of the step, and the
program stops.

The instruction executed when a selection is made does not have
to stand-alone. It can be combined with other instructions
executed when the same criterion is met. However, in this case
syntax demands that all of them must be enclosed in a so-called
DO-END block. For example, if in the case #2, you would like to
display the values of all variables at this point in the program, it
could be coded as follows:

If Hours_Worked => 8 Then Message = 'Go Home!';
Else
If Hours_Worked => 4 Then Do;
 Message = 'Lunch!' ;
 Put _All_ ;
End ;
Else Message = 'Keep Coding!' ;

When numerous changes to the program’s logic can be
anticipated, it makes sense to place even a single conditional
instruction within a block, for then it is much easier to insert any
number of additional instructions into the same block as needed.

2. PLAIN BRANCHING (GoTo)

The excerpt above could be written in a different style using the
GOTO statement. GOTO performs what is known as simple
branching:

If Hours_Worked => 8 Then GoTo One ;
If Hours_Worked => 4 Then GoTo Two ;
If Hours_Worked => 4 Then GoTo Three ;
One: Message = 'Go Home!'; GoTo Exit ;
Two: Message = ‘Lunch’; Put _All_; GoTo Exit ;
Three: Message = ‘Keep Coding!’ ;
Exit:

To mark the point to which a GOTO transfers control, statement
labels are used. Above, they are represented by the keywords
One, Two, Three followed by the colons. A label must be a valid

SAS name, and of course, labels must be unique. Any statement
can be preceded by a label without the harm of affecting control
flow. They become operational only if a GOTO transfers control to
one of them. Note that the logic of simple branching renders the
ELSE keywords unnecessary.

Programming this way instead of using a selection structure is not
particularly recommended. Moreover, SAS provides a special
SELECT structure specifically designed to program this kind of
situation without a single GOTO or IF-THEN-ELSE:

Select ;
 When (Hours_Worked => 8) Message = 'Go Home!';
 When (Hours_Worked => 4) Do;
 Message = 'Lunch!' ;
 Put _All_ ;
 End ;
 Otherwise Message = 'Keep Coding!' ;
End;

In actuality, GOTOs have advantages, and do no harm when used
with discretion and understanding of control flow.

3. REPETITION

In programming, the concept of the repetitive execution is one of
the most significant. It is because of the repetitive execution that
the computer can be instructed to perform almost the same stuff
millions of times, altering its modus operandi with each iteration
just as much as prescribed by the programmer – which is exactly
the kind of thing computers are needed for in the first place.

The GOTO command is the most elementary instruction that, in a
combination with IF, provides for organizing a controlled
repetition. In the example of the array Day(*), filling all its
elements with 123 could be coded this way:

ARRAY Day (7) SUN, MON, TUE, WED, THU, FRI, SAT ;
X = 1 ;
Assign: Day(X) = 123 ;
 X = X + 1 ;
 If X < 8 then GoTo Assign ;

Once control reaches the conditional statement, it evaluates the
current value of X. If it is still within the array boundaries, control
is transferred back to the ASSIGN label, and the process repeats
until X has become equal to 8. After that, control simply goes to
the next instruction. Since it will inevitably happen, it prevents the
structure from iterating endlessly.

Luckily, SAS DSL provides a separate piece of syntax, the so-called
DO loop structure, solely devoted to the task of organizing
repetitive execution in a flexible and robust manner, thus
rendering the IF-GOTO pair almost unnecessary for this purpose
(with quite rare exceptions of intricate, high-performance cases).
Let us see how it might look like using the array example above:

Do X=1 By +1 Until (X = 7) ;
 Day (X) = 123 ;
End;

The block of statements between the DO and END statements is
called the body of the loop. In this case, it consists of a single
statement, Day(X)=123. How does SAS know that this syntax
instruct it to execute the body repeatedly – as opposed to a mere
DO-END block we have seen earlier? The whole trick is in the
presence of one of the two keywords – BY and UNTIL – in the
head of the loop. Either one can cause the loop to iterate, albeit in
different modi operandi.

The first thing that occurs in the loop head is 1 being moved to
the variable X. That this loop counter is also an array index has no
special meaning: To SAS, it is just another numeric variable. The
presence of such a FROM-value in the head of the DO loop makes
it being termed an iterative DO (although there is no significance

in such terminology: The ability to iterate is the main feature of
any loop). It is important that the FROM-value is assigned only
once and forever, before the loop begins to iterate. The presence
of the UNTIL condition tells SAS to:

1. Execute the body of the loop.
2. At the bottom of the loop, increment X by 1.
3. Still at the bottom of the loop, check whether the condition in

the parentheses is true.
4. If it is, terminate the loop hand control over to the next

instruction.
5. Otherwise, transfer control back to the top of the loop.

Apparently, the logic is precisely the same as that of IF-GOTO, but
important advantages lie in not having to organize the loop by
hand and eluding the code inquisition looking for GOTOs as if they
were witches. Moreover, using a DO loop does not preclude one
from exiting it at any point from within the loop by using the same
old good GOTO, even though it is almost never warranted.

The UNTIL condition can be any conditional expression, not
necessarily an array index comparison. In fact, for the latter, SAS
provides a special keyword, TO, where you can specify the upper
value of the index to be tested. The loop above could thus be (and
usually is) written as

Do X=1 By 1 To 7 ;
 Day (X) = 123 ;
End;

The TO clause can follow the BY clause and vice versa. Just like
with the FROM-value, a TO-value is assigned only once, before the
loop starts iterating. This means, in part, that one should not be
fearful to use expressions as TO and FROM values, for they are
evaluated but once.

Obviously, with UNTIL and in the absence of a TO-value, the loop
will iterate forever unless the UNTIL condition becomes true at
some point in time. Oftentimes, though, it is more convenient to
make a loop iterate while a condition is still true – which is, quite
logically, achieved by coding WHILE instead of UNTIL. In this
case, the condition is checked before the body is executed even
once – so there is a possibility that the loop will never iterate
once. Coding our sample loop using DO-WHILE will look like this:

Do X=1 By +1 While (X < 8) ;
 Day (X) = 123 ;
End;

In the UNTIL loop, when X has become 8 at the bottom, control is
immediately moved to the instruction following END. In the WHILE
loop, control instead goes to the top of the loop where the
condition X < 8 is tested. Since now it is false, the body is
skipped, control is transferred all the way past the END, and the
loop stops.

3.1. ITERATING AD INFINITUM

So, if a DO-UNTIL loop stops iterating when and if its
parenthesized expression evaluates to true (that is, to any number
but zero or any missing value), a DO-WHILE loop ceases repetition
when and if its condition becomes false. Conversely, if the UNTIL
condition is always false, or the WHILE condition is always true,
the loop will iterate forever. Since 0 is always false, and 1 is
always true, an infinite looping may be organized as either of the
following:

Do Until (0) ;
 < body of the loop >
End ;

Do While (1) ;
 < body of the loop >
End ;

The same effect can be achieved by placing FROM- and BY-values
in the loop header all by themselves: The loop will iterate forever,
even if the BY-value is 0. This comes in very handy when it is
desirous to organize an infinite repetition and initialize a numeric
value before the loop starts in the loop head, without a separate
statement:

Do X=1 By 0 ;
 < body of the loop >
End;

However, the presence of a FROM-value without a BY-value will
cause the loop to iterate maximum once, no matter what an
UNTIL or WHILE clause may contain, if anything (and of course it
will not iterate once if the WHILE condition is false a priori).

3.2. GETTING OUT OF A LOOP

What is a practical value of organizing an endless iteration? It
adds another layer of flexibility to the repetition structure by
making it possible to stop the loop using a condition in its middle,
rather than on the top or at the bottom already provided by
WHILE and UNTIL. SAS provides two principally different ways of
branching from inside a loop, regardless of whether it is infinite or
not:

1. LEAVE statement.
2. CONTINUE statement.

Suppose that in our sample loop, we want to fill the array with 123
only up to the current weekday. Of course, its number can be put
in the UNTIL condition or TO-value. But it can be also be achieved
in the following manner:

Do X=1 To 7 ;
 Day (X) = 123 ;
 If WeekDay (date()) = X then Leave ;
End;

The LEAVE statement transfers control immediately past the END
statement to the next instruction. It is precisely the same as if we
coded:

Do X=1 To 7 ;
 Day (X) = 123 ;
 If WeekDay (Date()) = X then GoTo Exit ;
End;
Exit :

So, in cases when it is easier to organize logic in an infinite loop
than in a top- or bottom-terminated loop, or when it is necessary
to branch out from the middle, a conditional LEAVE allows doing
so without resorting to a GOTO.

The CONTINUE statement also provides for a kind of branching,
but instead of transferring control past the bottom of the loop
(past the END statement), it transfers it to the bottom of the loop
(just before the END statement) without affecting any things that
occur at the bottom of the loop by default (incrementing the loop
index, comparing it to the TO-value, or evaluating an UNTIL
condition, if any). As an example, suppose that we want to fill out
only the array elements corresponding to the even days (in other
words, skip the odd ones):

Do X=1 To 7 ;
 If Mod (X, 2) > 0 Then Continue ;
 Day (X) = 123 ;
End ;

The Mod(X,2) function returns the remainder of X divided by 2,
i.e. a number greater than zero if X is odd. If this is the case, the
CONTINUE statement causes control to jump right before the END
statement, thus skipping the assignment when X is odd. Of

course, by logic, it is exactly the same as if we wrote using a label
for the END statement:

Do X=1 To 7 ;
 If Mod (X, 2) > 0 Then GoTo Bottom ;
 Day (X) = 123 ;
 Bottom :
End ;

Of course, above, the goal could be reached without either
CONTINUE of GOTO, by imposing an opposite condition on the
assignment statement itself, but for illustration purposes, this
example is perhaps as good as another.

4. FILE PROCESSING

One of the most compelling reasons why we need iterative
structures is the necessity to process files with a great number of
records. It can be an external file, a SAS data file, a view to an
RDBMS – it does not really matter. What does matter is that in
most cases, the file processing means to do the following things:

1. Perform some preparatory work.
2. Read all or many records one by one and apply the same

logic to each of them, for instance:
a. Identify relevant data coming with each record as

variables
b. Manipulate certain quantities according to certain

rules
c. Output information for each or selected records (or

none)
3. Maybe output summary information, i.e. pertaining to all

records collectively.

4.1 PRACTICAL EXAMPLE OF FILE PROCESSING

As a practical example of applying this principle, let us imagine a
SAS data file (set) called STATES having 2 variables: 1) 2-byte
character variable STATE containing a state abbreviation code 2)
numeric variable WATER representing the annual precipitation in
millimeters for a certain year. What we want to do is:

1. Print the time when the step started running in the SAS log.
2. Read the file STATES and calculate the average WATER

across all states beginning with the letter A, accounting only
for non-missing values of WATER.

3. Write the observations containing the states starting with A
and with non-missing WATER values to a SAS data set
AWATERNMISS.

4. Print the average amount in the log in whole mm.
5. Print the total processing time in the log in seconds and

milliseconds.
6. Stop.

Here is one way to write a SAS DATA step conforming to these
specifications:

Data AwaterNmiss (Keep = State Water) ;
 Time = Time() ;
 Put Time = Time. ;
 Do Until (End_of_File = 1) ;
 Set States End = End_of_File ;
 If State NE: ‘A’ or Water = . then Continue ;
 NonMiss ++ 1 ;
 TotalWater ++ Water ;
 Output ;
 End ;
 Average = Round (TotalWater / NonMiss, 1);
 Put Average = Comma. ;
 Time = Round (Time() – Time, .001) ;
 Put Time = ;
 Stop ;
Run ;

It deserves some explanation:

1. Since an output SAS data set is needed, it is named on the
DATA statement.

2. Function TIME() obtains the current time from the computer
clock. It is assigned to the variable TIME.

3. PUT statement prints TIME in the log using TIME. format.
4. DO starts the loop reading the file record after record, but

the loop should know where to stop. The last record on the
file is marked by the system. To recognize it, SAS provides an
END=<variable> option on the SET statement. The variable
named in END= (here chosen as End-of-File) has the value 0
for all records but the last. When the last record has been
read, the software detects the end-of-file marker and moves
1 to End-of–File. At the bottom of the loop, it makes the
UNTIL condition true, and the loop terminates.

5. The SET statement always reads the next record from the file
(at the beginning of the file, it is the first record), so that in
the next iteration of the loop, the next record is read. When
the record is read, its values for STATE and WATER are
moved into the like named cells in memory the compiler has
prepared, thus replacing the previous contents of the cells.

6. NE: operator compares the first byte of STATE with ‘A’. If a
match is not found, CONTINUE transfers control to the
bottom of the loop, and the next iteration begins (unless the
end of file has been detected). Otherwise the condition after
the OR operator is checked. If true, CONTINUE executes as
described. If neither condition is true (STATE does begin with
A and WATER is not missing), the next body statement is
executed.

7. The Sum statement adds 1 to the variable NONMISS used to
count the number of A-states with non-missing WATER, and
WATER is added to TOTALWATER used as an accumulator.

8. OUTPUT statement moves the current values of STATE and
WATER from their cells in memory to the output record and
writes the record (observation) out.

9. After the loop is terminated (all records have been
processed), AVERAGE is calculated. The ROUND function
rounds the value to the nearest integer, because of 1 as the
second argument.

10. AVERAGE is printed in the log using the COMMA. format to
show commas separating integer orders of magnitude.

11. The start time determined at the beginning of the step is
stored in the memory cell called TIME. The meaning of the
statement Time = Round(Time()-Time,.001) is this. Retrieve
the value of TIME from its cell; subtract it from the current
time; use the result to replace the original value of TIME in
its cell. Finally, round the result to the nearest thousandth
(because of .001 as the second argument).

12. Print the execution time in the log.
13. STOP. This statement is necessary, otherwise the statements

from the top of the step to the SET statement will be re-
executed.

4.2. AUTOMATIC CONTROL FLOW

There exists a much trumpeted SAS DSL feature instructors
routinely use to underline differences between DSL and other
languages: The automatic control flow. Contrary to the pretty
common faith, it only manifests itself when the compiler detects a
file-reading keyword, such as SET, MERGE, UPDATE, or INPUT. In
this case, the compiler constructs the loop exactly similar to the
DO-UNTIL loop (together with end of file checking) by default, and
all programming statements written in the step end up being
encapsulated in this automatic ‘observation loop’, as it is
frequently called. In simple cases, making use of this invisibly
present loop allows to avoid writing an explicit loop as shown
above. In addition, SAS busies itself with two things:

1. Moves missing values to all variables not residing in the
memory areas the compiler has designated as ‘retained only’.
2. Counts the number of times control is transferred to the top of
the loop by incrementing an internal counter and moving its value
quantity to the automatic variable _N_ right before the next
iteration begins.

However, SAS leaves no gaps between the DATA statement and
the beginning of its automatic loop, or between the bottom of the
loop and the RUN statement. That is, no programming statements
can be inserted before and after the automatic loop. Emulated
explicitly, the automatic loop might look like this:

Data ….. ;
 < Move missing to all non-retained variables >
 Do Internal = 1 By +1 Until (End_of_File) ;
 N = Internal ;
 < Top of the step as we see it >
 ………………………………………
 < Our instructions >
 ………………………………………
 <If no explicit output statement elsewhere OUTPUT>
 < Bottom of the step as we see it >
 End ;
 Stop ;
Run ;

It is all dandy if the body of the loop is only what matters,
because then the automatic loop makes things a little bit more
concise, e.g. by saving DO, END, OUTPUT, and maybe STOP
statements. However, all the advantage in thus attained
parsimony evaporates as soon as there is something to be done
before and/or after reading the whole file. Indeed, how do we do
it, being limited only to the possibility of writing instruction inside
the loop? Here is how the difficulty is usually circumvented:
Data AwaterNmiss (Keep = State Water) ;
 If _N_ = 1 Then Do ;
 Time = Time() ;
 Put Time = Time. ;
 End ;
 If End_of_File Then Do ;
 Average = Round (TotalWater / NonMiss, 1);
 Put Average = Comma. ;
 Time = Round (Time() – Time, .001) ;
 Put Time = ;
 End ;
 Set States End = End_of_File ;
 If State NE: ‘A’ or Water = . Then Delete ;
 NonMiss ++ 1 ;
 TotalWater ++ Water ;
Run ;

Note that above, the DELETE statement is an exact counterpart of
the CONTINUE statement in that it transfers control directly to the
very bottom of the loop (in this case, implicit one), whence it goes
back to the top, thus bypassing the (implicit) OUTPUT and having
the rather oblique meaning of ‘deleting the observation’.

If this, ‘conventional’, style and this kind of programming logic (or
lack of it thereof) suits one better, it can be of course perceived as
a matter of personal preference. Keep in mind, though, that it
makes the computer ask the question about _N_=1 and
End_of_File=1 just as many times as there are records to read.
So, if you have, as it often happens nowadays, 100,000,000 or so
observations to process, you might want to rethink the ‘standard’
approach. Moreover, it is not accidental that when using the
automatic loop, the testing for the end of file must be placed at
the top of the step, contrary to the stream of consciousness. If it
were located after the file processing statements, where it logically
belongs, you might not see AVERAGE computed and AVERAGE
and TIME printed at all! The reason is simple. Suppose the values
in the last record satisfy the condition

If State NE: ‘A’ or Water = . Then Delete ;

If that is the case, control goes to the top of the implicit loop;
from there, all instructions are executed serially until control
bumps into the SET (of other I/O) statement having nothing to
read, and thus the step is terminated. No instruction placed after
the conditional sentence are executed if it evaluates true, which
would be the fate of AVERAGE and TIME, were not they placed
before SET.

4.3. LINK SUBROUTINES

Those familiar with GOSUB subroutine in BASIC or COBOL
paragraphs will be pleased to know that this kind of functionality is
fully supported in SAS DSL. You can define a block of statements,
supply a statement label for its first statement, and close it with a
RETURN statement:

CALLME: < SAS statements> RETURN ;

Then anyplace in the code CALLME can be invoked as follows:

LINK CALLME ;

In fact, it can be called from CALLME itself, albeit no more than 10
nested levels are allowed. When CALLME is called, control is
transferred to the statement following the label and on until the
entire block is performed; then control is returned (hence the
RETURN verb) to the instruction immediately after LINK.

4.3.1. ‘Logical’

If you decide to use the ‘logical’ SAS DSL programming (in the
sense above), the most natural place for a subroutine is after the
STOP – for it guarantees that no subroutine can be executed
unless called. For example, if you wanted to combine the two SUM
statements above in a LINK module ACCUM, and the statements
computing and printing average – in a module MEANS, it might
look like this:
Data AwaterNmiss (Keep = State Water) ;
 Time = Time() ;
 Put Time = Time. ;
 Do Until (End_of_File = 1) ;
 Set States End = End_of_File ;
 If State NE: ‘A’ or Water = . then Continue ;
 Link ACCUM ;
 Output ;
 End ;
 Link MEANS ;
Stop ;
 ACCUM: NonMiss ++1 ; TotalWater ++ Water ; Return ;
 MEANS: Average = Round (TotalWater / NonMiss, 1) ;
 Put Average = Comma. ;
Run ;

In reality, RETURN closing a LINK module is only needed to
separate it from other module defined right after it – otherwise
they would be perceived by the compiler as one. That is why after
MEANS, RETURN can be painlessly omitted, but after ACCUM, it is
required.

4.3.2. ‘Traditional’

It gets less attractive if the automatic loop is used. In this case,
LINK module definitions must be placed after yet another
RETURN, its role being no different from ‘GO TO TOP’ .

Data AwaterNmiss (Keep = State Water) ;
 If _N_ = 1 Then Do ;
 Time = Time() ;
 Put Time = Time. ;
 End ;
 If End_of_File Then Do ;
 Link MEANS ;
 Time = Round (Time() – Time, .001) ;
 Put Time = ;
 End ;
 Set States End = End_of_File ;
 If State NE: ‘A’ or Water = . Then Delete ;
 Link ACCUM ;
RETURN;
 ACCUM: NonMiss ++1 ; TotalWater ++ Water ; Return ;
 MEANS: Average = Round (TotalWater / NonMiss, 1) ;
 Put Average = Comma. ;

Run ;

Finally, a LINK module can be principally placed anywhere in the
code if it is enveloped in a never-executable shell. In the case of
the ACCUM routine, for example (either of the following two
variants are workable):

If 0 Then Do;
 ACCUM: NonMiss ++1 ;
 TotalWater ++ Water ;
End ;

Do While (0);
 ACCUM: NonMiss ++ 1 ;
 TotalWater ++ Water ;
End ;

Of course, if each module is defined this way, no RETURN is
required anywhere. This method makes it possible to define LINK
routines before they are called (analogous the SAS macro-style,
for that matter). However, one should bear in mind that this kind
of definition contains an extra comparison, so care should be
taken to place any such definitions outside of any frequently
iterating structure.

Whether this way of defining LINK modules can be seen as an
advantage or not, depends on the personal programming style
and one’s propensity to split a program in a number of hierarchical
paragraphs similar to the way COBOL programmers perceive as
the ‘structured programming’. (As a matter of course it has
nothing to do with the structured programming whatsoever).
There indeed may be situations where it may be more logical to
arrange the program around several LINK modules, rather than
macros, say. However, the functionality of a LINK routine is limited
by the fact that it cannot be parameterized and shared all its
variables with the caller.

IV. CONCLUSION

Even if you have had enough patience and courage to get here
without using a GOTO CONCLUSION instruction, but rather by
faithfully executing all instructions all the way from
INTRODUCTION, you have only seen a shining tip of a giant SAS
DATA step iceberg. Hopefully, it has given you a little bit of idea
what kind of beauty dwells within.

SAS is a registered trademark or trademark of SAS Institute, Inc.
in the USA and other countries. � indicates USA registration.

V. REFERENCES

1. Rick Aster, Rhena Seidman. Professional SAS Programming
Secrets, Wincrest/McGraw-Hill, 1991.

2. T.W. Pratt. Programming Languages. Design and
Implementation, 2nd Edition, Prentice-Hall, Inc.

3. SAS Language. Reference. Version 6, 1st Edition, SAS
Institute, Inc., Cary, NC.

VI. AUTHOR CONTACT INFORMATION

Paul M. Dorfman,
SAS Programmer

10023 Belle Rive Blvd. 817
Jacksonville, FL 32256

(904) 564-1931 (h)
(904) 905-5428 (o)

sashole@bellsouth.net
paul_dorfman@hotmail.com
paul.dorfman@bcbsfl.com

Passing Along SAS Data – SET, MERGE, and UPDATE

Andrew T. Kuligowski – Nielsen Media Research

Abstract / Introduction

Once a SAS dataset is created, the user will often
want to modify it or combine it with other datasets.
This presentation will cover three basic commands
that can be employed to use, reuse, and combine
existing SAS datasets: SET, MERGE, and UPDATE.

The following topics will be covered in this
presentation:
• The LIBNAME statement – permanently storing

your SAS dataset.
• The SET statement – reusing a SAS dataset.
• The MERGE statement – bringing two SAS

datasets together.
• The BY statement – controlling the order of

integration.
• The UPDATE statement – changing an existing

SAS dataset.

The goal of this presentation is to provide the
attendee with the background necessary to
permanently catalog and reuse their SAS data.

LIBNAME Statement

All SAS datasets are stored in SAS Data Libraries.
In fact, the standard specification for a SAS dataset
contains two levels – the SAS Data Library name,
and the individual SAS dataset name, separated by
a period, or “dot” if you prefer. Of course, even the
newest of SAS users will realize that many SAS
datasets are represented by only one name. This is
because the default SAS data library is “WORK”.
WORK is automatically defined when SAS is
invoked, and the absence of a Data Library name in
a SAS dataset name causes SAS to use the WORK
library.

Each SAS Data Library must be denoted by a
LIBNAME. A LIBNAME, also commonly known as a
LIBREF, is a shorthand representation, or nickname
if you prefer, of the actual dataset name as defined
by your particular operating system.

There are several ways to define a LIBNAME to the
SAS System. One of them is to provide a file
reference to the external file using a host system
command outside of the SAS System - a JCL "DD"

statement under IBM's MVS, for example. To cite
an example that has already been referenced, this is
the method by which the WORK library is allocated
to the SAS session.

An alternate method is to use the LIBNAME
statement under SAS. The LIBNAME statement is a
global statement, and is executed outside of the
DATA step. The generic syntax for this statement is:

LIBNAME libref <engine>
 'external file' <options> ;

“Engine” and “options” will not be discussed at this
time; they will be deferred to a more advanced
presentation. As one might expect, however, many
of the options for the LIBNAME statement are
dependent on the operating system. Consult the
appropriate "Companion" document for your
operating systems for details.

It is also worth noting that the LIBNAME statement
can be executed with two special keywords under
any operating system:
• CLEAR will remove a reference to an existing

SAS Library:
LIBNAME libref CLEAR;

• LIST will write the attributes of the specified
LIBNAME to the SASLOG:

LIBNAME libref LIST;

There is also a LIBNAME function that can be
invoked from within a DATA step to perform the
same purpose. The syntax is similar to the
LIBNAME statement:

LIBNAME(libref, 'external file',
 ,<engine>, <options>);

Details on how and when to use functions will be
discussed as part of another presentation in the
“Introduction to SAS” series.

SET Statement

According to the Version 6 SAS Language
Reference, the SET statement “… reads
observations from one or more existing SAS
datasets.” Under ordinary circumstances, each
variable, on each observation, on each SAS dataset
specified by the SET statement, is read into the SAS

Program Data Vector, and each is subsequently
written out to the new output SAS dataset - although
this can be overridden with other logic in the DATA
step.

The basic SET statement is very simple:

DATA newdata;
 SET olddata;
 /* additional statements */
RUN;

In this simple example, the SET statement
introduces each record in SAS dataset olddata into
the current DATA step. By default, those records
are subsequently written out to SAS dataset
newdata, although any or all of those records can be
either output or discarded on a conditional basis if
desired.

The SET statement is commonly used to
concatenate two or more SAS datasets together.
Let us look at a basic example:

DATA newdata;
 SET olddata1 olddata2;
 /* additional statements */
RUN;

In this example, the SAS Data Step will first read in
each record from SAS dataset olddata1 and, by
default, write each of those records to SAS dataset
newdata. Then, after the last record in olddata1 has
been processed, each record in olddata2 will be
read in and subsequently written out to newdata. By
default, each observation in newdata will contain
every variable in olddata1 and every variable in
olddata2. If there are variables that are defined in
olddata1 but not olddata2, the values will default to
missing for those variables on the observations that
are copied from olddata1. The opposite will be true
for variables defined on olddata2 but not on
olddata1.

Depicted graphically, a single SET statement
combines two or more SAS datasets vertically.
Using the simple routine listed above, we would get:

There is an important condition that the SAS coder
must be aware of when combining two or more SAS
datasets. Variables that are common to two or more
SAS datasets must have consistent definitions in
each of those datasets in order to be used
successfully in the SET statement (or, as will be
discussed later, the MERGE or UPDATE
statements). The most severe situation is when a
variable is defined as character in one SAS dataset,
but as a numeric in another. Should this occur, SAS
will trip the internal _ERROR_ variable to 1 (for
“true), set the return code to 8, and write the
following ERROR message on the SASLOG:

ERROR: Variable variablename has
 been defined as both
 character and numeric.

If the common variables are both character or both
numeric, but have different lengths, the output
dataset will use the first length it encounters for that
variable. This will be typically be in the first dataset
in the SET statement. However, this default action
can be overridden by inserting a LENGTH statement
prior to the SET statement, as follows:

DATA newdata;
 LENGTH commonvr $ 25.;
 SET olddata1 olddata2;
 /* additional statements */
RUN;

It should be noted that PROC APPEND can also be
used to concatenate two SAS datasets, and it can
often be more efficient than using a SET statement
within a DATA step. However, PROC APPEND can
only be used on two SAS datasets, while the SET
statement can be used on three or more SAS
datasets. In addition, the SET statement can be
used in conjunction with other DATA Step
statements to further massage the input data and to
perform conditional processing; this additional
functionality is not possible using PROC APPEND.

The SET statement can also be used to interleave
two or more SAS datasets. In order to do this, each
of the desired SAS datasets must contain the same
key variables, and each must be sorted by those key
variables. Then, the SET statement must be
immediately followed by a BY statement listing those
key variables, as follows:

DATA newdata;
 SET olddata1 olddata2;
 BY keyvar1 keyvar2;
 /* additional statements */
RUN;

In the preceding example, newdata will contain the
observations from both olddata1 and olddata2. It

will be sorted by the variable(s) referenced in the BY
statement, in this case, keyvar1 and keyvar2.

The addition of a BY statement causes the records
to be interleaved, but does not alter the fact that the
records are combined vertically. Graphically, this
would look as follows:

At this point, let us briefly diverge from discussion of
the SET statement to review the BY statement.
When used in a DATA step, the BY statement is
used to control the operation of the SET, MERGE,
UPDATE, or MODIFY statements. A BY statement
applies only to the statement that immediately
precedes it in the DATA Step; that statement must
be one of the four listed in the previous sentence.
The basic syntax of the BY statement is trivial,
simply listing one or more variables after the word
“BY” as follows:

 BY <DESCENDING> var1
 <<DESCENDING> var2> …;

The DESCENDING keyword, as one might expect, is
used if the data is to be found in reverse sequence.

Please note that there is also a GROUPFORMAT
keyword that can be used to process a variables
formatted value rather than its stored values. There
is also a NOTSORTED keyword that can be used
under certain circumstances. However, discussion
of these two features is best left to a more advanced
presentation.

Returning to the SET statement, it is also possible to
use the SET statement to perform direct access
(also known as random access) queries against a
SAS dataset in order to retrieve a specific record.
This is done by using the POINT= option on the SET
statement. POINT= is followed by the name of a
temporary SAS variable, which must have an integer
value between 1 and the maximum record number in
the SAS dataset being processed. This number can
be easily obtained by using another option, NOBS=.
NOBS= specifies a temporary variable that is

populated during DATA step compilation with the
number of observations in the applicable SAS
dataset.

This concept is sometimes difficult to explain and to
comprehend with only words; an example is needed
for clarification. The following routine reads in every
other record of a SAS dataset:

DATA newdata;
 DO recno = 2 TO maxrec BY 2;
 SET olddata POINT=recno
 NOBS=maxrec;
 /* additional statements */
 END;
 STOP;
RUN;

Note that a STOP statement is required in order to
terminate the current DATA step. This is because
DATA step processing is concluded when the INPUT
statement reads the End-of-File. However, when
using the POINT= option, the INPUT statement
never processes the End-of-File marker. Therefore,
the DATA step is never terminated – not unless the
coder specifically orders it via the STOP statement.

As stated earlier, NOBS= is populated at compile
time, rather than during execution. This allows us to
reference the number of records in a SAS dataset
without actually executing the SET statement! The
following example demonstrates this principle:

DATA _null_;
 PUT maxrec ‘Recs in olddata.’;
 STOP;
 IF 1 = 0 THEN
 SET olddata NOBS=maxrec;
RUN;

In this example, the SET statement defining the
variable maxrec is coded AFTER the variable is to
be displayed. Furthermore, the “IF 1 = 0” condition
can obviously never be true, so the SET statement
never actually executes. However, the variable
maxrec is correctly populated with the record count
of olddata during the compliation of the DATA step.
This allows the record count to be printed, using the
PUT statement, in the first line of the DATA step.

END= is another useful option. It specifies a
temporary SAS variable that is normally set to 0
(‘false’). However, it is “tripped” and reset to 1
(‘true’) when the INPUT statement encounters the
last record in the SAS dataset being read (or, if
multiple datasets are specified, the last record in the
last SAS dataset on the INPUT statement) This can
facilitate any extra end-of-file processing that is
required for the current DATA step.

DATA newdata;
 SET olddata END=lastrec;
 /* additional statements */
 IF lastrec = 1 THEN DO;
 /* additional end-of-file */
 /* processing statements */
 /* go here. */
 END;
RUN;

There are a number of SAS Dataset options that can
be used to enhance the processing of the SET
statement. Dataset options must be enclosed in
parentheses, and must immediately follow the
dataset which they are describing. For example, a
common request is to create a subset of a SAS
dataset. This can be done by inserting an IF
statement or a WHERE statement in the DATA step.
However, it is also possible to do this by using the
WHERE= dataset option in conjunction with the SET
statement.

DATA newdata;
 SET olddata
 (WHERE=(keyvar < 10));
 /* additional statements */
RUN;

Dataset options can also be used to limit the number
of records processed by the SET statement.
FIRSTOBS= causes processing to start at a
specified observation number, while OBS= causes
processing to start at a specified observation
number. They can be used together; the following
example only processes the 1000th through the
2000th observations of a SAS dataset:

DATA newdata;
 SET olddata
 (FIRSTOBS=1000 OBS=2000);
 /* additional statements */
RUN;

There are several instances when it can be
advantageous to use two or more SET statements
within the same DATA step. For example, one
coding technique is to store constants in a separate
dataset, bringing them in at the beginning of a DATA
step, as follows:

DATA newdata;
 IF _N_ = 1 THEN DO;
 RETAIN konst1-konst5;
 SET konstant;
 END;
 SET olddata;
 /* additional statements */
RUN;

In this example, note that the SAS dataset konstant
is only read during the first iteration of the DATA
step, and that only one record is processed from
konstant. The values that were read in from this
record will be available throughout the entire
execution of the DATA step, due to the RETAIN
statement.

It is also possible to conditionally use the contents of
one dataset to process another dataset, as in the
following example:

DATA newdata;
 SET employee;
 IF married = ‘Y’ THEN
 SET spouse;
 IF childcnt > 0 THEN
 DO i = 1 TO childcnt;
 SET children;
 END;
 /* additional statements */
 /* go here. */
RUN;

In this example, it is assumed that all 3 datasets are
sorted by some common key variable. Following
through the logic, it is assumed that every married
employee has one and only one spouse, and the
appropriate record is obtained. Furthermore, the
routine determines the number of children that the
employee has, and processes one record for each of
them.
Depicted graphically, two or more SET statements
combine SAS datasets horizontally. Basically, it
would look as follows:

It should be noted that multiple SET statements
could actually produce undesirable results. Since
DATA step processing stops after the SET
statement encounters an End of File marker – the
first End of File marker in the case of multiple input
datasets – the smallest dataset drives the number of
iterations for the DATA step. In addition, the logic
can get very cumbersome. There is an easier way
to accomplish the same thing …

MERGE Statement

The MERGE statement “ … joins corresponding
observations from two or more SAS datasets into

Dataset A - Record 1
Key value = “A”

Dataset B - Record 1
Key value = “A”

Dataset B - Record 2
Key Value = “B”

Dataset A - Record 2
Key Value = “B”

Dataset A - Record 2
Key Value = “B”

Dataset A - Record 3
Key Value = “C”

Dataset B - Record 3
Key Value = “B”

Dataset A - Record 4
Key Value = “C”

Dataset B - Record 4
Key Value = “C”

Dataset B - Record 4
Key Value = “C”

1-1

1-Many

Many-1

Dataset A - Record 1
Key value = “A”

Dataset B - Record 1
Key value = “A”

Dataset B - Record 2
Key Value = “B”

Dataset A - Record 2
Key Value = “B”

Dataset A - Record 3
Key Value = “C”

Dataset B - Record 3
Key Value = “B”

Dataset A - Record 4
Key Value = “C”

Dataset B - Record 4
Key Value = “C”

Dataset A - Record 1
Key value = “A”

Dataset B - Record 1
Key value = “A”

Dataset B - Record 2
Key Value = “A”

Dataset A - Record 2
Key Value = “A”

Dataset A - Record 3
Key Value = “A”

Dataset A - Record 4
Key Value = “A”

Dataset B - Record 3
Key Value = “A”

single observations in a new SAS dataset,” to quote
from the Version 6 SAS Language Reference.

The simplist example of the MERGE statement
would be a one-to-one merge, as follows:

DATA newdata;
 MERGE olddata1 olddata2;
RUN;

In this example, this routine takes the 1st record in
olddata1 and the first record in olddata2, and joins
them together into a single record in newdata. This
is repeated for the 2nd records in each dataset, the
3rd records, etc.

This technique is not often used in the real world, or
more accurately, not often used intentionally. The
main problem is that it is grounded in the
assumption that there is a record-to-record
relationship in each of the datasets to be merged,
regardless of the contents of those records. This is
not often the case.

It is much more common to find that there is a
record-to-record relationship based on the values of
key fields found in both files. This approach, known
as match-merging, requires all of the files in the
MERGE statement to be sorted by the same
variable(s). To show a simple example:

DATA newdata;
 MERGE olddata1 olddata2;
 BY keyvar(s);
RUN;

Match-merging is a very powerful tool. With two
statements - MERGE, followed immediately by BY –
the DATA step can handle cases of:
• One-to-one matching, where there is one record

in each file containing the same key values.
• One-to-many matching, in which the first file has

one record containing a particular set of key
values and the second (or subsequent) file has
multiple records containing those same key
values, and

• Many-to-one matching, where the first file has
multiple records containing a unique set of key
values and the second file has only one record
with those key values.

This is best shown graphically. The following
example shows 2 datasets, both with 4 records
each. Both files begin with a first record containing
the same key value, illustrating 1-1 matching. The
first file then contains one record with a different key
value while the second file contains two records with
that key, showing 1-many matching. Finally, the first
file contains two records with another unique key,

while the second file only has one record with that
key, demonstrating many-1 matching:

It is also significant to note what the example does
not show. There are no examples of “1 to null” or
“null to 1”, or “many to null” or “null to many” merges,
although these are all valid. These occur when a
given key value exists in one file, but not the other.
Each of these is a valid MERGE condition, however,
and will result in record(s) being written to the output
file. In this case, any variable that is only present on
the file without the current key value will contribute
null values for those variables to the final output
dataset.

We do also not have any examples of many-to-many
merges. This condition occurs when both files have
multiple record with the same key values present.
To illustrate this graphically:

SAS cannot process many-to-many merges with the
MERGE statement. They result in an ominous note
to the SASLOG, and undesirable output results.
However, be warned - the routine does NOT
terminate with a non-zero condition code. In fact,
processing continues on as though nothing is wrong,
even though the results of the merge are almost
definitely NOT what the author intended! Note that
PROC SQL is capable of processing many-to-many
merges. However, this is outside the scope of this
presentation.

It is possible to programmatically prepare your data
to avoid the risk of attempting a many-to-many
merge by removing multiple records with the same
key values, using the NODUPKEY option on PROC
SORT, as follows:

PROC SORT DATA=olddata1 NODUPKEY;
 BY keyvar(s);
RUN;

However, this approach can also delete records that
should actually be processed. The reader is
encouraged to read this author’s “Pruning the
SASLOG…” presentation, as cited in the
“References” section at the end of this presentation,
for techniques to eliminate many-to-many merges.

Variable names that are common to two or more
SAS datasets on the MERGE statement must have
the same definition on each of those datasets, just
like with the SET statement. However, unlike the
SET statement, the value from the second dataset
will overlay the value from the first dataset with
MERGE. Sometimes this is desirable, while other
times it is unwanted. In the latter case, the
RENAME= option will allow the variables from both
datasets to be written to the new output dataset,
albeit with different names.

The use of the RENAME= option is simple:

MERGE olddata1
 (RENAME=(oldname=newname))
 olddata2;

The output dataset will contain the values of the
variable oldname from both olddata1 and olddata2,
although the value from olddata1 will be stored in
the new variable, called newname.

It is possible to perform conditional processing,
based on the source dataset for each record, by
using the IN= dataset option. The IN= parameter
creates a temporary variable associated with the
dataset for which it is specified. The variable is set
to 1 (for “True”) if the specified dataset is
contributing data to the current observation;

otherwise it is set to 0. This allows for specialized
processing, depending on the source of the current
data. IN= can be used with the SET statement, but
it is much more commonly found along with the
MERGE statement.

Let us look at a simple example of IN=, with
subsequent conditional processing:

DATA newdata;
 MERGE olddata1(IN=in_old1)
 olddata2(IN=in_old2);
 BY keyvar(s);
 IF in_old1 AND in_old2 THEN
 /* additional statement(s)*/
 IF in_old1 AND NOT in_old2 THEN
 /* additional statement(s)*/
 IF NOT in_old1 AND in_old2 THEN
 /* additional statement(s)*/
 IF NOT in_old1 AND
 NOT in_old2 THEN
 /* additional statement(s)*/
RUN;

The variable in_old1 will be set to 1 (true) when the
current observation in newdata is being fed from
olddata1 and 0 (false) when it is not. The same
thing is true for variable in_old2 and SAS dataset
olddata2. The subsequent IF statements allow for
special processing if the current observation
contains data from both olddata1 and olddata2, from
olddata1 but not olddata2, from olddata2 but not
olddata1, and from neither olddata1 nor olddata2.

Of course, alert readers will quickly realize that the
4th and final IF statement is not necessary in the
previous example. Since the DATA step is being fed
from observations in olddata1 and olddata2, there
will never be an instance where the routine will be
processing a record that is not present in either
dataset! (It is sometimes beneficial to embed this
explanation in a comment within your code,
depending on your audience.) In addition, the
experienced coder will quickly realize that this
example could be made more efficient by using the
ELSE statement; however, that is outside the scope
of this presentation.

It should be noted at this point that most options
available for the SET statement are also valid for
use with MERGE, and vice verse. (Notable
exceptions are POINT= and NOBS=, which are
exclusive to the SET statement.) These topics are
introduced in this paper under the command where
the author has personally found them to be of most
use in his daily activies.

Master - Record 1
Key value = “A”

Master - Record 2
Key Value = “B”

Master - Record 3
Key Value = “C”

Update - Record 1
Key value = “A”

Update - Record 2
Key Value = “B”

Update - Record 3
Key Value = “B”

Update - Record 4
Key Value = “C”

Update Dataset - Record 1

Key value = “A”

(Values from Update file)

Update Dataset - Record 2

Key value = “B”

(Values from Update file,
both records)

Update Dataset - Record 3

Key value = “C”

(Values from Update file)

UPDATE Statement

The UPDATE statement is similar to the MERGE
statement, “… but the UPDATE statement performs
the special function of updating master file
information by applying transactions …” to quote
once more from the Version 6 SAS Language
Reference.

The UPDATE statement combines records from two
files in a horizontal fashion, like the MERGE
statement. However, there are a number of
significant differences between the two statements:
• UPDATE can only process two SAS datasets at

a time – the Master dataset and the Transaction
dataset. A single MERGE statement can
process 3 or more SAS datasets.

• The BY statement is optional (although typically
used) with MERGE, but is required with
UPDATE.

• UPDATE can only process one record per
unique BY group value in the Master dataset. It
can process multiple records per unique BY
group value in the Transaction dataset.
However, in this case, each Transaction record
is applied to the same record in the Master
dataset, which means that transactions can be
overlaid by subsequent transactions within the
same DATA step.

• The UPDATE statement can avoid overlaying
any given value in the Master dataset with a
value in the Transaction dataset by setting the
corresponding value in the Transaction dataset
to missing. This would require more complex
conditional logic to accomplish via the MERGE
statement.

Depicted graphically, the UPDATE statement
performs a modified version of a horizontal merge, in
which values on the original records are overlaid
with new information:

The UPDATE statement is simple to code – in fact,
the only difference between it and the earlier
MERGE statement / BY statement example is the
word “UPDATE”:

DATA newdata;
 UPDATE olddata1 olddata2;
 BY keyvar(s);
RUN;

However, the true utility of the UPDATE command
becomes apparent after examining “before” and
“after” sample data:

 SAS Dataset: MASTER
OBS KEY1 UPDT1 UPDT2
 1 AL 1001 2
 2 FL 1002 4
 3 GA 1003 8
 4 MS 1004 16

 SAS Dataset: XACTION
OBS KEY1 UPDT1 UPDT2 NEW3
 1 AL 1111 52 A
 2 GA 1133 54
 3 GA 2133 . C
 4 MS . . D
 5 LA 4555 65 E

 SAS Dataset: UPDATIT
OBS KEY1 UPDT1 UPDT2 NEW3
 1 AL 1111 52 A
 2 FL 1002 4
 3 GA 2133 54 C
 4 MS 1004 16 D
 5 LA 4555 65 E

In this example, the first record in the Master File (for
KEY1=AL) has its values changed for fields UPDT1
and UPDT2, as well as a value added for newly
created field NEW3. The second record (KEY1=FL)
is untouched, and NEW3 is set to missing. The third

record (KEY1=GA) is actually changed twice due to
two separate records in the Transaction dataset,
with only the final set of changes stored to the output
file. The fourth record (KEY1=MS) does not have its
original two values adjusted, because the values are
set to missing in the transaction dataset. However,
a value is inserted for the new variable NEW3. The
last record in the Transaction file (KEY1=LA) does
not exist in the Master dataset, so it is added.

The question arises – what if you WANT to replace
an existing value with a missing value? This is
possible, but requires a little extra coding. The
MISSING statement, added to the DATA step, will
define special missing values that can be used in the
Transaction data. The values “A” through “Z” will
display as coded, while an underscore “_” will invoke
the standard missing data representation of a dot “.”.
Note that the MISSING command must be present
during both the creation of the transaction data and
in the UPDATE DATA step.

MODIFY Statement

The MODIFY statement was added in Version 6.07
of the SAS System. It has many of the same
capabilities of the SET, MERGE, and UPDATE
statements – with one important difference. To
quote from SAS Technical Report P-222, the
MODIFY statement “… extends the capabilities of
the DATA step, enabling you to manipulate a SAS
data set in place without creating an additional
copy.”

Neither SET, nor MERGE, nor UPDATE has the
ability to update a dataset in place. They give the
appearance of doing that when the DATA statement
specifies a dataset name that is the same as one in
SET, MERGE, or UPDATE. However, in actuality,
the DATA step creates a new dataset in this
instance, and then replaces the old dataset upon
completion. The MODIFY statement avoids the
creation of this temporary dataset, along with the
extra temporary disk storage that it requires and the
time – processing and clock – it takes to make it.

However, as one might expect, there is a trade-off
that must be considered before using the MODIFY
command. To quote from the manual: “Damage to
the SAS data set can occur if the system
terminates abnormally during a DATA step
containing the MODIFY statement.” The user
must take special care to prevent their dataset from
being corrupted while being MODIFY-ed, whether
the problem is caused by the execution of buggy
code or from the careless absence of a UPS upon a
power outage.

The most basic form of the MODIFY statement is
quite simple:

DATA dataset;
 MODIFY dataset;
 /* additional statements */
RUN;

It acts much like the SET statement discussed
earlier. However, there are some major differences
between the two:

• As mentioned above, the MODIFY statement

causes the current dataset to be changed in
place -without expending the I/O and disk space
to generate a new dataset. Therefore, as should
be expected, the name of the output dataset
must be the same as the one being modified.

• Additional variables cannot be added and

unneeded variables cannot be deleted from a
MODIFY-ed dataset. It should be noted that no
ERROR or WARNING statement will be
generated if these statements are present in the
SAS code; the requested structure alterations
will simply not be applied.

• The REPLACE statement causes the current

record to be rewritten in the MODIFY-ed SAS
dataset with any changes applied. The OUTPUT
statement causes a new record to be written to
the MODIFY-ed dataset – however, the original
record will still be present on the output file,
resulting in two separate records upon
completion of the DATA step. This difference
cannot be sufficiently emphasized – the
OUTPUT statement, when used with MODIFY
causes a second, duplicate record to be added
to the end of the current SAS dataset. The user
must be certain not to use OUTPUT instead of
REPLACE, which changes the current record in
place and does not result in an additional record.

• You cannot DELETE an observation when using

the MODIFY statement. You can, however, use
the REMOVE command to eliminate unwanted
observations.

The MODIFY statement can be used for sequential
(random) access. The syntax is similar to that of the
SET statement as discussed earlier:

DATA dataset;
 DO recno = 2 TO maxrec BY 2;
 MODIFY dataset POINT=recno
 NOBS=maxrec;
 /* additional statements */
 END;
 STOP;
RUN;

The need for the STOP statement is also similar to
that of the SET statement - assuming the coder
wishes to avoid the pitfalls of an infinite loop.
It is also possible to join two or more SAS datasets
using the MODIFY statement. As with the other
examples in this section, the syntax is similar to that
of the SET and UPDATE statements.

DATA master;
 MODIFY master transact;
 BY keyvar1 keyvar2;
 /* additional statements */
RUN;

Both the master and transaction datasets must
contain the same key variables. However, they do
not need to be sorted by those variables – the
presence of a BY statement causes the SAS System
to invoke a dynamic WHERE clause. Please note
that, although not required, it is highly recommended
for efficiency sake that the datasets be sorted or
indexed by the key variables in the BY statement.)

There is one other important difference - multiple
records with the same key values act differently
when processed with the MODIFY statement.
Duplicate key values in the master file will not be
altered – only the first record of occurrence is
updated due to the aforementioned WHERE clause
processing. (As one might expect, multiple records
in the transaction file will overwrite each other, so
that only the changes in last transaction record in
the series will be available in the master dataset at
the end of the DATA step.) These differences
provide a “safety valve” to prevent unwanted
alterations to your permanent SAS data.

Speaking of “safety valves”, the user is highly
encouraged to incorporate the automatic variable
IORC into their routines. _IORC_ contains the
return code for every I/O operation that is performed
by the MODIFY statement – or rather, that for each
one that is attempted. The simplest use would be to
simply ensure that the field contains a zero before
continuing on with the routine. It can be made more
complex, with logic handling specific errors, or by
using the IORCMSG function to obtain and display
the associated error message for the return code.
(Note that IORCMSG is not available under Version
6 of the SAS System.)

Conclusion

This presentation is designed to be a brief
introduction to the SET, MERGE, UPDATE, and
MODIFY commands. It is not a “shopping list” of the
various options available for each command; that
information is readily available in the manuals, as
listed in “References” below. The reader is

encouraged to sit down at the computer and try
examples of each command to facilitate his or her
learning of the subject; only after hands-on trial will
the information truly be meaningful to the reader.

References / For Further Information

Kuligowski, Andrew T. (1999), "Pruning the
SASLOG – Digging into the Roots of NOTEs,
WARNINGs, and ERRORs". Proceedings of the
Seventh Annual Conference of the SouthEast SAS
Users Group. USA.

Riba, S. David. “The SET Statement and Beyond:
Uses and Abuses of the SET Statement”.
http://www.jadetek.com/download/jade_set.pdf

SAS Institute, Inc. (1990), SAS Language:
Reference, Version 6, First Edition. Cary, NC: SAS
Institute, Inc.

SAS Institute, Inc. (2000), SAS OnlineDoc, Version
8. Cary, NC: SAS Institute, Inc.

SAS Institute, Inc. (1994), SAS Software: Abridged
Reference, Version 6, First Edition. Cary, NC: SAS
Institute, Inc.

SAS Institute, Inc. (1991). SAS Technical Report P-
222, Changes and Enhancements to Base SAS
Software, Release 6.07. Cary, NC: SAS Institute,
Inc.

SAS and all other SAS Institute Inc. product or
service names are registered trademarks or
trademarks of SAS Institute, Inc. in the USA and
other countries. ® indicates USA registration.

Other brand and product names are registered
trademarks or trademarks of their respective
companies.

Special thanks to Dave Riba and Ian Whitlock for
their suggestions while preparing this paper.

The author can be contacted via e-mail as follows:
 Andrew T. Kuligowski
 A_Kuligowski@msn.com
 kuligoat@tvratings.com

Understanding and Using Functions
Frank C. DiIorio

Advanced Integrated Manufacturing Solutions, Co.
Durham NC

Introduction
Let’s start by admitting that programmers are, at heart,
rather lazy. We want procedures to do our sorting, print-
ing, and analysis. We want formats to display the number
‘5’ as ‘Well above average’. In essence, we don’t want to
code any more statements than we have to. With that in
mind, let’s look at another code and time-saving feature of
the SAS System.
This paper gives an overview of functions, a powerful set
of tools in the SAS System. Functions are a set of prede-
fined routines that come with the SAS System. They per-
form a wide range of activities, and often reduce complex
computations that would require arduous and error-prone
DATA step coding to a single, simple statement. Not even
a novice SAS programmer’s toolbox is complete without a
basic knowledge of system functions.
This paper introduces SAS novices to functions. Basic
terminology is reviewed first, followed by usage issues
common to nearly all functions. The last section of the
paper describes the purpose and syntax of some of the
more commonly used functions. Bear in mind that this pa-
per is simply an overview of a broad and sometimes com-
plex topic. The reader should consult SAS Institute docu-
mentation for the definitive, exhaustive description of the
purpose, limitations, and uses of the functions.

Fundamentals
The logic that’s common to all functions is straightfor-
ward. Two components of function syntax – the function
name and its parameters – identify what is to be per-
formed. The first component is the function name. It
identifies the action that the function performs – identify
the minimum of a list of numbers (the MIN function), lo-
cate the third word in a character variable (the SCAN
function), and so on. The name usually gives some idea of
the activities performed by the function.
The second function component is a list of parameters
(sometimes referred to as arguments) enclosed in paren-
theses. Notice in the above description of the function
names we said “minimum of a list” and “third word in a
character variable.” The “of” and “in” identify what the
function should operate on. Putting these two pieces to-
gether, let’s look at two complete uses of these functions:

min_year = min(fy2001q1, fy2001q2,
 fy2001q3);
file_name = scan(dir_line, 3, ‘ ‘);

The first statement creates the numeric variable
MIN_YEAR, which is the minimum of three arguments,
fy2001q1, fy2001q2, and fy2001q3. The second statement
creates a character variable, FILE_NAME, which is the

third piece of variable DIR_LINE, the pieces being delim-
ited by blanks.
The functions are said to be “called” – in the first state-
ment, we called the MIN function, in the second, we called
the SCAN function. Functions are said to “return” a value
– in the first statement, we call the MIN function and it
returns a value, stored in MIN_YEAR, that is the mini-
mum of the three arguments passed to it.
Both the idea and the syntax are simple – specify the ap-
propriate function name and give the function parameters
and results are returned. Just as procedures perform a
great deal of work with relatively few statements, so do
functions simplify potentially tedious calculations. Before
looking at what specific functions do, let’s look at some
logical and syntactical issues common to all of them.

Syntax and Usage
Before using this paper or the SAS documentation’s de-
scription of the many available functions, consider the
following points carefully:
Functions Can Be Used Pretty Much Anywhere. Func-
tions usually perform some form of calculation, and cal-
culations are usually considered in the context of the
DATA step. Keep in mind that, with some documented
exceptions, functions can be used anywhere an evaluation
of constants and/or variables can take place.
Here are some non-DATA step examples. Look at them
more for their use outside the DATA step than for the ac-
tual operation they perform:

proc print data=subset
 (where=(index(vin, ‘NR’) > 0));

proc freq data=mast01;
tables grp / missing;
where nmiss(of fy1999q1—fy2001q4) > 2;

Names Matter (Gotcha #1). There are specific names for
specific function activities. These cannot be reassigned
(changing MIN to MINIMUM, for example). What you
can do, and probably won’t want to, once you see the re-
sult, is define an array with the same name as a function.
Watch what happens:

data phase1;
set master;
array min(4); /* each group’s minimum */
do i = 1 to 4;
 min(i) = min(of group1-group4);
end;

SAS gets confused – is MIN a reference to the function or
the array? The default action is to recognize MIN as an
array, effectively disabling the MIN function. The fol-
lowing message is printed in the SAS Log:

WARNING: An array is being defined with the
same name as a SAS-supplied or user-defined
function. Parenthesized references involving
this name will be treated as array refer-
ences and not function references.

Bottom line: there are lots of words in the language. De-
fine arrays with names that don’t conflict with function
names.
Names Matter (Gotcha #2). Programmers new to SAS,
or those regularly moving back and forth between SAS and
other languages, must be careful not to assume that func-
tion x in one language does the same thing in another lan-
guage. Don’t make assumptions. Read the documentation
carefully, and be sure the functionality is identical.
If you need motivation in this regard, consider the subtle
difference in this example: the TRIM function is in
EXCEL and SAS, and performs basically the same activity
(trimming blanks from a character variable). In EXCEL,
both leading and trailing blanks are trimmed, but SAS
trims only the trailing blanks. It’s usually easier to review
documentation for the functions than it is to debug their
unadvised usage.
Look at Data Types Carefully. Some functions require
numeric arguments, others require character arguments.
Yet others require a mix of these data types. The type(s)
of the argument(s) does not influence the value returned by
the function. The LENGTH function, for example, returns
the location of the last non-blank character in a variable.
The function requires a character argument but returns a
numeric value.
The Number of Arguments Varies. The number of ar-
guments required by a function will, of course, depend on
the type of work the function performs. Even using the
same function, though, the number of arguments can vary.
MIN and other descriptive statistic functions can handle a
varying number of arguments, provided there are enough
values to perform the required task (you need at least three
arguments to calculate skewness, for example). Other
functions expect “n” arguments and will make assumptions
if they do not receive the full “n” – the third argument to
the SUBSTR function, for example, is the number of posi-
tions to extract from a character variable. If omitted from
the SUBSTR call, the default behavior is to subset to the
rightmost position in the variable.
Parameter Order May Matter. Some functions do not
care about the order in which arguments are specified. The
SUM function, for example, performs an action (addition)
that is, by nature, indifferent to order. Other functions are
not so forgiving, and assign specific meanings to argu-
ments. The first argument to the ROUND function, for
example, is a numeric value. The second argument is the
rounding unit (“round to the nearest …”). SAS is often
unable to detect misspecified parameters because they may
make syntactical sense but do not have logical validity.
Consider the following statements:

inc1 = round(income, 1000);
inc2 = round(1000, income);

INC1 is variable INCOME rounded to the nearest 1000,

while INC2 is 1000 rounded to the nearest INCOME.
Both statements are syntactically valid, but only INC1
makes sense. It’s important to realize that from SAS’ per-
spective, both statements are acceptable. It’s up to the
programmer to become familiar with parameter order and
meaning (and then, of course, follow through and write the
statement correctly!).
Watch Out for Range Restrictions. Some functions will
process any values, provided their data types are correct.
Others require one or all values to be in a range of values.
The restriction may be known prior to coding (the square
root function SQRT cannot process a negative value),
while other limits are imposed by the nature of the opera-
tion (you cannot use SUBSTR to go beyond the length of a
character variable). In all cases, if you specify one or more
invalid arguments, SAS will issue a message in the Log
and the function will return a missing value. Suppose we
specify this statement:

rounded = round(rate, rate_factor);
If RATE_FACTOR is a missing value or negative,
ROUNDED will be set to missing, and the SAS Log will
contain a message similar to:

NOTE: Argument 2 to function ROUND at line
1449 column 11 is invalid.

Missing Values Sometimes Matter. Missing values in
one or more arguments may influence the value returned
by the function. If we specify a missing value where we
should have entered the starting location of a substring,
then SAS will display an error message and the function
will return a missing value.
Other functions are not as fussy. Most descriptive statistic
functions – SUM, MEAN, RANGE, and the like – will op-
erate on any non-missing arguments. This is an important
distinction, since a simple assignment statement not using
functions will create a missing value if any of its operands
is missing. Examine the following code:

q1 = 300; q2 = 350; q3 = 250; q4 = .;
year_tot_1 = q1 + q2 + q3 + q4;
year_tot_2 = sum(of q1-q4);

The first assignment statement has a form which requires
all operands to be numeric and non-missing. Since Q4 is
missing, the result, YEAR_TOT_1, will be missing. The
second assignment uses the SUM function. Its parameters
match the operands of the previous statement, but it returns
a value because the function uses only non-missing values.
YEAR_TOT_2 is 900. The impact of missing values is
significant here and in other statistical functions.
Here, as in the points noted above, we emphasize the need
to carefully review the function’s documentation prior to
writing the program.
Specify Character Variable Lengths. If the function is
returning a character variable, specify the length of the
variable to avoid unanticipated padding. In this example,
variable QUOTED is length 200, regardless of the length
of TEXT.

data revised;
set temp2;

quoted = quote(text);
run;

Adding a LENGTH statement to the program brings
QUOTED to a more reasonable length (TEXT’s length –
assume $20 – plus two positions for quotes):

data revised;
set temp2;
length quoted $22;
quoted = quote(text);
run;

Parameter Specification Can Vary Greatly. Arguments
to most functions can be constants, variables, or expres-
sions (including other function calls). In general, the
function will accept a value as long as the specification
results in a value that is appropriate. Here are some exam-
ples. As before, look at them for style rather than exact
meaning:

small_pair = min(min(c1,c2), min(d1,d2));
piece = substr(line, 1, length(line) – 3);
tot = sub + reg + sum(ot1, ot2, ot3);

The first two statements are examples of functions being
used as arguments to other functions. This is commonly
referred to as “nesting.” The statements are concise, but
bear in mind the difficulty of debugging them. What is the
minimum of C1 and C2? Of D1 and D2? With the state-
ment written as is, you can’t tell. It may be easier in the
long run to break up the statement:

min_c = min(c1, c2);
min_d = min(d1, d2);
small_pair = min(min_c, min_d);

Finally, remember that SAS will do its best to reduce each
argument to its simplest form. This behavior is predict-
able, but can lead to unexpected results if only casually
recalled. Consider this code fragment:

v1 = 3; v2 = 4; v3 = 10; v4 = 6;
max_v = max(v1-v4);

Looking at the assignment statements, you would expect
the value of MAX_V to be 10. Instead, it is –3. Why?
Because SAS will resolve the argument before it is passed
to the function. Instead of seeing a list – “V1 through V4”
– SAS sees an arithmetic expression – “V1 minus V4.”
Thus only 3 minus 6, or –3, is passed to the MAX function
and –3, by definition, is the maximum, since no other pa-
rameters are available for evaluation. Fortunately, MAX
and other statistical functions have a way to specify V1-V4
as a list, rather than an expression. It is shown below and
also noted in the last section’s description of various func-
tions:

max_v = max(of v1-v4);
Functions Can Be Used “On the Fly.” The previous
point’s examples hinted at a powerful capability of using
functions within SAS. Rather than store a function result
in a variable, it’s possible to make it transient, available
only for purposes of evaluation and not for storage as a
variable. Here we show the ability to use functions in de-
cision-making statements.

if index(line, ‘.txt’) > 0 then do;
 code, code, and more code

select (quarter(start_date));
 when (1) do;

 code, code, and more code
CALL Routines Are Close Cousins of Functions. A
separate set of routines, called CALL routines (for obvious
reasons that we’ll soon see) are equivalent in spirit, if not
syntax, to functions. The idea is the same as functions –
create a value by passing a certain number of parameters
of a certain data type in a certain order. The principal dif-
ference is in their invocation, as shown in the examples
below:

call label(var_names(i), label_text);
if eof then call symput
 (‘count’, put(_nread, 3.));

Functions would return a transient, “on the fly” value or
have their value stored in a variable. By contrast, CALL
routines typically specify operands and results in the pa-
rameter list.
For the purposes of this paper, CALL routines and func-
tions are treated identically. Their syntactical differences
and distinctions are clearly highlighted in SAS documen-
tation.

Commonly-Used Functions
A complete list of functions, grouped by category, is found
in the Appendix. This section takes a closer look at some
of the more commonly used functions and gives examples
of their use. The order and category names correspond to
the SAS Online Doc. Yet again – refer to SAS Institute
documentation for a description of parameters and other
usage notes.
Category/Name Description and example of usage
array
dim Number of elements in an array.

do i = 1 to dim(list);
character
compbl Removes consecutive blanks from a string.

old = ‘much extra space’;
new = compbl(old);

NEW becomes ‘much extra space’
compress Removes characters from a string.

old = ‘Chapel Hill, NC – 27516’;
new1 = compress(old);
new2 = compress(old, ‘,-‘);
NEW1 becomes ‘ChapelHill,NC-27516’
NEW2 becomes ‘Chapel Hill NC 27516’

You could use COMPBL on NEW2 to remove
consecutive blanks.

index Gives the starting position of a string within a
string.

string = ‘\temp\examples1.sas’;
loc1 = index(string, ‘.sas’);
loc2 = index(string, ‘.SAS’);
loc3 = index(upcase(string), ‘.SAS’);

LOC1 equals 1, LOC2 equals 0 (not found), LOC3
equals 16

left Left-aligns a string
old = ‘ leading blanks’;
new = left(old);

NEW equals ‘leading blanks’
length Returns the length (rightmost non-blank character)

of a string.
length old $40;
old = ‘Short’;
len = length(old);

Category/Name Description and example of usage
LEN equals 5.

lowcase Lower-cases a string.
old = ‘Mixed Case’;
new = lowcase(old);

NEW equals ‘mixed case’
quote Encloses a string in double quotes.

old = ‘WUNC’; /* Length of OLD = 10 */
length new $12; /* +2 to allow for quotes */
new = quote(“WUNC”);

NEW equals “WUNC “ /* quotes are part of the
value */

repeat Repeats a string “n” times.
old = ‘dog’;
new = repeat(old, 4);

NEW equals ‘dogdogdogdogdog’ Remember to
set a length for NEW!

reverse Reverses a string.
old = ‘Looks OK’;
new = reverse(old);

NEW equals ‘KO skooL’
right Right justifies a string.

old = ‘Cats and Dogs’; /* OLD is $15 */
new = right(old);

NEW equals ‘ Cats and Dogs’
scan Scans a string for a character expression (‘word’)

using a default or user-specified word.
old = ‘temp\filexxx.dat’;
new1 = scan(old, 1);
new2 = scan(old, 2, ‘.\’);
new3 = scan(old, -1, ‘.\’);

NEW1 equals ‘temp\filexxx’
NEW2 equals ‘filexxx’
NEW3 equals ‘dat’

substr Extracts or replaces a portion of a string.
old = ‘Chapel Hill NC 27516’;
new = substr(old, length(old)-4);

NEW equals ‘27516’
old = ‘J*V87’;
if substr(old, 2, 1) = ‘*’ then do;

translate Changes all occurrences of one character in a
string to another.

old = ‘Line1*Line2*Line3’;
new = translate(old, ‘/’, ‘*’);

NEW equals ‘Line1/Line2/Line3’
tranwrd Similar to TRANSLATE, but at the word level.

Parameter order is different (from-to, rather than
to-from!)

old = ‘Mrs. Smith’;
new = tranwrd(old, ‘Mrs.’, ‘Sra.’);

NEW equals “Sra. Smith”
upcase Upper-cases a string.

old = ‘Mixed Case’;
new = upcase(old);

NEW equals ‘MIXED CASE’
date and time
date Returns the current date as a SAS date value

today = date()
TODAY is 15138 (June 12, 2001 if formatted)

datetime Returns the current date-time as a SAS datetime
value.

rightnow =datetime();
RIGHTNOW is 1307985980.7
(12JUN2001:17:26:21 if formatted)

day /
month /
year

Extract the day, month, and year numbers from a
SAS date value.

curr_day = day(today());
CURR_DAY equals 12 if today is June 12, 2001.

hour /
minute /
second

Extracts the hour, minute, and second from a SAS
time value.

curr_hr = hour(onset);
CURR_HR equals 7 if ONSET is 7:04.

Category/Name Description and example of usage
intck Returns the number of intervals between two

dates, times, or date-times.
qtr=intck('qtr','01jan2001'd,'01dec2001'd);

QTR equals 3
intnx Advances a date, time, or date-time by a specified

interval.
yr=intnx('year','15mar99'd,2);

YR equals 14976 (01JAN01 if formatted)
mdy Creates a SAS date value from user-specified

month, day, and year.
sas_date = mdy(1, 1, 2001);

SAS_DATE is 14976
time /
today

Return the current time and date. Note that these
functions do not require parameters. The paren-
theses are necessary for SAS to make the distinc-
tion between the function call to DATE and TIME
and variables of the same name.

curr_time = time();
curr_date = date();

CURR_TIME is 63666.44 (17:41 if formatted)
CURR_DATE is 15138 (June 12, 2001 if format-
ted)

descriptive statistics
all functions See Appendix A for details.

The function names correspond to statistics avail-
able in the MEANS procedure.
General form of usage is:

function_name(arg1, arg2, …)
function_name(OF base1-baseN)

For example:
tot = sum(ne, se, nw, sc, pc, mw);
tot = sum(of r1-r5);
tot = sum(of r1-r5, intl);

macro
symput CALL routine

if eof then call symput(‘goodones’, put(_n,3.));
Macro variable GOODONES contains the value of
variable _N.

symget Retrieves the value of a macro variable.
status = symget(‘stat’);

DATA step variable STATUS equals the value of
macro variable STAT.

math
abs Returns the absolute value of a numeric variable.

old = -3;
new = abs(old);

NEW equals 3
fact Returns the factorial of an integer.

fact = fact(5);
FACT equals 120

log /
log10 /
log2

Return the natural, base 10, and base 2 loga-
rithms of a positive number.

mod Returns the remainder of a division.
old = 100;
new1 = mod(old, 10);
new2 = mod(old, 8);

NEW1 equals 0 (no remainder)
NEW2 equals 4 (4 left over when 100 is divided by
8)

random number
rannor /
ranuni

As CALL routines, they return random variates
from normal and uniform distributions.

call ranuni(-1);
rannor /
ranuni

As functions, they return random variates from
normal and uniform distributions. The CALL rou-
tines greater control over seed values.

call rannor(-1);
special
system CALL routine, it submits a host operating system

command for execution.

Category/Name Description and example of usage
call system(“dir p:\qc\meas*.txt /s >

c:\temp\dir.txt”);
Creates text file c:\temp\dir.txt, which contains the
output from a directory command.

input Allows a character variable to be read using stan-
dard SAS informats. This is a way to convert
character values to numeric.

char_date = ‘2001/08/19’;
num_date = input(char_date, yymmdd10.);

NUM_DATE has a numeric data type, with a value
of 15206.

put The reverse of INPUT, it writes formatted charac-
ter or numeric variables to a target character vari-
able.

sales_c = put(sales, dollar8.) || ‘ - ‘ ||
 put(sales, salefmt.);
User-written format SALEFMT might result in a
SALES_C value such as “120,300 – Time to buy a
Lexus!”

system Issues an operating system command and cap-
tures its return code.

rc = system(‘cd t:\prod\rpts\graphs’);
state and ZIP code
FIPNAME /
FIPSTATE /

Converts FIPS codes to state names and postal
codes.

fip_state = 37;
name = fipname(fip_state);
postal = fipstate(fip_state);

NAME equals “NORTH CAROLINA”
POSTAL equals “NC”

STFIPS /
STNAME

Converts state postal codes to FIPS codes and
state names.

postal = ‘NC’;
name = stname(postal);
postal = stfips(postal);

NAME equals “NORTH CAROLINA”
POSTAL equals “NC”

ZIPFIPS /
ZIPNAME /
ZIPSTATE

Converts ZIP codes to FIPS codes, state names,
and state postal codes.

zip = ‘27516’;
name = zipname(zip);
postal = zipfips(zip);
fips = zipfips(zip);

NAME equals “NORTH CAROLINA”
POSTAL equals “NC”
FIPS = 37;

truncation
ceil Rounds up to the nearest integer.

old = 2.3;
new = ceil(old);

NEW equals 3.
floor Rounds down to the nearest integer.

old = 2.3;
new = ceil(old);

NEW equals 2.
int Returns the integer portion of a number.

old = -8.9;
new = int(old);

NEW equals –8.
round Rounds to the nearest rounding unit (default

rounding unit is 1).
old = 100.53;
new1 = round(old);
new2 = round(old, .1);

NEW1 equals 101
NEW2 equals 100.5

variable control
label CALL routine, it returns the value of a variable’s

label.
label old = “Old’s nondescript label”;
call label(old, label_value);

LABEL_VALUE equals “Old’s nondescript label”

Category/Name Description and example of usage
vname CALL routine, it returns the name of a variable.

length name $32;
array temp(*) st-block;
do i = 1 to dim(temp);
 call vname(temp(i), name);
 put name=;
end;

This code writes the name of each element in
TEMP.

Questions? Comments?
Your feedback is always welcome. Contact the author at
fcd1@mindspring.com.

Appendix A: Functions and CALL Routines
by Category
The table in this appendix is taken directly from the Ver-
sion 8.0 SAS Online Doc. It gives an idea of the power
and versatility of the functions and CALL routines that
come with the SAS System. For details, of course, refer to
the specific help file or other SAS documentation.

Array
DIM Returns the number of elements in an array
HBOUND Returns the upper bound of an array
LBOUND Returns the lower bound of an array

Bitwise Logical Operations
BAND Returns the bitwise logical AND of two arguments
BLSHIFT Returns the bitwise logical left shift of two arguments
BNOT Returns the bitwise logical NOT of an argument
BOR Returns the bitwise logical OR of two arguments
BRSHIFT Returns the bitwise logical right shift of two arguments
BXOR Returns the bitwise logical EXCLUSIVE OR of two arguments

Character String Matching
CALL RXCHANGE Changes one or more substrings that match a pattern
CALL RXFREE Frees memory allocated by other regular expression (RX) functions

and CALL routines
CALL RXSUBSTR Finds the position, length, and score of a substring that matches a

pattern
RXMATCH Finds the beginning of a substring that matches a pattern and re-

turns a value
RXPARSE Parses a pattern and returns a value

Character
BYTE Returns one character in the ASCII or the EBCDIC collating se-

quence
COLLATE Returns an ASCII or EBCDIC collating sequence character string
COMPBL Removes multiple blanks from a character string
COMPRESS Removes specific characters from a character string
DEQUOTE Removes quotation marks from a character value
INDEX Searches a character expression for a string of characters
INDEXC Searches a character expression for specific characters
INDEXW Searches a character expression for a specified string as a word
LEFT Left aligns a SAS character expression
LENGTH Returns the length of an argument
LOWCASE Converts all letters in an argument to lowercase
MISSING Returns a numeric result that indicates whether the argument con-

tains a missing value
QUOTE Adds double quotation marks to a character value
RANK Returns the position of a character in the ASCII or EBCDIC collating

sequence
REPEAT Repeats a character expression
REVERSE Reverses a character expression
RIGHT Right aligns a character expression
SCAN Selects a given word from a character expression
SOUNDEX Encodes a string to facilitate searching
SPEDIS Determines the likelihood of two words matching, expressed as the

asymmetric spelling distance between the two words
SUBSTR

(left of =)
Replaces character value contents

SUBSTR Extracts a substring from an argument

TRANSLATE Replaces specific characters in a character expression

Character
TRANWRD Replaces or removes all occurrences of a word in a character string
TRIM Removes trailing blanks from character expressions and returns one

blank if the expression is missing
TRIMN Removes trailing blanks from character expressions and returns a

null string (zero blanks) if the expression is missing
UPCASE Converts all letters in an argument to uppercase
VERIFY Returns the position of the first character that is unique to an expres-

sion

Double-Byte Character Set (DBCS)
KCOMPARE Returns the result of a comparison of character strings
KCOMPRESS Removes specific characters from a character string
KCOUNT Returns the number of double-byte characters in a string
KINDEX Searches a character expression for a string of characters
KINDEXC Searches a character expression for specific characters
KLEFT Left aligns a SAS character expression by removing unnecessary

leading DBCS blanks and SO/SI
KLENGTH Returns the length of an argument
KLOWCASE Converts all letters in an argument to lowercase
KREVERSE Reverses a character expression
KRIGHT Right aligns a character expression by trimming trailing DBCS blanks

and SO/SI
KSCAN Selects a given word from a character expression
KSTRCAT Concatenates two or more character strings
KSUBSTR Extracts a substring from an argument
KSUBSTRB Extracts a substring from an argument based on byte position
KTRANSLATE Replaces specific characters in a character expression
KTRIM Removes trailing DBCS blanks and SO/SI from character expres-

sions
KTRUNCATE Truncates a numeric value to a specified length
KUPCASE Converts all single-byte letters in an argument to uppercase
KUPDATE Inserts, deletes, and replaces character value contents
KUPDATEB Inserts, deletes, and replaces character value contents based on

byte unit
KVERIFY Returns the position of the first character that is unique to an expres-

sion

Date and Time
DATDIF Returns the number of days between two dates
DATE Returns the current date as a SAS date value
DATEJUL Converts a Julian date to a SAS date value
DATEPART Extracts the date from a SAS datetime value
DATETIME Returns the current date and time of day as a SAS datetime value
DAY Returns the day of the month from a SAS date value
DHMS Returns a SAS datetime value from date, hour, minute, and second
HMS Returns a SAS time value from hour, minute, and second values
HOUR Returns the hour from a SAS time or datetime value
INTCK Returns the integer number of time intervals in a given time span
INTNX Advances a date, time, or datetime value by a given interval, and

returns a date, time, or datetime value
JULDATE Returns the Julian date from a SAS date value
JULDATE7 Returns a seven-digit Julian date from a SAS date value
MDY Returns a SAS date value from month, day, and year values
MINUTE Returns the minute from a SAS time or datetime value
MONTH Returns the month from a SAS date value
QTR Returns the quarter of the year from a SAS date value
SECOND Returns the second from a SAS time or datetime value
TIME Returns the current time of day
TIMEPART Extracts a time value from a SAS datetime value
TODAY Returns the current date as a SAS date value
WEEKDAY Returns the day of the week from a SAS date value
YEAR Returns the year from a SAS date value
YRDIF Returns the difference in years between two dates
YYQ Returns a SAS date value from the year and quarter

Descriptive Statistics
CSS Returns the corrected sum of squares
CV Returns the coefficient of variation
KURTOSIS Returns the kurtosis
MAX Returns the largest value
MEAN Returns the arithmetic mean (average)
MIN Returns the smallest value
MISSING Returns a numeric result that indicates whether the argument con-

tains a missing value
N Returns the number of nonmissing values
NMISS Returns the number of missing values
ORDINAL Returns any specified order statistic
RANGE Returns the range of values
SKEWNESS Returns the skewness
STD Returns the standard deviation
STDERR Returns the standard error of the mean
SUM Returns the sum of the nonmissing arguments
USS Returns the uncorrected sum of squares
VAR Returns the variance

External Files
DCLOSE Closes a directory that was opened by the DOPEN function and

returns a value
DINFO Returns information about a directory

External Files
DNUM Returns the number of members in a directory
DOPEN Opens a directory and returns a directory identifier value
DOPTNAME Returns directory attribute information
DOPTNUM Returns the number of information items that are available for a

directory
DREAD Returns the name of a directory member
DROPNOTE Deletes a note marker from a SAS data set or an external file and

returns a value
FAPPEND Appends the current record to the end of an external file and returns

a value
FCLOSE Closes an external file, directory, or directory member, and returns a

value
FCOL Returns the current column position in the File Data Buffer (FDB)
FDELETE Deletes an external file or an empty directory
FEXIST Verifies the existence of an external file associated with a fileref and

returns a value
FGET Copies data from the File Data Buffer (FDB) into a variable and

returns a value
FILEEXIST Verifies the existence of an external file by its physical name and

returns a value
FILENAME Assigns or deassigns a fileref for an external file, directory, or output

device and returns a value
FILEREF Verifies that a fileref has been assigned for the current SAS session

and returns a value
FINFO Returns the value of a file information item
FNOTE Identifies the last record that was read and returns a value that

FPOINT can use
FOPEN Opens an external file and returns a file identifier value
FOPTNAME Returns the name of an item of information about a file
FOPTNUM Returns the number of information items that are available for an

external file
FPOINT Positions the read pointer on the next record to be read and returns

a value
FPOS Sets the position of the column pointer in the File Data Buffer (FDB)

and returns a value
FPUT Moves data to the File Data Buffer (FDB) of an external file, starting

at the FDB’s current column position, and returns a value
FREAD Reads a record from an external file into the File Data Buffer (FDB)

and returns a value
FREWIND Positions the file pointer to the start of the file and returns a value
FRLEN Returns the size of the last record read, or, if the file is opened for

output, returns the current record size
FSEP Sets the token delimiters for the FGET function and returns a value
FWRITE Writes a record to an external file and returns a value
MOPEN Opens a file by directory id and member name, and returns the file

identifier or a 0
PATHNAME Returns the physical name of a SAS data library or of an external

file, or returns a blank
SYSMSG Returns the text of error messages or warning messages from the

last data set or external file function execution
SYSRC Returns a system error number

External Routines
CALL MODULE Calls the external routine without any return code
CALL MODULEI Calls the external routine without any return code (in IML environ-

ment only)
MODULEC Calls an external routine and returns a character value
MODULEIC Calls an external routine and returns a character value (in IML envi-

ronment only)
MODULEIN Calls an external routine and returns a numeric value (in IML envi-

ronment only)
MODULEN Calls an external routine and returns a numeric value

Financial
COMPOUND Returns compound interest parameters
CONVX Returns the convexity for an enumerated cashflow
CONVXP Returns the convexity for a periodic cashflow stream, such as a bond
DACCDB Returns the accumulated declining balance depreciation
DACCDBSL Returns the accumulated declining balance with conversion to a

straight-line depreciation
DACCSL Returns the accumulated straight-line depreciation
DACCSYD Returns the accumulated sum-of-years-digits depreciation
DACCTAB Returns the accumulated depreciation from specified tables
DEPDB Returns the declining balance depreciation
DEPDBSL Returns the declining balance with conversion to a straight-line de-

preciation
DEPSL Returns the straight-line depreciation
DEPSYD Returns the sum-of-years-digits depreciation
DEPTAB Returns the depreciation from specified tables
DUR Returns the modified duration for an enumerated cashflow
DURP Returns the modified duration for a periodic cashflow stream, such

as a bond
INTRR Returns the internal rate of return as a fraction
IRR Returns the internal rate of return as a percentage
MORT Returns amortization parameters
NETPV Returns the net present value as a fraction
NPV Returns the net present value with the rate expressed as a percent-

age
PVP Returns the present value for a periodic cashflow stream, such as a

bond
SAVING Returns the future value of a periodic saving
YIELDP Returns the yield-to-maturity for a periodic cashflow stream, such as

a bond

Hyperbolic
COSH Returns the hyperbolic cosine
SINH Returns the hyperbolic sine
TANH Returns the hyperbolic tangent

Macro
CALL EXECUTE Resolves an argument and issues the resolved value for execution
CALL SYMPUT Assigns DATA step information to a macro variable
RESOLVE Returns the resolved value of an argument after it has been proc-

essed by the macro facility
SYMGET Returns the value of a macro variable during DATA step execution

Mathematical
ABS Returns the absolute value
AIRY Returns the value of the airy function
CNONCT Returns the noncentrality parameter from a chi-squared distribution
COMB Computes the number of combinations of n elements taken r at a

time and returns a value
CONSTANT Computes some machine and mathematical constants and returns a

value
DAIRY Returns the derivative of the airy function
DEVIANCE Computes the deviance and returns a value
DIGAMMA Returns the value of the DIGAMMA function
ERF Returns the value of the (normal) error function
ERFC Returns the value of the complementary (normal) error function
EXP Returns the value of the exponential function
FACT Computes a factorial and returns a value
FNONCT Returns the value of the noncentrality parameter of an F distribution
GAMMA Returns the value of the Gamma function
IBESSEL Returns the value of the modified �essel function
JBESSEL Returns the value of the �essel function
LGAMMA Returns the natural logarithm of the Gamma function
LOG Returns the natural (base e) logarithm
LOG10 Returns the logarithm to the base 10
LOG2 Returns the logarithm to the base 2
MOD Returns the remainder value
PERM Computes the number of permutations of n items taken r at a time

and returns a value
SIGN Returns the sign of a value
SQRT Returns the square root of a value
TNONCT Returns the value of the noncentrality parameter from the student’s t

distribution
TRIGAMMA Returns the value of the TRIGAMMA function

Probability
CDF Computes cumulative distribution functions
LOGPDF Computes the logarithm of a probability (mass) function
LOGSDF Computes the logarithm of a survival function
PDF Computes probability density (mass) functions
POISSON Returns the probability from a Poisson distribution
PROBBETA Returns the probability from a beta distribution
PROBBNML Returns the probability from a binomial distribution
PROBBNRM Computes a probability from the bivariate normal distribution and

returns a value
PROBCHI Returns the probability from a chi-squared distribution
PROBF Returns the probability from an F distribution
PROBGAM Returns the probability from a gamma distribution
PROBHYPR Returns the probability from a hypergeometric distribution
PROBMC Computes a probability or a quantile from various distributions for

multiple comparisons of means, and returns a value
PROBNEGB Returns the probability from a negative binomial distribution
PROBNORM Returns the probability from the standard normal distribution
PROBT Returns the probability from a t distribution
SDF Computes a survival function

Quantile
BETAINV Returns a quantile from the beta distribution
CINV Returns a quantile from the chi-squared distribution
FINV Returns a quantile from the F distribution
GAMINV Returns a quantile from the gamma distribution
PROBIT Returns a quantile from the standard normal distribution
TINV Returns a quantile from the t distribution

Random Number
CALL RANBIN Returns a random variate from a binomial distribution
CALL RANCAU Returns a random variate from a Cauchy distribution
CALL RANEXP Returns a random variate from an exponential distribution
CALL RANGAM Returns a random variate from a gamma distribution
CALL RANNOR Returns a random variate from a normal distribution
CALL RANPOI Returns a random variate from a Poisson distribution
CALL RANTBL Returns a random variate from a tabled probability distribution
CALL RANTRI Returns a random variate from a triangular distribution
CALL RANUNI Returns a random variate from a uniform distribution
NORMAL Returns a random variate from a normal distribution
RANBIN Returns a random variate from a binomial distribution
RANCAU Returns a random variate from a Cauchy distribution

Random Number
RANEXP Returns a random variate from an exponential distribution
RANGAM Returns a random variate from a gamma distribution
RANNOR Returns a random variate from a normal distribution
RANPOI Returns a random variate from a Poisson distribution
RANTBL Returns a random variate from a tabled probability
RANTRI Random variate from a triangular distribution
RANUNI Returns a random variate from a uniform distribution
UNIFORM Random variate from a uniform distribution

SAS File I/O
ATTRC Returns the value of a character attribute for a SAS data set
ATTRN Returns the value of a numeric attribute for the specified SAS data

set
CEXIST Verifies the existence of a SAS catalog or SAS catalog entry and

returns a value
CLOSE Closes a SAS data set and returns a value
CUROBS Returns the observation number of the current observation
DROPNOTE Deletes a note marker from a SAS data set or an external file and

returns a value
DSNAME Returns the SAS data set name that is associated with a data set

identifier
EXIST Verifies the existence of a SAS data library member
FETCH Reads the next nondeleted observation from a SAS data set into the

Data Set Data Vector (DDV) and returns a value
FETCHOBS Reads a specified observation from a SAS data set into the Data Set

Data Vector (DDV) and returns a value
GETVARC Returns the value of a SAS data set character variable
GETVARN Returns the value of a SAS data set numeric variable
IORCMSG Returns a formatted error message for _IORC_
LIBNAME Assigns or deassigns a libref for a SAS data library and returns a

value
LIBREF Verifies that a libref has been assigned and returns a value
NOTE Returns an observation ID for the current observation of a SAS data

set
OPEN Opens a SAS data set and returns a value
PATHNAME Returns the physical name of a SAS data library or of an external

file, or returns a blank
POINT Locates an observation identified by the NOTE function and returns

a value
REWIND Positions the data set pointer at the beginning of a SAS data set and

returns a value
SYSMSG Returns the text of error messages or warning messages from the

last data set or external file function execution
SYSRC Returns a system error number
VARFMT Returns the format assigned to a SAS data set variable
VARINFMT Returns the informat assigned to a SAS data set variable
VARLABEL Returns the label assigned to a SAS data set variable
VARLEN Returns the length of a SAS data set variable
VARNAME Returns the name of a SAS data set variable
VARNUM Returns the number of a variable’s position in a SAS data set
VARTYPE Returns the data type of a SAS data set variable

Special
ADDR Returns the memory address of a variable
CALL POKE Writes a value directly into memory
CALL SYSTEM Submits an operating environment command for execution
DIF Returns differences between the argument and its nth lag
GETOPTION Returns the value of a SAS system or graphics option
INPUT Returns the value produced when a SAS expression that uses a

specified informat expression is read
INPUTC Enables you to specify a character informat at run time
INPUTN Enables you to specify a numeric informat at run time
LAG Returns values from a queue
PEEK Stores the contents of a memory address into a numeric variable
PEEKC Stores the contents of a memory address into a character variable
POKE Writes a value directly into memory
PUT Returns a value using a specified format
PUTC Enables you to specify a character format at run time
PUTN Enables you to specify a numeric format at run time
SYSGET Returns the value of the specified operating environment variable
SYSPARM Returns the system parameter string
SYSPROD Determines if a product is licensed
SYSTEM Issues an operating environment command during a SAS session

State Postal, FIPS, and ZIP Codes
FIPNAME Converts FIPS codes to uppercase state names
FIPNAMEL Converts FIPS codes to mixed case state names
FIPSTATE Converts FIPS codes to two-character postal codes
STFIPS Converts state postal codes to FIPS state codes
STNAME Converts state postal codes to uppercase state names
STNAMEL Converts state postal codes to mixed case state names
ZIPFIPS Converts ZIP codes to FIPS state codes
ZIPNAME Converts ZIP codes to uppercase state names
ZIPNAMEL Converts ZIP codes to mixed case state names
ZIPSTATE Converts ZIP codes to state postal codes

Trigonometric
ARCOS Returns the arccosine
ARSIN Returns the arcsine

Trigonometric
ATAN Returns the arctangent
COS Returns the cosine
SIN Returns the sine
TAN Returns the tangent

Truncation
CEIL Returns the smallest integer that is greater than or equal to the ar-

gument
FLOOR Returns the largest integer that is less than or equal to the argument
FUZZ Returns the nearest integer if the argument is within 1E-12
INT Returns the integer value
ROUND Rounds to the nearest round-off unit
TRUNC Truncates a numeric value to a specified length

Variable Control
CALL LABEL Assigns a variable label to a specified character variable
CALL SET Links SAS data set variables to DATA step or macro variables that

have the same name and data type
CALL VNAME Assigns a variable name as the value of a specified variable

Variable Information
VARRAY Returns a value that indicates whether the specified name is an

array
VARRAYX Returns a value that indicates whether the value of the specified

argument is an array
VFORMAT Returns the format that is associated with the specified variable
VFORMATD Returns the format decimal value that is associated with the speci-

fied variable
VFORMATDX Returns the format decimal value that is associated with the value of

the specified argument
VFORMATN Returns the format name that is associated with the specified vari-

able
VFORMATNX Returns the format name that is associated with the value of the

specified argument
VFORMATW Returns the format width that is associated with the specified vari-

able
VFORMATWX Returns the format width that is associated with the value of the

specified argument
VFORMATX Returns the format that is associated with the value of the specified

argument
VINARRAY Returns a value that indicates whether the specified variable is a

member of an array
VINARRAYX Returns a value that indicates whether the value of the specified

argument is a member of an array
VINFORMAT Returns the informat that is associated with the specified variable
VINFORMATD Returns the informat decimal value that is associated with the speci-

fied variable
VINFORMATDX Returns the informat decimal value that is associated with the value

of the specified argument
VINFORMATN Returns the informat name that is associated with the specified vari-

able
VINFORMATNX Returns the informat name that is associated with the value of the

specified argument
VINFORMATW Returns the informat width that is associated with the specified vari-

able
VINFORMATWX Returns the informat width that is associated with the value of the

specified argument
VINFORMATX Returns the informat that is associated with the value of the specified

argument
VLABEL Returns the label that is associated with the specified variable
VLABELX Returns the variable label for the value of a specified argument
VLENGTH Returns the compile-time (allocated) size of the specified variable
VLENGTHX Returns the compile-time (allocated) size for the value of the speci-

fied argument
VNAME Returns the name of the specified variable
VNAMEX Validates the value of the specified argument as a variable name
VTYPE Returns the type (character or numeric) of the specified variable
VTYPEX Returns the type (character or numeric) for the value of the specified

argument

Web Tools
HTMLDECODE Decodes a string containing HTML numeric character references or

HTML character entity references and returns the decoded string
HTMLENCODE Encodes characters using HTML character entity references and

returns the encoded string
URLDECODE Returns a string that was decoded using the URL escape syntax
URLENCODE Returns a string that was encoded using the URL escape syntax

Basic SAS PROCedures for Generating Quick Results

Kirk Paul Lafler, Software Intelligence Corporation

Abstract
As an IT professional, saving time is critical. So is
delivering timely and quality looking reports to
management, end users, and customers. The SAS
System provides numerous "canned" PROCedures
for generating quick results to take care of both... and
more. Attendees will see how basic SAS
PROCedures such as SORT, PRINT, SQL, and
FORMS are used to create detail reports; how
CHART, FREQ, MEANS, PLOT, and UNIVARIATE
are used to summarize and create graphical, tabular,
or statistical output; and several useful techniques
including how to inform the SAS System which data
set to use as input to a procedure, how to subset data
using a WHERE statement (or WHERE= clause), and
how to perform BY-group processing to separate data
into groups of like information.

Introduction
Once data has been collected and stored in a SAS
data set, results can be produced quickly using one or
more procedures. The SAS System provides
numerous ready-to-use procedures designed for data
analysis and presentation. Procedures are designed
to be simple to use, and are what differentiate SAS
from other software products. SAS’ built-in
procedures offer users with a unique ability to
generate quick results – requiring little, if any,
programming skills. Using a procedure, or PROC, is
similar to filling out a simple request form. By
specifying the name of procedure and one or more
options, you can produce results quickly and easily.

Procedures frequently write their results to the Output
window (in SAS Display Manager), an output SAS
data set, or an output file. When output is produced, it
is often customized so it satisfies certain requirements
such as automatic centering, printing or displaying
dates and page numbers, and so on. Having the
ability to customize the way output appears as well as
the type of information that is produced is what makes
procedures an indispensable tool for users
everywhere.

SAS supports four categories of procedures: 1)
reporting, 2) statistical, 3) scoring, and 4) utility. This
paper investigates the use of several base-SAS
procedures to enable the production of quick and
useful reports, statistics, and tables of data, and will
also look at procedures that can be used to perform
simple data set management tasks.

The Anatomy of a PROC
Each procedure (or PROC) has unique characteristics
and elements, but many common ones too. Each
PROC consists of a keyword, one or more
statements, and options – of which some are required
and others are basically – optional. Although the
statements and options vary from PROC to PROC,
the basic anatomy of a PROC looks something like
the following:

PROC procname DATA= __________________;
TITLE ______________________________;
FOOTNOTE ___________________________;
BY _________________________________;
LABEL ______________________________;
FORMAT _____________________________;

RUN; <or> QUIT;

The PROC Statement
Every PROC begins with the keyword PROC and is a
required element. This keyword signals to the SAS
supervisor (the internal traffic cop that controls
everything that goes on in the SAS System) that a
“canned” procedure is being launched, and not a
DATA step or MACRO program.

The name of the PROC follows the keyword PROC –
our example above references the anatomy PROC. In
its simplest and purest form this is all that is required
by a few procedures to run. As you might expect
though, the results may also tend to be basic and
output will appear without any customizations.

Once the name of the PROC is specified, you may
then specify one or more options available with the
PROC, and in any order. In our basic skeletal
example above, the DATA= option appears. This
option, if specified, informs the SAS System what
data set to use as input to the PROC. If omitted, it
automatically defaults to the most recently created
data set – which may not be the most data set most
recently used. (Readers will see several PROCs and
their various options on the following pages).

TITLE and FOOTNOTE Statements
TITLE and FOOTNOTE statements are considered to
be global statements and can generally be used
universally throughout the SAS System (e.g., PROCs
and DATA steps). A maximum of ten TITLE and
FOOTNOTE statements can be specified in any
PROC. TITLE statements, when specified, appear at
the top of each output page and FOOTNOTE
statements, if present, produce output at the bottom
of each page of output. Readers are cautioned to use
care when specifying TITLE and FOOTNOTE

statements since they reduce the available space for
printing detail lines.

BY Statement
A BY statement is optional in all PROCs except the
SORT procedure. A BY statement in PROC SORT
tells SAS what the order or arrangement should be for
observations in a data set. A BY statement in any
other PROC informs SAS to perform a separate
analysis on the values in each BY group opposed to
one large group. The data must have been sorted
before it can be used in a reporting procedure.

LABEL Statement
A LABEL statement is also optional, and if present
allows a more descriptive label to be assigned as
variable (or column) headings. If omitted, SAS uses
the variable names as column headers on output.
When a LABEL statement is used in a PROC the
assigned descriptive labels are only available for
duration of the PROC step, and are not saved with
the data set.

FORMAT Statement
A FORMAT statement is an optional statement that,
when used, tells SAS to display information on output
in a designated way. For example, you could have a
date value displayed or written using a mm/dd/yyyy
form such as 08/20/2001 or a Month dd, yyyy form
such as August 20, 2001 to enhance readability. In
the absence of a FORMAT statement, data is
displayed using a internal date offset (the number of
days from January 1, 1960) or a user-defined date
format stored as part of the data set.

RUN or QUIT Statement
A RUN or QUIT statement tells SAS to terminate the
PROC step before executing the next step in a
program. A RUN statement is normally specified to
designate an end to a non-interactive procedure like
PROC PRINT, whereas a QUIT statement is specified
to terminate an interactive procedure such as PROC
SQL (more will be said about interactive procedures
later). Although not required statements, specifying a
RUN or QUIT statement can provide modest CPU
improvements since the SAS Supervisor knows when
one step ends and another begins.

A Print-Oriented World
Information is the lifeblood of virtually every
organization in today’s print-oriented world. And it
appears that this need for even more information by
decision makers is growing, according to Terence
Mullin of Quest Software, a software services
company located in Irvine, California. In the February
2001 Enterprise Systems Journal issue, “The Paper
Chase”, Mullin claims that “Industry experts predict
that digitally printed information will continue to
grow 10 percent, annually, through 2004”. This
translates into a huge and growing need for an
organization’s intellectual property.

Often an organization’s intellectual property is
collected and stored in multiple locations and not in a
centralized information repository. With much of this
information kept in scattered locations, from
employees’ PCs to network file servers and
databases, information is not always available for a
controlled reporting process. Although this can
present huge problems for an organization’s decision
makers, it is sadly a fact of life.

Description of Data Used in Reports
The examples in this paper reference a data set
containing a compilation of popular movies that I have
watched over the years. This Movies data set consists
of 22 observations, six variables, and contains the
following data sorted in ascending order by the Movie
Rating.

SAS Reporting Procedures
So you may be wondering how the SAS System and
its many PROCs can help with your reporting needs.
The answer is simple. SAS and its many “canned,
ready-to-go” PROCs turn information into structured
and meaningful reports. More than 3.5 million
software customers in 115 countries, and 98% of the
Fortune 100 companies and 90% of the Fortune 500
companies can attest to the fact that producing
detailed reports with the SAS System has never been
easier.

SAS and its many “canned, ready-
to-go” PROCs turn information
into structured and meaningful

reports.

Being able to put a powerful reporting tool in the
hands of so many users, and not only programmers,
is also an asset – not a liability. Having said this – it
remains critical that an organization maintain a
controlled environment to ensure information being
dispensed in any report does not violate privacy and

security issues. It is also critical to maintain a high
level of accuracy in all reported information.

SAS reporting PROCs consist of a broad range of
easy-to-use report formats. Because output is
frequently requested in a variety of formats to satisfy
a vast number of requirements, SAS is ready and
able to help by bundling base-SAS PROCs that
produce reports in the following formats:

1) Detail – prints one or more observations without
collapsing data that meet specific report criteria.

2) Summary – collapses and prints information.

3) Tabular – collapses and prints information with
borders.

4) Statistical – computes and prints descriptive
statistics.

5) Graphical – prints information as simple line-
oriented bar and pie charts, and line plots.

An alphabetical list of several SAS reporting PROCs
and their output formats is illustrated in table 1 below.

Report Output Style PROC
Detail Output FORMS

PRINT
REPORT
SQL

Summary Output CHART
FREQ
MEANS
PLOT
SQL
UNIVARIATE

Tabular Output FREQ
TABULATE

Statistical Output MEANS
SQL
UNIVARIATE

Graphical Output CHART
PLOT

Table 1. PROCs and Report Formats

PROCs for All That Detail
Sometimes a report must show all the detail it can.
When this is the case, SAS provides the PRINT,
REPORT, and SQL procedures to generate detail
reports and the FORMS procedure to produce
repetitive forms and labels. Although each PROC is
relatively easy to use, they can also provide the level
of support needed by even the most demanding
programmer. By using one or more statements and
options each PROC can produce simple to semi-
custom reports.

Using PROC PRINT
The PRINT procedure is a popular reporting tool that
is used by users everywhere. In its simplest form,
PROC PRINT prints all variables for all observations
in a data set. The SAS System writes a default title
line at the top of each report page automatically.

Suppose you had to create a report containing all
Movie data (all observations and variables) with the
littlest amount of code possible. The PROC PRINT
statement illustrated below is about as simple as it
gets – would produce a detail-oriented report
consisting of all observations and variables.

Procedure Code:

PROC PRINT DATA=SSU.MOVIES;
RUN;

When the PROC PRINT code is executed, the SAS
System applies certain defaults in creating report
output including the default title, the number of
observations, and list of variables.

Results:

Let’s take it a step further. Suppose you did not want
all the variables from the Movies data set – say you
wanted only the Movie Title, Length, and Rating in
that order. You could start with the PROC PRINT
code from the previous example and insert a VAR
statement between the PROC and RUN statements to
tell SAS what variables to output along with their
specific order on the report.

Procedure Code:

PROC PRINT DATA=SSU.MOVIES;
VAR TITLE LENGTH RATING;

RUN;

Results:

Although the PROC PRINT code from the previous
example printed the three variables you asked for, it
also printed the Observation number as column one
on the report. The observation number is
automatically displayed as the first column on all
PROC PRINT output – but can be suppressed by
specifying the NOOBS option. Suppose you wanted
to remove the observation column and change the
current title appearing at the top of the report.

Procedure Code:

PROC PRINT DATA=SSU.MOVIES NOOBS;
TITLE ‘Movie Classics’;
VAR TITLE LENGTH RATING;

RUN;

Results:

It is frequently necessary to subset the rows of data
generated on output with a WHERE statement.
Suppose you wanted to generate a report on PG and
PG-13 rated movies.

Procedure Code:

PROC PRINT DATA=SSU.MOVIES NOOBS;
TITLE ‘Movie Classics’;

VAR TITLE LENGTH RATING;
WHERE RATING IN (‘PG’,’PG-13’);

RUN;

Results:

Let’s make one last change to the PROC PRINT
code. Suppose you wanted to compute a total number
of minutes for all movies in a rating group (e.g., G,
PG, PG-13, and R). Since the Movies data set was
originally sorted in ascending order by Rating, a BY
statement can be specified with the Rating variable. A
SUM statement is used to compute the total number
of minutes for all movies in a By-group.

Procedure Code:

PROC PRINT DATA=SSU.MOVIES NOOBS;
TITLE ‘Movie Classics’;
BY RATING;
VAR TITLE LENGTH RATING;
SUM LENGTH;

RUN;

Results (Partial Output – Excludes R Ratings):

Using PROC SQL
The SQL procedure is known as the Structured (or
Standard) Query Language and is a popular reporting
tool among database users (e.g., SAS, Oracle, IBM,

etc.). In its simplest form, PROC SQL prints all
variables (or columns) for all observations (or rows) in
a data set (or table). As was illustrated with PROC
PRINT, the SAS System writes a default title line at
the top of each report page automatically. One or
more TITLE statements can be specified to customize
the title at the top of each page.

Besides using different statement syntax, an obvious
distinction between PROC PRINT and PROC SQL is
that a QUIT statement is specified for the latter, rather
than a RUN statement, to terminate processing. The
QUIT statement is used with interactive procedures.

Suppose you had to create a report containing all
Movie data (all observations and variables) with the
littlest amount of code possible. The PROC SQL
statement illustrated below produces a detail-oriented
report (similar to PROC PRINT) consisting of all
observations and variables.

Procedure Code:

PROC SQL;
TITLE ‘Movie Classics’;
SELECT *

FROM SSU.MOVIES;
QUIT;

When the PROC SQL code is executed, the SAS
System applies certain defaults in creating report
output including the default title, the number of
observations, and list of variables.

Results:

PROC SQL allows for the subsetting of observations
as was illustrated earlier with a WHERE statement in
PROC PRINT. The only difference is that a WHERE
clause is used in PROC SQL.

Procedure Code:

PROC SQL;
TITLE ‘Movie Classics’;
SELECT *

FROM SSU.MOVIES
WHERE RATING IN (‘PG’,’PG-13’);

QUIT;

Results:

Using PROC FORMS
The FORMS procedure provides a handy tool for
printing label and form information. Generally the
FORMS procedure is used when information is of a
repetitive nature, such as mailing labels. In its
simplest form, PROC FORMS prints just the
information you specify using one or more LINE
statements. Suppose you wanted to output the Movie
Title, Category, and Rating variables for each
observation in a single column.

Procedure Code:

TITLE;
PROC FORMS DATA=SSU.MOVIES;

LINE 1 TITLE;
LINE 2 CATEGORY;
LINE 3 RATING;

RUN;

Results (Partial Output):

The FORMS procedure statement has several options
that can be specified to control the appearance of
output. Table 2 below illustrates many important
options and their descriptions.

Option Description
DATA= Identifies the input data set.
FILE= Identifies an external output file.
LINES= Number of lines in a form unit.
WIDTH= Number of columns in a form unit.
ACROSS= Number of form units across a page.

BETWEEN=
Number of spaces between form
units.

DOWN=
Number of lines to skip before
printing the first form unit.

ALIGN=
Number of dummy form units to print
for alignment purposes.

COPIES=
Number of form units to print for
each observation in data set.

Table 2. PROC FORMS options

Suppose you wanted to print the same information as
the previous example, but instead of a single column
of form units, you prefer to instruct PROC FORMS to
construct two columns of form units. This is a popular
format used with many of the leading printer-label
products in use today (e.g., Avery).

Procedure Code:

TITLE;
PROC FORMS DATA=SSU.MOVIES

ACROSS=2;
LINE 1 TITLE;
LINE 2 CATEGORY;
LINE 3 RATING;

RUN;

Results:

PROCs That Summarize
Detail reports are great in many situations – but
sometimes contain so much information that it makes
understanding their contents nearly impossible. When
this is the case, a summary report may be in order.
The purpose of a summary report is to collapse all the
detail information in a report into easy-to-understand
summary-level information. This helps to digest the
enormous amounts of data frequently stored in a data
set.

SAS provides the CHART, FREQ, MEANS, PLOT,
SQL, TABULATE, and UNIVARIATE procedures to
generate summary-level reports. For purposes of
illustration, CHART, FREQ, MEANS, and
UNIVARIATE will be presented.

As illustrated with the detail-level reporting
procedures, each PROC is relatively easy to use, but
each can also provide the level of support needed by
even the most demanding programmer. By using one
or more statements and options each PROC can
produce simple to semi-custom reports.

Using PROC CHART
The CHART procedure is a line-oriented graphics tool
that is used to print simple histograms (horizontal and
vertical bar charts), block charts, and pie charts for
numeric and character data. In its simplest form,
PROC CHART summarizes the observations in a
data set based on the variables listed in the type of
chart being produced.

Suppose you wanted to display the number of movies
grouped by their rating in a vertical bar chart.

Procedure Code:

PROC CHART DATA=SSU.MOVIES;
TITLE ‘Chart by Movie Rating’;
VBAR RATING;

RUN;

Results:

Suppose you wanted to see the number of movies
grouped by their rating as a horizontal bar chart.
Notice that basic-level statistics (e.g., frequency,
cumulative frequency, percent, and cumulative
percent) are automatically displayed with a horizontal
bar chart.

Procedure Code:

PROC CHART DATA=SSU.MOVIES;
TITLE ‘Chart by Movie Rating’;
HBAR RATING;

RUN;

Results:

Using PROC FREQ
The FREQ procedure produces one-way to n-way
frequency and cross-tabulation tables for numeric or
character variables. In it simplest form, PROC FREQ
produces a one-way frequency table.

Procedure Code:

PROC FREQ DATA=SSU.MOVIES;
TITLE ‘Frequency by Movie Rating’;
TABLES RATING;

RUN;

Results:

To see a cross-tabulation table for two variables, you
will need to specify two variable names separated
with an asterisk ‘*’.

Procedure Code:

PROC FREQ DATA=SSU.MOVIES;
TITLE ‘2-Way Frequency Table’;
TABLES RATING * CATEGORY;

RUN;

Results (Partial Output):

Using PROC MEANS
The MEANS procedure produces descriptive statistics
for numeric variables only. In it simplest form, PROC
MEANS will produce descriptive statistics for all
numeric variables in a data set.

Procedure Code:

PROC MEANS DATA=SSU.MOVIES;
TITLE ‘Descriptive Statistics’;

RUN;

Results:

Analysis can be performed to help understand the
data by using a numeric or character categorical
variable in a CLASS statement. Using the CLASS
statement will create descriptive statistics as
subgroups. The next example illustrates descriptive
statistics for each subgroup of movie by Movie Rating.

Procedure Code:

PROC MEANS DATA=SSU.MOVIES;
TITLE ‘Descriptive Statistics’;
CLASS RATING;

RUN;

Results:

Using PROC UNIVARIATE
The UNIVARIATE procedure works similar to the
MEANS procedure, except it provides a larger
number of descriptive statistics. In its simplest form,
PROC UNIVARIATE produces descriptive statistics
for all numeric variables in a data set.

Procedure Code:

PROC UNIVARIATE DATA=SSU.MOVIES;
TITLE ‘Descriptive Statistics’;

RUN;

Results (Partial Output):

As with PROC MEANS, analysis can be performed to
help understand the data by using a numeric or
character categorical variable in a CLASS statement.
Using the CLASS statement will create descriptive
statistics as subgroups. The next example illustrates
descriptive statistics for each subgroup of movie by
Movie Rating.

Procedure Code:

PROC UNIVARIATE DATA=SSU.MOVIES;
TITLE ‘Descriptive Statistics’;
CLASS RATING;

RUN;

Results (Partial Output):

PROCs for Data Management
Now we will turn our attention to a PROC that is used
universally within the SAS user community to help
with data management tasks: the DATASETS
procedure. PROC DATASETS is a powerful PROC
for any SAS user to know. It provides all the tools
necessary to manage a SAS data library and the
members within it. Table 3 below illustrates the
various statements and tasks the DATASETS
procedure can perform.

Since the DATASETS procedure is an interactive
procedure (like the SQL procedure), it remains active
even after a RUN statement is issued. To turn it off
you would issue a QUIT statement. The general form
looks something like the following:

PROC DATASETS LIBRARY=libref;
Datasets-statement _________________;

QUIT;

The beauty of the DATASETS procedure is that it
copy, save, age, rename, and delete data sets. It can
also produce a contents listing containing one or more
members of a data library. Finally, it can be used to
create a backup and recovery or data set aging
process for important data sets.

Statement Description

AGE
Create a backup and recovery
process for important data sets.

APPEND

Concatenate one or more data set
observations to the end of a “master”
data set.

CONTENTS
Produce a detailed description of the
members in a SAS data library.

COPY
Replicate one or more members in a
SAS data library.

DELETE
Delete (remove) one or more data
sets from a SAS data library.

MODIFY
Change attributes for one or more
variables in a data set.

REPAIR
Restore damaged data sets or
catalogs to a usable condition.

SAVE

Save specified members in a SAS
data library and automatically
deletes members not specified.

Table 3. PROC DATASETS Statements and Tasks

Describing Members of a Data Library
Suppose you were asked to produce a contents listing
of an important SAS data library. By using PROC
DATASETS, you could generate a detailed member
listing of any SAS data library easily and quickly.

Procedure Code:

PROC DATASETS LIBRARY=SSU;
QUIT;

Results:

Aging for Backup and Recovery Purposes
Being able to create a backup and recovery process
for important data sets can be critical should disaster
strike. One or more related data sets can be assigned
an aging number corresponding to when it was last
updated. Suppose you wanted to safeguard the
Movies data set by creating a safety net consisting of
three versions of the data. The most recent version
would be called MOVIES1, the next most recent
version would be called MOVIES2, and the oldest and
least recent version would be called MOVIES3.

Procedure Code:

PROC DATASETS LIBRARY=SSU;
AGE MOVIES MOVIES1-MOVIES3;

QUIT;

Analysis:

Once this procedure is executed, each time the
MOVIES data set is updated it will automatically
rename the current data set to the first member name
in the list, the next most recent data set in the
member list will be renamed to the third name in the
member list, and the oldest data set in the member
list will be deleted. This aging process is especially
useful for important data sets that are updated
frequently

Repairing Damaged Data Sets
On rare instances where a system failure occurs (e.g.,
during a power brownout or electrical storm) during an
update operation, a data set may become damaged
an unusable. To fix a problem like this and restore a
data set to a usable condition, it may be necessary to
try to rebuild data set indexes. The PROC
DATASETS REPAIR statement can be a life-saving
statement (at least as it related to rescuing your
damaged data set).

Suppose during an unexpected power outage our
computer system experienced a problem that caused
the Movies data set to become damaged. You could
then use the REPAIR statement to try to restore the
data set back to usability.

Procedure Code:

PROC DATASETS LIBRARY=SSU;
REPAIR MOVIES;

QUIT;

Results:

Conclusion
Delivering timely and quality looking reports to
management, end users, and customers is critical.
With the SAS System’s "canned" PROCedures for
generating quick results, users around the world
appreciate the benefits of using these “tried and
proven” tools. Basic SAS PROCedures such as
PRINT, SQL, and FORMS for detail reporting, and
CHART, FREQ, MEANS, and UNIVARIATE for
summary reporting are worth their weight in gold. So
learn their syntax, use them wisely, and you will be
happy you did. Happy computing!

Acknowledgments
The author would like to thank Tom Winn, Texas
State Auditor’s Office, Imelda Go, Richland County
School District One, and Andrew T. Kuligowski,
Nielsen Media Research for their support and
encouragement in the creation of this paper, and for
asking me to be a an invited speaker in the first place.
I would also like to thank Deborah Babcock Buck, D.
B. & P. Associates and S. David Riba, JADE Tech,
Inc. for all their hard work and for doing a great job as
SSU 2001 Conference C-Chairs. Thank you!

References
Delwiche, Lora D. and Susan J. Slaughter, “The Little

SAS Book, A Primer (Second Edition)” SAS
Institute Inc, 1998.

Lafler, Kirk Paul, SAS® Fundamentals, Version 8
Course Notes, Revised and Updated 2001,
Software Intelligence Corporation, Spring Valley,
CA, USA.

Trademark Citations
SAS, SAS Quality Partner, and SAS Certified
Professional are registered trademarks of SAS
Institute Inc. in the USA and other countries.
® indicates USA registration.

About the Author
Kirk is a SAS Quality Partner® and SAS Certified
Professional® with 25 years of experience working
with the SAS System. He has authored over one
hundred articles on computing and technology and
has presented at SAS Users Group International
(SUGI) conferences, regional SAS User Groups, and
local SAS User Groups since 1981. His popular SAS
Tips column appears regularly in the SANDS and
SESUG Newsletters and is read by thousands of SAS
users. When Kirk isn’t writing, teaching or consulting,
he can be found enjoying all that San Diego has to
offer with his wife and son.

Kirk can be reached at:

Kirk Paul Lafler
Author, Speaker, and Consultant
Software Intelligence Corporation

P.O. Box 1390
Spring Valley, California 91979-1390

E-mail: KirkLafler@cs.com
Website: http://www.software-intelligence.com

Formats, Informats and How to Program with Them
Ian Whitlock, Westat, Rockville, MD

Abstract

Formats tell how to display stored data and informats how
to read them. In other words, they allow the separation of
data from the values one works with. While most
programming languages provide some sort of formatting
capability, SAS provides an extensive system that
comes to dominate how one works with SAS.

This talk will review some of the supplied formats, show
you how to make your own with code or data, and then
supply programming examples for how to get the best use
of this system.

Introduction

Formats allow a computer language to separate how data
are stored from how the data are displayed. Informats
allow the language to separate how data are entered from
how the data are stored. In some sense formats and
informats must play some role in almost all computer
languages because numbers are rarely stored as they
appear. The difference in SAS is the extent to which
formats and informats are implemented. Thus they play a
far more important role in SAS than they do in many other
computer languages.

We use the term "formats" sometimes to refer to the class
of both formats and informats, and sometimes to refer only
to formats as distinguished from informats. It is left to the
reader to distinguish based on context which is intended.

There are two types of formats - those automatically
supplied by SAS, and those that you as a SAS program-
mer can create.

System Formats and Informats

There are formats to read and write numbers. Do you
want them with commas? How many decimal places? Or
do you prefer hexadecimal to decimal? The on-line
documentation for SAS Version 8 lists 15 formats for
character variables and 93 for numeric. The
corresponding list of informats is not much shorter. Why
are there so many? SAS has only two types of data
values - character and real floating point. It falls to the
system of informats to get data from the rich external
world of many types into these two categories. Similarly
the system of formats must display to the external world in
many more types than just the two that we have. From
this point of view it is not surprising that SAS had to have
such a large system of formats and informats.

The two most basic formats are the F format for reading
(or displaying) character digits and the $CHAR format for
reading (or displaying) characters. Typically the $-sign is
used to indicate character data.

Suppose that I have a number X somewhere between 3
and 4. How wide should the display field be? How many
decimal places should there be? In general format names
use an integer immediately following the name to indicate
the total width (including any decimal point), followed by
how many of those places should come after the decimal
point. Thus F8.3 would say to display my number in 8
columns with exactly three rounded decimal places
showing. The whole thing should be right justified.

So in the above case there would be exactly three leading
blanks. In practice, one rarely gives the name F and only
gives the 8.3. For example, I might have

data _null_ ;

x = 12 / 3.7 ;

put x 8.3 ;

run ;

This data step would write " 3.243" on the log.

On the otherhand, the informat F8.3 says something
significantly different. Here a decimal point is usually
displayed in the number. The 3 in F8.3 says if there is no
decimal point shown then assume it is 3 places from the
right hand end, i.e. divide by 1000. Consequently the
decimal specifier in formats is important and a decimal
specifier in the informat is usually a mistake that may look
as if it is working, until it reads an integer value.

Perhaps the most important area for formats is that of
dates. How should SAS store a date? Characters would
rule out calculations like what month will it be in 82 days,
so numeric is the obvious choice. But even having
numbers does not mean that one can do arithmetic.
Some computer systems store August 19, 2001 as
20010819. This is a number, but it is useless for doing
date calculations.

About 400 years ago Rene Descartes tied geometry to
numbers by choosing a 0 point and then a 1 point on a
line. SAS does the same thing for the time line. It chose
January 1, 1960 as the zero point and 1 to indicate one
day. Thus January 2, 1960 is 1 and December 31, 1959 is
-1. So August 19, 20001 is 15,206 days since January 1,
1960. Who can figure out their birthday that way? Aha!
We said the system was good for calculations, we did not
say it was a good thing to show your clients. Remember

formats is the topic and they should supply the solution.
We need informats to read human recognizable dates into
SAS and formats to display dates in human terms for our
reports, but these human readable forms do not make a
good way to store dates because they are hard to use in
date calculations.

It should not surprise you by now to find there are 39
different formats for displaying dates listed in the on-line
documentation for version 8. Here are a few examples
using August 19, 2001.

DATE9. Displays army style (19Aug2001)

DAY2. Displays the day of the month (8)

Julian7. Displays Julian date (=2001231)

MMDDYY8. Displays American (08/19/01)

MONYY7. Displays (Aug2001)

WEEKDATE29. Displays
 (Sunday, August 19, 2001)

WORDDATE18. Displays
(August 19, 2001)

The lesson should be clear, data should be stored for
easy calculation. Formats and informats should be able to
display and read the data in any reasonable fashion. A
typical beginner's mistake is to fail to store dates as SAS
dates, and consequently using elaborate and often
incorrect routines to do simple date calculations provided
by SAS functions. A description of the SAS date handling
functions is beyond the scope of this paper, but coding a
SAS date seems reasonable. To assign DATE the
example value, use

date = "19aug2001"d ;

Note there are no spaces between the double quote and
the letter, d.

Problem - calculate your age in days. Let's assume you
were born on September 15, 1978.

data _null_ ;

 AgeInDays=today()-"15sep1978"d;

 put AgeInDays comma6. ;

run ;

SAS also provides a similar system for date time values as
the number of seconds since midnight January 1, 1960.
In addition there is a system to measure relative time in
seconds since midnight.

Make Your Own Formats

With PROC FORMAT SAS provides the ability to make
formats and informats. They are stored in a SAS catalog
typically called FORMATS. (In general catalogs are used
to hold system information created by the user. They
differ from data in that the user cannot usually see inside a

catalog entry.) By default the catalog is stored in the
library, WORK.FORMATS. In this case the formats exist
only for the life of the SAS session.

A common example is provided by storing gender
information. For example, we typically store the number 1
for male and 2 for female. It would be embarrassing to
hand a client a report from PROC PRINT with

ID Gender State
100001 1 LA
100002 2 LA

100003 . AL

We need a format to dress up the report.

proc format ;

value sex

1 = "Male"

2 = "Female"

. = "Unknown"

;

run ;

proc print data = report ;

var id gender state ;

format gender sex7. ;

run ;

The VALUE statement provides a set of translations. On
the left of the equal sign are the values stored. On the
right are the character values to display. So now the
report is.

ID Gender State
100001 Male LA
100002 Female LA
100003 Unknown AL

This provides the simplest most basic use for formats.

Now let's consider an AGE variable. In a frequency report
we might get any and all ages say between 5 and 85. But
we would like to get age collapsed into a few groups. A
format is the answer.

proc format ;

value AgeGrp

1 - 10 = "Child"

11 - 20 = "Teenager"

21 - 40 = "Adult"

40 <-< 65 = "Middle Aged"

65 - high = "Senior"

other = "Error"

;

run ;

Note 40 is considered "Adult" not "Middle Aged" because
the <-sign indicates that 40 is to be excluded. Similarly
exactly 65 is excluded. "High" is a key word indicating the
largest number. Note that key words are not quoted.
Similarly there is a key word "low" for the lowest number
(i.e. most negative number excluding missing values).
"Other" is the key word for all values not accounted for.

It is not surprising that a print would show the labels
instead of ages, but what about PROC FREQ? This
procedure also respects formats for counting so that all
people between 21 and 40 will be counted as adults. This
provides a second important use of formats - grouping. In
many languages one would have to create a new variable
indicating the group in a process called recoding. Formats
often make recoding unnecessary in SAS. However not
all procedures respect formats so one must check each
case individually. In general, formats are respected if it
makes sense to do so.

How does the PROC FREQ know our variable, AGE, had
a format? We could have told it in a FORMAT statement
just as we did in the PRINT example, but it would be nice
to tell the dataset instead, so that any procedure could
check with the data to see if a format is present. This can
be done by placing a FORMAT statement in the DATA
step that makes the dataset. What if the data were made
by a procedure or somebody else?

PROC DATASETS can modify the header of SAS dataset
where knowledge of the format is stored.

proc datasets lib = survey ;

modify agedata ;

format age agegrp. ;

quit ;

Note that only the format name is stored in the header.
Remember the format itself is stored in the
WORK.FORMATS catalog.

After this we can produce the collapsed counts with:

proc freq data = survey.agedata ;

table age ;

run ;

If, for some reason, we wanted to see the ages instead of
groups we could remove the format association with a
format statement.

format age ;

One might even use

format _all_ ;

to remove all format associations. This is often convenient
when you do not have the associated formats or they are
interfering with debugging and you need to see the values.
Thus we see that formats may be applied, changed, and
removed without ever modifying the data values.

Permanent Formats

PROC FORMAT has a LIBRARY parameter (abbreviated
LIB) to specify where formats should be stored. Thus one
might have

libname library "c:\myplace" ;

proc format lib = library ;

In this case the formats would be stored in
LIBRARY.FORMATS. We use the libref LIBRARY
because SAS by default looks in two places for formats

1. Work.Formats
2. Library.Formats

The concept of a library of formats in SAS is older than the
notion of a libref and catalogs.

The system option FMTSEARCH allows you to specify
which libraries and even which catalogs should be
searched for formats. For example, the statement

options fmtsearch =

 (mylib mylib.special) ;

causes the system to look for formats in four places:

1. Work.Formats
2. Library.Formats
3. MyLib.Formats
4. MyLib.Special

If the format referenced is not found in any of the search
catalogs, then the system issues an error message and
may stop processing depending on the setting of the
system option, FMTERR. By default it is set so that
processing is stopped. To continue processing ignoring
the request for the format, use

options nofmterr ;

One fear that often prevents beginners from making
permanent formats is the fear that they cannot see the
code or retrieve the formats when the code is lost. There
is a PROC FORMAT option, FMTLIB which will report
formats and informats. You can use a SELECT statement
to obtain a report on specific formats or EXCLUDE
statement to obtain all but a few formats.

Thus there is no good reason not to make permanent
formats and in fact there are good reasons to do so.
Formats can standardize and document how a project
looks at its data values. Formats should become part of
the standard environment in which project code is written
rather than a part of the code. If there are many formats, it
can take a significant amount of time to create the formats
and they can take up a significant portion of the code in a
program. Thus it makes a great deal of sense for a project
to build a library of formats, just as it should have libraries
of permanent SAS data.

Using SAS Datasets to Specify Formats

Just as the FMTLIB option can make a report on stored
formats, the CNTLOUT= option names a SAS dataset that
holds information capable of making the formats. Again
SELECT or EXCLUDE statements can control which
formats are represented in the dataset.

So far we have made formats with code, but now we can
go directly from data to formats. This can be a very
powerful idea because formats can be data dependent.
Another thing this hints at is that formats can be quite
large, say with a thousand or even a hundred thousand
entries. Here it would be painful to have to write out such
code.

Armed with an appropriate dataset, say, FMTDATA. The
code is

proc format cntlin = fmtdata ;

run ;

So what properties must FMTDATA have. At a minimum
only three variables are required.

1. FMTNAME to supply the name of the format.

2. START to supply the left hand side of an
assignment.

3. LABEL to supply the right hand side of an
assignment.

Suppose I am dealing with an educational survey and
have a SAS data set with ID, an eight digit school identifier
and SCHOOLNAME, a 40 byte character variable holding
the name of the corresponding school. Then I might
choose to store only the identifier on other data sets and
use a format, $SCHLFMT. to display the names of the
schools. The code to make the format might go like this.

data fmtdata ;

retain fmtname "$schlfmt" ;

set schools

 (keep = id schoolname

 rename = (id = start

 SchoolName = Label)

) ;

run ;

proc format cntlin = fmtdata ;

run ;

Or perhaps you would like to show both the identifier and
the school name. Then use

data fmtdata

 (keep = fmtname start label);

retain fmtname "$schlfmt" ;

set schools

 (keep = id schoolname

 rename = (id = start)

) ;

Label = id||", "||SchoolName

run ;

proc format cntlin = fmtdata ;

run ;

When you have learned the full power of DATA step
character handling functions, you will find many
opportunities for many variations of this idea.

So, just how large can a format be? Well typical of SAS,
there is no prescribed limit. A format must be held in
memory during its use so there is a practical limit. I
consider 100,000 entries my limit, but even this can
depend on how long the labels are.

Why do we need the format name as a variable? Couldn't
it be a parameter on PROC FORMAT? No, one can
actually specify many formats with one dataset, so it is
better the way it has been designed.

What are the optional values and what kind of values must
they have? The version 8 documentation leaves much to
be desired on this point. The simple answer is: make a
small format with code having the features you wish to
know about. Then use the CNTLOUT= option to make the
corresponding dataset and study it. For example,
consider the key words and ideas we introduced earlier in
a format.

proc format cntlout=fmtdata ;

value datachk

low -< 0 = "Negative"

0 = "Zero"

0 <- high = "Positive"

other = "Missing"

;

select datachk ;

run ;

You should quickly find that the relevant variables appear
to be:

Start, End, Label, SExcl, EExcl, and HLO

In a table

Start End Label SSexcl EExcl HLO

Low 0 Neg N Y L

0 0 Zero N N

0 High Pos Y N H

Other Other Missing N N O

Armed with this information we can add an other condition
to our $SCHLFMT.

data fmtdata ;

retain fmtname "$schlfmt" ;

if eof then

do ;

hlo = "O" ;

label = "Error" ;

output ;

end ;

set schools

 (keep = id SchoolName

 rename = (id = start

 SchoolName = Label)

) end = eof ;

output ;

run ;

proc format cntlin = fmtdata ;

run ;

Although it is not clear from the above, the value of
START is irrelevant when HLO = "O". The format used to
learn abut HLO is interesting in its own way. The following
code provides a quick check for missing and negative
values.

proc freq data = anyset ;

tables _numeric_ / missing ;

format _numeric_ datachk. ;

run ;

Remember PROC FREQ respects the grouping indicated
by a format. Similarly

proc format ;

value $datachk

" " = "Blank"

other = "present"

;

run ;

provides a quick check for character variables.

Informats

Up to this point we have concentrated on formats. It is
now time to consider informats. They are made with an
INVALUE statement. They come in two varieties - those
that make numeric values and those that make character
values.

Suppose you are reading a four digit column of numbers,
but some of the entries are "XXXX" to indicate the value is
missing. If you use

input ... number 4. ... ;

then there will be an invalid data message on the log. You
could use

input ... number ?? 4. ... ;

to suppress the invalid data message, but then you also
miss the message when it as appropriate. The answer is
to make in informat.

proc format ;

invalue numchk

"XXXX" = . ;

run ;

Now the value "XXXX" is quietly read and converted to
missing. What about other values? When a format or
informat does not specify how to treat a value then the
default treatment is used. Thus

input ... number numchk4. ... ;

will turn all other values over to BEST4. for reading as
numbers. If a value cannot be read as a number then
there will be a message to alert you to the problem.

As an example of a character informat we might return to
our gender example. This time we want to read 1 or 2 but
store "Male" or "Female".

proc format ;

invalue gender

"1" = "Male"

"2" = "Female"

;

run ;

data _null_ ;
 length sex $ 6 ;

 input sex $gender1. ;

 put sex= ;

cards ;

1

2

;

Note that the LENGTH statement is needed to get the
proper length for the variable, SEX. Unfortunately there is
a bug in versions 8 and 8.1 so that only the first character
is stored. In version 8.2 the expected behavior returns.

Key Idea

Informats and formats have been useful for reading from
and writing to a buffer, but there is more. SAS also
supplies the INPUT function to read from a character
variable according to an informat and the PUT function to
write to a character variable according to a format.

Suppose CHARX is a character variable holding 3 digits.
Then we can convert to a numeric variable NUMX using

numx = input (charx , 3.) ;

Similarly we might convert in the other direction with

charx = put (numx , 3.) ;

Note that in both cases the format is numeric. In the first
case it is numeric because the resulting value, NUMX, is
numeric. In the second case it is a numeric informat
because we are writing a numeric value. Beginners often
get confused here and want to add a $-sign, but it is

wrong. Just remember INPUT always reads character
stuff and PUT always writes character stuff.

Suppose we have a numeric id and we want a character id
with leading zeros. There is a system format, Z for writing
leading zeroes. Hence

charID = put (numID , z8.) ;

would convert to an 8-digit character identifier with leading
zeros.

Often one wants to keep the same names. This gets a
little tricky because it involves several ideas at once.
Suppose we have a dataset W with a variable X that is
character (always digits). We want to end up with a
dataset W and a numeric variable X corresponding to the
original X. We have to free up the name X on the input set
so that we have it available for use on the output dataset.
Here is the code.

data w (drop = temp) ;

set w (rename = (x=temp)) ;

x = input (temp, best12.) ;

run ;

The code is simple, but I suspect very few programmers
discover and put together all the features needed for this
problem. Most of them learn it from somebody who
already knows the answer. It is my favorite problem for
illustrating the inadequacy of SAS documentation since
every feature is mentioned, but nowhere is the problem
discussed. It is left to a "faq" sheet at http://www.sas.com.

Recoding and Look-up

In considering grouping formats, I pointed out that
recoding is often not needed in SAS. However,
sometimes one must recode because say a procedure like
REG requires it. Consider the AGE variable we used
before. Now we make a new format

proc format ;

value AgeGrp

1 - 10 = "1 Child"

11 - 20 = "2 Teenager"

21 - 40 = "3 Adult"

40 <-< 65= "4 Middle Aged"

65 - high = "5 Senior"

other = ". Error"

;

run ;

and use it in a DATA step

data recoded (drop = age) ;

set agedata ;

agegrp =

input(put(age,agegrp1.),1.);

run ;

to recode the AGE variable.

Now consider a slight change in point of view and the
format $SCHLFMT that we made from a SAS dataset.
Here the line

SchoolName = put(id, $schlfmt40.);

can be thought of as a look-up function - given the ID
value for a school look up the name of the school.

Often one solves this type of look-up problem with a sort
and merge by ID where one file has the ID and needed
data while the other file has ID and SchoolName. There
are advantages to both.

The primary advantage of the format method is that the
files do not need sorting. This can be very important when
you need to look up values based on several different
variables. The format method provides flexibility.

On the other hand, the merge solution is probably better
when one wants to look up many different variables where
the look-up information is all in one file. The merge is
more efficient when the files happen to already be in their
required order. As the size of the look-up file grows, so
does the importance of this efficiency.

SAS arrays are numerically indexed. Sometimes it would
be very convenient if one could have an array indexed by
character values. Suppose we wanted to count how many
times certain words were used in some text. For a list of
say 100 words we might set up an array with

array count (100) ;

The problem is which word goes with which array element.
In this case it doesn't matter as long as it is fixed in some
specific order. We might use an informat, SPECIAL, to
recode the special words into the numbers from 1 to 100.
We could then send all other words to 0. Now for any
value of WORD we could use

x = input (word , special3.) ;

if x > 0 then

count (x) + 1 ;

subsetting with wanted format

Eliminating IFs

All of the problems discussed in the previous section have
lot in common, and they could have been solved with IF
statements. IF statements provide a powerful method for
making programs flexible. However they should be used
with great care because they also make a program more
difficult to follow. A reasonable goal is to eliminate as
many IFs as possible.

Consider the recoding of age. We could have written

data recoded (drop = age) ;

set agedata ;

if 1 <= age <= 10 then

AgeGrp = 1 ;

else

if 11 <= age <= 20 then

AgeGrp = 2 ;

else

if 21 <= age <= 40 then

AgeGrp = 3 ;

else

if 40 < age < 65 then

AgeGrp = 4 ;

else

AgeGroup = 5 ;

run ;

Note that this step is longer and more tedious with poorer
documentation. After comparing it with our original
recoding, it is clear that what the format did was to give us
the ability to lift the tedious IF/ELSE chain out of the DATA
step and move it to a more appropriate place. But then if it
were a stored format it would not even be in the code at
all. In any case it allows us to treat the IF/ELSE chain as
a black box.

For the example the IF/ELSE chain was not too bad
because it was relatively short, but the school name look-
up in the second example might have gone on for
thousands of lines. In the school name case, remember
we actually started with a dataset and made the format
from data. It should now be clear that we have three
different methods of storing information:

1. Store it in a dataset

2. Store it in a format

3. Store it in SAS code

So formats provide another method of storing and using
information. In considering the three methods, code is
usually the hardest to modify and the most tedious to
change. It is also the most likely to conceal a mistake.
Where PROC FORMAT will display an error messaage
when overlapping ranges are specified, the compiler will
find nothing wrong with the corresponding IF/ELSE chain
and yet it is likely that the code is wrong.

I call the above DATA step "wall paper" code. It all looks
the same with a simple pattern to it. In general it is a good
idea to remove wall paper code and formats provide one
important tool for doing this. Arrays provide another most
important tool in this area. The third tool, SAS macro,
provides the most sophisticated tool for this purpose.
However, it is a good idea for the beginner to get a sound
grasp of the principles involved with formats and arrays
before turning to macro code.

Picture Formats

The VALUE statement provides you with the ability to
specify a single display value for a collection of stored
values. Sometimes it would be nice to simply add some
extra symbols to the number. For example, display the

phone number, 1234567890, as (123)456-7890. Note that
this cannot be done in general with a VALUE statement.
Or perhaps you would like to display money values in
thousands of dollars, e.g. 143,265 dollars would display
as $143K. For this type of problem we need a new
statement, the PICTURE statement. The idea originally
came from COBOL which used picture formats.

For the telephone example, one might try

proc format ;

picture phone

0 - 9999999999 =

"(999)999-9999"

;

run ;

However, this does not work; 1234567890 is shown as

123)456-7890

with the leading left parenthesis missing. When the
leading characters are not numbers one has to specify
them in a special option prefix.

proc format ;

picture phone

0 - 9999999999 =

"*999)999-9999"

(prefix="(")

;

run ;

Note that in the picture itself I placed an asterisk first. It
doesn't matter what this symbol is, but space must be
reserved for the prefix symbols. This makes for what I call
the "Mother May I" type of syntax after the children's game
"giant steps". It is a case where the developer took short -
cuts at the expense of the user.

For the money in thousands example, we could use

proc format ;

picture money

500 - 999499 = "*009K"

(prefix="$" mult=.001)

other = "error" ;

run ;

In this example we added another picture option,
MULTIPLIER= (or MULT=). This tells SAS to divide the
number by 1000 before placing into the picture. Again
there is a funny thing. If we consider the number, 1899, is
displayed as

$1K

instead of the expected, $2K. In general, formats will
round numbers to the indicated number of decimal places;
however picture formats truncate instead of round.
Fortunately there is a ROUND option, but it is a general
format option instead of one specific to the PICTURE
statement. Hence, it cannot be placed in the parentheses

with the PREFIX= option as one might expect. The
correct form of the statement is

picture money (round)

500 - 999499 = "*009K"

(prefix="$" mult=.001)

other = "error" ;

Finally suppose we want to display money values in
thousands, but allow one decimal place. Then one might
think that

picture money (round)

500 - 999499 = "*009.0K"

(prefix="$" mult=.001)

other = "error" ;

would work. However, the decimal point in the picture
indicates that SAS is to divide by 10 so that the correct
statement is

picture money (round)

50 - 999949 = "*009.0K"

(prefix="$" mult=.01)

other = "error" ;

Note that I have extended the range of valid values
because we can now display a wider range of values
because of the extra decimal place. Of course we do not
have to make all other values and error. We could have
left them to display in an unformatted form or we could
have added more range pictures to include more values.

Why are picture formats so funny to work with? I suspect
it is the COBOL heritage showing in SAS.

Nested Formats

Formats and informats can be nested. That is you can
use a format in specifying a range for another format. For
example, suppose we want to display dates for this year
using the DATE9. format, but all other dates should
display just the year. Then the code might be

proc format ;

value thisyr

"1jan2001"d - "31dec2001"d

= [date9.]

other = [year.]

;

run ;

Note that the specified format in the label does not and
cannot appear in quotes. On some computer systems you
have to use the combination "(|" for "[" and "|)" for "]".

The above example used system formats, but the same
principle can be handy with user formats. Suppose you
have project format PROJECT, but the codes for 1 and 2
need to be changed. Then instead of rewriting the whole
format you could use

proc format ;

value myproj

1 = "First change"

2 = "Second change"

other = [project16.]

;

run ;

Although the first example format was called THISYR, the
name is really only good for 2001. How could one write
the code so that the format would always be appropriate to
this year? For this simple example one could use some
macro code, but let's solve it with simpler DATA step
techniques. Remember we can use a SAS dataset to
specify a format. In this case HLO is used to also specify
format instructions.

data fmtdata ;

fmtname = "thisyr" ;

start = intnx ("year",

 today(),

 0) ;

end = intnx ("year" ,

 today(),

 0,

 "end") ;

 label = "date9." ;

hlo = "F " ;

output ;

label = "year4." ;

hlo = "FO" ;

output ;

run ;

proc format cntlin = fmtdata ;

run ;

Note that there are no brackets around the name of
the nested format. The variable HLO tells SAS that
the label is a format name instead of the brackets
used with format code.

Multi-label Formats

Version 8 has introduced a new option for formats, the
MULTILABEL option. In general, it doesn't make much
sense to have one value display is more than one way.
However, remember that PROC SUMMARY and PROC
TABULATE respect formats in grouping statistics. For
these two procedures it does make sense to allow one
value to go to several labels. In this case we want several
groups to include the corresponding statistics. The same
reasoning might apply to PROC FREQ but the multilabel
option has not been implemented for it.

For example, suppose we have a variable RATE with
values 1 to 10. Perhaps 1 - 5 are considered low and 6 -
10 high. Now we would like to add an overlapping middle
group 4 - 7.

proc format ;

value rate (multilabel)

1-5 = "Low"

6-10 = "High"

4 - 7 = "Middle"

;

run ;

proc tabulate data = look ;

class rate / mlf ;

format rate rate. ;

table rate * n ;

run ;

Note that the CLASS statement uses the option MLF to
stand for multilabel. In the "Mother May I" fashion that
SAS has been developing since the change to a C based
language, you cannot spell it out the CLASS statement,
while you must spell it out in the FORMAT statement.

Conclusion

We have not discussed all the options and things one can
do with formats and informats. However, I hope that we
have covered enough for you to see that it is an intrinsic
part of SAS that you must know if you are going to be a
SAS programmer.

Contact Information

The author may be contacted via mail using the address

Ian Whitlock
Westat
1650 Research Boulevard
Rockville, MD 20850

or perhaps better via e-mail at

IanWhitlock@westat.com

SAS is a registered trademark or trademark of SAS
Institute Inc. in the USA and other countries. ® indicates
USA registration

What’s Next?
Thomas J. Winn, Jr.

Texas State Auditor’s Office, Austin, Texas

Abstract

Intended for attendees who have learned the material
that was covered in the earlier presentations in the
"Introduction to SAS" Section, this short paper
concludes the Section by describing some
recommendations for the next developmental steps
which could be taken by beginning SAS programmers.
The paper includes highlights of the following topics:
writing customized reports (PROC PRINT, DATA
NULL, PROC TABULATE, & PROC REPORT), the
SAS macro language, and PROC SQL.

Recommendations for your next developmental
steps

Let us assume that one has learned the material which
was covered in the earlier presentations in the SSU
2001 "Introduction to SAS" Section. Now, I would like
to conclude this Section by describing some
recommendations regarding the next developmental
steps that could be taken by beginning SAS
programmers.

Specifically, I will include highlights of the following
topics:

� Output Delivery System,
� customized report writing, using PROC

PRINT, PROC REPORT, PROC
TABULATE, and DATA _NULL_,

� the SAS macro language, and
� PROC SQL.

A working knowledge of these topics should be
included in the basic toolkit of every SAS programmer.

Here are a few ways to take those next steps:
� Take a training class,
� Attend tutorial presentations at SAS users

conferences,
� Consult with an expert,
� Read the documentation or other

appropriate reference materials.

Most of the topics are covered in papers presented in
the SSU 2001 Tutorials section!

Output Delivery System

Beginning with Version 7, the SAS System provided an
ability to deliver procedure output in a flexible variety of
file types and formats, through the SAS Output Delivery
System (ODS). ODS combines raw data with table
definitions to produce output objects, which can be sent
to one or more ODS destinations. Currently, the
available ODS destinations include: the Listing
destination, the Output destination (SAS Data Set), the
HTML destination, the Printer destination (PostScript,
PDF, PCL), and the RTF destination.

ODS destinations can be either open or closed. When a
destination is open, ODS can send output objects to it.
And whenever an ODS destination is closed, output

objects cannot be sent to it. ODS statements are used
to control different features of the Output Delivery
System. For example, they could be used to open,
close, or manage an ODS destination. Moreover, they
can be used anywhere in a SAS program.

Here is an example of the use of ODS statements to
direct some SAS output to HTML:

ods html file='odshtml-body.htm'
 contents='odshtml-contents.htm'

 page='odshtml-page.htm'
 frame='odshtml-frame.htm';
 proc univariate data=sashelp.class;

 var height;
 id name;
 title ‘Descriptive Statistics Concerning Height
in the Sashelp.Class Dataset’;
run;
ods html close;

And here is a portion of the HTML output that was
generated:

In most cases, the default output style will be adequate.
However, the programmer may customize ODS output
by specifying style definitions, which affect the colors,
font, size, etc.

Customized Reports with PROC PRINT

PROC PRINT has several features and options which
can be used to customize the appearance of detail
reports printed with this procedure.

� DATA=, DOUBLE, HEADING=, LABEL, N,
NOOBS, OBS=, ROUND, SPLIT=, and
UNIFORM,

� VAR, ID, BY, SUM, PAGEBY, SUMBY,
FORMAT, TITLE, and FOOTNOTE.

PROC TABULATE

PROC TABULATE is used to build tabular reports
containing descriptive statistical information, including

hierarchical relationships among variables. PROC
TABULATE is particularly well-suited for preparing
summary reports (where each row represents multiple
observations). However, it is less well-suited for
producing detail reports (single row for each
observation).

Here is some SAS code for a simple tabular report:
libname company 'C:\Program Files\SAS

Institute\SAS\V8\core\sample' ;
proc tabulate data=company.empinfo

format=5.0;
class division gender;
keylabel n=' '
 all='Total';
label division = 'Division'
 gender = 'Gender';
table division all, gender all / rts=30
misstext=‘0’;
title 'Summary of Employee Information';

run;

Here is the associated report:

PROC REPORT

PROC REPORT is a flexible procedure that can
produce a variety of reports. PROC REPORT offers
more control and customization than PROC PRINT.
PROC REPORT can be used to produce both detail
and summary reports; however, it is not as good as
PROC TABULATE for producing hierarchical tables.

Here is some SAS code for a simple PROC REPORT
step:

proc report data=sashelp.shoes headskip
headline missing;

 column subsidiary product sales;
 define subsidiary / order 'Subsidiary'

format=$15.;
 define product / order 'Product'

format=$15.;
 define sales / analysis sum 'Sales'

format=dollar15.2;
 break after subsidiary / ol summarize skip

suppress;
 title 'Product Sales According to Subsidiary';
run;

Here is the report which was produced:

Writing Customized Reports

FILE and PUT statements can be used in a DATA
NULL step to write special reports according to
detailed specifications. The disadvantage is that
pointer controls must be used to specify the placement
of every item in the report.

The SAS Macro Language

The SAS Macro Language is a powerful programming
tool ...

� for simplifying repetitive coding,
� for communicating information between

program steps,
� for generating data-dependent SAS

statements,
� for permitting conditional execution of SAS

code, and
� for dynamically importing certain information

from the SAS Supervisor.

Macros are stored text that contain entire blocks of SAS
code, and which are identified by a name. The stored
text can include SAS statements, literals, numbers,
macro variables, macro functions, macro expressions,
or calls to other macros.

Macro variables are used to facilitate symbolic
substitution of strings of text, whereas macros can be
used to manipulate SAS source statements. Macro
information can be inserted at any point in a SAS
program simply by referring to the macro entity by
name, preceded by a special character, which
distinguishes macro statements from ordinary SAS
code.

PROC SQL

Structured Query Language (SQL) is a language that
talks to a relational database management system.
PROC SQL processes SQL statements that read and
update tables. Besides being useful for queries, it also
is a powerful tool for data manipulation.

PROC SQL uses Structured Query Language to . . .
� retrieve and manipulate SAS data sets,
� create and delete data sets,

� add or modify data values in a data set,
� add, modify, or drop columns in a data set,
� create and delete indexes on columns in a

data set.

Components of the SAS System

Do you remember this display from the very first
“Introduction to SAS” presentation? It is a listing of
many of the components of the SAS System.

- Base SAS - SAS/LAB
- SAS/ACCESS - SAS/MDDB Server
- SAS/AF - SAS/OR
- SAS/ASSIST - SAS/QC
- SAS/CONNECT - SAS/SHARE
- SAS/EIS - SAS/SPECTRAVIEW
- SAS/ETS - SAS/STAT
- SAS/FSP - SAS/TOOLKIT
- SAS/GIS - SAS/AppDev Studio
- SAS/GRAPH - SAS/Enterprise Guide
- SAS/IML - SAS/Enterprise Miner
- SAS/INSIGHT - SAS Universal ODBC Driver
- SAS/IntrNet - SAS/Warehouse Administrator

After becoming familiar with Base SAS, novice SAS
programmers might begin learning other pertinent
components of the SAS System.

“What’s Next?” Summary

Build on the foundation of knowledge you already have
acquired. Your next developmental steps might include
the following suggested topics:

� Output Delivery System,
� customized report writing, using PROC

PRINT, PROC REPORT, PROC
TABULATE, and DATA _NULL_,

� the SAS macro language,
� PROC SQL,
� other components of the SAS System.

Here are some ways by which you might take those
next developmental steps:

� Take a training class.
� Attend tutorial presentations at SAS users

conferences (Be sure to review the many
excellent papers in the SSU 2001 Tutorials
Section!).

� Consult with an expert.
� Read the documentation or other

appropriate reference materials.

The next step is up to you.

Suggested References:

SAS Institute Inc., SAS OnlineDoc, Version 8
SAS Institute Inc., Getting Started With the SAS

System, Version 8
SAS Institute Inc., SAS Language Reference:

Concepts, Version 8
SAS Institute Inc., SAS Language Reference:

Dictionary, Version 8, Volumes 1 and 2
SAS Institute Inc., SAS Procedures Guide, Version 8,

Volumes 1 and 2

Author Information

Tom Winn
Texas State Auditor’s Office
P.O. Box 12067
Austin, TX 78711-2067

Telephone: 512 / 936-9735
E-mail: twinn@sao.state.tx.us

SECTION CHAIRS

Philip d’Almada
 EDS

Eric Brinsfield
Meridian Software, Inc

P
O

S
T

E
R

S

POSTERS

Cubes on the Cheap
By Jimmy DeFoor
Brierley and Partners

Cubes are hot items in the OnLine Analytical Processing (OLAP) environment. The functionality is usually
quite costly to acquire, but equivalent content with reasonably good navigational capabilities can be created
using linked HTMLs generated by SAS Data Steps and simple Put _ODS_ statements. This paper explains
how to create such 'cubes' and provides examples of the code that would create them.

A cube is a multi-level view of the dimensions of a data set. A multi-level view is one in which statistical
measures exist for each combination of the dimensions of the data. For example, if the dimensions of sales
data for a grocery store chain were Year, Month, Store, and Household, a cube would have statistical
measures such as sums, averages, and medians for sales at every combination of those dimensions.

The different levels of a cube are created by collapsing one or more dimensions and then calculating
statistical measures on the other dimensions. For example, Year is collapsed and statistical measures are
calculated on sales for each store, household and month for all years. Year and Month are then both
collapsed and statistics are calculated on sales at each store and household for all years and all months.
This process is repeated until all combinations have been evaluated.

The number of levels in a cube is calculated using the exponential function: 2**D, where D is the number
of dimensions. For example, four dimensions create 16 levels; three dimensions, 8 levels; two, 4; one, 2.

Proc Summary generates these multi-level views in one pass of the input data set. By default, it generates
sums for every level, but other measures can be requested, including maxima, minima, P10, P90, etc.
Each level is given a value generated by the _Type_ field. This value is based upon the order of the
dimensions in the Class statement and the rule that a zero (0) is assigned to a field when it is collapsed and
a one (1) when it is not.

If the order of the dimensions were Year, Month, Store, and Household, Proc Summary would assign a
value of 0000 to the level that had all dimensions collapsed and a value of 1111 to the dimension which had
no fields collapsed. It would assign 0011 to the dimension that represented a collapse of Year and Month
and a 1000 to the dimension that represented a collapse of Month, Store, and Household.

When a field is collapsed, Proc Summary sets that field to blank. Creating a user format and adding it to the
Proc Summary will change the blanks to 'Collapsed' in the output data set.

Proc Format;
 Value $Blank
 ' ' = 'Collapsed'
 ;
Run;
*;
Proc Summary data = DataforCube;
 Class Year Month Store Household; /* Dimension fields */
 Var Sales Visits; /* Measure fields */
 Output out= DataforCubeStats(drop=_freq_) /* drop record counts */
 sum = Sales Visits
 mean = AvgSales AvgVisits
 median = P50Sales P50Visits
 ;
 Format Year Month Store Household $Blank.0; /* Change Blank to Collapsed */
Run;

Proc Summary doesn't write out the _Type_ field in the binary format. Instead, it converts it to a decimal
value. A value of 1111 becomes 8 + 4 + 2 + 1 or 15. A value of 0011 becomes 0 + 0 + 2 + 1 or 3. A value
of 1011 becomes 8 + 0 + 2 + 1 or 11. This calculation can be done in a Do loop:

TypeValue = 0;
Pos = 0;
Dimension = 4;
Start = Dimension - 1;
Do J = Start to 0 by -1;
 Pos = Pos + 1;
 PosValue = Input(Substr(_Type_,Pos,1),3.0);
 TypeValue = TypeValue + 2**(J*PosValue);
End;
Type = Put(TypeValue,4.0);

Knowing this, a programmer can reconstruct the original value of _Type_ and place it into a new field,
BinaryType, which can be used to separate the output of Proc Summary into a data set for each level.

Array Binary (0:3) p0 p1 p2 p3;
Array Exponent (0:3) e0 e1 e2 e3
 (0 1 2 3); /* values of fields in array */
Remainder = _Type_;
/* Start with highest exponent and evaluate downward. */
Do J = 3 to 0 by -1;
 BinaryValue = 2**Exponent(J);
 If Remainder ge BinaryValue then
 do;
 Binary(J) = '1';
 Remainder = Remainder - BinaryValue;
 end;
 else
 Binary(J) = '0';
End;
/* Create Binary Type field by concatenating array values */
Binarytype = P3||P2||P1||P0;

After separate data sets are built for each BinaryType, an HTML is created for each using the ODS Html
statement and Put_ODS_. The cube is built by linking the HTMLs to a Table of Contents and to each other.

The links are constructed using the anchor HTML tag, <a, and the hyperlink tag, href.

 "0001"

The text inside the quotes is underlined in the HTML. When the text is clicked, the browser opens the file
referenced by the href.

Here is an example of a Table of Contents with links to each report. Not all levels (_Types_) are shown.
The underlined values contain the links.

Household Sales and Visits Data of Ajax Supermarkets
Table of Contents

Click Report to See That Level of the Cube

Report Level Year Month Store Household
0000 0 Collapsed Collapsed Collapsed Collapsed
0001 1 Collapsed Collapsed Collapsed Expanded
0010 2 Collapsed Collapsed Expanded Collapsed
0011 3 Collapsed Collapsed Expanded Expanded
0100 4 Collapsed Expanded Collapsed Collapsed
1111 15 Expanded Expanded Expanded Expanded

Notice the entries under each dimension. They are either Collapsed or Expanded to indicate the summary
level of that column. They are created by sub-stringing the Report field for the value of the dimension and
writing 'Collapsed' if it is a zero (0) and 'Expanded' if it is a one (1). The Level field is created from _Type_
field that was output by Proc Summary. The Report field is created using the BinaryType field generated
from the _Type_ field.

Each linked HTML will have the data for the level listed in that Report. For example, the 0100 Report would
have monthly sales data over all years, all stores, and all households. In this example, it shows total, average,
and P50 (median) sales for each month.

Household Sales and Visits Data of Ajax Supermarkets
Report 0100

Go to Table of Contents

Year Month Store Household TotalSales AvgSales P50Sales
Collapsed January Collapsed Collapsed 10,000,000 2,000,000 1,800,000
Collapsed February Collapsed Collapsed 11,000,000 2,200,000 1,900,000
Collapsed March Collapsed Collapsed 12,000,000 2,400,000 2,200,000
Collapsed April Collapsed Collapsed 11,000,000 2,200,000 2,000,000
Collapsed May Collapsed Collapsed 12,000,000 2,400,000 2,100,000
Collapsed June Collapsed Collapsed 13,000,000 2,600,000 2,300,000

A link back to the Table of Contents is placed in the header and footer of the report so that the user can
easily move to any level of the cube. Though needed, that approach is insufficient. It does not give the user
an intuitive method of expanding and collapsing dimensions. The 'Expand, Collapse' method is created by
adding a table at the top and bottom of each report that takes the user to the 'opposite' view of each
dimension. This is the table that would be used in the 0100 Report.

Year Month Store Household
Expand Collapse Expand Expand

The links for each column of the header and footer table are created by 'flipping' each digit one at a time,
leaving the other digits unchanged. For example, the first digit of 0100 is for the Year dimension. Flipping
the first digit to 1 creates a BinaryType of 1100. It shows expanded sales values for both Year and Month.
Similarly, flipping only the second digit creates a BinaryType of 0000, which is the top level of all
dimensions meaning all four dimensions have been collapsed.

Creating these links is done with the following code. It flips each digit and builds a ReportType of either
expand or collapse. It then creates a value for each variable that contains the link and the ReportType. The
resulting variables are written to a SAS data set that is used to create the header and footer for each report.

Array Fields (4) Field1 - Field4;
Start = 1;
Do J = 1 to 4; /* Evaluate each position of BinaryType */
 Linkref = Binarytype; /* copy BinaryType*/
 Binary = Substr(BinaryType,Start,1); /* examine one position of field */
 If Binary eq '0' then
 do;
 substr(LinkRef,Start,1) = '1'; /* Flip to a 1 if originally a 0 */
 ReportType = 'Expand ';
 end;
 else
 do;
 substr(LinkRef,Start,1) = '0'; /* Else Flip to a 0 */
 ReportType = 'Collapse';
 end;
 Field(J) = ' "'||ReportType||'" ';
 Start = Start + 1;
End;

Opening the data set generated in this step will show this content for each column.

'"Expand" ';

As stated earlier, the browser opens the file named in the 'href=' after the double-quoted item is clicked,
which is Expand in this example.

The data step that writes the header and footer values is very simple. It uses labels to create column names
that match the columns of the report. It then tells ODS which variables will be in the table and writes the
variables to the table using the default Put _ODS_ statement. That statement writes all variables at once, in
the order defined in the File Print ODS statement.

Data _null_;
 Set HeaderFooter end=eof;
 Label Field1 = Year Field2 = Month Field3 = Store Field4 = Household;
 File Print ODS=(Variables=(Field1 - Field4));
 Put _ODS_;
run;

Each report HTML is constructed with three data steps. The first step writes the header table; the second,
the report table; the third, the footer table. Writing to one HTML file three times requires the use of the
'mod' parameter on the file statement so that the tables are appended instead of overwritten. It also
necessitates the use of the No_Top_Matter and No_Bottom_Matter options on the Body parameter of the
ODS HTML statement to prevent HTML commands from being written to the file that would cause the
browser to display separation lines between the tables.

Filename body "D:\Proj\ZDevelopment\Reports\Type0100.html" mod;
ODS HTML body=body (No_Top_Matter No_Bottom_Matter);

The ODS HTML statement specifies that HTML commands will be written to the filename referenced in
the Body= parameter. The ODS HTML statement is also used to open and close the file, set the style
template that will be used for the fonts in the file, and indicate whether frame or page files will be
associated with the body file being written.

The three data steps that create the report HTMLs are placed into a macro that is executed once for every
data set created for a unique BinaryType. In the example used in this paper, there are 16 such data sets.

The macro and the data to create the 'cube' are available from the author via email: thefoor@hotmail.com.
That macro is capable of creating a cube with 1 to 10 dimensions.

Below are examples of the Table of Contents and one report created by the author's macro.

Household Sales and Visits Data of Ajax SuperMarkets

Table of Contents

Click Report to See That Level of the Cube

Report Level Year Month Store Household

0000000000 0 Collapsed Collapsed Collapsed Collapsed

0000000001 1 Collapsed Collapsed Collapsed Expanded

0000000010 2 Collapsed Collapsed Expanded Collapsed

0000000011 3 Collapsed Collapsed Expanded Expanded

0000000100 4 Collapsed Expanded Collapsed Collapsed

0000000101 5 Collapsed Expanded Collapsed Expanded

0000000110 6 Collapsed Expanded Expanded Collapsed

0000000111 7 Collapsed Expanded Expanded Expanded

0000001000 8 Expanded Collapsed Collapsed Collapsed

0000001001 9 Expanded Collapsed Collapsed Expanded

0000001010 10 Expanded Collapsed Expanded Collapsed

0000001011 11 Expanded Collapsed Expanded Expanded

0000001100 12 Expanded Expanded Collapsed Collapsed

0000001101 13 Expanded Expanded Collapsed Expanded

0000001110 14 Expanded Expanded Expanded Collapsed

0000001111 15 Expanded Expanded Expanded Expanded

Household Sales and Visits Data of Ajax SuperMarkets

Report 0000001010

"Go to Table of Contents"

Year Month Store Household

"Collapse" "Expand " "Collapse" "Expand "

Level Year Month Store Household Sales Visits AvgSales AvgVisits P50Sales P50Visits

10 1999 Collapsed 7926 Collapsed 51,706 1,140 97.19 2.14 50 1

10 1999 Collapsed 7931 Collapsed 29,402 605 113.08 2.33 45 1

10 1999 Collapsed 7964 Collapsed 95,899 1,484 168.84 2.61 114 2

10 2000 Collapsed 7926 Collapsed 50,840 1,114 93.97 2.06 50 1

10 2000 Collapsed 7931 Collapsed 39,625 826 103.19 2.15 48 1

10 2000 Collapsed 7964 Collapsed 100,187 1,489 160.81 2.39 97 2

Year Month Store Household

"Collapse" "Expand " "Collapse" "Expand "

"Go to Table of Contents"

More information on ODS and on creating HTMLs with the SAS Data Step can be found in the Online
Documentation and in these three papers available on the SAS website.

Heffner, W. F. (1998), “ODS: The Data Step Knows,” in the Proceedings for the Twenty-Third
Annual SAS Users Group International Conference, Cary, NC: SAS Institute Inc.

Olinger, C. R. (1999), “Twisty Little Passages, All Alike – ODS Templates Exposed” in the
Proceedings for the Twenty-Forth Annual SAS Users Group International Conference, Cary, NC:
SAS Institute Inc.

Olinger, C. R. (2000), “ODS for Dummies” in the Proceedings for the Twenty-Fifth Annual SAS
Users Group International Conference, Cary, NC: SAS Institute Inc.

A nice primer on HTML commands, now available in many half-price bookstores, is

Evans, Tim, Sams Teach Yourself HTML 4 in 10 minutes, Sams Corporation, Indianapolis, Ind.,
1998, 230 pages. Http://www.samspublishing.com/.

TRADEMARKS

SAS® and all SAS products are trademarks are registered trademarks of SAS Institute Inc.

Transforming Single-Record Spreadsheet Data into Multiple Observations
Glenda Garner, Wake Forest University

ABSTRACT
Generating SAS datasets from ASCII files is a simple task.
Generating datasets from spreadsheet style data is also easily
accomplished in SAS. However, the task becomes much more
difficult when dealing with a mixed format of data variables with a
varying number of input lines per record. One such example was
the conversion process of biomechanical gait data into SAS
datasets in the ADAPT study(Arthritis, Diet, and Activity
Promotion Trial).
This poster will address implementing advanced features of the
INPUTstatement.

RAW DATA EXAMPLE

TABLE 1

60030r1w1.xls

Avg Step Width (cm) 10.81

R_Velocity 102.007

R_Stride_Len 122.392

R_Cadence 98.63

L_Velocity

L_Stride_Len

L_Cadence

R_Support_Time 64.384

L_Support_Time

R_Non_Support 35.616

L_Non_Support

R_Step_Len 57.84

L_Step_Len 64.552

R_Dbl_Support 16.438

L_Dbl_Support

RHS 58 131

LHS 94

RTO 105 5

LTO 70

RHS FP 59

LHS FP

R_HIP Rot ANG R_HIP Abd ANG R_HIP Flex ANG

6.608 2.316 62.296

6.748 2.578 60.988

Table 1 shows a portion of the Biomechanical gait data for the
ADAPT study. Each participant's data was contained in a separate
spreadsheet. Within each spreadsheet, each record consisted of 23
rows of temporal/spatial data on the participant. The next group of
rows consist of 87 columns of data with each row representing a
time period in the gait cycle. Processing included exporting each
spreadsheet from Excel into a CVS file (ASCII comma- delimited
format) and then concatenating all the records into one file.

SAMPLE CODE

INPUT Line Features Used:
• Line pointer control, #, moves the pointer to the line number

specified.

• Column pointer control, @, moves the pointer to the column
specified.

• Line hold specifier, trailing @@, keeps the pointer on the
current input line.

• Three input statements are executed:
1. The first INPUT statement reads the first 23 lines
2. The second INPUT statement tests for end of record
3. The third INPUT statement is within the DO UNTIL loop,

which creates an output line for each iteration. The loop is executed
until end of record or end of file is reached.

Infile Options Used:

• lrecl the logical record length must be given or a default of
80 is used.

• dlm the delimiting character is the comma

TABLE 2

libname x '/home/pepper/adapt/gait/datasets/baseline';
filename raw '/home/pepper/adapt/gait/rawdata/baseline/gait.out';
options ls=80;

data one;
length id $ 11;
quit='n';
obnumber=0;
infile raw lrecl=600 dlm="," ;

input id $ /* The first INPUT statement */
#2 @20 avg_step
#3 @11 r_vel
#4 @13 r_slen
#5 @10 r_cad
#6 @11 l_vel
#7 @13 l_slen
#8 @11 l_cad
#9 @15 r_time
#10 @15 l_time
#11 @14 r_nsup
#12 @14 l_nsup
#13 @11 r_step
#14 @11 l_step
#15 @14 r_dbl
#16 @14 l_dbl
#17 @4 rhs @7 rhs2
#18 @4 lhs @7 lhs2
#19 @4 rto @7 rto2
#20 @4 lto @7 lto2
#21 @7 rhs_fp1

#22 @7 lhs_fp
#23 headers $;

do until (quit='y');
input var1 @@; /*The second INPUT statement */

if var1 ne . then do;
input var2-var87; /*The third INPUT statement */
obnumber = obnumber + 1;
end;

else
quit='y';

output;
end;

Table 2 shows the code used in making each of these rows a record
with the temporal/spatial data included in the observation.

SAMPLE OUTPUT DATA

TABLE 3

Obs ID AVG_STEP R_VEL R_SLEN

1 60030r1w1.x 10.81 102.007 122.392
2 60030r1w1.x 10.81 102.007 122.392
3 60030r1w1.x 10.81 102.007 122.392
4 60030r1w1.x 10.81 102.007 122.392

Obs RTO2 LTO Var1 Var2 Var3 Var4

1 5 70 6.608 2.316 62.296 -21.889
2 5 70 6.748 2.578 60.988 -21.312
3 5 70 6.556 2.632 59.652 -20.490
4 5 70 5.953 2.371 58.303 -19.358

Table 3 shows a portion of the first four records of the output. The
temporal/spatial data is repeated for each observation. All variables
are kept in the final dataset. The ID variable identifies the
participant ID, the visit number, more affected side, and the trial
number. These data will be analyzed to determine any significant
differences or changes between or within the intervention groups.

CONCLUSION
This paper demonstrates how to write a SAS program to read ASCII
data with a non-fixed format and a varying number of lines per
record. Additionally shown is how to create output with multiple
observations from one single record.

References
SAS Institute Inc(1990) SAS Language, Cary, NC: SAS
Institute Inc, 420-421 pp.
SAS is a registered trademark of SAS Institute Inc.

Generating Matched Case Data Using PROC SQL

Imelda C. Go, Lexington County School District One, Lexington, SC

ABSTRACT

Some statistical methods compare data matched on
certain variables. For example, pairs of subjects with the
same gender are to be compared. Whenever data from
males/females are to be matched with data from other
males/females, a many-to-many match is involved. SAS
users are discouraged from using the DATA step to
perform many-to-many matches. PROC SQL can
adequately handle such types of matches. The paper is an
introduction on how to use PROC SQL for the said
purpose whether data are to be matched on one or more
variables/criteria.

DATA STEP

Consider two data sets, group1 and group2. In the
examples, SS stands for scaled score.

group1 data set

GRADE NAME SS LUNCH SEX

 4 Garbo, Greta 434 R F
 3 Davis, Betty 380 F F
 3 Monroe, Marilyn 324 F F
 5 Gabor, Eva 567 R F
 2 Taylor, Liz 245 N F
 6 Farrow, Mia 655 N F

group2 data set

GRADE NAME SS LUNCH

 3 Midler, Bette 354 R
 3 Gabor, Zsazsa 381 R
 6 Seymour, Jane 656 F
 4 Field, Sally 434 F
 5 Loren, Sophia 577 F
 2 Ryan, Meg 234 N

A DATA step can be used to merge group1 and group2
by grade. When data are merged this way, the two data
sets need to be sorted by grade (or the BY-variables).
When contributing data sets have variables with the same
name, the variables need to be renamed in order to
prevent the values of one data set from overwriting the
values of the other data set during the merge.

The DATA step can handle one-to-one, one-to-many, and
many-to-one matches but not many-to-many matches. For
true many-to-many matches, the result should be a cross
product. For example, if two records from one data set
match two records from another data set, the merged
results should have 2 × 2 = 4 records.

The results shown next are problematic because of the
many-to-many situation and because the variables with
the same name were not renamed or dropped from either
data set.

proc sort data=group1; by grade;
proc sort data=group2; by grade;

data test;
 merge group1 group2;
 by grade;

proc print;

 GRADE NAME SS LUNCH SEX

 2 Ryan, Meg 234 N F
 3 Midler, Bette 354 R F
 3 Gabor, Zsazsa 381 R F
 4 Field, Sally 434 F F
 5 Loren, Sophia 577 F F
 6 Seymour, Jane 656 F F

PROC SQL

Many-to-Many Matches

PROC SQL can correctly handle many-to-many matches.
Use it to create a data set that involves all possible
matches. PROC SQL can also perform, under one
procedure, what could be done using a combination of
DATA step statements, and the PRINT, SORT, and
SUMMARY procedures. The procedure is powerful, but
only a few of its features are mentioned in this paper.

• The SELECT statement allows users to specify

columns for the query, create column aliases
(name/rename variables), and compute arithmetic
expressions.

• The FROM statement specifies the sources of the

variables listed in the SELECT statement.

• The WHERE statement specifies subsetting criteria.

• The ORDER BY specifies the sort order.

• Tables or data sets do not need to be sorted to use

PROC SQL. The RUN statement does not need to be
used with PROC SQL.

The example below matches data sets group1 and
group2 by grade using PROC SQL. Cross products
resulted for many-to-many match situations.

proc sql;
 select group1.grade, group1.name as name1,
 group2.name as name2, group1.ss as ss1,
 group2.ss as ss2, sex
 from group1, group2
 where group1.grade=group2.grade;

GRADE NAME1 NAME2 SS1 SS2 SEX
--
 4 Garbo, Greta Field, Sally 434 434 F
 3 Davis, Betty Midler, Bette 380 354 F
 3 Davis, Betty Gabor, Zsazsa 380 381 F
 3 Monroe, Marilyn Midler, Bette 324 354 F
 3 Monroe, Marilyn Gabor, Zsazsa 324 381 F
 5 Gabor, Eva Loren, Sophia 567 577 F
 2 Taylor, Liz Ryan, Meg 245 234 F
 6 Farrow, Mia Seymour, Jane 655 656 F

Names repeat in the name1 and name2 fields. In
producing the final matched case sample, care must be
given to make sure that there are no unwanted repetitions
in the matches. This can be achieved with more SAS
programming statements but will not be shown in this
paper.

Syntax Review

The PROC SQL example above is repeated below. Some
syntax notes are provided.

proc sql;
 select group1.grade, group1.name as name1,
 group2.name as name2, group1.ss as ss1,
 group2.ss as ss2, sex
 from group1, group2
 where group1.grade=group2.grade;

• Variables in the SELECT statement are separated by
commas and can be specified using one-level or two-
level names. Two-level names are of the form:

 <data set name>.<variable name>
and can be used any time. One-level names are
acceptable when there are no ambiguous references.
Group1.grade refers to the grade variable from the
group1 data set. Sex uses a one-level name because
it is in group1 but not in group2.

• Variables can be renamed in the SELECT statement.
Group1.name is renamed as name1.

• The FROM statement lists source data sets separated

by commas. Data sets group1 and group2 contain
the variables listed in the SELECT statement.

• The WHERE statement can contain subsetting criteria.

The condition group1.grade=group2.grade
restricts the results to data joined or matched with
equal grade values. The results will not contain records
that differ in grade values.

• Grade occurs as a variable in both data sets. The

following PROC SQL example produces the error:
“Ambiguous reference, column GRADE is in
more than one table.”

proc sql;
 select grade, group1.name, group2.name
 from group1, group2
 where group1.grade=group2.grade;

• To include all variables from a table, use SELECT *

instead of a variable list after the SELECT key word.

proc sql;
 select *
 from group1
 where grade=3;

GRADE NAME SS LUNCH SEX

 3 Davis, Betty 380 F F
 3 Monroe, Marilyn 324 F F

More Matching Criteria #1

Building on the first PROC SQL example, suppose that the
matches are to be restricted to those where the scaled
scores differ by no more than two scaled score points. An
additional criteria is added to the WHERE statement to
produce the desired result. The 0<=abs(group1.ss-
group2.ss)<=2 condition checks to see if the absolute
difference of the scaled scores is not a missing value and
is at most two. (For the contrived data, the results below
are very convenient because there are no repetitions of
students. There are only distinct names from group1 and
group2.)

proc sql;
 select group1.grade, group1.name as name1,
 group2.name as name2, group1.ss as ss1,
 group2.ss as ss2, sex
 from group1, group2
 where group1.grade=group2.grade and
 0<=abs(group1.ss-group2.ss)<=2;

GRADE NAME1 NAME2 SS1 SS2 SEX
--
 4 Garbo, Greta Field, Sally 434 434 F
 3 Davis, Betty Gabor, Zsazsa 380 381 F
 6 Farrow, Mia Seymour, Jane 655 656 F

Creating a Table or an Output Data Set

The next example uses the CREATE TABLE statement to
store the results of the query into a table. An ORDER BY
statement was also added to produce the results in
increasing ss2 values. The log shows the following
message after the SQL statement, “NOTE: Table
WORK.POOL created, with 3 rows and 6 columns.”

proc sql;
 create table pool as
 select group1.grade, group1.name as name1,
 group2.name as name2, group1.ss as ss1,
 group2.ss as ss2, sex
 from group1, group2
 where group1.grade=group2.grade and
 abs(group1.ss-group2.ss)<=2
 order by ss2;

proc print data=pool;

OBS GRADE NAME1 NAME2 SS1 SS2 SEX

 1 3 Davis, Betty Gabor, Zsazsa 380 381 F
 2 4 Garbo, Greta Field, Sally 434 434 F
 3 6 Farrow, Mia Seymour, Jane 655 656 F

The above example also shows that when PROC PRINT
is used for the pool table, the output shows the query
results.

More Matching Criteria #2

Suppose the lunch status needs to be part of the
matching criteria. The condition can be added to the
WHERE statement. The lunch variables were used in the
WHERE statement even if they were not among the
variables in the SELECT statement below. The lunch
variable also does not appear in the results.

proc sql;
 select group1.grade, group1.name as name1,
 group2.name as name2, group1.ss as ss1,
 group2.ss as ss2, sex
 from group1, group2
 where group1.grade=group2.grade and
 group1.lunch=group2.lunch;

GRADE NAME1 NAME2 SS1 SS2 SEX
--
 2 Taylor, Liz Ryan, Meg 245 234 F

To include the lunch variable in the output, add the
lunch variable to the variables listed in the SELECT
statement.

proc sql;
 select group1.grade, group1.name as name1,
 group2.name as name2, group1.ss as ss1,
 group2.ss as ss2, sex, group1.lunch
 from group1, group2
 where group1.grade=group2.grade and
 group1.lunch=group2.lunch;

GRADE NAME1 NAME2 SS1 SS2 SEX LUNCH
--
 2 Taylor, Liz Ryan, Meg 245 234 F N

Arithmetic Expression

Suppose the difference of the ss variables needs to be
added to the query. Add the necessary code to the
SELECT statement. The difference of group1.ss-
group2.ss is included in the SELECT statement below.
The difference is given in the last column without a column
heading.

proc sql;
 select group1.grade,group1.name as name1,
 group2.name as name2, group1.ss as ss1,
 group2.ss as ss2, sex,
 group1.ss-group2.ss
 from group1, group2
 where group1.grade=group2.grade and
 group1.lunch=group2.lunch;

GRADE NAME1 NAME2 SS1 SS2 SEX
--
 2 Taylor, Liz Ryan, Meg 245 234 F 11

Column Alias

A name can be given to the difference. For example,
adding as ssdiff immediately after group1.ss-
group2.ss in the previous SQL statement will name the
difference as ssdiff.

proc sql;
 select group1.grade, group1.name as name1,
 group2.name as name2, group1.ss as ss1,
 group2.ss as ss2, sex,
 group1.ss-group2.ss as ssdiff
 from group1, group2
 where group1.grade=group2.grade and
 group1.lunch=group2.lunch;

GRADE NAME1 NAME2 SS1 SS2 SEX SSDIFF
--
 2 Taylor, Liz Ryan, Meg 245 234 F 11

A Final Note

It is also possible to have several statements under the
same procedure declaration.

,

proc sql;
 create …;
proc sql;
 select …;
proc sql;
 select …;

can be replaced by

proc sql;
 create …;
 select …;
 select …;

REFERENCES

SAS Institute Inc., SAS Language Reference, Version 8,
Cary, NC: SAS Institute Inc., 1999. 1256 pp.
SAS Institute Inc., SAS OnLineDoc, Version 8, Cary, NC:
SAS Institute Inc., 1999.

TRADEMARK NOTICE

SAS is a registered trademark or trademark of the SAS
Institute Inc. in the USA and other countries. �indicates
USA registration.

Imelda C. Go (icgo@juno.com)
Lexington County School District One
Lexington, SC

Overcoming the Challenges of Longitudinal Data Collection

Imelda C. Go, Lexington County School District One, Lexington, SC

ABSTRACT

This paper discusses problems encountered when data
are collected longitudinally. Longitudinal data collection
implies data collected over time are to be matched on key
variables (e.g., social security number, last name, first
name). Data for the key variables are not always
consistent due to a variety of reasons (e.g., human error,
name changes). This lack of consistency creates problems
during the matching process. The paper also discusses
matching data using the DATA step versus PROC SQL.

INTRODUCTION

Using SAS to produce longitudinally matched data
involves understanding several aspects of how SAS
processes data. There are also various SAS programming
solutions that produce the same results. The paper does
not go into great detail regarding all these aspects.
However, it provides an overview of things that need to be
considered in producing longitudinal data. Most examples
are actual situations encountered with school test data.

Some of the things that need to be considered include:

• Determining the quality of the data

The data quality affects the data processing and the
programming required to produce the longitudinal
data.

• Determining the matching algorithm

Can the data be matched on social security number
(SSN)? The answer will depend on how reliable the
SSN data are and what the project’s tolerance for
error is. What other sets of variables can the data be
matched on? Should the leftover data that did not
match stay unmatched? Should they be matched
using other criteria or even manually inspected to see
if more matches can be found? For certain studies,
matched case data may already be hard to find so a
manual inspection may be worth the trouble.

• Determining the project’s tolerance for error

The tolerance for error is usually determined by the
consequences of an incorrect match. The SSN may
have incorrect digits and may accidentally match
another SSN. If the SSN is expected to be
problematic, consider matching with the SSN and
other variables. If the tolerance for error is on the
high end, perhaps less stringent or even fuzzy
matching methods can be used.

The rest of the paper is divided into four parts:

• Data quality
• Matching on key variables
• DATA step
• PROC SQL

DATA QUALITY

Input data can come from a variety of sources and it is not
always possible to control how they are created and their
quality. High quality data naturally require less
troubleshooting and programming. Some strategies for
preventing data processing problems are:

• Establish data entry standards. For example, how

should name suffixes (e.g., Jr., II, III) be entered as
data? Should there be another field specifically for
name suffixes? Consistent data facilitates
programming.

• Prevent invalid values from being entered as data.

For example, use lookup tables that restrict values of
variables to valid values only.

• Validate the data prior to processing. The quality of

the data can be gauged by validating the data. For
example, does the data set contain what it is
expected to contain? If it is supposed to have data for
5-year old students, but it contains data for 10-year
old students, there is something obviously wrong.

• Plan the data’s structure to be compatible with the

uses of the data. For data used in applications that
rely heavily on street address data (e.g.,
transportation routing, mapping, geographic
information systems), it might be useful to decompose
a street address into a number of variables (street
number, street name, street type, and apartment
number) instead of using one variable to represent it.

• Know the data. Be aware of the sources of data,

sources of error, and the quality of the data. Poor data
quality often interferes with data processing and is a
major cause of processing delays. It not only creates
problems during processing, but it casts doubt on the
results.

MATCHING ON KEY VARIABLES

Matching can be done on one or more key variables.
When only one variable is used, a non-match implies the
values on that one variable were not the same. If two
variables are used for the match, a non-match implies the
values differed on one or both variables. As more
variables are used, the matching criteria become more
stringent. Matches must be equal on more variables and
differences between those variables are more likely to
occur than if fewer variables were used.

When a unique identifier, such as the SSN, is used to
match, make sure the SSN data type is the same. It is
either numeric or character across all data sets that need
to be matched on SSN.

Would there even be a situation where the SSN should be
a character type? The answer depends on the nature of
the data. If one or more digits of the SSN are missing and
a space is used to indicate the missing digit(s), the
character type would preserve the information. If the SSN
of ‘251112222’ is bubbled on a scan form and some of
the bubble marks were not scanned properly, the data file
might have ’25?12222’ where ? is a digit that did not scan
properly. If the data type is numeric, ‘251 12 22’ (4th and
7th digits are missing) and ’25?12222’ are invalid numeric
values and are set to missing.

When data are matched on character variables (e.g., last
name, first name), make sure the character values are as
consistent as possible. Reducing inconsistencies in
character values can help maximize the number of
successful matches. However, people can also change
their names over time.

Comparing strings is case-sensitive. That is, ’Edward’ is
not the same as ’EDWARD’. Typing is subject to human
error. For example, ’EDWARD’ may have been typed as
’EDWard’. One solution is to use the UPCASE or
LOWCASE functions.

sample statement value of test
test=upcase(’Edward’); ’EDWARD’
test=lowcase(’EDWard’); ’edward’

’Mary Ann’ might be entered as ’Mary Ann’ where
there are two spaces between Mary and Ann. Use the
COMPBL function to convert two or more consecutive
blanks into one blank.

test=compbl(name);
value of name value of test
’Mary Ann’ ’Mary Ann’
’Mary Ann’ ’Mary Ann’

’Mary Ann’ might be entered as ’ Mary Ann’ where
there is a leading space before Mary. Use the LEFT
function to left align a character expression.

test=left(name);
value of name value of test
’ Mary Ann’ ’Mary Ann’
’ Mary Ann’ ’Mary Ann’

SAS ignores trailing spaces when character expressions
are compared (e.g., ’Mary Ann ’ is equivalent to
’Mary Ann’). If there are any unwanted spaces in the

first name, use the COMPRESS function to remove
specified characters from a string. If no characters for
removal are specified, the function removes spaces by
default.

test=compress(name);
value of name value of test
’Edw ard’ ’Edward’
’ Edward’ ’Edward’

Is it possible to have a first name with two words?
Whatever the answer is, consistency is the key word when
matching. If all the spaces are removed from all the
variables used to match, then the only issue is whether the
original name value needs to be retained. If there is any
such concern, keep two name fields. The first one would
be the original name, the second one would be the edited
name used for matching.

Other characters may also need to be removed. List the
characters to be removed in single quotes.

test=compress(name,’?-’);
value of name value of test

’Kidman-Cruise?’ ’KidmanCruise’

There may be an attempt to type accent marks into the
value of a name. For example, André might be typed in
as Andre’ and this is really a data entry standard issue.
When the typist encounters an accent mark, should they
attempt to type the accent mark? That particular accent
mark lends itself well to an apostrophe. There are of
course other foreign accent marks (e.g., ö) that would not
lend themselves well to plain text characters.

What if the apostrophe itself needs to be eliminated? Use
the following syntax.

test=compress(name,’’’’);
value of name value of test

Andre’ Andre

Should non-letter characters be eliminated? The answer
depends on the situation. An actual example encountered
is the accidental or intentional typing of non-letter
characters in names on student databases. Student
names are sent to a testing company that creates bar-
coded labels for test documents. In the process of creating
the labels, the testing company eliminates all non-letter
characters from the student names. Not all students will
have documents with bar-coded labels during testing.
Such students indicate their names by bubbling a scan
form. Scan forms often only provide bubbles for letter
characters in name fields. If data on the student database
need to be matched to data received from the testing
company later, original names need to be matched with
the names from the testing company. The first set of
names has non-letter characters while the second set of
names has no such characters. The number of matches
would not be maximized if the non-letter characters are
not edited out of the original names prior to matching.

There are many data sources and data entry standards.
Errors may also occur during the import and export of data
between various people and computer systems. Files can
get corrupted. A programmer might accidentally leave out
the last digit of the SSN being written out to a raw data file,
etc.

DATA STEP

Consider two data sets, time1 and time2. In the
examples, SS stands for scaled score.

time1 data set

GRADE LAST FIRST SS LUNCH SSN

 4 Garbo Greta 434 R 111111111
 3 Davis Betty 380 R 222222222
 2 Taylor Liz 245 R 333333333
 9 Kidman Nicole 333 R 444444444

time2 data set

GRADE LAST FIRST SS LUNCH SSN

 5 Garbo Greta 533 F 111111111
 4 Davis Betty 493 F 222222222
 3 Taylor Liz 399 F 333333333
 8 Loren Sophia 723 F 555555555

Using a DATA step to merge time1 and time2 by ssn
has disadvantages. When data are merged this way, the
two data sets need to be sorted by ssn (or the BY-
variables). When contributing data sets have variables
with the same name, the variables need to be renamed in
order to prevent the values of one data set from
overwriting the values of the other data set during the
merge.

The DATA step can handle one-to-one, one-to-many, and
many-to-one matching but not many-to-many matching.
For true many-to-many matches, the result should be a
cross product. For example, if there are two records that
match from one contributing data set to two records from
the other, the result should have 2 × 2 = 4 records in the
merged data set.

The merge results shown below are problematic because
of the many-to-many situation and because the variables
with the same name were not renamed or dropped from
either data set.

proc sort data=time1; by ssn;
proc sort data=time2; by ssn;

data test; merge time1 time2; by ssn;

proc print;

OBS GRADE LAST FIRST SS LUNCH SSN

 1 5 Garbo Greta 533 F 111111111
 2 4 Davis Betty 493 F 222222222
 3 3 Taylor Liz 399 F 333333333
 4 9 Kidman Nicole 333 R 444444444
 5 8 Loren Sophia 723 F 555555555

The following data step shows some variables being
dropped and renamed prior to merging. The resulting data
set has correct values.

data test;
merge time1 (drop=grade lunch rename=(ss=ss1))
 time2 (drop=grade lunch rename=(ss=ss2));
by ssn;

OBS LAST FIRST SS1 SSN SS2

 1 Garbo Greta 434 111111111 533
 2 Davis Betty 380 222222222 493
 3 Taylor Liz 245 333333333 399
 4 Kidman Nicole 333 444444444 .
 5 Loren Sophia . 555555555 723

What happens if the BY statement is accidentally omitted
from the previous example? No error message will be
given because it is valid SAS syntax and SAS does
merges without BY statements. The records are merged in
the order in which they occur on the data set and without
regard to any other criteria. The resulting data are invalid
and shown below.

data test;
merge time1 (drop=grade lunch rename=(ss=ss1))
 time2 (drop=grade lunch rename=(ss=ss2));

OBS LAST FIRST SS1 SSN SS2

 1 Garbo Greta 434 111111111 533
 2 Davis Betty 380 222222222 493
 3 Taylor Liz 245 333333333 399
 4 Loren Sophia 333 555555555 723

The DATA step can handle one-to-many and many-to-one
matches properly. If there is 1 record from the first source
data set and there are 2 records from the second source
data set for the same ssn, then the resulting data set will
have 2 records. If the ultimate goal is to have only one
record per ssn, then make sure there is only one record
per ssn prior to the merge, or consolidate the multiple
records into one record after the merge. If multiple records
per ssn are invalid at any time, then that needs to be
addressed during data validation.

Is there a way to determine which data set contributed to
the resulting merged record? Use the IN= data set option.
The in1 variable is a 0/1 indicator of whether the time1
data set contributed to the current observation (in1=0 if it
did not and in1=1 if it did). The in2 variable is the 0/1
indicator with respect to the time2 data set.

data test;
merge time1 (in=in1 drop=grade lunch
 rename=(ss=ss1))
 time2 (in=in2 drop=grade lunch
 rename=(ss=ss2)); by ssn;
 if in1 and in2 then source='both ';
 else if in1 then source='time1';
 else if in2 then source='time2';

OBS LAST FIRST SS1 SSN SS2 SOURCE

 1 Garbo Greta 434 111111111 533 both
 2 Davis Betty 380 222222222 493 both
 3 Taylor Liz 245 333333333 399 both
 4 Kidman Nicole 333 444444444 . time1
 5 Loren Sophia . 555555555 723 time2

PROC SQL

Consider another two data sets, time1 and time2
below.

time1 data set

GRADE LAST FIRST SS LUNCH SSN

 4 Garbo Greta 434 R 111111111
 2 Taylor Liz 245 R 333333333
 2 Taylor Liza 232 R 333333333
 9 Kidman Nicole 333 R 444444444

time2 data set

GRADE LAST FIRST SS LUNCH SSN

 5 Garbo Greta 533 F 111111111
 3 Taylor Liz 399 F 333333333
 3 Monroe Marilyn 387 F 333333333

The following PROC SQL example will produce the correct
results when many-to-many matches are involved. PROC
SQL would produce all the possible matches while the
DATA step would not. PROC SQL is a powerful procedure
and can also perform, under one procedure, what could be
done using a combination of DATA step statements, and
the PRINT, SORT, and SUMMARY procedures.

proc sql;
 select time1.ss as ss1,
 time2.ss as ss2,
 time1.last as last1,
 time2.last as last2,
 time1.first as first1,
 time2.first as first2
 from time1,time2
 where time1.ssn=time2.ssn
 order by ss1, ss2;

SS1 SS2 LAST1 LAST2 FIRST1 FIRST2
--
232 387 Taylor Monroe Liza Marilyn
232 399 Taylor Taylor Liza Liz
245 387 Taylor Monroe Liz Marilyn
245 399 Taylor Taylor Liz Liz
434 533 Garbo Garbo Greta Greta

Suppose there is a need to limit the results to those
matches that show a greater than 150-point gain in scaled
score points from time 1 to time 2. The WHERE statement
is expanded to include the criterion time2.ss-
time1.ss>150. This difference is also computed as
ssdiff and included in the query by adding time2.ss-
time1.ss as ssdiff to the SELECT statement.

proc sql;
 select time1.ss as ss1,
 time2.ss as ss2,
 time2.ss-time1.ss as ssdiff,
 time1.last as last1,
 time2.last as last2,
 time1.first as first1,
 time2.first as first2
 from time1,time2
 where time1.ssn=time2.ssn and
 time2.ss-time1.ss>150;

SS1 SS2 SSDIFF LAST1 LAST2 FIRST1 FIRST2
--
245 399 154 Taylor Taylor Liz Liz
232 399 167 Taylor Taylor Liza Liz
232 387 155 Taylor Monroe Liza Marilyn

The data above were matched on ssn. Examining names
for records with the same ssn value from both data sets
show differences (Liza Taylor vs. Liz Taylor, and
Liza Taylor vs. Marilyn Monroe). If the ssn values
are correct and unique, then perhaps the name values are
incorrect, or legal name changes were involved, or aliases
were used. If the ssn values were incorrect, then the
example illustrates a disadvantage of using only one
variable to match data. If the ssn values are not
considered very reliable, using more variables than ssn
alone to verify an individual’s identity can prevent incorrect
matches.

Regarding the plausibility of two individuals with practically
the same name having almost the same SSN,
examination of large databases with student biographical
data revealed identical twins with the same sex, the same
birth date, almost identical names (e.g., Sierra & Tierra),
and almost the same SSN (e.g., consecutive numbers --
222-22-2212 and 222-22-2213).

CONCLUSION

An understanding of data quality issues, sources of error,
how SAS processes data, and how things can go wrong
during the matching process are essential to anticipating
problems that need to be addressed during longitudinal
data collection. Being unaware of how problems can occur
could potentially allow such problems to occur undetected
and eventually invalidate the data.

REFERENCES

SAS Institute Inc., SAS Language Reference, Version 8,
Cary, NC: SAS Institute Inc., 1999. 1256 pp.
SAS Institute Inc., SAS OnLineDoc, Version 8, Cary, NC:
SAS Institute Inc., 1999.

TRADEMARK NOTICE

SAS is a registered trademark or trademark of the SAS
Institute Inc. in the USA and other countries. �indicates
USA registration.

Imelda C. Go (icgo@juno.com)
Lexington County School District One
Lexington, SC

Defining Test Data Using Population Analysis
Clarence Wm. Jackson, CQA - City of Dallas CIS

Abstract

Defining test data that provides complete test case
coverage requires the tester to accumulate data
that will satisfy all of the test cases in the
requirements. Having access to production data
eases the accumulation somewhat, but then any
smart tester knows that testing should not be done
in the production data. The next best situation is to
completely copy production data, but this can be
expensive depending on the size of the files and
the amount of testing being committed. Another
option would be to build test data based on the
requirements, which may or may not match the
varied data found in production data. This paper
proposes using population analysis of production
data as a tool to defining test data coverage. The
tools available to provide statistical analysis, such
as frequency of data element values and
percentages to the total population will provide
measurable verification of the test data to the
production data, ensuring better results of testing
scenarios.

Introduction

Test data is very important in ensuring that
software performs as required. The testers using
software specifications usually create test data,
which usually means that the software will meet
the specifications. This approach may not test the
total requirements of the software or how the
software will be used in production. If the tester
has no knowledge of the data and how it's used,
vital requirements can be missed in testing. Since
the test data is an important link in the software
testing cycle, ways to ensure that the test data is
adequate should be explored. Population Analysis
of production data will reduce the risk of missing
critical data types, and increase the reliability of the
software when moved to production.

Population Analysis

Population Analysis is simply creating reports that
describe the type, frequency, and characteristics of
data used by the application being tested. These
reports will help in locating data and in defining the

ranges and limits of data elements, lengths of
fields, and the number of data values within each
data element. The benefits of using Population
Analysis are many, but the major benefit is to the
tester in the following ways:

� Identification of codes and values being used in
production which were not indicated in the
specification or requirement document

� Unusual data conditions, like special codes,
trigger values

� Provides a model for use in creating test
transactions and test cases

� Provides a model for the type and frequency of
transactions that should be created

� Helps identify incorrect transactions for testing
error processing

� Documentation for use later in the project life
cycle

There are three types of population analysis that
can be performed to gather identifying information
for testing. All the information gathered from the
analysis should be documented. The three types
of population analysis are:

1. File/data stores - to identify files and other
input/output used by the software being tested

2. Screen - to identify screen displays that will be
used or generated by the software

3. Field/data element - to identify characteristics
and frequencies of fields/data elements

Usually the file/data stores are known, and the
screens are straightforward. Of the three types,
the Field/data element analysis is the most
complex and time-consuming part of population
analysis. That's where SAS comes in. Population
analysis is best performed using software, and
SAS can deal with any type of data encountered in
any shop. SAS is designed for population
analysis, and can compute all the statistics
needed. There are so many PROCedures that will
give you the information that it is a natural tool for
population analysis. Other software that will
provide analysis information are Audit Software,
DataBase utilities, and CASE tools. But for
field/data element analysis, SAS is the choice.

The steps for population analysis as presented in
this paper are based on the Deming/Shewhart
PDCA Quality Circle for continuous process
improvement, and the Quality Assurance Institute’s
(QAI) process “WORKBENCH” model. The steps
are:

1. Define the inputs for analysis (Plan)
� Existing production files being used "as is"
� Existing production files for which there will be

minor changes to the file
� Production files that contain the same or similar

fields/data elements that will be included
� Existing manual files, such as paper invoices,

forms, etc.
� Files from other systems that contain the same

or similar data elements
2. Implement procedures (Do)
� Identify file/data stores location, medium,

organization of data, and other details
� Identify the record types on the file/data stores,

number of records, and sizes
� Document the file/data stores characteristics
� Identify each data element/field in the file/data

stores
� Document the characteristics of each data

element
� Analyze the population of data recorded in this

data element area
� Identify and document abnormal conditions
3. Check procedures (Check)
4. Produce deliverables (Act)

Before beginning, define what information
(deliverable) is required from the analysis, create
forms or other documentation templates. The
documentation requirements for the three types of
population analysis should be established in the
planning stage. The documentation will assist you
in evaluating the completeness of your analysis,
and allow you to measure your progress.

Implement Procedures

The major task is to identify the files that will be
used for your analysis. Files and data stores must
be located and defined. Flowcharts, data flow
diagrams, system charts, and other documents
can be used to identify files within the scope of the
testing project.

Field/data element analysis is the most complex of
the analysis of population data. The analysis of the
data is the most important, and time spent in this
analysis will have a direct payback in improving the
test data. The objective of this type of analysis is
to describe the type, frequency, and characteristics
of the date elements. It is this analysis that will be
used to produce the test data.

The analysis of the data should include the
frequency, maximum, minimum, percentage of the
population, and total values for each data element
in each file/data store. This information should be
documented.

Check Procedures

You should have mostly everything needed at this
point, but it’s a good time to review. Check your
progress using your documentation template. Are
you getting the information needed to perform a
good test, and create good test data? Review
abnormal conditions with those involved with the
data for verification. All abnormal conditions
should be tracked and resolved.

Produce Deliverables

The deliverables are the documentation which
describe the population of the files, screens, and
data elements. With the correct analysis, a
question concerning the percentage of records
having certain values is known and documented.
The number of values within a given data element
is known and documented. You now know what
data values are required, and a much better set of
tests can be performed. With this information, the
test project should proceed with more assurance
that the correct items will be tested. The
documentation can be used for any of the following
purposes:

� Supplement the requirements and specification
documentation

� Development of the test plan
� Creation of test cases and scripts
� Creation of the test data
� Stress testing

How SAS Can Be Utilized To Perform
Population Analysis

SAS can be used in many ways to provide for all
types of population analysis reports through the
many tools that are a part of the SAS System.
SAS can be used for every type, or just for the
more labor-intensive analysis. In some cases, part
of the file/data stores, screen, and data element
analysis may be known, and provided to the tester.
However, the analysis of the data element values
should still be performed, and using SAS to do it
will save many hours of manual checklisting. Also,
SAS can be used to store the results of each type
of analysis and report it.

For data element analysis, SAS will be able to read
the data, and using your favorite PROC, such as
FREQ, MEANS, TABULATE, etc, you can produce
a listing of the frequencies of any and all data
elements that are of concern. SAS can also load
the test data stores using the values from the
analysis, with a little coding using the DATA step
programming statements.

Screen analysis can also be done using SAS,
especially if it is in some format that can be read
directly. Screens are such that tools may only be
required to store the data from analysis.

The files and data stores can be analyzed either
manually or using SAS. On the mainframe, PROC
SOURCE, PDS, and other methods of getting file
information from the operating system will give you
plenty of information about the files. If you are
working with SAS data, PROC DATASETS,
CONTENT, and other SAS PROCedures will
provide everything from file information to data
element metadata. For instance, PROC
CONTENT will provide you with most of the
identification information from SAS data files
regarding each data element.

Conclusion

The use of population analysis for testing is a
valuable tool in ensuring that software will function
properly when moved to production. The best
source of data for testing is production data. Why?
It is data that is being used in the live process. To
analyze the production data for the purpose of
building test data is a sound method to verify
software. Population analysis is a method to avoid
the risk of missing obvious transaction types during
the testing phase. The benefits of using the
method are many.

SAS offers many tools that can be used to perform
population analysis of production data. SAS can
readily compute mean, median, mode, standard
deviation, and other statistics by using a few BASE
SAS PROCedures for field/data element
population analysis.

References

Jackson, Clarence Wm., Using SAS To Help Manage Data
Proceedings of the Sixth Annual South Central Regional SAS
Users Group Conference, 1996

Perry, William E., A Structured Approach to Software Testing,
Q.E.D Information Sciences, Inc., Wellesley, MA, 1983

Quality Assurance Inst., QA/QC Solutions – Population
Analysis: Creating Test Data From Production Data, The
Process Warehouse, Quality Assurance Inst (QAI), Orlando,
FL, 1997

Beizer, Boris, Software Testing and Quality Assurance, Van
Nostrand Reinhold, NY, NY, 1984

SAS and the SAS System are registered trademarks of SAS
Inst, Inc, in the USA and other countries.

QAI and the Process Warehouse are registered trademarks of
the Quality Assurance Inst, in the USA and in other countries.

The sample SAS program code used to support
this paper is located in the Posters Area. The
author can be contacted via email as follows:

Clarence Wm. Jackson, CQA
QA Change Manager
City of Dallas
Communication and Information Services
QA Change Management
1500 Marilla 4DS
Dallas, TX 75201
cljacks@ci.dallas.tx.us (City of Dallas)
CJac@compuserve.com (home)
http://ourworld.compserve.com/homepages/CJac

SAMPLE PROJECT
Test Project involves Salary and Jobcode changes
for Company A

SAMPLE WORKSHEET #1
FILE/SUBSCHEMA POPULATION ANALYSIS

1. FILE/SUBSCHEMA IDENTIFIER:
2. FILE/SUBSCHEMA NAME:
3. RECORD TYPE(S)
4. IDENTIFIER FIELD

a. Yes No
b. NAME

5. VOLUME OF RECORDS (COUNT)
6. DESCRIPTION
7. VOLUME DENSITY OF RECORDS ON FILE:

a. Average: Maximum: Minimum:
8. FILE MEDIA
9. FILE ORGANIZATION
10. FILE OWNER
11. SECURITY CLASSIFICATION
12. DATE LAST CREATED/MODIFIED
13. DAYS SAVED
14. STORAGE LOCATION

SAMPLE WORKSHEET #2
FIELD/DATA ELEMENT POPULATION ANALYSIS

1. FIELD IDENTIFIER
2. FIELD NAME
3. FIELD TYPE

a. Numeric
b. Alphabetic
c. Alphanumeric
d. Special Symbols
e. Other (please specify)

4. FIELD DATA DICTIONARY DESCRIPTION ATTACHED?
Yes No

5. FIELD OWNER
APPLICABLE FIELD POPULATION ANALYSIS
Yes No_______
Yes No_______
Yes No_______
Yes No_______
Yes No_______
Yes No_______
Yes No_______
Yes No_______
Yes No_______
Yes No_______
Yes No_______

Yes No_______

1. VOLUME/FREQUENCY OF USE
2. NUMBER ALL BLANKS IN FIELD
3. NUMBER ALL ZEROS IN FIELD
4. HIGH VALUE
5. LOW VALUE
6. MEAN VALUE
7. MEDIAN VALUE
8. MODE VALUE
9. STANDARD DEVIATION
10. CODES FREQUENCY
11. MAXIMUM NUMBER NONBLANK

ZEROS FOUND IN FIELD
12. MINIMUM NUMBER NONBLANK

ZEROS FOUND IN FIELD

Data to complete the worksheets are in BOLD in
the following SAS log and output.

SAS LOG
NOTE: Copyright (c) 1989-1996 by SAS Institute
Inc., Cary, NC, USA.
NOTE: SAS (r) Proprietary Software Release 6.12
TS020
 Licensed to CITY OF DALLAS, Site 0001457002.

NOTE: AUTOEXEC processing beginning; file is
C:\SAS\AUTOEXEC.SAS.
NOTE: AUTOEXEC processing completed.

1
2 * Sample program to get basic Population
Analysis data.
3 The data used is the SAS supplied sample
data "SALARY".
4
5 The Questions for analysis relates to
6 (1) retention rates for employees
7 (2) pay rates
8 a. by job type
9 b. by rate groups
10
11 Clarence Wm. Jackson, CQA
12 ;
13
14 title1 "SSU 2001, A Joint Conference of SCSUG
and SESUG";
15 title2 "Sample Set of Reports to Support
Population Analysis";
16
17 proc format;
18 value salrange
19 0 - 25000 = "$25,000 or Less "
20 25001 - 50000 = "$25,001 - 50,000 "
21 50001 - 80000 = "$50,001 - 80,000 "
22 80001 - 110000 = "$80,001 - 110,000 "
23 110001 - 200000 = "$110,001 - 200,000"
24 200001 - 250000 = "$200,001 - 250,000"
25 250001 - HIGH = "$250,001 Up "
26 other = "Not Paid - Error ";
NOTE: Format SALRANGE has been output.
27 run;
NOTE: The PROCEDURE FORMAT used 0.44 seconds.
28
29 title4 "The SAS LOG Will Provides Information
About The File";
30
31 libname samples "C:\SAS\CORE\SAMPLE\";
NOTE: Libref SAMPLES was successfully assigned as
follows:
 Engine: V612Engine: V612Engine: V612Engine: V612
 Physical Name: C:\SAS\CORE\SAMPLE Physical Name: C:\SAS\CORE\SAMPLE Physical Name: C:\SAS\CORE\SAMPLE Physical Name: C:\SAS\CORE\SAMPLE
32
33 title4 "The PROC CONTENTS Provides Information
About The Data Set";
34
35 proc contents data=samples.salary;
36 run;
NOTE: The PROCEDURE CONTENTS used 1.32 seconds.

37
38 title4 "The PROC MEANS Provides Information
About Variables In Question";
39 title5 "Output data used in PROC FORMAT for
RANGES in SALARY variable";
40
41 proc means data=samples.salary MAXDEC=2;
42 var salary;
43
44 output out = salnums;
45 run;
NOTE: The data set WORK.SALNUMS has 5 observations
and 4 variables.
NOTE: The PROCEDURE MEANS used 0.82 seconds.
46
47 data sumrec (keep= maxsal minsal smean stdev
ucl lcl);
48 set _last_ end=alldone;
49 if _STAT_='MAX' then do;
50 maxsal=salary;
51 retain maxsal;
52 end;
53 if _STAT_='MIN' then do;
54 minsal=salary;
55 retain minsal;
56 end;
57 if _STAT_='MEAN' then do;
58 smean=salary;
59 retain smean;
60 end;
61 if _STAT_='STD' then do;
62 stdev=salary;
63 retain stdev;
64 end;
65 if alldone then do;
66 ucl=stdev+smean;
67 lcl=stdev-smean;
68 output;
69 end;
70 else do;
71 delete;
72 return;
73 end;
74 run;
NOTE: The data set WORK.SUMREC has 1 observations
and 6 variables.
NOTE: The DATA statement used 1.47 seconds.
75
76 proc print;
77 run;
NOTE: The PROCEDURE PRINT used 0.22 seconds.
78
79 title4 "At This Point, Some Reordering is
Needed on Variables to Make Sense";
80
81 data popanly;
82 if not allsum then do;
83 set sumrec end=allsum;
84 retain maxsal minsal smean stdev ucl lcl;
85 delete;

86 return;
87 end;
88 else do;
89 set samples.SALARY;
90 if salary gt ucl then pay="Above UCL ";
91 if salary lt lcl then pay="Below LCL ";
92 if salary gt smean and salary lt ucl then
pay="Above Avg ";
93 if salary lt smean and salary gt lcl then
pay="Below Avg ";
94 if enddate=. then current="Yes";
95 else current="No ";
96 jobtype=substr(jobcode,1,3);
97 if jobcode=" " then put _all_;
98 end;
99 run;
NOTE: The data set WORK.POPANLY has 319
observations and 14 variables.
NOTE: The DATA statement used 0.44 seconds.
100
101 proc sort;
102 by salary;
103 run;
NOTE: The data set WORK.POPANLY has 319
observations and 14 variables.
NOTE: The PROCEDURE SORT used 0.28 seconds.
104
105 proc freq data=_last_;
106 format salary salrange.;
107 tables jobcode;
108 tables jobtype;
109 tables salary;
110 tables current;
111 tables pay;
112 tables jobtype*salary;
113 tables jobtype*pay;
114 run;
NOTE: For table location in print file, see
 page 4 for JOBCODE
 page 9 for JOBTYPE
 page 9 for SALARY
 page 10 for CURRENT
 page 10 for PAY
 page 11 for JOBTYPE*SALARY
 page 16 for JOBTYPE*PAY
NOTE: The PROCEDURE FREQ used 0.7 seconds.

CONTENTS PROCEDURE OUTPUT

 Data Set Name: SAMPLES.SALARY
 Observations: 319
 Member Type: DATA
 Variables: 5
 Engine: V612
 Indexes: 0
 Created: 17:08 Thursday, April 25, 1996
 Observation Length: 40
 Last Modified: 17:08 Thursday, April 25, 1996
 Deleted Observations: 0
 Protection:
 Compressed: NO
 Data Set Type:
 Sorted: NO
 Label:

-----Engine/Host Dependent Information-----

 Data Set Page Size: 8192
 Number of Data Set Pages: 2
 File Format: 607
 First Data Page: 1
 Max Obs per Page: 203
 Obs in First Data Page: 180

----Alphabetic List of Variables and Attributes-----

 # Variable Type Len Pos Format Informat Label
 ======================================
 3 BEGDATE Num 8 16 DATE7. DATE7.
 4 ENDDATE Num 8 24 DATE7. DATE7.
 1 IDNUM Num 8 0 SSN11. F11. Identification Num
 5 JOBCODE Char 8 32
 2 SALARY Num 8 8 DOLLAR12. DOLLAR12. Salary

MEANS PROCEDURE OUTPUT

 Analysis Variable : SALARY Salary

N Mean Std Dev Minimum Maximum

319 46936.83 39929.42 12000.00 500000.00

PRINT PROCEDURE OUTPUT

OBS MAXSAL MINSAL SMEAN STDEV UCL LCL
1 500000 12000 46936.83 39929.42 86866.25 -7007.42

FREQUENCY PROCEDURE OUTPUT

 Cumulative Cumulative
CURRENT Frequency Percent Frequency Percent
===
No 10 3.1 10 3.1
Yes 309 96.9 319 100.0

 Cum Cum
 JOBCODE Frequency Percent Frequency Percent
===
 5IS004 1 0.3 1 0.3
 ACT001 1 0.3 2 0.6
 APP001 1 0.3 3 0.9
 APP002 6 1.9 9 2.8

……………(stuff in the middle deleted)……………….
 VID002 2 0.6 318 99.7
 VID003 1 0.3 319 100.0

 Cum Cum
SALARY Frequency Percent Freq Percent
===
$25,000 or Less 53 16.6 53 16.6
$25,001 - 50,000 179 56.1 232 72.7
$50,001 - 80,000 64 20.1 296 92.8
$80,001 - 110,000 7 2.2 303 95.0
$110,001 - 200,000 12 3.8 315 98.7
$200,001 - 250,000 3 0.9 318 99.7
$250,001 Up 1 0.3 319 100.0

Web-Application Bar Charts without SAS/GRAPH®

Steve James, Centers for Disease Control and Prevention, Atlanta, GA

ABSTRACT

A picture is worth 1000 words it’s said. And while that may be
true, producing a picture instead of words can sometimes be
1000 times more difficult. That’s particularly true if you’re not
familiar with SAS/Graph and Annotate. The Internet is a great
medium for displaying graphics, but producing them can be
troublesome. Anything that would make the task more simple
would be welcomed.

With creative uses of HTML tables and images, you can create a
bar chart to display information without using SAS/Graph or
Annotate. This paper describes how.

Note: This paper assumes the reader has a working knowledge of
HTML and SAS/IntrNet™.

INTRODUCTION

In developing a web application displaying Injury Mortality
Statistics for the Centers for Disease Control and Prevention, I
came across a problem in that I wanted to display the breakdown
of certain Injury categories in a meaningful and understandable
way. A tabular format (see Figure 1) would provide the necessary
format, but lacked the impact of a graphical display.

1997 US Homicide Deaths, Ages 25-34

Cause of Number of
Death Deaths Percentage

Firearm 3,764 74.8%
Cut/Piercing 575 11.3%
etc.

Figure 1 - Tabular Format

Figure 2 - Graphical Format

USING SAS/GRAPH AND ANNOTATE

A SUGI 24 paper from LeRoy Besseler entitled Show Them
What’s Important: Solutions for a Finite Workday in an Era of
Information Overload contained a graph in the format I wanted
and contained the code to create such a graph using SAS/Graph
and Annotate. A graph for my use would look something like
figure 2.

This graph has a much better visual impact than the simple
tabular chart. Unfortunately it wasn’t easy to produce because
some of the labels were too long to display properly without a lot
of extra work. Was there another way?

HTML SOLUTION

I knew I could construct a table using standard HTML commands
to hold the textual information, but the big questions was how
would I get the horizontal bars to generate.

It turned out that using the WIDTH= and HEIGHT= parameters of
the HTML image tag would give me what I needed. All I needed
was to produce a one-pixel .GIF file for the color I wanted, and
then specify the width and height that I wanted it displayed. I
could generate the HTML dynamically and thus vary the chart
based on the input criteria I needed. In it’s simplest form, the
HTML code would look like this:

 where h and w were parameters that I could change to vary the
size of the bar.

ONE SOLUTION, TWO TECHNIQUES

What’s the best way to produce this HTML code? As it turns out,
you can do it one of two ways. Using standard SAS® code
provides the most flexibility and customization, but requires a fair
amount of code. ODS provides a very concise solution, but
customization is difficult. Choose the one that most meets your
needs

Note: The gif file used in this presentation is available at
http://www.cdc.gov/ncipc/images/red.gif

SAS Code Technique

Appendix A contains the SAS code used to produce the graphs
above. It uses standard DATA STEP coding. While reading SAS
code that produces HTML code may be challenging, the user
might benefit from first generating the graph using an HTML
editor like FrontPage® and looking at the resulting HTML code.

ODS Technique

Since implementation of the code mentioned above, I was told of
another solution that used ODS (see Appendix B). While I’ve not
actually put the code in production it appears to be a viable
alternative to the DATA STEP programming. It is included for
your benefit, though there are likely things that you would change

before you would actually use this in production.

BENEFITS

There were several advantages to this approach:

The graph could be put in a multi-column table which would let
the bar be in one column and the labels be in another. This
would allow the HTML table to control how the text of the label
wrapped and ensured that it stayed with the horizontal bar. The
application didn’t have to control that, the browser did.

It didn’t require any knowledge of SAS/Graph or Annotate, and
used standard SAS/IntrNet techniques.

The resulting HTML file was small which would make downloads
quicker. Instead of downloading a big graphic to your browser
you end up downloading only a one-pixel .GIF file which speeds
response time.

CONCLUSION

Adding graphs to your web pages can make them have a much
bigger impact on the user. Using the techniques discussed in
this paper can make the job easier.

REFERENCES

SAS, SAS/Graph, and SAS/IntrNet are registered trademarks or
trademarks of SAS Institute Inc.

FrontPage is a registered trademark of Microsoft Corporation.

ACKNOWLEDGMENTS

I want to acknowledge that Steve Bloom told me about both of
these techniques and has made my life much better by easing
the process of adding graphics to my web application. I present
them here only because he wasn’t going to and I thought them
too good not to share.

CONTACT INFORMATION

Your comments and questions are valued and encouraged.
Contact the author at:

Steve James
Centers for Disease Control and Prevention
4770 Buford Highway, MS-K59
Atlanta, GA 30341
Work Phone: (770) 488-4269
Fax: (770) 488-1665
Email: sjames@cdc.gov

APPENDIX A

*--;
* Prepare data for creating graphics. The output of this step ;
* is a SAS data set with three variables: cause, deaths, and ;
* percent. ;
*--;
proc freq data=temp ;
 tables cause / noprint out=totals(rename=count=deaths) ;
 weight deaths ;
 label cause='Cause of Injury' deaths='Number of Deaths' ;
 run ;

*--;
* Now produce the chart as a table with three columns: one with the cause;
* of death, one with the number of deaths, and one with the percentage of;
* deaths including the bar chart. ;
* The bar chart is drawn using a .GIF that is one pixel in size, and uses;
* the WIDTH= and HEIGHT= options on the IMG tag to make it the right ;
* size. Note: &DEATHS is a macro variable passed in that contains the ;
* total number of deaths for all categories and is used in the title. ;
*--;

data _null_ ;
 file _webout ;
 set work.totals end=lastob;
 if _n_ = 1
 then do ;
 put '<table border="0" cellpadding="2" width="771">' //
 '<tr>' /
 '<td width="132" height="27">'
 'Cause of Death</td>'
 '<td nowrap><p align="right">'
 'Number
 of Deaths</td>'
 '<td width="18" height="27"></td>'

 '<td width="536" height="27">'
 ''
 'Percentage of Deaths</td>'
 '</tr>'
 ;
 end ;
 * create quoted strings for height and width. Want them;
 * to look like height="20" and width="44.5%" ;
 length height width $8 total 5 ;
 if percent < 1.0 then width=quote("1.0%") ; * set minimum width of bars at 1% ;
 else width = compress(quote(put(percent,5.2) !! '%')) ;
 height = quote("20") ;

 total = &deaths ;
 put /* print out the cause of death */
 '<tr>'
 '<td width="132" height="30">'
 cause
 '</td>'

 /* print out the number of deaths */
 '<td width="61" height="30" align="right">'
 ''
 deaths comma10.
 '</td>'

 /* put spaces in column to hold it open */
 '<td width="10" align="right"><font color="#FFFFFF" size="2" '
 'face="Arial">'
 ''
 '</td>'

 /* print out the percentage of deaths and the bar */
 '<td width="538" height="30" align="left">'
 ''
 '<img border="0" '
 'src="http://www.cdc.gov/ncipc/images/red.gif"'
 'width=' width 'height=' height '>'
 '<img border="0" '
 'src="http://www.cdc.gov/navimages/spacer.gif" '
 'width="5">'
 percent 4.1 '%</td>'
 '</tr>'
 ;
 if lastob
 then do ;

 put '<tr>'
 '<td width="132" height="30">'
 'Total Deaths </td>'
 '<td width="85" height="30" colspan="2">'
 '<p align="right">'
 total comma10.
 ' </td>'
 '<td width="536" height="30"></td>'
 '</tr>'
 ;

 put '</table>' ;
 end ;
 run ;

APPENDIX BAPPENDIX BAPPENDIX BAPPENDIX B
 procprocprocproc template;
 edit Base.Freq.OneWayFreqs;
 COLUMN Line Variable ListVariable Frequency

 TestFrequency bar Percent /*
 TestPercent CumFrequency CumPercent */;
 define bar;
 HEADER=" ";
 format=120.;

 just=l;
 compute as Percent;
 TRANSLATETRANSLATETRANSLATETRANSLATE
 val>0 into
 "<a><img
 SRC='http://www.cdc.gov/ncipc/images/red.gif' width="
 || put(_val_ * 10 ,4.)
 || " height=10 ALT='' BORDER='0'>" || put(_val_/100,percent8.1) !! "";
 ;
 end;
 end;
 runrunrunrun;

ods listing close;
ods HTML file = "c:\temp\freq.html"; * set up file to hold HTML code ;

procprocprocproc freq data=temp order=freq;
weight deaths;
table cause/ nocum;

runrunrunrun;

*---;
* Remove what you have done so it will not affect later freqs.;
*---;
ProcProcProcProc template;
Delete Base.Freq.OneWayFreqs;
RunRunRunRun;

ods HTML close;

Paper P407

Bootstrapping a Multidimensional Preference Analysis
E. Barry Moser and Xiaoming Liang, Department of Experimental Statistics,
Louisiana State University Agricultural Center, Baton Rouge, LA 70803-5606

ABSTRACT
Preference data are frequently collected to help decision makers
prioritize items, or are measured on subjects, such as animals, and
used to help infer preference for or avoidance of resources.
Multidimensional preference analysis may be used to construct a
biplot of the items and subjects in the space of a few components as
an aid to interpretation and presentation of results. The variability
associated with the objects in the plot, however, is frequently not
shown. The SAS/STAT® survey sampling procedure
SURVEYSELECT is used to select bootstrap samples from a
preference data set, then multidimensional preference analysis is
performed with the SAS/STAT® PRINQUAL procedure to produce
estimates of the variabilities of objects. Next the SAS/GRAPH®
GPLOT procedure is used to produce a variety of graphics using the
bootstrap information that can then show the precision with which
objects are estimated in the components space.

INTRODUCTION
Preference data arise in a variety of situations where items are rank-
ordered according to some preference (or avoidance) of the items. In
food science, a set of food preparations may be rank-ordered by
judges based upon flavor characteristics. In marketing, product
presentations may be ranked by a sample of potential consumers,
while in ecology, habitat types may be “rank-ordered” by animals
based upon their frequency of usage of habitats as determined from
radio telemetry data. In an agricultural economics project of Professor
Kenneth Paxton, Louisiana State University Agricultural Center, cotton
farmers were asked to rank-order a dozen research thrusts that the
Agricultural Center might pursue with respect to cotton production.
Upon consultation with Dr. Paxton, one of the analyses that we
suggested was a multidimensional preference analysis.

Multidimensional preference analysis (MDPREF) is one of a number of
perceptual mapping techniques for graphically displaying product
preferences in a low dimensional space of principal components
(Carroll, 1972; see Kuhfeld, 1992). In the data matrix, the columns or
variables correspond to the judges, while the rows or observations
correspond with the items or products. A “biplot” can be produced
where the items are given as points in the display, while the judges
can each be plotted as vectors emanating from the origin. The longer
the vector, the more of that judge's information that is contained in the
display. The items are projected onto the vectors to interpret which
items are most and least preferred by a judge. In a trained panel, such
as in food science, it is often hoped that the judges are homogeneous
and so their vectors would be coincident in a perfect world. In product
presentation studies, variations among consumers, as indicated by
different directions of their vectors, may be related to demographic or
other characteristics of the consumers. In some cases, these
characteristics can also be superimposed on the biplot.

Unlike regression analysis, these vector and item points do not come
with a standard error or confidence interval formula. Thus although the
data in the study may be a sample from a much larger population of
interest, the MDPREF results are presented as if the sample is the
population of interest. Since we are dealing with rank-ordered
responses that have special mathematical properties, we decided to
use a Monte Carlo method to derive measures of variability and
confidence regions for the MDPREF analysis. In particular, bootstrap
samples (see Manly, 1997) were constructed and the replications used
to build confidence regions. Monteleone et al. (1998) used a similar
approach to form preference maps for starchy food consumption.

JOURNAL PREFERENCES EXAMPLE
E. Roskam (as taken from Gifi, 1990) reported on journal
preferences in a psychological research area as determined
by 39 scientists. Each scientist rank-ordered the list of 10
journals as to their importance to the field. Note that for this
type of data, not only do we have positive integer values, but
also the sum of the ranks for each scientist is a constant.
Thus multivariate normality is not likely plausible, and the
dimensionality of the problem is at least 1 less than the
number of items being ranked. A SAS® program was used
to construct the MDPREF analysis of these data, then to
bootstrap the data set, and to construct indicators as to the
variability of the original display.

First, the original data set is constructed. In most settings,
the observations will consist of the responses from each
judge, while the columns will correspond with the items
being ranked. Notice that this data organization is the
transpose of the way in which we will need to have the data
for analysis.

Data Roskam;
Input Judge JEXP JAPP JPSP MVBR JCLP

JEDP PMET HURE BUU HUDE;
Datalines;
1. 7 4 1 8 10 9 5 2 3 6
2. 7 6 2 9 3 8 10 1 4 5
3. 10 5 1 7 4 6 8 2 3 9
---- Data Omitted -----
38. 2 3 6 5 7 8 4 9 1 10
39. 2 6 7 3 10 8 4 9 1 5
;

Next the data matrix is transposed to get it into the proper
form (PROC TRANSPOSE), the items are reverse-ranked
so that the most important items have the highest rank
(PROC RANK), and then the MDPREF analysis is
performed using the PRINQUAL procedure. The %PLOTIT
macro of SAS/STAT® is used to display the results from the
PRINQUAL procedure. The basic code used is:

Proc Transpose Data=Roskam Out=Roskam2
Prefix=Judge Name=Journal;

Var JEXP--HUDE;
Id Judge;
Run;

Proc Rank Data=Roskam2 Out=Roskam3
Descending;

Var Judge1-Judge39;
Run;

Proc Prinqual Data=Roskam3 Out=PQResults
N=2 Replace MDPREF MaxIter=150;

Id Journal;
Transform Monotone(Judge1-Judge39);
Run;

Proc Print Data=PQResults;
Run;

%Plotit(Data=PQResults,
Datatype=MDPREF 2);

The results from this analysis are shown in the following
figure. There, it is observed that there appear to be different

groups of scientists in terms of what journals they prefer. For example,
the journal HUDE (Human Development) is highly preferred by about 6
judges, 5 of which happen to be from Developmental and Educational
Psychology departments.

2

1

0

-1

-2

-3

-2 -1 0 1 2

D
im

en
si

on
2

Dimension 1

JPSP

JCLP

HURE

BUU

MVBR

JAPP

PMET

JEXP

JEDP

HUDE

BOOTSTRAP ANALYSIS
Let n be the size of the original data set. The basic bootstrap process
takes a simple random sample with replacement of size n from the
original data set. The SURVEYSELECT procedure using the
METHOD=URS with n=39 provides such a sample. In fact, by setting
REP=M, where M is some positive integer, we can generate M such
bootstrap samples in a single call to SURVEYSELECT. Note that the
original data set (though of reverse-ordered scores) is bootstrapped,
as we believe that the scientists (judges) are the random sampling
units, not the journals.

/*
* Rearrange like original data but with
* reverse-ranked values
*/

Proc Transpose Data=Roskam3
Out=Roskam4(Drop=_LABEL_) Name=Judge;

Var Judge1-Judge39;
Id Journal;
Run;

Proc SurveySelect Data=Roskam4 Method=URS
n=39 Rep=1000 Out=Boots;

Run;

Once the bootstrap samples are selected, the data are again
transposed, but BY REPLICATE, and the PRINQUAL procedure is
again called to perform the analysis BY REPLICATE.

Proc Transpose Data=Boots Out=Trans
Prefix=Judge Name=Journal;

Var JEXP--HUDE;
By Replicate;
Run;

/*
* Perform separate MDPREF analyses on each rep
*/
Proc Prinqual Data=Trans Out=PQResults2 N=2

Replace MDPREF NoPrint MaxIter=150;
Id Journal;
Transform Monotone(Judge1-Judge39);
BY Replicate;

RUN;

It is important to note that the direction of a principal
component is unimportant. Thus, it is possible that one
result is a reflection of one or more axes of the original
solution, and so each solution from each replicate must be
registered relative to the original solution. We did this by
measuring the sum of squared errors from each item point in
the bootstrap solution to the item points in the original
solution and selecting appropriate reflections to minimize
this error. Thus we assumed that the appropriate registration
for a solution is the one that “looks” most like the original
solution. The code for this involved a couple of data steps to
first compute the errors and find the best solution, then a
second step to make the necessary conversions to the
components in the solutions.

Next the %CONELIP macro obtained from the SAS Institute
support web site was used to construct 95% confidence
ellipses for each journal using the bootstrap replicates. A
simple SAS macro was used to process the results for each
journal separately, then to build a composite data set
containing all of the ellipses.

%Macro Ellipses;
GOptions Reset=Symbol Reset=Axis;
Proc Datasets Library=Work NoList NoWarn;
Delete All;
Run;
Quit;
%Let Journals=JEXP JAPP JPSP MVBR JCLP

JEDP PMET HURE BUU HUDE;
%Do J=1 %To 10;
%Let Journal=%Scan(&Journals,&J);
%Conelip(Data=Scores(Where=(_NAME_=

"&Journal")), Out=&Journal,
x1=Prin1, x2=Prin2, mean=no, conf=.95);

Data &Journal;
Length Journal $4.;
Retain Journal "&Journal";
Set &Journal;
Prin1=X1; Prin2=X2;
Run;
Proc Append Data=&Journal Base=All;
Run;
Title1 "Journal &Journal";
Proc GPlot Data=&Journal;
Plot Prin2*Prin1=Id / NoLegend
VAxis=Axis1 HAxis=Axis1 VRef=0 HRef=0;
Axis1 Length=4in Order=(-4 To 4 By 1);
Symbol1 C=Black V=CIRCLE H=1 I=None;
Symbol2 C=Black V=None I=Join L=1;
Run;
Quit;
%End;
%Mend Ellipses;
%Ellipses;

The replicates and superimposed ellipse for the journal JEXP are
given below.

JEXP

Journal JEXP
Prin2

-4

-3

-2

-1

0

1

2

3

4

Prin1
-4 -3 -2 -1 0 1 2 3 4

Notice that there is quite a bit of variability in the points and that the
ellipse doesn’t capture the data very well. On the other hand, the
points tend to be in the southeast to east direction from the origin.

JAPP

Journal JAPP
Prin2

-4

-3

-2

-1

0

1

2

3

4

Prin1
-4 -3 -2 -1 0 1 2 3 4

For the JAPP journal shown above, the points congregate a lot near
the origin suggesting that this journal is not well represented in this
presentation, or is generally preferred in the middle ranks by most
everyone. A third journal, HUDE, demonstrates the wide variability that
an item might exhibit. For this journal, a number of scientists ranked it
as their number 1 journal, while several others ranked it at the very
bottom of their lists.

HUDE

Journal HUDE
Prin2

-4

-3

-2

-1

0

1

2

3

4

Prin1
-4 -3 -2 -1 0 1 2 3 4

We constructed these plots for each journal, and then the
set of ellipses was plotted in a single figure using the
SAS/GRAPH code:

GOptions Reset=Symbol Reset=Axis;
Proc GPlot Data=ALL(Where=(Id=2))

Annotate=Centers;
Plot Prin2*Prin1=Journal / VAxis=Axis1

HAxis=Axis1 NoLegend VRef=0 HRef=0;
Axis1 Length=4in;
Symbol1 C=Black V=None I=Join L=1 R=10;
Run;
Quit;

JEXP
JAPP

JPSP

MVBR

JCLP

JEDP
PMET

HURE BUU

HUDE

Prin2

-4

-3

-2

-1

0

1

2

3

Prin1
-3 -2 -1 0 1 2 3

The magnitudes of the ellipses are related to the variability
that they exhibit through the selection of sampling units from
the population.

CONCLUSION
The bootstrapping technique provides considerable insight into the
variability in results that could occur simply as a consequence of the
individuals selected into the sample assuming that the original sample
is a simple random sample. For example, the journal Human
Development (HUDE), shows a considerable range over which its
placement could occur and is likely a result of the groups of individuals
that ranked the journal either as 1 or 10, and so as these group sizes
change as a consequence of sampling, so does the placement of the
point. Note that here the sample size of 39 is small and so a few
observations can have a profound impact on the results. For larger
data sets, this technique should produce much more stable results.

Though confidence ellipses based upon the bivariate normal
distribution were used to approximate the region occupied by the
journal vectors, the bivariate normal model does not appear to be a
good model for several of the journal points. Some nonparametric
method such as hull peels (Green, 1981) may be more useful in these
situations.

Finally there are a few points corresponding with a few bootstrap
replications that appear to be miss-registered as viewed from the
plots. Thus a more elegant algorithm for insuring correct registration
may be required.

REFERENCES
Carroll, J.D. 1972. Individual differences and multidimensional scaling.
Pages 105-155 in R.N. Shephard, A.K. Romney, and S.B. Nerlove,
eds. Multidimensional Scaling: Theory and Applications in the
Behavioral Sciences, Vol. 1., Seminar Press, NY.

Gifi, A. 1990. Nonlinear Multivariate Analysis. John Wiley & Sons, New
York, p. 183.

Green, P.J. 1981. Peeling bivariate data. Pages 3-19 in Barnett, V.,
ed. Interpreting Multivariate Data. John Wiley & Sons, Inc., NY.

Kuhfeld, W.F. 1992. Marketing research: uncovering competitive
advantages. Proceedings of the SAS Users Group International
Conference 17, 1304-1312.

Manly, B.F.J. 1997. Randomization, Bootstrap, and Monte Carlo
Methods in Biology. Chapman and Hall, Inc., London, 399pp.

Monteleone, E., L. Frewer, I. Wakeling, and D.J. Mela. 1998. Individual
differences in starchy food consumption: the application of preference
mapping. Food Quality and Preference 9 (4), 211-219.

CONTACT INFORMATION
Your comments and questions are valued and encouraged. Contact
the authors at:

E. Barry Moser
Louisiana State University Agricultural Center
Department of Experimental Statistics
Baton Rouge, LA 70803-5606
Work Phone: 225-578-8303
Fax: 225-578-8344
Email: bmoser@lsu.edu
http://www.stat.lsu.edu/faculty/moser

Detecting Anomalies in Your Data Using Benford’s Law
Curtis A. Smith, Defense Contract Audit Agency, La Mirada, CA

ABSTRACT
Analyzing large amounts of data looking for anomalies can be a
disheartening task. You need techniques that will allow you to
quickly assess the data in ways that will highlight potential
anomalies while keeping you from chasing the wind. Benford’s Law
is one such technique. Using Benford’s Law and SAS© Software
you can quickly identify one or more first digit patterns that defy
statistical averages. Within this paper, the author will present SAS
code that will enable you to quickly and easily find anomalies in the
data you analyze. The SAS code will include the Data Step, the
Merge statement, and the FREQ, REPORT, and GPLOT
procedures. The author will also present some findings from the
data he analyzes. The technique presented is powerful, yet easy to
understand and use.

INTRODUCTION
Benford’s law is so named after Dr. Frank Benford. Dr. Benford was
a physicist working for General Electric in the 1930's. He noticed
that certain pages of his logarithm book were more worn than
others. After some study he realized that within a large enough
universe of numbers that were naturally compiled that the first digits
of the numbers would occur in a logarithmic pattern. The first digits
of numbers are the non-zero, absolute value integers. For example,
the first digit of 1 is 1; the first digit of 10 is 1; the first digit of -100 is
1; and the first-two digits of 1200 are 12. Dr. Benford tested 20,229
sets of numbers from many unrelated types of data. He found the
same pattern to always exist. This statistical oddity provides an
opportunity to those who need to analyze vast amounts of data for
anomalies. If the first digits within the numbers of the data you are
analyzing do not follow the Benford pattern, then something
unnatural has happened with your data.

SO, WHAT’S THIS BENFORD’S LAW LOOK LIKE,
ANYWAY?
Simply stated, any digit or combination of digits will follow the
following logarithmic pattern:

x = log10 of 1+(1/n)

Where n is the digit or combination of digits being tested and x is the
percentage of their occurrence.

Considering the first digits 1 to 9, the expected distribution is:

(By the way, I created this graph with SAS/Graph’s Graph-N-Go.)
So, why is the first digit of 1 so much more prevalent than other
digits? And why the declining distribution from 1 to 9? Perhaps
Benford’s Law can be explained this way. In a series of numbers, to
go from 10 to 20 requires a 100% increase, but to go from 20 to 30
requires a 50% increase, and so forth. So, if numbers are being
incremented, it takes less incrementation to go from 8 to 9 than it
does to go from 1 to 2. Once the number increments from 8 to 9,
then with only a little incrementation, the 9 will increment to 10 (a
first digit of 1). So, numbers tend to fall within a first digit of 1 more
than any other digit.

However, this distribution will not exist within every set of numbers.
First, the universe of numbers must be large enough for the
distribution to take shape. Some have found that a universe smaller
than 100 items will not exhibit the pattern. Second, the numbers
must be free of artificial limits or origins. For example, when
evaluating a data file of travel claims you might find that the first-two
digit combination of 24 exists greater than expected with Benford’s
Law. This might happen if the company has a policy that
reimbursement claims for $25 and above must be supported with
receipts - so travelers claim a lesser amount, such as $24.95. If you
analyze the transactions in my checkbook you will find the first-four
digit combination of 1995 to occur at a high rate. This is because my
ISP always charges me a monthly rate of $19.95.

HOW CAN BENFORD’S LAW HELP YOU?
If you are in the business of analyzing data, such as the noble
profession of auditing, you might need to look for areas of fraud or
areas of oddities. Dr. Mark J. Nigrini and others have successfully
used Benford’s Law to detect potential fraud. Dr. Nigrini termed the
use of analyzing digits within numbers as “digital analysis.” It is
difficult for the fraudster to avoid detection from digital analyses
because the fraudster typically cannot influence an entire data file.
Thus, the fraudster will invariably alter numbers in such a way that
destroys the Benford distribution. But, you don’t have to be looking
for fraud to benefit from Benford’s Law. There are many non-
fraudulent reasons why a universe of numbers can violate Benford’s
Law, yet still warrant your investigation.

Start Digging
Here are some samples from labor transaction data
I have analyzed. First, look at a first digit analysis.
Notice the table showing the observed versus
expected distribution and delta, then notice the plot
showing the same.

Benford’s Law gives auditors the expected
frequencies of the digits in tabulated data.

The premise is that we would expect
authentic and unmanipulated data to exhibit
these patterns. If a data set does not follow

these patterns, however, a few possible
reasons exist to explain this phenomenon:

1. The data set did not meet the three tests,
and/or,

2. The data set includes invented numbers,
biased numbers, or errors.

- Dr. Mark Nigrini

Nice curves. In this case, everything looks as Benford predicted. So,
a dead end, right? No, just an opportunity to dig further.

Dig Deeper Using Multiple Digits
You can analyze the data using a combination of digits, such as the
first-two digits. This can help find anomalies not apparent in a first
digit analysis and can isolate further the anomalies found in a first
digit analysis. Let’s look at an example. First, take a look at a portion
of the table report.

Then, look at the plot of the same information.

Notice here the anomalies beginning to show themselves. The X
(green) line represents the Benford expected distribution - a very
nice curve, indeed. The star (blue) line is the observed, and the
triangle (red) the delta. You can quickly see the anomalies. Yet, in
this example, the anomalies are not that great.

Dig Deeper By Subsetting
Another technique you can use is to subset your data. For example,
if you analyze all of the labor transactions together by first digit, first-
two digits, and so forth and find nothing, you might then look at

subsets of the data. Rather than looking at all the
labor transactions together, look at subsets by
department, or by week, or by employee. You
might then see anomalies showing up. Why?
Because if one department or employee is doing
something funny, or if something funny was
being done during one week, looking at the
entire universe can obscure the funny business.
But isolating subsets can be revealing. Here are
some examples of first digit and first-two digits
analyses of labor data subset by division and
then by project.

A bank auditor found that credit card
balances written off as uncollectible had

an excessive level of numbers with
first-two digits 49. The investigation found
that $5,000 was an internal write-off limit
for internal collections employees. One

employee was responsible for most of the
49s by working with friends and having

them apply for a card and then running up
a balance to just below $5,000. The

employee would then write the debt off.
The systematic nature of the fraud was
evident from the first-two digits graph.

- Dr. Mark Nigrini

Notice in the first digit analysis for this one division there is an
anomaly in the first digit of “5". While not a huge variance from the
expected, a variance nonetheless. Then, looking at the same
division at the first-two digits you can see anomalies all over the
place. There are significant variances at values “50" and “54", both
of which have a first digit of “5". But notice the even more significant
variance at the value “25". This variance didn’t even register in our
first digit analysis. This is evidence of why going deeper then just the
first digit analysis can be useful.

Let’s look even further, by subsetting our universe by project.

Here is one of the projects in the universe as
seen by a first digit analysis. There are small
anomalies at the first digit of “5" and “8".

Looking at the same project using a first-two digits analysis you can
see anomalies all over the place.

Big Findings
Well, enough of this fooling around. Let’s take a look at some
striking examples. Subsetting the data by location turned out to be
much more revealing. First, check out the first digit analysis.

Here you can see anomalies all over the place - but the anomaly at
first digit “5" really gets our attention. So, let’s dig a little deeper.
Feast your eyes on the first-two digit analysis.

Wow! That first digit “5" anomaly turns out to be a really big first-two
digit “56" anomaly. And, look at that first-two digit “10"anomaly that
was hardly noticeable in the first digit analysis. This is going so well,
let’s dig even deeper. Take a gander at a first-three digit analysis.

Now we can pinpoint the two great anomalies at “109" and “560".
We can easily determine these values and their frequency by
referring back to the table report, a portion of which is shown below.

You might be wondering if you could go any deeper. Certainly. Let’s
take a look at a first-four digit analysis.

In this case, the first-four digit analysis did not add any value
because the two anomalies are at “1090" and “5600". Because the
numeric variable is dollars, the “1090" value is probably $10.90 or
$109.00 and the “5600" value is probably $56.00, $560.00, or
$5,600.00. So, in both cases, digging to the next first digit will just
add another zero to the end of our number, which won’t help
pinpoint the anomalies any better.

What to Do
So, what can you do with these anomalies? You can start to cross
check them, looking for something in common. Considering our
example, look to see if the anomalies within divisions also occur
within projects. Then, you can begin extracting the actual data
records that contain the anomalies and use the information on those
data records to get to the root of the anomalies.

SO, HOW WAS SAS USED?
To produce these results, I used SAS to do five main tasks, which
are as follows:

‘ Determine the observed distributions of the first digits
‘ Determine the expected distributions of the first digits
‘ Merge the observed and expected distributions and compute

the deltas
‘ Create a report of the observed versus expected distribution
‘ Create a plot of the observed versus expected distribution

That doesn’t seem too difficult. Let’s look at the code at a high level.
The code shown is for a first digit analysis for an entire universe.
The modifications to do a first-two digits or more digit combination
and to do a BY group analysis are not too different and will not be
presented.

Determine the Observed Distributions of the First Digits
Here’s the fundamental code I use to determine the distributions of
the first digits.

In the code above, the user-specified file to analyze (IN.INFILE) is
read and a new variable, FIRSTDGT, is created. This new variable
is created by using the PUT function to convert the user specified
numeric variable (VAR) to a character string. Then the SCAN
function gets the first digit from the converted value. Then the
INPUT function stores that first digit to the new numeric variable.
Another new variable, COUNT, is created and set to 1. This will be
used to summarize the frequency of the first digit.

Next, the FREQ procedure is used to create the frequency
distribution of the first digit.

DATA WORK.OBSERVED
 (KEEP=FIRSTDGT COUNT VAR INDEX=(FIRSTDGT));
 SET IN.INFILE.;
 FIRSTDGT=
 INPUT(SUBSTR(SCAN(PUT(VAR,BEST8.),1),1,1),
 BEST8.);
 COUNT=1;
RUN;
PROC FREQ DATA=WORK.OBSERVED;
 TABLES FIRSTDGT/OUT=WORK.BENFORD
 (RENAME=(PERCENT=OBSERVED));

Benford’s Law provides auditors with the expected digit
frequencies in tabulated data. By examining the digit
and the number frequencies, auditors can gain data

insights that might be missed using traditional analytical
procedures and sampling methods. The digit and
number patterns could point to number invention,

systematic frauds, data errors, or biases in the data.

- Dr. Mark Nigrini

Determine the Expected Distributions of the First Digits
Here’s the fundamental code to create the expected distributions.

This data step simply creates a new data set that contains the first
digit and the result of the log10 formula demonstrated by Dr.
Benford.

Merge the Observed and Expected Distributions and Compute
the Deltas
Here’s the basic code for creating a data set with the observed and
expected first digit distributions and the deltas for each digit.

This data step simply creates a new data set by merging the
observed and expected data sets by the first digit and creates a new
variable, DELTA, containing the difference between the observed
and expected distributions.

Create a Report of the Observed Versus Expected Distribution
Here’s the fundamental code to create the tabular report.

This code is simply a REPORT procedure with the key variables
defined.

Create a Plot of the Observed Versus Expected Distribution
Here’s the fundamental code to create the overlay plot.

This code simply uses the GPLOT procedure to create an overlay
plot of the OBSERVED, EXPECTED, and DELTA variables over the
first digit variable.

My actual code is a bit more complicated, as I use macro variables
to allow the user to make specifications before running the
application. I also use ODS statements to make HTML files of the
REPORT and GPLOT procedure output. And I use ActiveX controls
in my GPLOT procedure output.

CONCLUSION
Analyzing large amounts of data for anomalies or potential fraud
does not have to be a disheartening task. Using digital analyses,
such as Benford’s Law, you can easily find anomalies in your data.
It was not my intention within this paper to provide all of the SAS
code I used to create the output shown within this paper. If you
would like my code, send me an e-mail request. For a limited time
my code is free, in exchange for your Benford’s Law success
stories.

REFERENCES
“Following Benford’s Law, or Looking Out for No. 1”,
Malcolm W. Browne,
http://courses.nus.edu.sg/course/mathelmr/080498sci-benford.htm

“The Power of One”, Robert Matthews,
http://www.newscientist.com/ns/19990710/thepowerof.html

“Digital Analysis: a Computer-Assisted Data Analysis Technology for
Internal Auditors”, Mark J. Nigrini, Ph.D.,
http://www.itaudit.org/forum/emergingissues/f108ei.htm

ACKNOWLEDGMENTS
SAS is registered trademark or trademark of SAS Institute Inc. in the
USA and other countries. ® indicates USA registration.

Other brand and product names are registered trademarks or
trademarks of their respective companies.

CONTACT INFORMATION
Your comments and questions are valued and encouraged. Contact
the author at:

Curtis A. Smith
Defense Contract Audit Agency
P.O. Box 20044
Fountain Valley, CA 92728-0044
Work Phone: 714-896-4277
Fax: 413-383-6395
email: casmith@mindspring.com

DATA WORK.EXPECTED(INDEX=(FIRSTDGT) DROP=I);
 FORMAT EXPECTED 8.3;
 DO I = 1 TO 9;
 FIRSTDGT=I;
 EXPECTED=(LOG10(1+(1/I))*100);
 OUTPUT;
 END;

DATA OUT.BENFORD;
 MERGE WORK.EXPECTED(IN=A)
 WORK.BENFORD(IN=B);
 BY FIRSTDGT;
 IF B;
 DELTA=SUM(OBSERVED,-EXPECTED);

PROC REPORT DATA=OUT.BENFORD NOWINDOWS
 HEADSKIP MISSING;
 COL FIRSTDGT COUNT OBSERVED EXPECTED DELTA;
 DEFINE FIRSTDGT /ORDER 'FIRST DIGIT(S)'
 WIDTH=5;
 DEFINE COUNT /'OBSERVED FREQUENCY COUNT'
 WIDTH=12 FORMAT=COMMA12.;
 DEFINE EXPECTED /'EXPECTED FREQUENCY
 PERCENT' WIDTH=12 FORMAT=8.3;
 DEFINE OBSERVED /'OBSERVED FREQUENCY
 PERCENT' WIDTH=12 FORMAT=8.3;
 DEFINE DELTA /'OBSERVED - EXPECTED FREQUENCY
 PERCENT' WIDTH=12 FORMAT=8.3;
 RBREAK AFTER /SUMMARIZE OL UL;

PROC GPLOT DATA=OUT.BENFORD;
 PLOT EXPECTED*FIRSTDGT OBSERVED*FIRSTDGT
 DELTA*FIRSTDGT / OVERLAY;

How American Express Saved $1M in CPU charges

Hermes Villalobos, American Express, Co., Miami Lakes, FL

ABSTRACT

There are many advantages of
using code generators, for
example, reducing the number of
programming hours, thus allowing
the SAS users to focus on
analysis. Another example, in
cases like this, is reducing the
cost of CPU.

This project was designed with
interaction on multiple platforms:
Unix, Windows, and Mainframe.
It is difficult to synchronize the
programs running on these
different platforms. In order to
achieve some harmony among the
programs, CRT, Microsoft
Access, and FTP scripts were
incorporated in to the project.

This paper will describe how to
create a code generator and how
to solve the problems related to
the multiple platforms and
multiple users.

INTRODUCTION

In 1997, the author was working
as Senior Software Engineer for
Fraud Prevention, analyzing large
volumes of data from multiple
sources and from multiple
markets. All these analyses
requests had something in
common: all the layouts were pre-
defined. Before start ing a
detailed analysis the author had
to do some summarization of his
information usually by country,
city or industry. Then the author
had to create a dataset with the
information that he needed, then
several procedures had to be run
in order to analyze his
information.

Next, the author researched and
automated, as much as he could,
the information extraction and
analysis processes.

The author created a graphical
user interface and SAS code
generator in Microsoft Access.
To transmit the programs to the
Unix box the author used FTP
scripts, and to submit the
programs from Unix to the
mainframe the author used CRT
scripts.

ARCHITECTURE OF THE
TOOL

The graphical user interface was
located on the user's PC, the SAS
programs ran on the Unix
Platform, and the data repository
was located on the mainframe as
flat files.

HOW THE TOOL WORKS

The user interface generates a
SAS program according to the
user 's input.

Then the user interface generates
FTP script to transfer the program
from the PC to the Unix Box.

Once the program is in the Unix
box the user interface generates
CRT script to submit the SAS
program from the Unix.

This SAS program generates a
temporary file with al l the
information requested. This is
information that would be
summarized or that could be the
actual records from the databases.

Once the information arrives to
the user 's PC the information can
be manipulated or exported to
other media such as Excel, a SAS
dataset in Unix, a flat file on the
mainframe, or a comma-delimited
file on the user’s PC for further
research.

SAS REMOTE ACCESS:
ADVANTAGES AND
DISADVANTAGES

This tool generates and executes
SAS programs in Unix. These
programs access flat fi les
remotely located on the
mainframe. The main advantage
of using this technique is that the
CPU charges are zero. No
mainframe programs are
executed.

On the other hand, there is a
restriction about the record length
that can be accessed remotely.
The author has developed tools
with a maximum record length of
255 bytes and that stil l has good
performance.

THE USER INTERFACE

The user interface allows the user
to select the variables and criteria
that the user needs to generate
SAS programs according to need.

It also allows the user to focus on
specific industries and cities.

The user interface was developed
in Microsoft Access. The core
component is the code generator
function.

Code is generated in SAS, FTP,
and CRT to submit the programs.

Once the information is received,
the user can massage the
information, analyze it and export
it to Excel.

Above is a sample of information
exported to Excel.

SAS CODE

The SAS code generated by the
user interface uses the remote
access method.

Filename my129 ftp "'FILENAME'"
host='IP ADDRESS' user='XXXXXX'
pass='XXXXXX'
RCMD='SITE RDW';

DATA nada129 ;
 infile my129 RECFM=F
LRECL=298 ;
INPUT
 @1 CM_MKT $EBCDIC14.
 @15 CM_NUM $EBCDIC15.
 @30 ZIPCODE $EBCDIC10.
 …
 ;

When a summarization is
requested the SAS programs
summarize the information using
PROC SQL, and generate a flat
file with a different layout.

DATA SOURCES ON
MAINFRAME

All the information that the tool
accesses, is based on flat files on
the mainframe.

Here are some samples of such
files. All the files have to be
accessed since each one contains
worldwide information.

IMPLICATIONS OF A MULTI
USER TOOL

Since this tool was delivered
worldwide, an algorithm was
developed to avoid SAS programs
and temp files from conflicting
with one another.

The tool looks for the user 's name
on the system.ini file and
generates all the programs and
outputs based on the name found.

Since VILLA would be detected,
for example, as the author’s user
name, then all the SAS programs
and fi les are named using this
name.

Here is a sample of FTP code
generated to transmit a SAS
program to Unix.

open IPAddress
User
Password
ascii
del VILLA.out
del VILLA.cas

del VILLA.in
del VILLA.tst
put c: \fast \fast.tst VILLA.tst
del VILLA.tst.log
bye

HOW THE TOOL SUBMITS A
UNIX PROGRAM

As mentioned before the tool
generates CRT code to submit the
Unix program.

CRT it is a terminal emulator that
allows the user to run scripts. It
was developed by Van Dyke
technologies.
Here is sample of CRT code.

// login1.csf
expect("ogin: ");
send("MyUser\r");
expect("assword: ");
send("MyPass\r");
expect("gfp1% ");
send("\r");
send("/gfp/app/sas612/sas -work
/saswork4
/user5/hvil l/VILLA.tst \r");
expect("gfp1% ");
send("\r");
send("logout\r");
Disconnect();
CloseWindow();

This code logs in to the Unix box
and submits the SAS program
generated by the tool, in this
case, VILLA.tst.

CONCLUSION

The code generators can
significantly reduce the
programming time meaning
increase in productivity when
analyzing data.

The remote FTP data access
provided by SAS reduces to zero
the CPU charges. This is
particularly important in
companies that must pay for
every time they submit a JOB.
The author has been using this
method for 4 years and has never
received a CPU charge.

Finally, you have to be careful
with the input data formats when
transferring data from one
platform to another.

REFERENCES

Hermes Villalobos, May 2001

Avoiding a (Graphic) Identity Crisis with ODS HTML Styles
Jaclyn Whitehorn, The University of Alabama, Tuscaloosa, Alabama

ABSTRACT
The new SAS® Output Delivery System (ODS) enables any SAS
programmer to produce professional-quality output. In particular, the
ability to generate HTML output directly from every SAS procedure
was highly anticipated by the SAS user community. However, it is
doubtful that the default HTML output fulfills any site’s Web
publication standards. The capability of defining a custom ODS style
is provided through PROC TEMPLATE, but it is not for the faint-of-
heart. There are a number of new concepts to learn, and the amount
of documentation is small but growing. Furthermore, there are some
odd inheritance structures in the default templates provided by SAS
Institute, which makes editing them a greater challenge than
necessary. This paper is intended to serve as a “getting started”
guide for those users that need to modify the default templates in
order to create their own styles. It also introduces an alternative style
inheritance structure.

INTRODUCTION
Imagine the following scenario: You have created your first HTML
output using the new SAS Output Delivery System and are happily
envisioning your new future without 200-page printouts, HTML
macros, or cut-and-paste. However, your balloon is quickly deflated
when the verdict comes down from your boss: “Well, it’s kind of
ugly. Can’t you do something about that?”

An attractive Web page design generally consists of more than just
various shades of gray. And even if your entire department is
seriously artistically deprived and doesn’t mind the gray, the
institution you work for probably has pre-existing Web graphic
standards. Furthermore, if it doesn’t yet have standards, it probably
will soon. So now your task is to take your new capability of
producing HTML output and use it to create attractive HTML output,
or at least output that conforms to your department’s standards.

If you don’t know where to start, or if you took one look at the PROC
TEMPLATE documentation and the default style definition and threw
up your hands in despair, this paper is for you. First, we will learn
about the parts of a template. Then we will discuss the steps
involved in creating your own style. Finally, we will consider ways to
make the whole process easier by producing new default templates
as starting points. While it cannot make you a full-fledged Web
designer, hopefully this will put you on the right track for creating
attractive, consistent HTML output.

REQUIRED PRIOR KNOWLEDGE
You should have a working knowledge of Base SAS and be able to
produce some output that you would like to publish in HTML format.

While it is not strictly necessary, a good grounding in HTML will
save you a lot of headaches later on. It is very difficult to tell the
Output Delivery System how to write HTML if you do not know how
to do it yourself. Even simple things like changing a font or color will
be difficult unless you know how to create a Web page outside of the
SAS System. Some experience designing Web pages will also help
you make your styles more attractive and user-friendly, a skill that
can only be learned by observing other Web sites and practicing
making your own. If you think you will be doing extensive
modifications, you should also learn about Cascading Style Sheets
(CSS). There are many excellent HTML/CSS tutorials and
references available both online and in hardcopy.

Finally, this paper will not discuss publishing HTML output to a Web
server. This is mainly due to the wide variety of Web server
configurations in use. Your institution’s computer network support
personnel should be able to assist you in publishing your results. If

you are doing this privately, you will need an account with an Internet
Service Provider (ISP) that includes space for a Web site and
technical assistance for doing so.

CREATING ODS HTML OUTPUT
Before you can attempt to customize ODS output, you have to know
how to create it. The following code fragment closes the LISTING
destination, opens the HTML destination, and specifies where to
send the output.

ods listing close;
ods html body='body.html' contents='toc.html'
 page='page.html'
 frame='frame.html'(title='My SAS Output')
 path='directory to put files in'(url=none)
 style=Beige;

Closing the LISTING destination means that no output will go to the
output window or listing file. The four files named in the BODY=,
CONTENTS=, PAGE=, and FRAME= options will be created in the
directory given in the PATH= option. If files of those names already
exist, they will be overwritten. The value of the TITLE= suboption for
the frame file will appear in the browser title area and be used as the
name for any bookmarks or “favorites” pointing to it, but it will not
print on the page. The URL=NONE suboption is necessary to
ensure that links between the four files do not use absolute
references, which include the directory path, so that you can publish
the HTML output to a Web server. The STYLE= option specifies
which style template to use; this example uses the “Beige” template
supplied by SAS Institute. If the STYLE= option is omitted, the
output will be generated using the default style.

For those that are unfamiliar with HTML frames, some explanation
may be useful. Each of the four files that the ODS creates
(body.html, toc.html, page.html, and frame.html) is an HTML file.
The body file is where all of the output will go. In fact, if you do not
want a framed page, this is the only file that you need to request.
The contents file is a table of contents to each piece of output. The
page file is an index to the separate “pages” of the output file. These
pages correspond to the separate pages that would have been
created in normal output, not to where the HTML file will break when
printed. You may have a table of contents, or a table of pages, or
both, or neither. The frame file has no content of its own and is only
needed if you have a contents or page file. It acts to hold all of
requested pages in one browser window. To see your output, point
your Web browser to the frame file. The default output style places
the body file on the right and the table of contents and page index on
the left (see Figure 1).

For more information about using the Output Delivery System and/or
the HTML destination, see SAS Institute’s The Complete Guide to
the SAS Output Delivery System.

TEMPLATES AND TEMPLATE STORES
There are six types of templates utilized by the Output Delivery
System: table, column, header, footer, tree, and style. Table,
column, header, and footer templates control the display of output
created by individual procedures and data steps. If you need to
control the order of columns, the text used as column or row
headers, or default data formats for a certain procedure’s output, you
will need to modify one or more of those template types. Tree
templates are utilized internally by some procedures; users should
never need to modify or create them. Style templates, on the other
hand, control aspects of the overall presentation, such as
background colors and default fonts. At this point we are only
interested in creating a visual identity with style templates.

Templates are saved in a template store, which is a special type of
SAS file. An ODS PATH statement specifies which template stores
are in use by that SAS session. In general, whenever a style is
named for reading, the ODS searches each template store in the
PATH, in order, until it finds one with that name. It uses the first one
it finds and stops searching. When you need to store a style, the
ODS will put it in the first template store in the PATH to which you
have the proper access.

There are three different access levels assigned by the ODS PATH
statement. “Read” access is the default and is given to any store
named in the statement. “Write” access allows the user to write
templates to the store, but it does not allow the user to update the
store. This means that when a template is written to the store using
write access, any templates that had previously been written to it are
erased. “Update” access is required to add or change one template
in the store without removing any existing templates. Keep in mind
that users can issue their own ODS PATH statements at any time,
so if you need to protect a template store, do so at the OS level.

If there will be more than one computer needing access to your new
style, you should put it in a template store in an accessible place like
a shared network drive. Then you will need to add the new template
store to the ODS PATH statement for each computer that needs to
use it to produce output; depending on your local configuration, this
may be most easily accomplished with an autoexec.sas file.

The following code assumes that a template store exists in the
library named on the first line. (We will be creating that template
store later.) It gets added to the PATH with read access, which
would be appropriate for general use. By listing it first, we tell ODS
to search the new template store before the others. This means that
output run without a style specified would look for a style named
“styles.default” in the template store on the network drive before
using the one supplied by SAS Institute. All pre-installed templates
are stored in “sashelp.tmplmst”.

libname ourstyle 'network directory';
ods path ourstyle.templat(read)
 sasuser.templat(update)
 sashelp.tmplmst(read);

HOW STYLE TEMPLATES WORK
A style template is primarily made up of style elements, each with
attributes. Many elements serve to render a particular part of the
HTML output, but some exist simply to provide a starting point for
other elements. SAS Institute calls these “abstract” elements. For
example, the “Cell” element in the default style is abstract, so it does
not directly affect any visible output. However, the element “Data”
controls the rendering of table cells containing data, and it is based
on the “Cell” element. Other style elements that control special data

cells are then based on the “Data” element. This is the first of two
types of style inheritance; the second will be discussed shortly.

Style attributes control different aspects of each style element.
Different attributes specify a font for the element (“font”), the font
color (“foreground”), and a background color (“background”), to
name a few. When one style attribute is based on another, it inherits
all the attributes from the first one, but changes and additions can
still be made.

Style templates are defined in a PROC TEMPLATE step. A STYLE
statement is used in a PROC TEMPLATE step to define a style
element. In the following example, the “Cell” element specifies a
background and foreground color. The “Data” element inherits both
of those, but then changes the foreground color. A data cell in output
using this style would have a white background and gray text. (This
code will not run by itself; it is part of a PROC TEMPLATE step.)

style Cell /
 background = white
 foreground = black ;
style Data from Cell /
 foreground = gray ;

Another type of style element used is a reference list. These are
similar to associative arrays or “hashes” found in other languages
like Perl. You can think of reference lists as providing nicknames for
more complicated structures. One of the reference lists in the default
style is called “fonts.” This list sets up names like “docfont” and
“TitleFont” to refer to particular font faces and sizes. In the following
code fragment, “docFont” is set up to refer to font faces Arial,
Helvetica, or Helv in HTML size 3, while the “TitleFont” is Arial,
Helvetica, or Helv in HTML size 5, bolded and italicized. Then the
“Cell” element has its font attribute set to “docFont,” which is then
inherited by the “Data” element.

style fonts /
 'docFont' = ("Arial, Helvetica, Helv", 3)
 'TitleFont' = ("Arial, Helvetica, Helv",
 5, Bold Italic) ;
style Cell /
 background = white
 foreground = black
 font = fonts('docFont');
style Data from Cell /
 foreground = gray ;

Reference lists are also used in the default style to define shortcuts
to colors and to commonly used text and HTML.

For the second type of style inheritance, a style definition begins by
declaring a “parent” style. The style being defined is the “child” of the
parent style and inherits all of its elements. New elements can still
be defined, and existing elements can be changed within the child
style. The first way of doing this is to use the STYLE statement like
before. The STYLE statement only changes the element named, not
any that may inherit from it. Usually you will base an element in the
child style on the element of the same name from the parent style.
This allows you to only include the attributes that need to be added
or changed. The following complete PROC TEMPLATE step bases
a new style on the default and changes the font in the data cells.

proc template;
define style styles.new;
 parent = styles.default;
 style Data from Data /
 font = ("Times New Roman, Times, serif",3);
end;
run;

If you want other elements to inherit attributes that you set in the
child style, you need to use the REPLACE statement instead of the
STYLE statement. When you replace an element, the style template
is built as if the element in the child template completely replaces the
element of the same name from the parent template. Because of
this, any attribute set for that element in the parent style will need to
be reset in the element that is replacing it, even if it otherwise would
not be changed. However, you can still base the new element
definition on one from the parent style in order to preserve an
inheritance structure. The following example replaces the

Figure 1: Default HTML output

background color to the element “Data,” ensuring that any element
that inherits from it gets the new background color. It inherits from
the “Cell” element, which is an abstract element from the default
style. The new “Data” element has all the attributes from “Cell,” plus
the new foreground and background colors. It will not have any other
attributes that may have been named in the “Data” element in the
default style. (Note that this example uses a hexadecimal code to
represent the color. This is used much more frequently than a color
name.)

proc template;
define style styles.new;
 parent = styles.default;
 replace Data from Cell /
 foreground = colors('datafg')
 background = cxFFCCCC; /* light pink */
end;
run;

READING THE DEFAULT STYLE
We now have most of the information needed to start creating a style
of our own. However, most people will not make one from scratch.
There are a large number of elements, many of which you may never
work with, that are needed in order to create output using a style
template without warnings or notes in the log. To avoid these
problems, it is best to base your style off of one that already has all
the elements in it, like the default template provided by SAS Institute.
You need to know how the template is defined before trying to edit it,
so use the following code to save the source for the default template:

proc template;
source styles.default /
 file='external file location';
run;

You will see that the source code is quite long and can get very
confusing. All the same, it is important to read through it to get some
idea of the inheritance structure. Some of the more important style
elements are listed in Table 1.

Some of the elements, like “SystemTitle” and “ProcTitle,” have
associated “containers” as well. The Output Delivery System places
each of these elements inside its own one-cell table, and each table
is rendered by a container element that describes its width and
border. The background color is controlled by the main element, not
the container. The “SysTitleandFooterContainer” element holds the
“SystemTitle,” while the container for “ProcTitle” is the
“TitleandNoteContainer.” Figure 2 shows the position of many style
elements in relation to the rest of the output. There is also an
interactive guide to the style elements available at the author’s Web
site, the address of which is given in the contact information section.

More details about the default style template supplied by SAS
Institute can be found under PROC TEMPLATE: Concepts in The
Complete Guide to the SAS Output Delivery System.

BEGINNING YOUR OWN STYLE
Assuming that you have already submitted the two statements under
“About SAS Templates” to assign a library and set the ODS path,
start your PROC TEMPLATE with the following:

libname ourstyle 'network directory';
proc template;
path sashelp.tmplmst(read);
define style styles.test /
 store=ourstyle.templat;
 parent = styles.default;

The PATH statement temporarily changes the ODS PATH used;
this ensures that the “styles.default” that the style is based on is the
one supplied by SAS Institute. The STORE statement saves the
“styles.test” template in the shared template store.

In order for other people to be able to help you test this style, you
must first have set up their ODS PATH statements as detailed
above. Then, they must use the STYLE=styles.test option in their
ODS HTML statement. Once you have your style completed, tested,
and approved if necessary, you may want to name it “styles.default.”
Since the ODS PATH statement names “ourstyle.templat” first, any

time ODS is used to produce HTML output, it will find and use your
default style instead of the one from SAS Institute. Therefore, the
STYLE= option in the ODS HTML statement will no longer be
necessary.

After the PARENT statement, include any STYLE or REPLACE
statements you need to customize the output. The abbreviated list of
style element attributes in Table 2 may be useful to you. Keep in
mind that not all attributes make sense with all elements.
“Mismatched” attributes will not give errors; they will just not have
any effect.

ALTERNATE INHERITANCE STRUCTURES
Some people have found the inheritance structure built into the style
templates provided by SAS Institute to be non-intuitive. While some
of the complexity stems from the inherent flexibility of ODS output,
alternate style templates can be created to better facilitate
customization.

A major problem with the current structure is that most elements do
not inherit defaults from the file in which they are contained. Many
people see headings as part of the body file and cells as part of a
table. However, in the default style, no headings inherit from the
“Body” element, and the “Data” element doesn’t inherit from “Table,”
even indirectly. This means that you may have to change font faces
or colors in more places than you might think necessary. While the
places to make the changes are readily apparent from studying the
source code for the default template, this type of problem creates a
steeper learning curve and may discourage some users from
attempting to create their own styles.

Another issue is the use of reference lists. There are two just for
colors alone. While the two-level redundancy may be more efficient
for higher-level programmers, it adds unneeded complexity to the
process for many users. Multiple pieces of output that may look
related and be the same color by default can actually refer to two
different entries in the “colors” reference list, thus breaking some of
the benefits of inheritance.

In an attempt to make it easier for more users to create their own
templates, the author has produced two templates featuring an
alternate inheritance structure. One is a stripped-down version of the
SAS default; most users will see very little cosmetic differences in
output. The other has very few attributes and can be used as an
inheritance framework. Those templates and their documentation
can be found at the Web site given in the contact information below.
The author encourages feedback on these templates and will
attempt to keep them up-to-date with needed improvements.

CONCLUSION
Like the rest of The SAS System, the Output Delivery System is
extremely powerful and flexible. Through PROC TEMPLATE, users
have the ability to customize the overall style of HTML output so that
it fits with the other material on their Web sites. This is not a simple
process, but the result is worth it: a reusable style to quickly get any
SAS output you or your team produces ready for publication on the
World Wide Web.

There is plenty of room for innovation within the Output Delivery
System. While the author hopes that her templates can be of some
use, they should also initiate a discussion about other possible
inheritance structures. There is also a need for additional style
templates that could be used either as-is, or as starting points for
additional modification. As of May 2001, there were no user-
developed styles available in SAS Institute’s ODS Style Gallery
<http://www.sas.com/rnd/base/index-gallery.html>. The ability to
create professional output directly from SAS has been anticipated
for some time; now the very talented population of SAS
programmers should expand on it.

REFERENCES
A comprehensive source of reference information on the Output
Delivery System (including PROC TEMPLATE) is:

SAS Institute Inc., The Complete Guide to the SAS Output Delivery
System, Cary, NC: SAS Institute, Inc., 1999

Other available sources:

The Template FAQ,
http://www.sas.com/rnd/base/topics/templateFAQ/Template.html

Olinger, Christopher, “Twisty Turny Passages, All Alike – PROC
TEMPLATE Exposed,” Proceedings of the Twenty-Fourth Annual
SAS Users Group International Conference, 1999

The Base SAS Community Web site, http://www.sas.com/rnd/base/

The output used for Figure 1 is a basic ANOVA adapted from an
example in the SAS/STAT® User’s Guide portion of SAS Institute
Inc., SAS OnlineDoc®, Version 8 , Cary, NC: SAS Institute Inc.,
1999. It was modified so that it would only produce HTML output.

SAS and all other SAS Institute Inc. product or service names are
registered trademarks or trademarks of SAS Institute Inc. in the
USA and other countries. ® indicates USA registration.

Other brand and product names are registered trademarks or
trademarks of their respective companies.

CONTACT INFORMATION
Your comments and questions are valued and encouraged.
Contact the author at:

Jaclyn Whitehorn
 The University of Alabama
 Box 870346
 Tuscaloosa, AL 35487-0346

 Work Phone: (205) 348-8720
 Fax: (205) 348-3993

 E-mail: jaclyn@bama.ua.edu
 Web: http://bama.ua.edu/~jaclyn/sasods

TABLES

TABLE 1: SELECTED STYLE ELEMENTS

Style Element Description

Body, Frame, Contents, Pages Control appearance of the various output files (background, default font, etc.)

ContentTitle, PagesTitle Control the titles for the Table of Contents and Pages files.

SystemTitle Controls appearance of system-provided titles (such as those produced by TITLE statements)

ProcTitle Controls appearance of procedure-defined titles

Header, RowHeader Renders table cells that act as column or row headers

Data Renders table cells that contain data

ContentProcName, PagesProcName Controls appearance of procedure names in Table of Contents and Pages files. (If you use the ODS
PROCLABEL statement to change the text used to label the procedure, you will want to edit the
ContentProcLabel and PagesProcLabel elements instead.)

TABLE 2: SELECTED ELEMENT ATTRIBUTES

Attribute Description

font Set the font for the element. Requires font list in the form (“font-face list”, font-size, keyword list). Font
faces should be separated by commas. Sizes are given in HTML form, 1 through 7. Keywords pertain
to font weight and style, such as bold or italic. A reference to the “font” list can also be used.

background Background color. For tables, sets the color between cells.

foreground Usually controls font color, border color for containers. (There is also a bordercolor attribute, which
can also be used if the border is turned on. Borders do appear differently in Internet Explorer and
Netscape; test thoroughly!)

frame Outside border for tables/containers. Common settings are “VOID” (no border) or “BOX” (border all
the way around).

linkcolor, visitedlinkcolor Sets colors for unvisited and visited links. There is apparently no attribute for active links.

cellspacing, cellpadding Sets the space between and within cells, respectively. The color of the cellspacing is set by the table
background, while the padding is controlled by the cell background.

pretext, posttext, prehtml, posthtml Inserts text or HTML code before or after the element. Note that the use of “before” or “after” can be a
little deceptive. The text of the “ContentTitle” is contained in “pretext,” while you can use “prehtml” with
“Body” to insert a custom page header.

Figure 2: HTML output labeled with attribute names

Implementing Digital Data Analysis Using SAS����
Thomas J. Winn, Jr.

Texas State Auditor’s Office, Austin, Texas

[SAS is a registered trademark of SAS Institute Inc. in the USA and other countries. � indicates USA registration.]

Abstract

Benford's Law is an empirically-verified mathematical
formula which describes the expected distribution of
digits in a collection of everyday numbers. Since most
people aren't familiar with these theoretical frequencies,
it often is possible to compare an actual distribution of
digits with the Benford probabilities, in order to
determine if the data were contrived (invented,
fraudulent, or rounded) somehow. The paper describes
the SAS code that was written by the author for use at
the Texas State Auditor's Office.

Introduction

Benford's Law says that the probability of the first digit
being a "d", P(D1=d) = log10(1 + (1/d)), where
d=1,2,3,...,9. This phenomenon concerning everyday
numbers was first observed empirically by astronomer
Simon Newcomb in 1881, and afterwards by physicist
Frank Benford in 1938. Benford referred to it as "the
law of anomalous numbers". This mathematical
property concerning first digits can readily be extended
to provide probabilities for second digits, first and
second digit combinations, etc.

For Benford's Law to apply to a set of data, the data
must have the following characteristics:
(1) the numbers should represent the sizes of similar

phenomena,
(2) there should be no built-in maximum or minimum

values,
(3) the data should not consist of assigned numbers,

that is, numbers that are used for naming
purposes, but without quantitative meanings (for
example, telephone numbers or social security
numbers),

(4) there should be more small items than large items.
(Moreover, the mean would be greater than the
median, and the skewness value would be
positive.)

Interestingly, in 1961, Roger Pinkham proved that the
distribution of first digits is scale invariant under
multiplication, so that multiplication of all of the numbers
in a Benford set by a nonzero constant would result in a
new set of numbers, which also would follow Benford's
Law.

In 1992, Mark Nigrini’s doctoral dissertation observed
that many types of accounting data, including sales
figures and expenditure claims, follow Benford’s Law.
He also showed how deviations from the expected
distribution might be detected using statistical tests.
Nigrini’s work is the beginning of using Benford’s Law
for fraud detection in auditing. It should be pointed out
that Mark Nigrini sells DATAS, an application software
package that he wrote for performing digital data
analysis. Nigrini's book and his DATAS package set
forth certain other statistical methods, which are not
implemented in the program described in this paper.
These are the number duplication test, the number

frequency factor test, the relative size factor test, and
the distortion factor model.

Early in 2001, the Texas State Auditor’s Office became
interested in implementing this approach, and in
developing its own computer programs for auditing
purposes. I developed the SAS programs that are used
at the State Auditor’s Office, independently of the
DATAS programs. However, I acknowledge that I
closely followed the procedures that were outlined in
Nigrini’s book. This paper describes the primary
program, the SAS program which performs the most
fundamental digital data analysis tests. Besides the
program herein described, I also have written other
digital data analysis programs that are used at the
S.A.O.

Explanation of the Program

The program begins by reading in the data which are to
be analyzed for consistency with Benford’s Law. Only
positive data values are selected. If any negative data
values exist, these would be analyzed separately.
Various combinations of digits (first, second, first two,
first three, and last two digits, as well as the decimal
fractional components) are stripped from the data
values, using various SAS character-string
manipulation functions. Then PROC FREQ is used to
compute the frequencies and proportions for each digit
combination, and PROC SUMMARY is used to count
the total number of observations that went into each
frequency table.

Using Benford’s Law and its logical extensions,
expected probabilities are computed for all of the first,
second, first-two, and first-three digital combinations.
Theoretically, each of the last-two-digital combinations
and decimal fractional components would be equally
likely.

Next, the actual and expected frequency distributions
for the digital combinations are combined and
compared. For each digital combination under
consideration, the differences between the actual and
expected proportions are calculated. And z-statistics
are computed, as a measure of the statistical
significance of each of the differences.

The z-statistic is computed using a formula that is found
in Nigrini's book (on pages 42 and 73). It is as follows:
zstat =
(abs(p-benfp)-(1/(2*num)))/sqrt((benfp*(1-benfp))/num).
The 1/(2*num) term in the numerator is a continuity
correction term and is only used when it is smaller than
the absolute difference which appears as the first term
in the numerator. Then, 95% upper and lower
tolerance limits for the expected proportions are
calculated. The upper and lower bounds used in the
tolerance intervals are based on the z-statistic. Nigrini
(p. 43) asserts that, for values of the z-statistic which
are greater than 1.96, the difference between the actual
and the expected proportions will be significant at the 5

percent level (and the z-statistic cutoff at the 1 percent
significance level would be 2.57).

Just before printing the reports, the mean absolute
difference between the actual and expected proportions
is computed. The mean absolute difference is an
unweighted average of all of the absolute differences
for each digit-combination under consideration. Nigrini
says that this is the best goodness-of-fit measure for
use in an auditing context (page 79). It has the
advantage of being easy to understand, and it does not
vary according to the size of the data set. Another of
my SAS programs compares the mean absolute
differences associated with the values of a BY-variable
which is used for classification purposes, listing the
mean absolute differences in descending order.

Finally, the reports are produced. These include
comparative listings of the actual vs. expected
proportions for each instance, and also include the
computed differences, z-statistics, and 95% tolerance
intervals. Some graphical outputs also are generated,
to help analysts to visualize some of the digital data
analysis results.

Interpreting the Data

As with any statistical procedure, before running the
digital data analysis program, it is a good idea to use
standard exploratory data analysis methods to identify
the general character of the data, including any outliers.
The EDA plots that are produced by PROC
UNIVARIATE are particularly helpful.

Above all, one should use good sense in examining
digital distributions. Just because a report appears to
contain some statistical results is not a good
justification for the abandonment of critical thinking. A
pitfall of digital data analysis is that sometimes the
computed statistics can be misleading.

Data sets containing only a few hundred, or even a few
thousand, records may fail to conform to Benford's Law
just because of their smallness.

The z-statistic is only one clue among many regarding
the identification of numbers that are fraudulent or
invented. The z-statistic may not be entirely reliable,
particularly with small datasets. A few apparent
instances of "significant" noncompliance with Benford's
Law may not be particularly material. However, if the
instances of noncompliance are both large and
numerous, then one might be suspicious about how
they were generated.

The z-statistic suffers from an excess power problem.
For large data sets, small differences may be flagged
as being statistically significant even when the
differences may be immaterial. If the actual proportion
is reasonably close to the expected proportion,
disregard the z-statistic and the associated tolerance
intervals.

In the context of selecting cases for auditing, negative
deviations from Benford's Law generally are not
important (Nigrini’s book, p. 43).

The first- and second-digit tests both are high-level
tests of reasonableness. Unless there are blatant
problems with the data, the first-digit test probably won't

turn up anything. The second-digit test may indicate
some problematic data, but because there generally
would be a large number of observations having the
same second digit, by itself this test probably would not
be an efficient tool for selecting specific cases for
examining.

The first-two-digits test is performed to identify
anomalies in the data that may not be apparent from
the separate first- and second-digits tests. Very large
positive deviations would indicate excessive
duplications, and could be used to specify a coarse
selection criteria of items for further consideration.
The first-three-digits test is designed to provide a finer
amount of precision than the first-two-digits test. It can
be used to narrow the focus of attention in selecting
cases for a careful examination.

The last-two-digits and decimal-fractional-components
tests are designed to find invented numbers and
rounded numbers. Rounded numbers may signal that
the numbers were estimated, or were arbitrarily
assigned. If the data to be tested all contain "dollars
and cents" magnitudes, then the last-two-digits and the
decimal-fractional-components tests would yield
identical results. If excessive number duplication is
suspected, then the data could be sorted and subsetted
so as to identify the most frequently recurring numbers.

Conclusion

This paper presents a SAS program that performs an
analysis of the distribution of certain digital
combinations occurring in a batch of data values. It
compares the actual distributions with the expected
frequencies according to Benford's Law. Since most
people might expect the distribution of digits to be
uniform, this empirical distribution has been useful in
detecting fraud.

My SAS code is available upon request.

Suggestions for Further Reading

Benford, Frank (1938). “The Law of Anomalous
Numbers,” Proceedings of the American
Philosophical Society, Vol. 78, No. 4, pp. 551-571.

Browne, Malcolm W. (1998). “Following Benford’s
Law, or Looking Out for No. 1,” The New York
Times, August 4, 1998.

Feller, William (1966). An Introduction to Probability
Theory and Its Applications, Volume II, p. 62, John
Wiley & Sons, Inc., New York.

Matthews, Robert (1999). “The Power of One,” New
Scientist, July 10, 1999, pp. 26-30.

Newcomb, Simon (1881). “Note of the Frequency of
Use of the Different Digits in Natural Numbers,”
American Journal of Mathematics, Vol. 4, pp. 39-
40.

Nigrini, Mark J. (1992). “The Detection of Income Tax
Evasion Through an Analysis of Digital
Distributions,” Ph.D. dissertation, University of
Cincinnati.

Nigrini, Mark J. (2000). Digital Analysis Using
Benford's Law: Tests and Statistics for Auditors,
Second Edition, Global Audit Publications,
Vancouver B.C.

Pinkham, Roger S. (1961). “On the Distribution of First
Significant Digits,” Annals of Mathematical
Statistics, Vol. 32, pp. 1223-1230.

Author Information

Tom Winn
CAATs Team
Texas State Auditor's Office
P.O. Box 12067
Austin, Texas 78711-2067

Telephone: 512 / 936-9735
E-Mail: twinn@sao.state.tx.us

Appendix – Output Sample (Selected Reports)

 Analysis of the Frequency Distribution of First Digits
 of the Positive Values in the Data
 NOTE -- The Mean Absolute Difference is 0.00659

 First Actual Actual Expected Lower Upper
 Digit Count Proportion Proportion Difference Bound Bound

 1 774 0.30985 0.30103 0.00882 0.28284 0.31922
 2 422 0.16894 0.17609 -.00716 0.16095 0.19123
 3 335 0.13411 0.12494 0.00917 0.11177 0.13811
 4 258 0.10328 0.09691 0.00637 0.08511 0.10871
 5 211 0.08447 0.07918 0.00529 0.06839 0.08997
 6 134 0.05364 0.06695 -.01330 0.05695 0.07695
 7 138 0.05524 0.05799 -.00275 0.04863 0.06736
 8 117 0.04684 0.05115 -.00432 0.04231 0.05999
 9 109 0.04363 0.04576 -.00212 0.03736 0.05415
 ====== ========== ==========
 2498 1.00000 1.00000

 First
 Digit Z-Statistic Comment

 1 0.93898 within 95% tolerance interval
 2 0.91273 within 95% tolerance interval
 3 1.35564 within 95% tolerance interval
 4 1.04281 within 95% tolerance interval
 5 0.94143 within 95% tolerance interval
 6 2.62043 significantly different, at 5% level
 7 0.54477 within 95% tolerance interval
 8 0.93352 within 95% tolerance interval
 9 0.45982 within 95% tolerance interval

Analysis of the Frequency Distribution of First Digits
 of the Positive Values in the Data
 (*=Expected, o=Actual, bars(-) represent 95% tolerance interval)

 Plot of benfp1*d1. Symbol used is '*'.
 Plot of lower95*d1. Symbol used is '-'.
 Plot of upper95*d1. Symbol used is '-'.
 Plot of p1*d1. Symbol used is 'o'.

 „ƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒ†
 ‚ ‚
 ‚ ‚
 0.35 ˆ ˆ
 ‚ ‚
 ‚ - ‚
 ‚ o ‚
 0.30 ˆ * ˆ
 ‚ - ‚
 ‚ ‚
 ‚ ‚
 0.25 ˆ ˆ
 P ‚ ‚
 r ‚ ‚
 o ‚ ‚
 p 0.20 ˆ ˆ
 o ‚ - ‚
 r ‚ * ‚
 t ‚ - ‚
 i 0.15 ˆ ˆ
 o ‚ - ‚
 n ‚ * ‚
 ‚ - - ‚
 0.10 ˆ * ˆ
 ‚ - - ‚
 ‚ * - ‚
 ‚ - * * - ‚
 0.05 ˆ o - * * ˆ
 ‚ - - ‚
 ‚ ‚
 ‚ ‚
 0.00 ˆ ˆ
 ‚ ‚
 ŠƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒŒ
 1 2 3 4 5 6 7 8 9

 First Digit

NOTE: 10 obs hidden.

SECTION CHAIRS

Matt Becker
 PharmaNet, Inc

E. Barry Moser
Louisiana State University

Kasi Peek
Blue Cross Blue Shield of TN

 S

A
S

 S
O

L
U

T
IO

N
S

 &
 V

E
R

T
IC

A
L

 P
R

O
D

U
C

T
S

SAS SOLUTIONS & VERTICAL
PRODUCTS

OLAP Best Practices

What You Need to Consider When Building and Deploying an OLAP Application
Greg Henderson, SAS Institute, Cary, NC

ABSTRACT
SAS/OLAP Server® Software is a powerful, flexible and scalable
OLAP solution. It’s hybrid OLAP (HOLAP) architecture provides
the flexibility to store data in whatever format is most appropriate
based on the characteristics of the data and how the data will be
used. This also means, however, that choices must be made as
to what is the most appropriate data model for a successful
OLAP application. This paper will identify and discuss the issues
that need to be taken into account when designing and deploying
an OLAP application.

INTRODUCTION
As OLAP applications have evolved and matured from simple
sales analytics to other analytic areas throughout the
organization, OLAP tools have also had to mature to meet the
ever-increasing demands for aggregate analysis. Nowhere is this
more evident than in the recently conceived areas of e-
intelligence and web analytics. The nature of data generated by
the web has put a tremendous strain on many systems, OLAP
included. When you consider the vast amounts of data
generated, combined with the inherently high cardinality of that
data, many traditional OLAP technologies just cannot scale up to
the challenge.

To answer these increased demands, SAS Institute made a
strategic decision late in the version 6 development cycle to
extend its traditional multidimensional data base engine,
SAS/MDDB Server® software, to support a new Hybrid OLAP
(HOLAP) architecture that would provide the necessary scalability
and flexibility to answer the demands of a web driven world. In
version 8, the HOLAP architecture has been completely
integrated into the SAS System, and now carries a new name,
SAS/OLAP Server® software.

As OLAP technology evolves and matures, so too must our
thought processes, data modeling strategies and presumptions.
Although there is not enough space in this document to cover
every minute detail of the process of building successful OLAP
data models, the intent is to get the reader to think in new ways.
For, with the new HOLAP infrastructure, we are no longer limited
by technology, but only by our imagination and creativity.

WHAT IS OLAP?
No OLAP document would be complete without first defining what
is meant by OLAP. In a formal sense, OLAP (OnLine Analytical
Processing) is defined as fast access to large amounts of
summarized data. Implied in this definition is the concept of
dimensionality. For without dimensions, there would be nothing
to summarize the data by. Thus, a more generalized definition
might be the ability for users to quickly interrogate large amounts
of data, at varying levels of detail, across a variety of
combinations business dimensions.

OLAP is full of a myriad of terms and acronyms, which are often
ill defined. Thus, before digging too deeply into the bowels of

OLAP, it is prudent to provide a few basic definitions of some of
the OLAP terms that will be used in this paper:
Dimension – A business perspective that is useful for analyzing
data by or across. Often times referred to as a hierarchy.
Examples are Time, Product or Geography.
Level – Dimensions are often made up of various levels of detail.
For example, the Time dimension may consist of Year, Quarter
and Month levels. Some dimensions will only have one level, in
which case the level is implied. When referring to the physical
representation of data, a dimension level is sometimes referred to
as simply a dimension, or for those familiar with SAS terminology,
a class variable.
Member – A given value of a dimension level. For example,
members of the Year level of the Time dimension could be
“1998”, “1999”, and “2000”. The number of unique members at
any dimension level is referred to as the cardinality of that
dimension level.
Measure – The ultimate business measure that is being
aggregated. For example, Sales or Profits. Measures also have
statistics associated with them such as Sum, Count, Average,
etc. Those familiar with SAS terminology may refer to these as
analysis variables.

OLAP DATA STORES
What really differentiates OLAP from other query and reporting
systems is the idea of fast access (or high performance),
combined with large amounts of data. Traditional query and
reporting systems just are not designed for this level of online
performance. Although the definition for OLAP does not explicitly
specify any type of storage scheme for the underlying data, it is
presumed that in order to accomplish the desired performance,
some specialized data stores are required.

These specialized data stores contain data that is pre-
summarized, or aggregated, across those combinations of
dimensions that users want to see. Thus, an OLAP database
can be visualized as a series of subtables, where each subtable
represents a specific combination of dimension levels. Within
each subtable, the rows represent each unique combination of
the members of the dimension levels for that subtable. The
columns represent the aggregated values of the measures for
each unique combination.

For example, let’s consider a simple situation where there are two
single level dimensions, Year and Country, and one measure,
Sales. If these are aggregated into a multidimensional database,
the result is potentially 3 subtables – one for the summaries of
each Year, one for the summaries of each Country, and one for
the cross tabulation of Country by Year. If there are 2 years of
data, and 3 countries, the Year subtable would contain 2 records,
the Country subtable would contain 3 records, and the Country *
Year subtable would contain 2*3 = 6 records. Table 1 illustrates
what the resulting subtables would look like.

Applicatons Development

Year Sales

1999 $850,000

2000 $1,060,000

Country Sales

US $1,300,000

Canada $500,000

Mexico $110,000

Year Country Sales

1999 US $600,000

1999 Canada $200,000

1999 Mexico $50,000

2000 US $700,000

2000 Canada $300,000

2000 Mexico $60,000

Table 1: Simple Aggregate Subtables

Note the word “potentially” in the previous paragraph. Again, the
definition of OLAP does not mandate that all possible
combinations are stored as persistent aggregations (ie. physical
subtables). As long as the Year * Country subtable exists, Year
and Country aggregates could be independently derived from the
Year * Country subtable at run time. In this case, that would
involve rolling up only 2 or 3 values respectively, so there would
not be any significant performance degradation.

In a more generalized sense, the statement can be made that the
only subtable that is required in an OLAP database is the one
that crosses all of the dimensions levels, which we call the N-
Way subtable. Most real world databases, however, are not as
simple as the one described above, and to get acceptable
performance, some subtables need to be pre-aggregated and
persisted in the OLAP database. A good portion of this paper will
be spent discussing how to determine which subtables to persist
in order to obtain a good balance between performance and
storage requirements.

STORAGE ARCHITECTURES
Once it is determined which aggregations to persist in the OLAP
database, decisions must me made as to how to physically store
that data. Traditionally, OLAP systems have operated on top of
one of two underlying data architectures, multidimensional OLAP
(MOLAP) and relational OLAP (ROLAP). Both of these
architectures provide the capability of presummarizing data
across the various dimensions that users want to see. The
differences have to do with performance, scalability, simplicity,
and resource utilization.

The earliest OLAP engines were primarily multidimensional
(MOLAP) in nature. This required a specialized data store that
would hold the aggregated data in a format whereby it could be
easily retrieved by multidimensional queries. Most MOLAP’s use
a single operating system file to store the entire database, and
have indexing implied and built into the structure.

In the early 1990’s, however, the concept of a dimensional data
model that could be represented in a relational database
(RDBMS) was presented by Ralph Kimball. The basis of this
concept lies in the star schema, and its derivative, the snowflake
schema. As this concept gained in popularity, some vendors

began to structure OLAP architectures on top of the star schema
model, and thus was born the ROLAP architecture.

ROLAP OR MOLAP, WHICH IS BETTER?
As these two technologies evolved, a large debate began as to
which was the superior architecture for OLAP applications. There
were passionate opinions on both sides, but in reality each had
it’s own benefits and drawbacks. Which was best ultimately
depended upon the underlying reporting requirements and the
nature of the data.

MOLAP engines were preferred by many due to their simplicity.
Because all of the aggregation rules, relationships and indexing
were inherent in the data structure, they were very easy to build
and maintain. In addition, they were often much smaller and
much faster than comparable ROLAP architectures. There was,
however, one key drawback. The MOLAP model was not highly
scalable. As the amount of aggregated data increased, the
simplicity of the single file architecture thus became its nemesis.

Especially problematic for MOLAP’s was high cardinality data.
Relational databases do a much better job of storing and
retrieving small subsets of large data. Thus, the star schema and
ROLAP architecture was often more suited for high cardinality
data. In fact, many OLAP applications were forced into being
implemented as ROLAP’s simply due to the cardinality of one key
dimension, often times a customer or product dimension.

In addition to scalability, many IT shops preferred ROLAP’s
because they used technology that most IT professionals were
already familiar with, the RDBMS. In addition, if the data were
stored in an RDBMS, it would be open for use in non-OLAP
applications as well.

The following table highlights the key benefits and drawbacks to
each approach:

Architecture Benefits Drawbacks

MOLAP Fast Not Scalable
Small Unknown Technology
Easy to Maintain

ROLAP Very Scalable Difficult to Maintain
More Familiar Technology RDBMS Overhead
Flexible

Table 2: OLAP Architecture Comparison

HYBRID OLAP (HOLAP), THE POWER TO CHOOSE
A true hybrid OLAP approach lets the application designer
choose a combination of ROLAP and MOLAP architectures
based on the reporting requirements of the user, the system
resources available, and the nature of the data. For example
customer and product dimensions are sometimes problematic in
a MOLAP architecture due to their high cardinality. In a HOLAP
architecture, these dimensions can be stored in a more scalable
ROLAP schema, while all other dimensions are stored in a more
manageable MOLAP architecture.

In addition to having the flexibility to store the data in different
underlying architectures, the SAS HOLAP architecture allows
each piece of the model to be stored on a separate computing
platform, thereby further increasing the scalability across host
systems.

Applicatons Development

Because of this increased flexibility, the application designer
must make choices about not only what subtables to store in an
OLAP database, but also how to physically store them. The next
few sections will discuss some guidelines on how to make these
choices. Since each set of choices has tradeoffs, it is imperative
that the application designer understand the nature of the data
that is being put into the model, as well as how the end users will
be using the model. A data and business requirements
assessment, thus, becomes one of the most critical steps in the
application design process.

OPTIMIZING THE MODEL: DETERMINING
PERSISTENT AGGREGATES
The introduction briefly touched on the idea of persistent
subtables in an OLAP data model. On one extreme, the model
could be optimized for minimum disk space, in which case we
would only store one persistent subtable, the N-Way. This would
have the benefit of a small data store, most likely at the expense
of degraded performance since most rollups and cross
tabulations would have to occur at run-time of reports.

On the other extreme, every possible combination of dimension
levels could be persisted as a series of subtables. In theory, this
would maximize performance; however, in practicality this is not
true due to the huge size and complexity of indexing required to
implement such a scheme. Although this technique might apply
to the simple data model laid out in the introduction, real world
models will typically have many more dimensions and dimension
levels than this. The number of possible subtables for any OLAP
model can be defined as

2
n
-1

where n is the total number of dimension levels that exist in the
model. Thus, for a model with 20 dimension levels, there would
be over a million possible subtables!

To further illustrate how the above formula is derived, consider a
binary example whereby each dimension level represents a digit
within a binary number. The number of digits is equal to the total
number of dimension levels. To represent each possible
combination of dimension levels, it’s binary digit can either be “1”
indicating it is present, or “0” indicating it is not present. This
would yield 2

n
 possible combinations. Since there would be no

use in a subtable that didn’t include any dimension levels, 1 is
subtracted for the case where all digits would be “0”. For those
familiar with PROC SUMMARY, this binary representation is how
the _TYPE_ variable is derived.

So, now that it is understood that persisting every subtable nor
only persisting the N-Way is optimal for most OLAP models, let’s
consider some other techniques for determining which subtables
to persist in a well-optimized OLAP database. Which technique
is best primarily depends upon how users are going to be
reporting against the data. The goal, however, is to persist those
subtables that are going to be accessed most often, and
minimize the number of times that the lowest level subtables (ie.
N-Way) are accessed.

STAIRSTEP METHOD
The stairstep method involves persisting those crossings that
exist on a set of predefined reports. Typically, this involves
crossing all of the levels of dimensions that will exist on a single
cross tabular drilldown report, and then repeating this process for
each subsequent predefined report.

For example, let’s consider a report where the Product dimension
(consisting of Category, Item and SKU) is crossed with the Time
dimension (consisting of Year, Qtr and Month). In order to make
sure that there is an exact match subtable for each possible
combination of levels of these dimensions, first start with the
Cartesian product of all levels of both dimensions. Then,
“stairstep” down each dimension by dropping off levels in
sequence. The result would look like the following:

Category Item SKU Year Qtr Month
Category Item SKU Year Qtr
Category Item SKU Year
Category Item Year Qtr Month
Category Item Year Qtr
Category Item Year
Category Year Qtr Month
Category Year Qtr
Category Year

If the report contains more than two dimensions, the process is
simply extended to include the additional dimension. Also, if the
reports need the capability to be subset on certain dimension
levels not contained in the axes dimensions, those dimension
levels would need to be added to each crossing. This is a very
important point in the stairstep model, because if the subsetting
dimension level is not represented in any subtables, the N-Way
will be used to satisfy all requests that include the subset.

Note that this technique is optimized only for drill downs
operations (ie. subsetting the data by the selected parent
member when moving to the next level). It is not fully optimized
for down operations, which is when the report jumps to the next
level without subsetting on any member of the parent. To fully
optimize for this type of reporting, it would be necessary to
include every possible combination of levels for the dimensions
used in the report.

As you can see, the stairstep method is very effective if the types
of reports can be predetermined. However, one of the key
benefits of OLAP is that it allows the user to “slice and dice” the
data any way they want. The next technique will optimize a
model for more ad-hoc reporting.

SPIRAL METHOD
Although the Stairstep technique is very effective for determining
which subtables to persist in a controlled reporting environment,
the real power of OLAP databases is the ability for the user to
create ad hoc reports, or slice and dice through the data. A very
common use of OLAP tools is for a user to identify an anomaly in
some business measure, and then slice this anomaly across
various combinations of dimensions to try and determine why the
anomaly exists.

To optimize for these types of reports, the modeling effort must
be approached a little differently. Since ad hoc queries often
combine a limited number of levels from many different
dimensions (as opposed to many levels of a limited number of
dimensions in the Stairstep example), it is beneficial to persist
subtables that contain levels from many of the dimensions in the
model. To keep the size of the overall database manageable, it
is also desired to persist high cardinality data in as few subtables
as possible.

The Spiral technique provides a model for this ad hoc
environment. To get subtables that contain levels from as many
dimensions as possible, and also limit the number of high

Applicatons Development

cardinality dimension levels in those subtables, the dimension
levels need to be ordered based on their dimension and
cardinality.

Figure 1 illustrates how this can be accomplished. Notice that
each dimension has been placed on a set of vectors originating
from a common center point. Next, the levels for each dimension
are placed on the appropriate vector, with the highest level of
summary furthest from the center, and the lowest level of
summary closest to the center. It is also helpful to list the
cardinality of the level next to it on the vector. Typically,
cardinality will increase when moving from high summary to low
summary levels.

Once this is done, the levels can be ordered by starting at the
highest level of the dimension that will be most commonly used in
the application, and then draw a line to the highest summary level
of the next most common dimension. Continue this until the
highest level of all dimensions is connected. Then, move to the
next level and repeat the process. Notice that the diagram
begins to look like a spiral leading to the central intersection of
the dimension vectors. As the line approaches the center, some
dimensions will run out of levels before others. Once this
happens, use the cardinality of the levels to determine where to
go next, going from lowest cardinality to highest.

When complete, the diagram should look like Figure1.

Time Product

Geography Customer

Year (3)

Qtr (4)

Month (12)

Category (16)

Item (500)

SKU (10,000)

Segment (12)

CustomerID (50,000)

Country (50)

Region (150)

SubReg (1000)

FIGURE 1 – SPIRAL OPTIMIZATION TECHNIQUE

By following the lines, a prioritized list of dimension levels can be
determined. For our example, it would look like:

Year Category Segment Country Qtr Item Region Month SubReg SKU CustomerID

This simply produces an N-Way, but if we then stairstep this
subtable down using the priority order, we should obtain a
reasonably optimized set of subtables. The resultant model
would look like:

Year Category Segment Country Qtr Item Region Month SubReg SKU CustomerID
Year Category Segment Country Qtr Item Region Month SubReg SKU
Year Category Segment Country Qtr Item Region Month SubReg
Year Category Segment Country Qtr Item Region Month
Year Category Segment Country Qtr Item Region
Year Category Segment Country Qtr Item
Year Category Segment Country Qtr
Year Category Segment Country
Year Category Segment
Year Category
Year

Since the highest cardinality dimension levels only occur in a very
few subtables, the size of the resultant database is controlled.
Also, every subtable contains levels from as many dimensions as
possible. Although many queries will not be answered by an
exact subtable with this model, most queries should be able to be
satisfied without going all the way back to the N-Way.

OTHER TECHNIQUES
The Stairstep and Spiral techniques are just a sampling of
strategies that can be used to optimize the persistent subtables
that are stored in an OLAP model. These techniques can be
used on their own, combined with each other, or combined with
other techniques that will allow the OLAP model to ultimately
serve the performance requirements of the user.

These techniques are used as a starting point when designing
the model. Once the model is deployed, it will need to be
monitored, and then adjusted based upon how users are actually
exploiting it. How to monitor the model is discussed in more
detail in the section on Deploying the Model.

OPTIMIZING THE MODEL: PARTITIONING
STRATEGIES
Once it has been determined which subtables are to be persisted
in the OLAP database, the next step is to decide how that data
will be physically stored. The SAS HOLAP architecture provides
an extremely flexible and scalable way to physically implement
the model.

Due to the simplicity and performance benefits of MOLAP on
data that has small to medium cardinality, a single MOLAP
structure, or MDDB, should be used as a starting point for any
model. Only when performance issues, data size issues or other
special circumstances arise should one consider partitioning the
model into separate physical structures.

There are two ways that an OLAP model can be partitioned.
Stacking refers to storing different subtables in separate physical
structures. Racking refers to taking a single subtable, or set of
subtables, and partitioning them based on the value of one or
more dimension levels. Each of these techniques, and when
they might be appropriate, is discussed in the following sections.

STACKING
One way to partition an OLAP database is by stacking subtables.
In stacking, each persistent subtable can be stored in its own
physical structure. The structure can be any data format that
SAS can read, but typically it is SAS MDDB’s, summary datasets,
or RDBMS tables.

Stacking is typically used to solve the following issues:
- High cardinality data that does not scale well in an MDDB.
- Large subtables that do not fit in memory.
- Special aggregation rules.
- Summary data already exists in a non-MDDB format.

High Cardinality
As mentioned in the introduction, high cardinality dimension
levels often do not scale well in MOLAP structures. To get
around this, stacking can be used to store those persistent
subtables that contain high cardinality dimension level is a more
appropriate structure. What defines “high” cardinality is a relative
term, and will depend on the hardware platform, the total number

Applicatons Development

of dimensions and levels in the model, and the number of
persistent subtables, among other things. However, dimension
levels that are approaching 1000 members should be monitored
for performance issues.

Using the example illustrated in the Stairstep technique, let’s
assume that the dimension levels have the following cardinality:
Year(3), Quarter(4), Month(12), Category(16), Item(500),
SKU(10,000). Obviously SKU is the dimension level that will be
of the greatest concern. To stack this dimension level, we would
take every persistent subtable that contains this level (including
the N-Way) and break those subtables out of the MDDB. In this
case we would remove the following subtables from the MDDB
and stack them on top of it:

Category Item SKU Year Qtr Month
Category Item SKU Year Qtr
Category Item SKU Year

These subtables could then be stored in a RDBMS or SAS
dataset, which are typically more suited to retrieving small
subsets of values from a large dimension level. When stacking
subtables for high cardinality dimension levels, it is imperative to
index the tables on the dimension level variable that caused this
subtable to be stored separately – in this case, SKU.

Memory Issues
Although medium to high cardinality dimensions do not always
create enough of a performance problem to warrant stacking
them, addressable system memory often will become an issue.
SAS requires each subtable of an MDDB to be able to fit into
memory to be exploited. On 32 bit systems, this limit is 2GB; on
64 bit systems, the limit is typically controlled by the amount of
RAM allocated to the SAS session. By partitioning subtables that
exceed these limitations into other structures, the limitations can
be extended. Typically high cardinality dimension levels will not
be accessed without first being subset to a reasonable number
that can be presented on a report. By letting the RDBMS subset
this data before it is summarized, the amount of data passing
through the OLAP engine is reduced.

Special Aggregation Rules
In the introduction, one of the benefits mentioned for MOLAP
architectures was the fact that the aggregation rules and logic
were built into the OLAP engine. Most data can be summarized
across any dimension using simple aggregation rules that are
common to all measures across all dimensions. There are
however, rare instances where certain business measures do not
conform to these rules. For example, account balances are not
additive across the levels of the time dimension, since
(unfortunately!) the balance for the year is not equal to the sum
of the balances of the individual days, months or quarters. These
are often called “non-additive” measures, and their special
aggregation rules can normally be handled more flexibly in a two
dimensional structure.

Stacking allows us to break out all subtables that contain the non-
additive dimension, and manually aggregate those subtables
using the appropriate business rules in SAS Data Step or SQL
code. When these types of dimensions exist, it is imperative to
persist all possible subtables that can include any levels of the
dimensions that are not additive. Otherwise, the OLAP engine
may attempt to perform some aggregations at run time using the
predefined aggregation rules of the OLAP engine.

Obviously, this can potentially lead to a very large number of
persistent subtables, so a star schema model is often an
appropriate storage mechanism.

Existing Summarized Data
Another application for stacking is to include existing summarized
data without replicating it in the OLAP database. This data might
be in an existing data warehouse or some other source. Instead
of replicating the already summarized data, it can simply be
combined with other summarized data that is not in the
warehouse, and “stacked” into the model. SAS/Access®
software makes it very easy to include existing RDBMS based
star and snowflake schemas into an OLAP data model.

As you can see, stacking can provide the OLAP model with much
needed scalability and flexibility, adding complexity to the model
only when needed. One further benefit of stacking is that each
stacked data source can be partitioned onto separate server
platforms to further increase the scalability. In addition,
SAS/Access® software will pass much of the subsetting work
through to the RDBMS, which limits the amount of data that
moves across the network.

RACKING
Whereas stacking involves partitioning multiple subtables into
multiple physical structures, racking involves partitioning a single
subtable into multiple physical structures. The Time dimension is
often used in racking models, whereby the separate structures
are built for each time period. For example, a separate MDDB
could be built for each month. When using racking, the OLAP
engine only accesses the physical structures needed to satisfy
any given query. Thus if the model contains monthly MDDB’s
and a report needs just one month, only one MDDB would be
accessed. If a report requested multiple months, then multiple
MDDB’s would be accessed and joined together.

One real benefit of this approach is at build time. If data is
refreshed on a monthly basis, then instead of rebuilding the entire
OLAP database, only the month MDDB affected by the new data
will be rebuilt.

Racking can also be used on other dimensions when reports are
typically subset on that dimension. An example might be a
marketing analysis application where each marketing manager
has a set of products they are responsible for. Each manager
could thus have their own MDDB containing only the data for their
products. The advantage to this approach is that by subsetting
the high cardinality (Product) dimension, the subsets should be
small enough for MOLAP implementation. If a consolidated view
is needed, the HOLAP racking capabilities can join the disparate
MDDB’s together in a report when needed.

In summary, racking and stacking provide the OLAP model with
scalability and flexibility. It allows the majority of the model to be
implemented in a single, manageable MDDB, while only breaking
out the pieces necessary to address scalability or flexibility
issues. In addition, stacking and racking can be combined in the
same model, as needed, to accomplish some of the benefits of
both techniques. This is referred to as “stracking.”

SKELETON MDDB
In order to hide the complexities of the underlying model from end
users, the SAS HOLAP implementation uses the concept of a
skeleton (or proxy) MDDB. This skeleton contains all of the
attribute information of the entire OLAP model, but no data.
Instead, it stores metadata about the distributed data model that
has been defined. The key benefit of this is that changes made

Applicatons Development

to the underlying physical structure of the model can be
transparent to the end user. Thus, it is prudent to consider using
the HOLAP skeleton, even if the initial data model is not
partitioned. This will allow a more seamless conversion to a
partitioned model later if one is needed.

DEPLOYING THE MODEL
Once the model has been designed, and the physical layer has
been determined, the final step is to actually build it and deploy it
to users. The focus of this document is really on the modeling
issues, however for completeness, I’ll address some deployment
topics at a high level.

SECURITY
As with any data, sensitivity is often an issue with OLAP
databases. The SAS OLAP Server provides a role based access
control subsystem that facilitates the following types of security:

Cube Level – Which cubes
Application Level – Which reports
Hierarchy Level – Which levels
Column Level – Which measures
Row Level – Which members

Security issues should be addressed during the planning and
design phase, and implemented through the access control
subsystem accordingly.

In addition to security, the access control subsystem can be used
as a filtering tool to facilitate easier report development. For
example, if product managers each need a report for only their
products, the row level security can be set for each product
manager so that they can only view data for their products. Thus,
the report developer can build a single report for all product
managers, and the access control subsystem will control what
data is surfaced to each user.

More information on the Access Control subsystem can be found
in the SAS/OLAP Server Administrator’s Guide.

BUILDING THE MODEL
There are several ways to build the model once it is designed. In
addition to PROC MDDB, both SAS/EIS® Software and SAS
Enterprise Guide® Software provide GUI interfaces for building
MDDB’s. However, SAS/Warehouse Administrator® Software is
the preferred tool. It encompasses the entire ETL process, not
just the creation of the OLAP model, and provides facilities for
scheduling refresh jobs and documenting the process via
metadata. In addition, it has built-in support for many of the
optimization techniques discussed in this paper. Further
information on building OLAP models using SAS/Warehouse
Administrator can be found in the SAS/Warehouse Administrator
Reference Guide.

If using PROC MDDB, remember to order the HIER statements
for building subtables from those with the greatest number of
dimension levels to those with the fewest. This will optimize the
build time performance of the MDDB because each subsequent
table can be built from a previous summary table instead of
always going back to the N-Way or detail data.

Also, if the model has been partitioned using racking or stacking,
it is possible to build the various physical structures in parallel.
This is especially relevant in a multi platform environment, and
can significantly reduce the total amount of time required to
rebuild or refresh the database.

END USER REPORTING
Once the database is built, a reporting environment needs to be
established to facilitate exploitation of the database. SAS
provides a variety of OLAP client interfaces that are appropriate
to different types of end users. SAS/EIS® software provides a
full client interface that includes a variety of tabular and graphical
objects. In addition, having the full power of SAS on the client
provides additional analytic capabilities that are outside the scope
of most OLAP applications.

The web can also be a very effective delivery mechanism for
OLAP reports. SAS offers OLAP client interfaces based on
several platform independent technologies such as HTML, Java
Applets and Java Server Pages. The web based OLAP viewers
are also highly integrated into the SAS Business Information
Portal, allowing user to subscribe to content contained in OLAP
databases.

Finally, SAS supports the OLE DB for OLAP standard as both a
provider and a consumer. Thus, SAS OLAP databases can be
surfaced via OLE DB for OLAP compliant interfaces such
Microsoft Excel™ or SAS Enterprise Guide® software.

ONGOING OPTIMIZATION
Once the model has been designed and deployed to end users it
is imperative to revisit the design on a regular basis to ensure
that the assumptions made during the design phase are still valid,
and that nothing substantial was overlooked.

The HOLAP data provider generates a log file that contains
information about all requests for data. The types of information
contained in the log are the time it took to satisfy the query, the
name of the data source(s) and subtable(s) used, the number of
items returned, etc. By default, this file is stored as a SAS
dataset in the WORK library for each SAS user session. It is,
however, often advantageous to store the log files in a more
permanent location. This can be accomplished by setting an
attribute on the data provider class.

Because the log file displays subtable names, it is a good idea to
provide a descriptive name for each subtable that is persisted in
the model. Otherwise the log will display the subtable names as
a number that was system generated when the subtable was
created. A good naming convention is to use the names of the
dimension levels that are included in that subtable.

CONCLUSION
The HOLAP capabilities contained in SAS/OLAP Server®
software provide a robust level of scalability and flexibility.
However, to fully leverage the power of HOLAP, a data model
must be carefully planned and executed that takes into account
both user reporting requirements and the characteristics of the
data to be reported. By carefully understanding both the
requirements and the data, highly scalable OLAP applications
can be delivered to help end users solve sophisticated and
complex business problems by leveraging vast amounts of data,
which are aggregated and presented in an easily consumable
format.

Applicatons Development

REFERENCES
Weinberger, Ann and Mattias Ender. The Power of Hybrid OLAP
in a Multidimensional World. SUGI 25, Paper 133-25.

Wright, Ken. New Features in Warehouse Administrator, SUGI
25, Paper 114-25.

Moorman, Mark. The Art of Designing HOLAP Databases. SUGI
24, Paper 139.

SAS/EIS® Technical Report: HOLAP Extensions, Release 6.12.
SAS Publication 56564.

SAS/OLAP Server Administrators Guide, Release 8.1. SAS
Publication 57924. SAS Institute Inc, Cary, NC

SAS/Warehouse Administrator Users Guide, Version 2.0, First
Edition. SAS Publication 56799. SAS Institute Inc, Cary, NC

Kimball, Ralph. 1996. The Data Warehouse Toolkit: Practical
Techniques for Building Dimensional Data Warehouses. (John
Wiley and Sons, 1996).

ACKNOWLEDGMENTS
I’d like to thank Rob Stephens for providing the opportunity to
collect many of my random ideas into this document. Also, Mark
Moorman, Stu Levine and Ben Zenick for invaluable content and
review assistance. Finally, thanks to the entire OLAP
development team at SAS Institute for putting together the most
flexible and robust OLAP technology possible.

CONTACT INFORMATION
Your comments and questions are valued and encouraged.
Contact the author at:

Greg Henderson
SAS Insitute Inc.
SAS Campus Dr
Cary, NC 27513
Ph: (919) 531-2152
Fax: (919) 677-4444
Email: greg.Henderson@sas.com

 Web: http://www.sas.com

Applicatons Development

Paper P502

Use of SAS/AF V8e to Compare Death Certificate Data with Health Survey Data
from the National Center for Health Statistics

Gretchen K. Jones, NOVA Research Company, Hyattsville, MD
Sandra T. Rothwell and Christine S. Cox, National Center for Health Statistics, Hyattsville, MD

ABSTRACT

Determination of Fact of Death is one of the follow-up
activities which the National Center for Health Statistics
(NCHS) conducts for health surveys. The National Death
Index (NDI) is a data base containing information on all
U.S. deaths since 1979. To validate a death, the NCHS
orders copies of Death Certificates to compare against a
more robust set of data than is available from the NDI.

The authors have developed a SAS/AF (V8e) application,
using the Form Viewer attached to a SAS Dataset Model,
which provides a tool to compare NCHS survey data with
actual Death Certificates. Access is provided (through
push button control) to frames containing data from three
different data files. The user compares and “scores” the
extent of match of the data variables on a frame with six
pages. The final frame gives a summary of scores from
the previous frame, with a box for final evaluation of
whether the Death Certificate matches the survey data on
the files. The presentation will include a demo of the
application.

This paper is appropriate for persons with intermediate
SAS skills.

INTRODUCTION

This paper describes a SAS/AF V8e application of the
Form Viewer attached to a SAS Dataset Model. The
application involves being able to view the National Health
and Nutrition Examination Survey (NHANES) data from
subjects now believed to be deceased. The purpose is to
allow an evaluator to compare variables on the frames
with information recorded on a death certificate thought to
be a possible match. The evaluator will score and
comment using the frames, thus updating the underlying
SAS file.

 Background is given describing the data and how the
previous system worked; the frame-building process is
explained (with coding); screen prints of sample frames
are presented; and improvements of the application over
the previous system are listed.

BACKGROUND ON FOLLOW-UP AND LINKAGE

One of the most useful tools for the epidemiologist is the
longitudinal or follow-up study. These studies provide
baseline measures that can be compared to subsequent
health outcomes to determine risk factors for some of the
more common chronic diseases as well as to provide

some information on the natural course of these diseases
and conditions.

A major health outcome is the fact of death, the underlying
cause of death (or the condition that led to the eventual
death), and any other contributing diseases or conditions
(such as previous heart attacks, etc.)

THE NATIONAL DEATH INDEX (NDI) AS A PROVIDER
OF DATA RECORDED ON DEATH CERTIFICATES

The National Center for Health Statistics (NCHS) provides
a data base, the National Death Index (NDI), for use under
fairly strict guidelines, that can provide data on fact and
cause of death. The NDI user provides a limited set of
variables and the NDI software provides all potential
matches to the person described by this set of variables.
State of death and certificate number are provided on
each potential match.

It is then the job of the user to determine which matches
could be the death certificate for a subject in an
epidemiologic study. The NDI does not provide any more
confidential information than is necessary for the user to
make some kind of informed decision. For example, if the
user provides the subject’s Social Security Number (SSN),
the NDI provides only information that specifies which
digits of the SSN match. The SSN itself is not provided.
Another issue is the fact that birth dates can often be mis-
reported in the survey and/or on the death certificate.
Often there is a close match on SSN and a birth date and
the name is a commonly used one. This causes any
match to be tentative. Both probabilistic and deterministic
methods are used to winnow out bad matches or to find
the very good or perfect matches. There is always a large
number which are neither obviously matches nor non-
matches. These cases are resolved by ordering copies of
the death certificate and reviewing all socio-demographic
variables present on the certificate and collected during
the survey participant interview. This frame application
was developed to facilitate this review process.

REASONS FOR ORDERING DEATH CERTIFICATES

Both the survey and the death certificate itself contain
more information than is available from the NDI match.
For example, whether the subject ever served in the
armed forces and the subject’s major occupations or
industries in which he or she worked can usually be found
on the death certificate. The name of the informant on
the certificate is often someone who lived in the house
with the subject when they were interviewed either at
baseline or at some later follow-up contact. Finding m

matches to this information on certificates can often
confirm or deny the match. Ordering the certificates can
sometimes discover the death of a twin, where the last
names are the same, the first names sound alike, the birth
dates match perfectly and the SSNs are very similar. If
the twin was not in the study, an incorrect death can be
eliminated.

STATEMENT OF THE TASK TO BE PROGRAMMED IN
SAS/AF

Data from several SAS source files (a Subject File, a
Roster File, and an Address File) are to be displayed on
screens so that an evaluator, usually female, (hence
feminine pronouns are used in reference to her
throughout) may manually compare the information with
corresponding data on the death certificate which has
been ordered from the State in which the person
presumably died.

For every variable on the Subject File looked at, there is a
place for the evaluator to enter a “Match Code,” which can
be an “E” for exact match, a “P” for partial match, or an “N”
for no match. Next to the Match Code combo box, there is
a text entry field where the evaluator must enter the data
from the death certificate if she has selected a “P” or an
“N” from the Match Code combo box. And the evaluator is
not allowed to enter anything in the text entry field if she
has selected an “E” from the Match Code combo box. The
frame is programmed so that any box which must have
data entered into it has a background color of yellow.

From comparing the address on the death certificate with
data from the Address File, the evaluator is able to assign
a Code of “N,” for no address match, an “S” for State only
match , a “C” for City and State matches, or an “E” for
exact match with the Household Address, or with the
Mailing Address. And lastly, comparing the name of the
informant listed on the death certificate with data on the
Roster File, the evaluator assigns an “N,” a “P,” or an “E”
again for no match, partial match or exact match on
informant in household, or an other contact.

Privacy and security considerations must be programmed
into the system. Only someone who takes the privacy
oath and has an authorized USERID will be allowed to
bring up the system. The evaluator must be able to
navigate between screens as much as possible, and when
finished with match coding, will go to a decision screen,
where she will be able to look at frequencies of match
codes she has assigned on previous screens, and to
come to a decision as to whether the person described on
these files is the one on the death certificate in front of her.
She then must have the ability of assigning a “decision” of
“N” (not a match), “M” (a match), or “R” (needs to be
reviewed by client).

HOW OLD SYSTEM WORKED

The previous system was written in SAS/AF version 6. It
was set up to handle one (and only one) survey. It was
strictly “fill in the blank”, no push buttons, no objects with
inheritance. And navigation was difficult. The system

provided no summary statistics such as what proportion of
the potential certificates had been reviewed or what
proportion of review certificates were considered “true”.

THE NEW SYSTEM - HOW IT IS DESIGNED

To implement the new system, it was necessary to use
SAS/AF Version 8e, because we needed to make use of
the form viewer, which doesn’t exist in Version 8. The
system consists of five frames or screens, one containing
six pages.

The first screen has the Title (“Death Certificate
Verification System”) and the confidentiality statement.
There is a push button for the evaluator to click on if she
accepts the statement, and the second screen opens.
The evaluator is asked to choose the survey being
reviewed from a drop-down box, and to enter her USERID.
If the evaluator is found to be authorized, the third screen
opens, where the she enters the CASEID of the subject for
the appropriate survey.

Screen four consists of six pages, which can be navigated
using the “page turns” in the upper right or left-hand
corners, or the push buttons at the bottom of the frame.
Pages 1-3 contain data to be reviewed and updated from
the Subject File, Page 4, from the Address File, and Page
5 from the Roster File. Page 6 is the Comment Screen,
where the evaluator is given a place to provide additional
input if needed.

When the evaluator is ready to make a decision as to
whether the death certificate is a match, she navigates to
the fifth frame, where statistics as to her previous scoring
on individual items are displayed in text control boxes, and
she will enter her decision code.

Figure 1 below is a sample of the first page of the Subject
Screen. The evaluator will choose E, P, or N from
the combo-boxes in the middle column for each variable
in the first column. Then if E is not chosen, the evaluator
is forced to enter (in the last column) what was written on
the death certificate for that variable.

Figure 2 below is a sample Decision Screen. Frequencies
of the codes that the evaluator entered on the Subject
Screens are shown, as well as the Match codes which she
entered on the Roster Screen. After careful consideration,
she chooses Match, False, or Review as a Final Decision.

HOW THE APPLICATION IS CODED

Much of the programming of the application could be done
automatically by merely dragging and dropping objects
onto a frame, and setting attributes through the properties
window. However, a considerable amount still had to be
hard-coded, using SAS Component Language (SCL).
The SCL attached to the frame is called the Frame SCL.
When one is using a Viewer attached to a Model, one also
uses Model SCL, which can be accessed through right-
clicking the mouse on the Viewer. Many of the functions
of objects on the Viewer were coded through Model SCL.

Figure 1. Subject Screen (first page)

Figure 2. Decision Screen

Following is an example of the Frame SCL for the Subject
Screen (see Figure 1).
��

entry SURV: num SURVEY Q1-Q22
IDPASS: char;
dcl num rc;
dcl list msgList=
{’Invalid WESID. Return to MAIN.’};

INIT:

SASDataSet1.table=’DCert.Subjct5’;

SASDataSet1.where=’WESID =’ ||

quote(IDPASS);

rc = sysrc();
if rc ne 0 then do;
choice=
MessageBox(msgList,’I’,’O’,’Error’);
if choice = ’OK’ then Call Display

(’Screen3.Frame’,survey,
 surv);
 end;
return;

 Subroutine:
SASDataSet1._GetColumnText(’MA’,Q1);
SASDataSet1._GetColumnText(’MB’,Q2);
SASDataSet1._GetColumnText(’MC’,Q3);
 .
 .
 .
SASDataSet1._GetColumnText(’MU’,Q22)
;
return;

PBSubject:

 Formviewer1._gotoPage(1);
 return;

PBAddress:

 Formviewer1._gotoPage(4);
 return;

PBRoster:

 Formviewer1._gotoPage(5);
 return;

PBComment:

 Formviewer1._gotoPage(6);
 return;

PBDecision:

Link Subroutine;
 Call display
(’SCREEN8.FRAME’,SURV,SURVEY,Q1,Q2,
Q3,Q4,Q5,Q6,Q7,Q8,09,
Q10,Q11,Q12,Q13,Q14,Q15,Q16,Q17,Q18,
Q19,Q20,Q21,Q22,IDPASS);
return;

PBMain:
 Call Display (’SCREEN3.FRAME’,
SURVEY, SURV);
return;

SURV, SURVEY, and IDPASS are SCL variables that are
passed from Screen3. In the INIT section, the Model SAS
Data Set is opened, and an observation is searched for
where the variable WESID = IDPASS, the ID which the
evaluator entered at Screen3. If a match is not found, an
error message is displayed and control is returned to
Screen3. Otherwise control stays with Screen4. The
Subroutine puts the values of the “match codes” that the
evaluator has entered into the SCL variables Q1-Q22.
The coding for the Subject, Address, Roster, and
Comment push buttons merely takes one to the
appropriate page on the Form Viewer. The push button for
the Decision Screen passes all the previous SCL
variables, plus the ones assigned in Subroutine, and
transfers control to the Decision Screen (Screen8). The
push button for Main merely transfers control to the Main
Screen (Screen3).

IMPROVEMENTS UNDER 8E

Under the new system, any number of surveys may have
potential death certificate matches loaded. A judicious
use of inheritance will ease the programming job for this.
We can put more easily understood and used navigation
objects on the screens and we can provide better security.
We can provide better editing of the data entry fields to be
sure all available information is being used in the
judgement. We can be sure that there is a decision on
each potential match for a given survey before the work is
turned back to the linkage staff. We can provide some
summary statistics available from a menu or push-button.
And, finally, the system will be much more pleasing to the
eyes.

CONCLUSION

The National Center for Health Statistics has a need for a
tool to enable an evaluator to view and score data from
national survey files to compare against Death Certificates
which have been ordered from the various states. The
purpose is to determine fact of death for particular
subjects who have been examined in the NHANES
surveys. The Form Viewer with SAS Data Set Model
implemented in SAS V8e, which provides such a tool, has
been described in this paper.

The application also provides an electronic record of the
entire death certificate evaluation process for a given NDI
match.

REFERENCES

SAS Institute Inc. SAS/AF Software: Application

Development I Course Notes. Cary, NC: SAS
Institute Inc., 2000.

SAS Institute Inc. SAS/AF Software: Application

Development Ii Course Notes. Cary, NC: SAS
Institute Inc., 2000.

SAS Institute Inc. SAS/AF Software: Changes and

Enhancements in Version 8 Course Notes. Cary,
NC: SAS Institute Inc., 2000.

ACKNOWLEDGMENTS

The authors wish to thank Cay Loria, formerly of NCHS,
who originated the idea of using SAS/AF as a tool in
matching survey data with information on the death
certificate and Ann Rockett of SAS Institute, whose
technical assistance has been invaluable in developing the
application.

CONTACT INFORMATION

Gretchen K. Jones
6525 Belcrest Road, Room 730
Hyattsville, MD 20782

Phone: 301/458-4301
Fax: 301/458-4038
Email: gkjones@cdc.gov

Paper P503

Creating Visit Specific CRF Checklists for a Longitudinal Study using a SAS/AF
Application

Authors: Emily A. Mixon; Karen B. Fowler, University of Alabama at Birmingham

ABSTRACT

A longitudinal study recently opened at our Pediatric
AIDS Clinical Trials Unit (PACTU) requiring complex
study visits, a large number of case report forms (CRFs)
and an increased frequency of study visits. To assist
both clinical and data management staff in managing
and maintaining a visit checklist of CRFs required, we
modified a previous SAS/AF application. Five sites in
Alabama, Georgia, and Florida send CRFs for data entry
to UAB and we have created a Data Management
Application (SAS v.8) that generates the expected visits
for new patients randomized and also generates the data
for the visit specific CRF checklists for each participant’s
subsequent study visits. The visit specific CRF checklist
includes the Patient Id Number, expected visit date
range for the next study visit, the study calculated year,
month and visit week of the upcoming visit and a list of
all the CRFs required for the visit per protocol. Using the
data obtained in the randomization section of the
application we are able to calculate the differing follow-up
schedules based on the age and infection status of the
patients. This information is then exported to
WordPerfect where a macro generates the visit specific
CRF checklists for the participants.

INTRODUCTION

The data management team for the Southeastern
Pediatric AIDS Clinical Trial Unit (PACTU), generates
monthly reports of expected study visits, and also an
ongoing list of delinquent case report forms (CRFs) not
in the national database. With the recent addition of a
longitudinal study (protocol 219C), the number of study
visits and number of CRFs required has significantly
increased. In order to assist the clinical and the data
management staff, an older version of the PACTU Data
Management Application has been updated to generate
visit specific CRF checklists for each participant’s study
visits. The PACTU Data Management Application has
been previously discussed in the SESUG 99 paper
entitled “Using SAS/AF To Create Applications for the
Administrative Aspects of Data Management in Clinical
Trials” (Mixon, et al. 1999).

We have created a SAS/AF FRAME
Application in Version 8.0 of the SAS System on the
Windows 2000 platform. Upon entering the PACTU
Data Management Application, the user enters the main
menu for PACTU Randomizations and Visit Schedules
and is presented with four choices of how to proceed
(Fig. 1). This paper will address each of these options
(New Randomizations, Search and Edit, Generate Visit

Reports, and 219C CRF Data Set) in the
following respective sections.

Figure 1

NEW RANDOMIZATIONS

As described in the SESUG 1999 paper,
the purpose of the New Randomization frame is
to enter the information needed for generating
the expected visits report (Fig. 2). We have
updated the frame using new SAS/AF Version
8 features. The randomization frame has a Data
Form with Text Entry Control components for
entering the data and Text Label Control
components for labeling the different fields. Both
the heading of the frame using a Graphic Text
Control and the Command Push Buttons at the
bottom of the frame are objects from SAS/AF
version 6.12.

Figure 2

The SCL for the New Randomization frame calls
the Data Form allowing a new row to be added when
needed. The SCL behind the Data Form sets all the
fields to missing, moves the cursor through the fields,
and calculates a visit schedule based on the data
entered by the user.

SEARCH AND EDIT RANDOMIZATION ENTRIES

The Search and Edit Randomization Entries
frame allows the user to sort the randomization data set
by either site number (from five study sites in Alabama,
Georgia, and Florida) or Patient Identification (PID)
number (Fig. 3). The Search and Edit frame is similar to
the one described in the SESUG 99 paper except for
using Version 8 controls. The Graphic Text Controls for
the site numbers subsets the Data Table by the user
selected site. Entering a PID number in the Text Entry
Control and clicking the “Sort Table” Push Button Control
subsets the Data Table for only those entries with the
specific PID number. Selecting the row in the Data
Table pulls up the New Randomization frame containing
the Data Form with the selected observation allowing the
user to edit the record (Fig. 4).

Figure 3

Figure 4

The SCL for the Search and Edit frame
begins by declaring an object called ID. The data
set is opened by the ID._SETDATASET
statement and lists are created using the
MAKELIST method. The Graphic Text Controls
are coded to change color and to subset the
Data Table using the _SET_WHERE_ method.
The Data Table is also sorted when a PID
number is entered into the Text Entry Control
and the Push Button Control is selected. Once
the Push Button is pressed, a PUT statement
with a CALL PUTLIST routine is used to check
the value entered into the Text Entry Control and
to verify that the value from the MAKELIST is
correct. These events are followed by the Data
Table being subset using the ID._SETWHERE
method. To view a single observation displayed
on the Data Form, the SCL for the Search and
Edit frame uses the
_SET_INSTANCE_METHOD_ and the
SELECT methods as described in the SESUG
99 paper. When the user exits the frame, the
data set is closed and the lists are deleted.

GENERATE MONTHLY EXPECTED VISITS

The Monthly Expected Visits frame
generates a report of expected visits by site and
time interval specified by the user (Fig. 5). The
site number is selected from a list in a Radio Box
and the date range is entered into Input Fields.
Once the user has selected the values for the
fields, the “Print” Icon is pressed generating the
expected visits report.

Figure 5

The SCL for the Monthly Expected Visits frame
begins when the “Print” Icon is pressed. The
data are subset based on the site and date
range specified by the user. A macro is then
executed to check all of the date variables in the

data set to determine if they fall within the date range
specified. If the dates within the specified range are
identified, the dataset is subset using an OUTPUT
statement and labels are assigned for the variables
appearing on the report. Multiple reports may be
generated while in this frame with the user exiting from
the frame upon completion.

219C CRF CHECKLISTS

The 219C CRF Checklist frame saves the data
set that will be imported into WordPerfect for
generating the visit specific CRF checklist for each
individual participant (Fig. 6). The frame consists of
Graphic Text Controls, an Input field for specifying the
PID number needing the checklists, a “Generate
Checklist” Icon, and a Command Push Button. The SCL
behind the frame is initiated within a SUBMIT
CONTINUE routine when the “Generate Checklist” Icon
is pressed. The data set is subset by both on the PID
number entered by the user and protocol equal to 219C.
Visit specific variables (PID number, expected visit date,
study calculated year, month and visit week) are kept
and saved as a DBF file. The user then exits the
application and opens WordPerfect. A WordPerfect
macro imports the DBF file, creates a WordPerfect
data file and then merges the data file with the 219C
CRF Checklist forms (Fig. 7). The 219C Checklist forms
may be printed and distributed to the clinical personnel.

Figure 6

CONCLUSION

Modifications made to a previous SAS/AF data
management application enables the generation of CRF
checklists for a longitudinal study recently opened at our
PACTU sites in Alabama, Georgia, and Florida. These
checklists aid the clinical and data management staff in
managing the large number of CRFs required at the
specific study visits. This application could easily be

revised for use in the data management of other
research studies.

Figure 7

REFERENCES

Mixon, Emily and Fowler, Karen. (1999), “Using
SAS/AF to Create Applications for the
Administrative Aspects of Data Management in
Clinical Trials”. Proceedings of the Seventh
Annual Southeast SAS Users Group
Conference. USA.

Birdeson, Patti M. (1996), “Creating a Contacts
Application Using New Classes in SAS/AF
Software”. Observations, First Quarter 1996.

Carpenter, Ann E. And Leone, Lynn P. (1996),
“Introducing a GUI Approach to Data Entry Using
Data Table and Data Form Objects in SAS/AF
FRAME Software”. Observations, First Quarter
1996.

Rocket, Ann Carpenter. (1997), “An Introductory
Overview of the Data Form and Data Table
Objects in SAS/AF Frame Entries”. Proceedings
of the Fifth Annual Southeast SAS Users Group
Conference. USA.

SAS Institute Inc. (1997), Building SCL
Applications using Frame Entries Course Notes,
Cary, NC: SAS Institute Inc.

Wilkins, Scott. (1997), “Data Table and Data
Form Enhancements in Release 6.12”.
Observations, First Quarter 1997.

ACKNOWLEDGMENTS

This work was supported in part by the National Institutes
of Health, National Institute of Allergy and Infectious
Diseases Grant U01 AI41025. The Authors would also
like to thank Lynn Leone and others at SAS Technical
Support for their helpful advice and suggestions in the
development of the SCL in this application.

CONTACT INFORMATION

Your comments and questions are valued and
encouraged. Contact the author at:

Emily Mixon
UAB Department of Pediatrics
CHT 752, 1600 7th Ave. South
Birmingham, AL 35233
Work Phone: 205-939-6687
Fax: 205-975-3221
Email: emixon@uab.edu

Supplier Management with SAS® Supply Chain Solutions
Ed Hughes, SAS Institute Inc., Cary, NC

ABSTRACT
This paper presents an overview of the SAS® approach to
supplier management, focusing on the use of SAS’ well-
established optimization expertise to aid in selecting and
evaluating suppliers. The supplier management solutions are
explored individually and are shown in the context of a complete
spectrum of SAS supply chain solutions.

INTRODUCTION
The purpose of this paper is to introduce and describe the SAS
approach to supplier management, part of an integrated set of
knowledge-based supply chain solutions being developed by the
SAS Supply Chain Center. The paper touches briefly on the
overall SAS approach to supply chain optimization, and then
moves on to describe the business problems solved and the
techniques employed by the SAS supplier management
solutions.

Briefly stated, managing a diverse group of suppliers involves
much more than simply accounting for the goods that they
contribute to the supply chain. Equally important are the relative
strengths and weaknesses of the suppliers in delivering those
goods, along with their contribution toward satisfying business
rules controlling the makeup of your supplier portfolio. SAS
supplier management solutions add structure, order, and
direction to the process of managing and evaluating suppliers,
and form an integral part of the SAS solution for Supplier
Relationship Management (SRM).

The two supplier management solutions discussed here, Supplier
Performance Rating (SPR) and Supplier Portfolio Optimizer
(SPO), employ mathematical optimization to aid in evaluating
suppliers and restructuring supplier portfolios. Each uses a Web
interface that eliminates the need for any in-depth knowledge of
optimization but enables users to take full advantage of the
insights that it can provide.

SUPPLY CHAIN ISSUES AND SOLUTIONS
The supply chain symbolizes the web of facilities, activities,
processes, and relationships that enable the flow of goods from
raw materials and essential components to finished products.
Suppliers provide goods used in manufacturing or assembly of
products, which are in turn shipped to distribution centers, local
warehouses, or retail locations. The goal of any supply chain is
to provide finished goods to consumers.

At each stage of the supply chain issues arise that in turn raise
questions critical to the success of the supply chain.
Transportation questions—modes of transport, fleet sizing, and
more—apply throughout the supply chain. At the consumer end
of the supply chain customer service requirements must be set
and decisions on customer sourcing and customer relationship
management (CRM) must be made. At the central manufacturing
and distribution stages questions about optimal inventory
replenishment and production planning and scheduling are
uppermost. Finally, at the initial supplier stage buyers must
decide what to buy, in what quantities, where, and from whom. .
Figure 1 shows the structure of a typical supply chain and the
issues that arise at various stages.

Figure 1. A typical supply chain and related issues.

“PUSH” OR PRODUCTION-FOCUSED PLANNING
Traditional planning techniques took too little notice of the linkage
between the stages of the supply chain. At the consumer stage,
a sales forecast predicted what goods could be sold and in what
quantities. Back at the manufacturing stage planners looked at
goods on hand, plant capacities, and work in progress—but not at
the sales forecasts—and planned to manufacture the mix and
quantities of products that they believed their operations could
produce. These goods were then “pushed” through the
remainder of the supply chain to be purchased (hopefully) by
consumers. Too often, demand for sought-after items went
unmet due to insufficient production while inventories of low-
demand, over-produced items piled up.

“PULL” OR CUSTOMER-FOCUSED PLANNING
A more modern approach emphasizes that all supply chain
activities are interrelated and links all planning to the sales
forecast. Forecast sales combine with on-hand stock information
to drive inventory and warehousing needs, which in turn feeds
requirements to the manufacturing stage. Combined with work in
progress and components/materials on hand, the manufacturing
needs drive procurement requirements. Thus, all activity in the
supply chain is pulled forward by the demand at the consumer
level, in a “pull” or customer-focused model. This is the approach
that SAS adopts in its supply chain optimization solutions.

SAS SUPPLY CHAIN SOLUTIONS
In addition to adopting the customer-centric “pull” model for
supply chain planning, SAS supply chain solutions carry a
number of other distinct advantages. SAS’ data access and data
warehousing skill enables SAS supply chain solutions can draw
relevant information from ERP (Enterprise Resource Planning)
systems, corporate legacy systems, or any source of interest. In
generating the sales forecast, SAS solutions leverage the
outstanding forecasting capabilities of the SAS System.
Modeling and optimization utilizes the established SAS expertise
in operations research and management science.

Overall, SAS supply chain solutions are being designed to be
easily customizable to meet specific supply chain needs and to
add value whether they are used individually or in an integrated
supply chain optimization solution. Web interfaces for these
solutions are being designed to provide a consistent, familiar

appearance that gives business users an intuitive grasp of the
issues and options without requiring an in-depth knowledge of the
underlying methods used in supply chain planning.

SAS supply chain solutions fall into four major categories.
Supplier Management is the focus of this paper, and includes
both Supplier Performance Rating (SPR) and the Supplier
Portfolio Optimizer (SPO). Production Planning leverages SAS’
established and field-tested project and resource management
capabilities, and includes such solutions as Advanced Planning
and Scheduling (APS) and Cycle Time Reduction (CTR). For
more information on Cycle Time Reduction, see Jennings and
Kulkarni [2001].

Further along the supply chain, Demand and Inventory Planning
includes both the SAS Demand Planning Solution and the
Inventory Replenishment Planner (IRP) for identifying, testing,
and maintaining replenishment policies that meet customer
service goals at lowest cost. Enterprise Supply Chain Planning
takes a broad view of the supply chain, using a network approach
to plan for production, packaging and distribution. Finally, a
specialized data model, the Supply Chain Data Warehouse, is
being developed to serve as a foundation for these solutions.

SUPPLIER MANAGEMENT SOLUTIONS
As noted earlier, SAS supplier management solutions consist of
Supplier Performance Rating (SPR) and Supplier Portfolio
Optimization (SPO). SPR and SPO are also key components of
SAS' Supplier Relationship Management (SRM) solution,
complementing the Procurement Vision product and adding
analytical planning power to the visibility into current purchasing
practices that Procurement Vision affords.

SUPPLIER PERFORMANCE RATING (SPR)
Supplier Performance Rating (SPR) is designed to rate and rank
suppliers when considering multiple performance criteria
simultaneously. It provides an automatic method for scoring and
comparing suppliers, eliminates the need to determine weights
for calculating the scores, and can account for business rules in
the process.

SUPPLIER PERFORMANCE RATING: BUSINESS PROBLEM
In many businesses, data on supplier performance is collected
and used for evaluating suppliers. Unfortunately, grading and
comparing suppliers based on this data often is not
straightforward, due to the presence of numerous and possibly
conflicting evaluation criteria. For example, if one supplier
outperforms all others according to one performance criterion but
fails to achieve satisfactory levels on other criteria, it becomes
unclear how to proceed with the comparison.

The traditional solution is to assign a fixed weight to each
criterion to form an aggregated, weighted score for each
supplier. Usually, weights are chosen to support specific
business rules (such as weighting quality measures more heavily
than financial measures to reflect their greater importance).
Several problems can arise from this approach, including the
following:

• Weights are subjective, difficult to agree on, and have a
tremendous effect on the final scoring.

• It is difficult to balance relatively strong and relatively
weak performances for different criteria.

• Differences in units of measurement for the criteria can

distort the influence of the weights used in the scoring.

The business problem can be stated most simply as how to best
rate suppliers on the basis of multiple, possibly conflicting,
performance measures and account for business rules.

SUPPLIER PERFORMANCE RATING: SOLUTION
Supplier Performance Rating (SPR) implements an innovative
solution to this business problem. SPR solves the problem of
differing measurement units among criteria by normalizing the
performance data. This eliminates units from the measures,
removes distortions associated with differences in units, and
provides for more balanced comparisons.

SPR solves the difficult problem of determining weights by
evaluating each supplier in isolation and optimizing the supplier's
performance relative to all other suppliers (based on Data
Envelopment Analysis). Automatically calculating optimal
weights for each supplier's performance criteria avoids the
problems resulting from assigning fixed weights to all suppliers.

SPR uses the optimally calculated weights to compile the relative
scores used to compare and rank the suppliers. SPR captures
business rules by enabling you to place limits and other
restrictions on the weights used for the various performance
criteria. This establishes rules on the relative importance of the
criteria, and can also be used to account for imprecise
performance information.

The SPR methodology is driven by the performance data. After
normalizing each performance criterion, SPR uses linear
programming to calculate weights on each supplier's performance
criteria that optimize the supplier's overall performance rating.
This rating is the weighted sum of the supplier's individual
performance scores, with the weights being determined
individually (and optimally) for each supplier. When this process
is complete a ranking of all suppliers is possible.

SUPPLIER PERFORMANCE RATING: REPORTING
SPR produces supplier rating reports in two formats: ranked
listings of suppliers and ranked bar charts of suppliers, each
annotated with ranking, tier, and relative score (scaled from 0-
100). For each type of report, the tier classification can be done
on the basis of either the relative supplier score or the percentiles
on the relative supplier score. Figure 2 shows one such report,
with the tiered optimal supplier scores displayed in chart form.

Figure 2. A Supplier Performance Rating Report.

Upcoming releases of SPR will add the ability to determine
supplier tiers by more advanced methods, including the use of
statistical clustering techniques.

SUPPLIER PERFORMANCE RATING: POSSIBLE USES
SPR has a broad range of possible uses, and the underlying
techniques used by SPR have almost unlimited applicability.
Within the confines of supplier management, the most immediate
use of SPR is in the periodic review of supplier performance. In
this role, SPR can easily provide its ratings, rankings, and tier
assignments as input to the Supplier Portfolio Optimizer,
discussed in the following sections of this paper. Another
opportunity to use SPR occurs in the Request For Proposal
(RFP) or Request For Information (RFI) process, during which the
purchasing company may need to shorten the list of bidding
suppliers based on their past performance. In this scenario
SPR’s performance ratings could easily drive the reduction in the
pool of bidding suppliers.

SUPPLIER PORTFOLIO OPTIMIZER (SPO)
The Supplier Portfolio Optimizer (SPO) assists in structuring and
restructuring portfolios of suppliers, with a goal of maximizing the
buyer's benefit while meeting specific requirements on portfolio
makeup. SPO relies on rationalized supplier data describing
suppliers and the goods that they provide, available from a
number of sources such as Dun & Bradstreet. SPO provides
guidance for answering strategic questions such as:

• Who should we buy from?

• Should we spend more or less with a supplier?

• What should our expected risk be?

• What should we buy from a given supplier?

• How should we alter our buying practices?

SUPPLIER PORTFOLIO OPTIMIZER: BUSINESS PROBLEM
Often, businesses don't have enough information on their
suppliers of parts, raw materials, and other critical items. They
cannot readily and easily determine how much they are spending,
what they are purchasing, who their top suppliers are, or the
answers to many other important questions. Surfacing such
information effectively is one key to improving the buyer's
position and to negotiating better relationships with suppliers.
Another key to managing supplier relationships is an organized
approach to moving from your current supplier portfolio to your
desired supplier portfolio. In improving a supplier portfolio, one of
the most often-mentioned goals is better negotiating leverage.
Typically, though, buyers face restrictions as they pursue this
goal. These restrictions or requirements may originate from
internal business rules on supplier selection, from regulations
specific to the business's industry, or from other sources. Some
examples of these restrictions include:

• “At least 5% of our purchases should be made with
small businesses.”

• “We should have 5 to 10 suppliers of paper goods.”

• “To ensure quality, buy at least 25% of all supplies from
ISO compliant businesses.”

• "The average financial stress score (FSS) of our
supplier portfolio should not exceed 1.7 and the average supplier
evaluation risk (SER) should not go beyond 2."

What's needed is a method for reshaping the supplier portfolio,
focusing on the goal of maximizing negotiating power while
adhering to whatever restrictions may apply.

SUPPLIER PORTFOLIO OPTIMIZER: SOLUTION
SPO’s solution technique is based on mathematical optimization
(specifically, mixed-integer programming) and is aimed at making
procurement choices that maximize negotiating leverage within
the restrictions created by the business rules governing the
makeup of the supplier portfolio. As is true with SPR, the user
interface provided by SPO does not require users to understand
the fine points of mathematical optimization, but only to grasp the
concepts motivating the demographic, budgetary, geographic,
and other business rules on the supplier portfolio.

The SPO user selects from a menu of possible business rules to
apply, and customizes each rule used by specifying parameter
values such as minimum percentages, budgetary upper and
lower bounds, and regional distribution targets. SPO then finds
the combination of purchases and vendors that meets or exceeds
the specified requirements and maximizes purchasing leverage.
SPO achieves this by consolidating purchases to buy mainly from
suppliers for whom the company is a major client, while
simultaneously maintaining a balanced and diversified portfolio as
required by the business rules.

SUPPLIER PORTFOLIO OPTIMIZER: REPORTING
SPO can produce a wide variety of reports describing the
optimized supplier portfolio and the accompanying purchasing
recommendations. Examples include reports on detailed and
aggregated purchases from suppliers, recommended suppliers
for specific commodities, and geographical purchasing
summaries. Additionally, a summary executive report offers
multiple views of the current and optimized supplier portfolios,
highlighting the advantages that optimization offers.

Figure 3. A Supplier Portfolio Optimizer report.

SUPPLIER PORTFOLIO OPTIMIZER: POSSIBLE USES
The usage possibilities for SPO are quite similar to those for
SPR. First, SPO is well suited for use in the periodic review of a
supplier portfolio. This may be especially important if, for
example, the purchasing firm completes a merger or acquisition
and must deal with an augmented supplier portfolio. Additionally,
SPO can (like SPR) assist in the Request For Proposal (RFP) or
Request For Information (RFI) process. In this role, SPO can be
refocused to minimize overall spend while satisfying the
requirements outlined in the RFP or RFI, identifying a lowest-cost
set of bidders.

SUPPLY CHAIN SOLUTIONS: COMPONENT INTEGRATION
The integration of the SAS supply chain solutions mirrors the
causal relationships highlighted in the “pull” model of the supply

chain. Demand Planning at the customer end of the supply chain
feeds critical information to Inventory Replenishment Planning at
the warehousing and distribution level, which in turn supplies
requirements for Advanced Planning and Scheduling at the
manufacturing stage. Other influences on manufacturing
scheduling include Cycle Time Reduction and Equipment
Maintenance Scheduling. The manufacturing schedule
generates requirements for supplies, which are assigned to
current and potential suppliers via Supplier Management. The
result is an end-to-end plan for the improvement of overall supply
chain performance.

Figure 4. Component Integration

For any particular situation, any or all of these solutions can be
implemented, and can add value to the supply chain either
individually or by working together.

SUPPLY CHAIN SOLUTIONS: SUPPORTING DATA
ARCHITECTURE
Underlying and supporting this planning work is the Supply Chain
Data Warehouse, the repository of all relevant data on the past
and current performance and future direction of the supply chain.
Owing to the ease with which SAS can access data from virtually
any source and in any format, the Supply Chain Data Warehouse
can draw needed information from ERP systems, business
legacy systems, or wherever the data resides.

Figure 5. Supporting Data Architecture

The supply chain solutions draw data from the Supply Chain Data
Warehouse and produce tactical and strategic plans for the
supply chain. The information describing these plans is stored in
the data warehouse and can also be fed back to ERP systems
and legacy systems in order to put the plans into motion.

SUPPLY CHAIN SOLUTIONS: SERVER ARCHITECTURE
All SAS supply chain solution are designed with Web interfaces
and can run in a distributed processing environment with a thin
client. Only a Web browser and the necessary authorization are
needed to access the solutions and their reports, while an
application server can support each solution and another server
can perform the needed optimization. By enabling such a thin
client interface, SAS supply chain solutions make it easy to
distribute both the planning power and the strategic and tactical
supply chain plans that they provide.

CONCLUSION
SAS is developing a set of solutions targeted at assisting with the
assembly, structuring, restructuring, and management of a large
supplier portfolio. With Supplier Performance Rating and
Supplier Portfolio Optimization, SAS applies its established
optimization expertise and power to the problems of rating
supplier performance in a balanced and comprehensive manner
and configuring supplier selection and purchasing to maximize
leverage. Each solution is designed to be customized to meet
individual client needs, and can participate not only in a complete
Supplier Relationship Management solution but also in larger
Supply Chain Optimization solutions.

REFERENCES
Jennings, D., and Kulkarni, R. (2001), “Cycle Down To Launch:
Streamlining Production at Lockheed Martin,” paper presented at
SUGI 26 (SAS Users’ Group International), Long Beach, CA.

SAS Institute Inc. (2000), “Supplier Management: Optimally
Managing the Supplier-Buyer Relationship,” Internal Document,
Cary, NC: SAS Institute Inc.

WEB RESOURCES
For more information on SAS Supply Chain Optimization, see
http://www.sas.com/supplychain . This site includes information
on the various solutions being developed by the SAS Supply
Chain Center as well as demonstration versions of many of the
solutions.

For information on the SAS Solution for Supplier Relationship
Management, see http://www.sas.com/solutions/srm .

CONTACT INFORMATION
Your comments and questions are valued and encouraged.
Contact the author at:

Ed Hughes
SAS Institute Inc.
Office R-4109, SAS Campus Drive
Cary, NC 27513
Phone: (919) 531-6916
Fax: (919) 677-4444
Email: Ed.Hughes@sas.com

 Web: http://www.sas.com/supplychain

SAS is a registered trademark or trademark of SAS Institute Inc.
in the USA and other countries. ® indicates USA registration.

Paper # P505
Florida Community College System

Putting Minds to Work

Jeanette C. Humphrey
Tallahassee Community College

Howard Campbell
And

Brian Walsh
Division of Community College

Department of Education
State of Florida

In the Beginning:
In 1988 the legislators in the State of Florida mandated that the Florida Community College
System, comprised of the 28 community colleges in Florida, begin reporting student type
information to the state in a format to be defined by the Division of Community Colleges (DCC).
The purpose of this directive was to give the state access to detail student level information,
allowing the state to produce federal Integrated Postsecondary Education Data System (IPEDS)
reports, state reports for funding, and conduct detail data research and analysis. Information
Systems of Florida (ISF) was awarded the state contract to produce a long-range plan and
database design specifications, including data definitions.

The Plan:
ISF’s completed its study and suggested the following:

• The data should be reported by the community colleges annually to the state in the
following manner:

a. Summer term data should be submitted once, in October;
b. Preliminary fall term data should be submitted once at the beginning of the

term (October) and final fall data submitted after the term is completed
(January.)

c. Preliminary spring term data should be submitted once at the beginning of the
term (January) and final spring data after the term is completed (June.)

• For the Initial Phase of the project, the data should be used only for federal reporting,
such as IPEDS. During this initial phase, the colleges should receive reports, which
they could verify locally. After allowing the colleges a few years to verify their data,
the state should then use Full-Time Equivalent (FTE) generated from the Student
Data Base (SDB) for funding and research.

• The colleges should report the data in an ASCII format. The DCC could then use the
software of its choice to read the ASCII files into a relational type database.

• The following data record definitions were suggested:
a. Demographic Record – (max occurs 1 time) with demographic type

information, including accumulators for total student hours taken by term and

to date. Include only students enrolled, graduating, or receiving acceleration
credit during the current term.

b. Entry Level Test Record - (can occur multiple times) with most recent Entry
Level Test (ACT SAT) information.

c. Acceleration Record – (can occur multiple times) with Credit by Exam taken
during reporting term.

d. Program of Study Record – (can occur multiple times) with the Students
declared program(s) of study.

e. Completion Record – (can occur multiple times) with the program completion
information.

f. Course Record – (can occur multiple times) with information on course(s) taken
during reporting term.

g. Financial Aid Record – (can occur multiple times) with information on financial
aid received during reporting term.

ISF’s plan was accepted, as proposed. Detail information on the current Student Data
Base Dictionary is available at the following DCC web site:
http://www.dcc.firn.edu/dccpubs.htm#deds

From the college’s perspective, the DCC realized the financial hardship created from expending
resources to verify data that was produced primarily as a reporting tool. Producing the data was
difficult enough; to expect the colleges to verify the data to the level desired was unrealistic. In
a presentation to the Florida Assn. for Institutional Research in 1989, Howard Campbell shared
his vision for the future: the state would use this data for reporting, funding, and research. In
addition, the colleges could use this same data for research and local reporting purposes,
utilizing the efforts expended for local benefit. The state would also benefit from college
participation: the increased utilization by the local institution, would allow more data anomalies
to be found, explained, and corrected.

After reviewing system requirements, the DCC chose the SAS programming language, primarily
because of its efficiency, ease of use, and connectivity to IBM’s Data Base DB2 relational
database, which was mandated by the state legislature.

To assist the DCC in data related questions, the state created Management Information System
Task Force (MISATFOR), an advisory group for the purpose of discussion of questions and
problems related to the data. Currently, the President of each college appoints one member to
MISATFOR. In addition, personnel from the DCC and the registrars group are included.
MISASTFOR meets six times a year.

As the years passed, the use of this data by the state has increased dramatically. To provide
follow-up information on our students, this data is now matched against other state databases.
For example, to determine success of our students after leaving the community college, the
college data is matched to state unemployment files, the State University System, Private
College Stipend files, Public High School files, Job Training Partnership Act (JTPA), WAGES,
Public Assistance Files, and military files. Community colleges are now aware of how many of
their students go on to get a high wage jobs, go into the military, or eventually graduate with a
bachelors degree. In addition, the information fed back to the colleges identifies whether
students were economically or academically disadvantaged.

Another use of the data is performance based funding and accountability. Much of the college’s
state revenue is now based on outcomes, not the number of seats filled in a classroom. As the
funding became more and more tied to the data, the importance of accuracy increased.

Micro-computer Project – Sharing the Information:

In 1995, Carol Hawkins, Dean of Information Technology at Polk Community College (PCC) in
Winter Haven, Fl., wrote a proposal to the Division of Community College to fund the creation of
a micro-computer system that would emulate the system and data stored at the DCC. Ms.
Hawkins proposed that PCC provide the technical expertise for the project, in exchange the
DCC would share costs for the project and distribute the resulting system to the other
community colleges.

Phase I: The following year the DCC gave PCC the first of three contracts to produce a stand-
alone point and click turnkey computer system to be shared with the other Florida Community
Colleges. The programming language for this turnkey system was designated by the DCC to be
SAS. The core of this system was to interact with a CDROM of all the data from all the
community colleges for one academic year. The DCC would supply a CDROM to the colleges
after the close of each reporting year.

Included in the initial Phase I were funds to purchase hardware, a Dec Alpha AXP; software,
including the SAS Academic Computing Offer; and funds to provide SAS training. In addition,
the contract included funds for personnel costs to design the system and develop a prototype.
Jeanette C. Humphrey, Coordinator of Research and Reports at PCC, was designated as the
project leader, analyst, and programmer. At this point in time, Ms. Humphrey had programming
experience; however, had never used SAS.

Phase II: In Phase II, conducted the second year, Ms. Humphrey transported the prototype
system to run on a microcomputer running Windows NT, which was now able to handle the
large data files. In addition, she added additional reporting modules, on-line documentation,
and a module to interact with ‘Local’ ASCII Student Data.

The system contained programs to load the ASCII data into SAS datasets with similar data
names as those found on the CDROM. This ASCII data was the same ASCII student data sent
by the college to the DCC each term and contained all the student information of enrollments at
the local college, including student social security number and student name. This step was an
important inclusion for a number of reasons. First, the data could be used in a timely manner.
As soon as the data was pulled for submission to the state, the ASCII data could be read into
SAS datasets and used by the college research personnel to verify the data submission, before
the end of the submission window. Second, since this data contained the student social
security number and name, the college mainframe system could be used to verify questionable
data. Finally, for complex projects, like tracking systems, this was the best data, since it
contained student identifiers that could be matched against additional data from the institution’s
mainframe and other local sources.

Phase III: The final Phase of the project provided funds to purchase a computer for each of the
28 community colleges, provide training, and user documentation to the colleges. In addition,
enhancements included a Local side for the relatively new state mandated Personnel Data Base

and Facilities Data Bases. College personnel were trained at PCC by Ms. Humphrey and
returned to their home campus with their computer.

System Requirements:
The following is a synopsis of the important components of the Micro-computer Project.

Hardware/Software Requirements: The basic system provided to each of the 28 Florida
Community Colleges was a COMPAQ 400 MHz Pentium with 12 gig hard drive, running
Windows NT. Minimum SAS components necessary to run the system were: Base SAS,
SAS/AF, SAS/FSP, SAS/Graph, SAS/Assist, and SAS/STAT. In addition, Word and Excel were
also included. Application software required 2 gig of hard drive, leaving 10 gig for reports and
SAS temporary data sets. In testing, we found that more memory the better, since SAS uses all
the memory it can find. Also, a significant amount of free disk space was required when working
with large datasets.

Data: The Micro-computer system used either SAS Datasets provided to the colleges on a
CDROM or SAS datasets from the Local ASCII data. The CDROM contained all the data for all
the community colleges for one year. The student’s name was deleted from the dataset and an
identifying number, generated by an algorithm, replaced the social security number. This same
algorithm was also used in successive years, allowing the tracking of a specific student over the
years, without identifying that student. The Local data created by the system was from the
same ASCII student data provided term by term to the Division of Community Colleges.

Documentation/Training: Ms. Humphrey at PCC provided the initial training to the community
colleges. In addition, a step-by-step documentation manual was included with each system.
SAS Training by SAS Institute was highly recommended.

Updates/New Procedures: In the years following, the DCC provided new CDROMS of the
current years data to the colleges at the close of each reporting year. These CDROMS have
continued to work with little or no maintenance of the original system. Enhancements and
updates to this system have been taken over by the DCC and are maintained at the state level.
The state is currently evaluating the value of the new SAS/SCL, now SAS Component
Language.

Knowledge: Without the excellent training by SAS Institute and support by SAS Technical
Support, this project would not have been possible.

System Design:
Initial phase of the system included two parts: The CDROM section provided interaction with
the Annual CDROM. This CDROM contained all the data for all the community colleges for one
year. The Local Data section allowed interaction with the original ASCII student data sent term
by term to the Division of Community College. This original data was read into SAS Datasets by
the Micro-computer system.
the Annual CDROM. This CDROM contained all the data for all the community colleges for one
year. The Local Data section allowed interaction with the original ASCII student data sent term
by term to the Division of Community College. This original data was read into SAS Datasets by
the Micro-computer system.

System Data Structure: The location of the SAS data sets for use by the system was an integral
part of the system design of the ‘Local’ side of the system. Each term of student data resided
within a subdirectory named the actual term identifier. For example, the Fall Term, known as
term 2, in the year 1999 would be identified as 299. Each of the subdirectories are located
under C:\SAS_DATA, so Fall 1999 would be found under C:\SAS_DATA\299. Using this
structure enabled the use of macros for processing with relative ease.

Similarly, in the CDROM side of the system, the datasets on the CDROM have the relevant year
embedded as part of the name of the dataset. Using this method, verification that the correct
CDROM resides in the drive can take place before reading a dataset.

The system took advantage of many of SAS/AF abilities to provide Pop-up selection lists and
radio boxes.

Another beneficial section of the system allowed the users to use FSVIEW to scroll through their
data or produce cross tab or frequency tables. Again, the system utilized the point and click

features of SAS/AF.

Some Favorite SCL Code:
• VARLIST - to populate a pop-up list from a SAS Dataset, without hard coding variable

names (see example above) ;
• PMENU – to provide interactive pull-down menus;
• PREVIEW WINDOWS – to view output;
• SUBMIT CONTINUE – to imbed SAS Code in SAS/SCL;
• REPLACE – to store string in a SAS/SCL Variable;
• Modular ‘Link’ Programming;
• MACRO Substitutions;

• Passing Variables between SAS/SCL Programs;
• Where statements applied to a SAS/SCL Dataset;
• On-line Help using the Help functions.

Conclusion:
As a result of this project, both the state and the community colleges have benefited. The most
obvious benefit to the state has been more accurate reliable data. In addition to the state
benefits, many colleges have experienced the following benefits:

• Establishing the Student Data Base as a research base has provided the Florida Community
College System with a reliable source of data for research and improved the accuracy of the
data used in state reporting and funding.

• Sharing of SAS programs between sister community colleges has increased good will
among the sister colleges. Since all the colleges are using the same data structures, only
minor modifications are necessary for the programs to run at the sister college. Many SAS
programs have been shared between the reports/research personnel at the colleges,
including some extensive SAS systems. For example, Tallahassee Community College
recently shared a tracking system written in SAS using the Local SDB data. This system is
macro driven and easily modified for use at any of the colleges. Seminole Community
College also shared a comprehensive tracking system developed by consultant, W. M.
Consulting in Tallahassee. They are hoping that future costs of enhancements to their
tracking system may be shared by other community colleges. Of course, future benefits
would also be shared.

• Using this data for research has increased the understanding of the databases, how they
relate to the college, and how they relate to other state databases.

• Colleges are now able to replicate the state SAS programs, which are used to report data
and produce funding. This ability allows colleges to further understand and verify the state’s
programs and identify reasons for data anomalies.

• Florida Community College SAS Users group was created to share resources and provide
training. The Users Group meets in conjunction with the semi-monthly MISATFOR meetings
and has successfully addressed many SAS data issues pertinent to the community college
system.

Acknowledgements:
TCC for the time to prepare this paper and its support of the FCCS SAS Users Group.

Carol Hawkins, Vice-President of Institutional Effectiveness, Planning, and Information Systems
of Seminole Community College, formerly employed by PCC, for sharing the vision, writing the
grant proposal, and supporting the project.

Florida State Legislature for funding the projects.

SAS Technical Support for valuable support with quick response time.

Addresses:
Questions pertaining to this article should be addressed to:

Jeanette C. Humphrey
Tallahassee Community College
444 Appleyard Dr.
Tallahassee, Florida 32304-2895
(850)201-6083
Humphrej@tcc.cc.fl.us

Howard Campbell or Brian Walsh
Bureau of Research and Information Systems
Division of Community Colleges
Department of Education
1314 Turlington Building
325 W. Gaines Street
Tallahassee, Florida 32399-0400
(850)488-8597
Howard@flccs.org Brian@flccs.org

Using Recursion in the SAS® System
David Ward, InterNext, Inc., Somerset, NJ

ABSTRACT
Recursion is a friend of most 3rd or 4th generation language
programmers. It can be used to slice hundreds of lines of code from
complex algorithms, or bring a system to its knees after having
consumed all its resources. The concept of recursion and useful
applications of it using SAS®/Macro and SAS®/AF software will be
presented. You will learn how to traverse directories, trees of
information, and other interesting yet challenging topics. After
reading this paper you should have a better understanding of when
and how to use recursion in the SAS® system.

INTRODUCTION
Recursion refers to the case when a function or sub-routine calls
itself. In order for recursion to successfully take place the
programming language must provide separate memory areas for the
local variables in each function call. Therefore, the data step can
not be used to execute a recursive algorithm (although it can be
mimicked). Instead, a SAS® programmer must rely on either the
SAS® Macro language or SCL to institute recursion. Often the first
example of recursion programming students encounter is in the
world of sorting. For simplicity’s sake, this paper will not examine
sorting algorithms in SAS® because simpler examples exist to get
you comfortable with recursion.

OUR FIRST ALGORITHM
Let’s say you have genealogical data that is updated each month.
Each person could potentially have a different number of ancestors,
and that number could also change from month to month. Your
assignment is to print a report for each person, listing their ancestors
(assume fathers).

Name Father Mother
==== ====== ======
John Jones Mark Jones Mary Fawcett
Sarah White Henry Little Jane Smith
Mark Jones David Jones Harriet Lawler

From the data above you can see that John has two ancestors listed
(Mark and David Jones), and Sarah White only has one ancestor
listed. The thought might occur to you to use proc SQL to solve the
problem of getting all ancestors for each person, maybe something
like:

Proc sql noprint;
Create table ancestors as
Select d1.name, d2.father as ancestor1 from
Data as d1, data as d2 on d1.name=d1.father;

Quit;
You should quickly see the problem with this approach – you need
one join for every ancestor a person has. If a person has 20
ancestors you would need 20 join statements. Instead, using
recursion, we do not need to know how deep we must go for each
person to obtain their ancestors. A basic outline of the algorithm:

1) Find the father of person A
2) If person A has no father listed, leave
3) Otherwise person A’s father becomes person A
4) Go to step 1

The algorithm will leave at the appropriate step for each person.
The author is aware that this example could be solved with some
data step tricks, but it has been chosen for simplicity sake. A macro
approach could be:

%global ancestors;
%macro getAncestors(person);
%local father; %let father=;
data _null_;
set data(where=(person=”&person”));
call symput(‘father’,father);

run;
%if %length(&father)>0 %then %do;
%let ancestors=&ancestors/&father;
%getAncestors(&father);

%end;
%mend;
%let ancestors=;
%getAncestors(John Jones);
%put NOTE: Ancestors: &ancestors;

Which produces this in the log:
NOTE: Ancestors: /Mark Jones/David Jones

EXAMPLE 1: SEARCHING FOR FILE NAMES
You can use recursion to get a list of all files matching a pattern
name in all sub-directories under a given directory. The idea is
simple: loop through the names of the files in the current directory,
then, for all sub-directories, call the macro on itself with the sub-
directory as the new parent directory. A sample macro
implementation follows:

data files;
length file $200;

stop; run;
%macro findMatches (dir,pattern);
%put NOTE: Searching &dir;
/** DEFINE LOCAL MACRO VARAIBLES **/
%local files i dnum did matches rc

filename;
/* SET FILENAME TO CURRENT DIRECTORY */
filename dir "&dir";
%let did=%sysfunc(dopen(dir));
%let dnum=%sysfunc(dnum(&did));
%do i = 1 %to &dnum;
%let files
=&files/%sysfunc(dread(&did,&i));

%if %index(
%upcase(%scan(&files,&i,/)),
%upcase(&pattern)) %then
%let matches
=&matches/%scan(&files,&i,/);

%end;
%let rc=%sysfunc(dclose(&did));
/** WRITE MATCHES **/
%if %length(&matches)>0 %then %do;
data matches;
length file $200;
%let i = 1;
%do %while(
%length(%scan(&matches,&i,/))>0
);
file="&dir\%scan(&matches,&i,/)";
output;
%let i=%eval(&i+1);

%end;
run;
proc append base=files new=matches;
run;

%end;
/** CALL MACRO FOR EACH SUBDIRECTORY **/
%let filename=file;
%local i;
%do i = 1 %to &dnum;
%let rc=
%sysfunc(filename(filename,

&dir\%scan(&files,&i,/)));
%let did=%sysfunc(dopen(file));
/** IF CANT OPEN FILE ASSUME DIRECTORY **/

%if &did^=0 %then %do;
%let rc=%sysfunc(dclose(&did));
%findMatches(&dir\%scan(&files,&i,/),

&pattern);
%end;

%end;
%mend;
options nomprint;
%findMatches(d:\dward,.exe);

EXAMPLE 2: CONVERTING AN SCL LIST INTO A STRING
The SCL list is a powerful tool available to SAS®/AF developers.
Lists are filled with items that can be numeric, character, or another
list, thus a hierarchy of data can be put into a list in the form of data
tree. In order to traverse a tree structure you can use a recursive
SCL method. Once the method has been created you could use it
like this:

Dcl char string;
init:
** BUILD THE SAMPLE LIST **;
l={ one=1, two={ a='LETTER A', b='LETTER B',

c={ I='RN I', II='RN II' } } };
** PUT THE LIST INTO A STRING **;
string=method('cptools.trackuser.methods.scl',

'stufflist',l);
** DISPLAY THE STRING TO THE LOG **;
put string=;
** PUT THE STRING INTO ANOTHER LIST **;
m=method('cptools.trackuser.methods.scl',
'expandlist',string);

rc=putlist(m,'m',0);
return;

The above example uses two methods, stufflist and expandlist. The
code for the methods (it doesn’t format nicely in this single-column
document):

** STUFFLIST 1/10/01 DWard
Create a string that represents a list
Restrictions: You cannot have a list item

that contains braces {}, and equals sign, or a
comma **;
length string name value $32767;
stuffList: method listid:i:list
optional=string:u:char return=char;
if listlen(listid)<=0 then

return('{}');
do i = 1 to listlen(listid);
if i=1 then string=trim(string)||'{';
else string=trim(string)||',';
if nameitem(listid,i)^='' then

string=trim(string)||
nameitem(listid,i)||'=';

select itemtype(listid,i);
when ('C') string=trim(string)||

quote(getitemc(listid,i));
when ('N') string=trim(string)||

compress(getitemn(listid,i));
otherwise rc=method('methods.scl',

'stuffList',getiteml(listid,i),
string);

end;
if i=listlen(listid) then

string=trim(string)||'}';
end;
return(string);

endmethod;
** EXPANDLIST: Take a string and convert it into
a list

String should be from stuffList
1/10/01 DWard **;

Dcl list sublist;

expandList: method string:u:char
optional=listid:u:list i:u:num
return=list;

if listlen(listid)>-1 then
sublist=listid;

else sublist=makelist();
if length(string)<=2 then

return(sublist);
if i<=2 then i=2;
do i = i to length(string);
if substr(string,i,1)=',' then i=i-1;
if substr(string,i,1)='}' then do;
i=i+1;
return(sublist);

end;
else do;
name='';
value=substr(string,i);
np=indexc(value,'},');
oi=i;
i=i+np-1;
if substr(string,i,1)='}' then

i=i-1;
value=substr(value,1,np-1);
value=scan(value,1,',}');
np=index(value,'=');
if np then do;
name=scan(value,1,'=');
value=substr(value,np+1);

end;
if substr(value,1,1)='{' then do;
sublist2=makelist();
rc=insertl(sublist,sublist2,

-1,name);
i=oi+np+1;
rc=method('methods.scl',
'expandList',string,sublist2,i);

end;
else if substr(value,1,1)='"' then
do;
value=tranwrd(substr(value,2,

length(value)-2),'""','"');
rc=insertc(sublist,value,

-1,name);
end;
else rc=insertn(sublist,value,

-1,name);
end;

end;
return(sublist);

endmethod;

The author used this technique when two SAS® sessions needed to
communicate an SCL list over a TCP/IP socket connection that did
not support sending the list, only ASCII data.

CONCLUSION
Recursion is a powerful technique that will allow you to perform
advanced functions with your SAS® programs, whether they are
written in SAS®/Macro or SCL.

CONTACT INFORMATION
Your comments and questions are valued and encouraged. Contact
the author at:

David L. Ward
InterNext, Inc.
254 Resnik Ct.
Somerset, NJ 08873
Work Phone: (732) 470-6783
Email: dward@SAS®help.com

Paper P507

Creating Student Academic Profiles
Janice K. McBee, Virginia Tech, Blacksburg, VA

ABSTRACT

University academic advisors rely on data from various
sources ranging from a student’s experiences prior to
entering the university and a student’s performance at
the university. High school rank, grade point average,
and SAT, ACT or other such scores typically make up
some of the data elements. Transfer of credits from
advanced placement high school courses or from
courses taken at other institutions, e.g., community
colleges adds to the student profile. In addition,
performance at the university should be included in a
student profile. The purpose of this paper is to
join/merge data from various sources (MS Excel files,
Banner Oracle tables and SAS datasets) using SAS on
data from various sources ranging from a student’s
experiences prior to entering the university and a
student’s profile to be used in academic advising. SAS
Enterprise Guide tasks and SAS procedures were used
to develop a decision model to aid the advisors of
freshman students in a particular department.

INTRODUCTION

This paper is intended for the beginning or intermediate
SAS or SAS Enterprise Guide user. It is an example of
using SAS Enterprise Guide to join SAS datasets with a
client’s (end-user’s) provided data. The resultant SAS
dataset becomes the data for a new SAS Enterprise
Guide project and can be exported for additional use by
the client.

The data that we use comes in various forms. We have
student census extracts (SAS datasets and flat files) that
are created each term. Clients will have their own data
that they want merged with university data. It is
important to know your data. When one joins datasets
the variable/column descriptions should match to avoid
erroneous results. To develop a student profile first, edit
and verify your data, join datasets, and verify the
resulting dataset.

STUDENT CENSUS DATA

Prior to Summer 2000 the student census data was
legacy data and the flat files were converted to SAS
datasets. As of Summer 2000, student census extracts
(SAS datasets) are generated. A SAS version 8
program with PROC SQL was used by members of
another department to join Banner Oracle tables and
create student census SAS datasets. Our Decision
Support Services team modifies the student census data
by creating variables and adding labels in SAS version
6.12. This accommodates our Mac users/clients and
creates SAS datasets that are compatible with Strategic
Enrollment Management, a software product from the

SCT Corporation. The student census extract is created
every term and is used for official university reporting.

CLIENT DATA: MS EXCEL FILES

MS Excel files import directly into SAS Enterprise Guide
(Figure 1). After importing, one can use the Tasks to
analyze the data (Figure 2). Guide accesses data from
various forms, from SAS datasets to HTML files (Figure 3).
The data then can be saved as SAS datasets and merged
with existing data.

Figure 1.

Figure 2.

Figure 3.

The MS Excel file from the client originally had student
identification (SSNO) defined as General. I changed the
column attribute to text; however, when inserted into the
Guide project, SSNO was interpreted as a numeric data
type. Our student census files have student identification
(SSNO) defined as character. Guide does not allow
joining of data on mixed typed variables. Therefore, I
wrote a program to modify the imported file to change
the format of the SSNO to character and saved it at a
SAS dataset [Client] .

JOIN/MERGE DATA

When data is in SAS datasets SAS Enterprise Guide is
a versatile tool to use to merge data and then to analyze
the resulting dataset. With Enterprise Guide one can
merge SAS version 6.12 data with version 8 data. Note
that it is better to keep SAS version 6 datasets is a
different folder than SAS version 8 or one can convert
datasets to a common release of SAS. In this study the
census (version 6.12) data and term grade (version 8)
were merged with the client’s data (MS Excel converted
to SAS version 8). In addition, term course grade data
(version 6.12) was used to provide a current term profile
(grade and description) of courses.

To merge the SAS datasets to be joined were placed in
the project. I did the following:

• Placed data in project (optional)
• In Query Builder (Filter under Data) clicked on

the Tables Tab (a in Figure 4)
• Clicked on Add Data button (b in Figure 4)
• In Add Data clicked on SCF_F00
• In Add Data clicked on grades_f00
• Renamed Query (a in Figure 5)
• Clicked OK (b in Figure 5) to create the Query
• Save joined data (optional)

Figure 4.

Figure 5.

ANALYSES

SAS Enterprise Guide was used two ways to assist
academic advisors. One provided a profile of courses
taken for the term and overall grade average. The second
was used for comparison and prediction.

Profile
Faculty viewed a student’s profile in Guide using the
Student Term Profile project. The project uses grade
extract data where each row of data represents a course
that a student took during the current term. To create the
profile the following was done:

• Selected Filter from the Data pull down menu
(Figure 6)

• Filtered on a student’s identification number
(PIDM) or on name (Figure 7). I filtered on PIDM
and renamed the query with the student’s name.
Please note that the identification numbers and
names have been modified in the figures.

• Selected List Data under Descriptive in the Tasks
box and chose variables (Figure 8)

Figure 6.

a

b

a

b

Figure 7.

Figure 8.

An example of a profile is shown in Figure 9. An advisor
can set up a filter for each advisee and resubmit the List
Data or Summary during a consultation to view the
current data. If the faculty member wants all of the
advisees in one report, then instead of filtering the data
and creating a task for each advisee, he/she may group
by last name of student. It becomes a matter of personal
preference. Since the advisor accesses the saved
project and the data is updated, the advisor gets the
most recent information for a student by re-running the
task from the project window. In addition advisors can
join Grade Extracts over several terms to maintain a
complete course activity profile for their students.

Figure 9.

 Summary of Grades
Quality credits are the numeric equivalent of a letter grade.
To calculate quality credit average (QCA = [∑ quality
credits x credit hours]/ Total credit hours), I selected
Summary under Descriptive in the Tasks box, chose
quality credits for analysis variables, and chose credit
hours as the relative weight variable (Figure 10). See
Figure 11 for sample output.

Figure 10.

Figure 11.

Prediction
Not only is it valuable to be able to view a student’s profile,
but it is possible to evaluate the effectiveness of a new
initiative with Enterprise Guide. In this study, the advisor
wanted to know if attendance in the two offered study
retreats had a beneficial effect on quality credit hours
(QCA). Fall 2000 was the first time that the study retreats
were offered. Students could attend both study retreats;
most students chose to attend one of the sessions. The
merged dataset [Fall 2000 Study Retreats] was the merge
of Fall 2000 student census data with client study retreat
data and Fall term grade and is listed in the Student Profile
Project. The data was filtered to capture only those
freshmen having major ‘AZ’ and having actually registered

for classes in the fall. Retreats 1 and 2 were coded 1 for
attending and 0 for not attending. Correlations with
scatterplots were run in Guide to check for outliers. The
independent variables, Retreat1, Retreat2, high school
grade point average, SAT verbal score, SAT math score,
percentile rank in high school, sex (dummy coded:
0=Female, 1=Male), and honors student (dummy coded:
0=No, 1=Yes) were used to predict freshman fall QCA.
Students missing data were excluded from the
analysis.

The correlations of Retreat 1 and Retreat 2 with Fall
QCA were not significant at the .05 level of significance.
Results from the initial correlations indicated the
correlation of those who attended Retreat 2 were slightly
higher with Fall QCAs than the correlation with attending
Retreat 1. As expected, high school grade point average
had the highest correlation (.34) with freshmen Fall
QCA. Although the regression model was significant (p
< .0001), neither Retreat 1 nor Retreat 2 contributed
significantly (p < .05) to the prediction of the Fall QCA of
students in ‘AZ’. The model explained only 21 percent of
the variance of Fall QCA . Results from the regression
may be viewed in Figures 13 and 14.

Figure 12.

Figure 13.

CONCLUSION

The SAS version 8.2, coupled with Enterprise Guide 1.2, is
a versatile tool. Clients can custom design their projects by
renaming datasets and joining data from various sources.
Someone very familiar with the structure of the Oracle
tables that one is using should either create or assist in the
development of tables/views. When data changes or is
updated the project links to the updated data. Faculty
advisors can merge departmental data to existing
university data and create their own prediction models and
make their own comparisons. One can save the source
code, make modifications and run additional analyses.

CONTACT INFORMATION
Your comments and questions are valued and
encouraged. Contact the author at:

Janice K. McBee
 Decision Support Services
 Virginia Tech
 1700 Kraft Drive, Suite 2000
 Blacksburg Virginia 24060
 Work Phone: 540/231-3601
 Fax: 540/231-2429
 Email: jmcbee@vt.edu

SAS is a registered trademark or trademark of SAS
Institute Inc. in the USA and other countries.

Paper P508

Sending E-Mail From a Mainframe Using SAS® in an MVS Environment
Michelle Gillespie, Louisiana State University, Baton Rouge, LA

Doug Pacas, Louisiana State University, Baton Rouge, LA

ABSTRACT
Over 75,000 financial aid checks are disbursed to LSU students
each year. In an effort to better serve the student body, a SAS
program has been created to send e-mails that notify students when
financial aid is posted to their accounts. This automated
communication has significantly reduced the heavy volume of calls
previously received by campus offices regarding the timing of
incoming financial aid moneys. The simple process uses check
detail information and e-mail addresses to create an output dataset
which is transferred to an SMTP mail server on MVS.

INTRODUCTION
Businesses and universities are often faced with the need to inform
large numbers of clients quickly and cost efficiently. On the LSU
campus, over 75,000 financial aid and scholarship checks are
disbursed each year through a mainframe system. The timing of
these disbursements is dependent upon LSU first receiving money
from the source that granted the award. Although the anticipated
dates of these transactions are published, the actual posting dates
may vary. Previously, large numbers of students phoned the
university multiple times each semester to check on the status of
their accounts. In an effort to better serve the student body and to
reduce the work load for LSU employees, SAS is now used to send
a personalized e-mail notification to each student when financial aid
is posted to his or her account. Automated communication allows
information to be disseminated efficiently, significantly reducing the
number of students contacting the university by phone. This paper
presents details of two SAS programs which can be used together to
generate a mass e-mailing of personalized messages.

WHY USE SAS®?
SAS is a natural choice for addressing an e-mail generation problem
such as the one just described. The data necessary for such a
mass e-mailing (e.g., social security numbers (SSN), e-mail
addresses, data specific to each individual) may be obtained from a
variety of sources. The power of SAS to input, sort, merge and
output this data makes it preferable to other mainframe programming
languages.

The programs described in this paper were coded several months
ago using SAS® version 6. There are new and exciting capabilities
for a direct e-mail system interface coming in SAS® version 8. We
look forward to exploring the new technology upon implementation of
this newest version at our site.

THE CONCEPT
The concept behind the mass e-mailing of personalized messages is
quite simple. SMTP (Simple Mail Transfer Protocol) is a started
task in MVS which reads in a dataset of batched e-mails and
consequently transmits each e-mail message to the appropriate
address. The first SAS program described in this paper outputs a
dataset of batched e-mail messages. Because it is possible to
overload SMTP, a second program is used to divide this large
dataset into multiple small datasets before sending the e-mails to
SMTP.

PROGRAM I – CREATE A DATASET OF BATCHED
E-MAIL MESSAGES

IDENTIFY THE POPULATION
As in any mass mailing, it is necessary first to identify the population
to which the correspondence will be sent. In this application, a
dataset of financial aid grants and loans that have been awarded to
LSU students is read by the program. Multiple awards per individual
may exist. Therefore, the SAS program sorts this dataset by social
security number.

DATA SSNS;
 INFILE SENDTOS;
 @1 SSN $CHAR9.
 @10 PGMCODE $CHAR4.
 @14 PGMDESC $CHAR30.
 @44 SEMESTER $CHAR13.
 @57 CHKAMT ZD7.2;

PROC SORT DATA = SSNS;
 BY SSN;

RETRIEVE THE E-MAIL ADDRESS
LSU maintains a DB2 table of current e-mail addresses for students,
uniquely keyed by social security number. A DB2EXT procedure is
executed in the SAS program to extract current e-mail addresses for
all students. The extracted list is then sorted by social security
number and a SAS MERGE is performed to associate each
student’s e-mail address with his or her financial aid data. This
merged dataset will serve as the driver in generating the dataset of
batched e-mail messages.

PROC DB2EXT OUT=PWSDATA;
 SELECT DESKTOP_ID,

PRIMARY_ACCESS_ID
 FROM PWS.DESKTOP;
 RENAME 1=SSN

2=ACCESSID;

PROC SORT DATA = PWSDATA;
 BY SSN;

DATA SSNSPWS;
MERGE PWSDATA (IN=A)
 SSNS (IN=B);
 BY SSN;
 IF A AND B;

INPUT COMMON HEADER AND TRAILER DATA
The body of the message to be sent to each student in this process
consists of three components. A common header paragraph
informs the student that financial aid activity has been posted to his
or her account. This is followed by personalized information
regarding each financial aid award. A common trailer paragraph
concludes the body providing information on when the student can
expect to receive a mailed check. The header and trailer paragraphs
are stored in separate datasets and are read into the SAS program,
while the financial aid data specific to the individual is stored in the
merged dataset previously described.

DATA HEADER;
 INFILE HEADER END=EOF;
 INPUT @1 MSGLINE $CHAR80.;
 NUMHDR + 1;
 IF EOF THEN

 CALL SYMPUT(‘LASTHDR’,NUMHDR);
RUN;

DATA TRAILER;
 INFILE TRAILER END=EOF;
 INPUT @1 MSGLINE $CHAR80.;

 NUMTLR + 1;
 IF EOF THEN
 CALL SYMPUT(‘LASTTLR’,NUMTLR);
RUN;

ASSEMBLE THE E-MAILS
The objective of the SAS program is to generate a dataset that can
be fed to an SMTP mail server. Therefore, the records in this
dataset must conform to the standards understood by SMTP within
the MVS environment. Accepted format standards for sending
SMTP e-mail have been published as “Request for Comments”
numbered RFC821 and RFC822. Below is a sample of data records
which would be output to a dataset by this SAS application and then
consequently fed to SMTP.

HELO LSUMVS.SNCC.LSU.EDU
MAIL FROM:<BURSAR@LSUMVS.SNCC.LSU.EDU>
RCPT TO:<student1@lsu.edu>
DATA
Date: 26MAY2001 0:15:14 CDT
From: <BURSAR@LSUMVS.SNCC.LSU.EDU>
ReplyTo: <BURSAR@LLSU.EDU
To:<student1@lsu.edu>
Subject: Financial Aid
(blank line)
(body of letter goes here)
.
RSET
HELO LSUMVS.SNCC.LSU.EDU
MAIL FROM:<BURSAR@LSUMVS.SNCC.LSU.EDU>
RCPT TO:<student2@lsu.edu>
DATA
Date: 26MAY2001 0:15:14 CDT
From: <BURSAR@LSUMVS.SNCC.LSU.EDU>
ReplyTo: <BURSAR@LSU.EDU>
To:<student2@lsu.edu>
Subject: Financial Aid
(blank line)
(body of letter goes here)
.
QUIT

Each e-mail message may be thought of as a message body
surrounded by an inner and outer envelope. The outer envelope
contains information needed to accomplish transmission and
delivery including the HELO, MAIL FROM, RCPT TO, DATA, RSET
and QUIT commands as outlined by RFC821. The inner envelope
portion should follow format standards specified by RFC822, and
consists of the required header fields DATE, FROM and TO and
several optional fields including REPLY TO and SUBJECT.

The SAS program generates a file of batched e-mail messages
similar to those described above by reading and processing the
newly created dataset of merged financial aid information and e-mail
addresses. Since this dataset is sorted by SSN, the program uses
FIRST.SSN and LAST.SSN to determine when the first and last
records for a given SSN are being processed. When FIRST.SSN is
true, all of the commands referred to in RFC821 and RFC822 that
must precede the body of the message are output. The RCPT TO:
and To: commands are followed by the e-mail address associated
with that SSN from the merged dataset. A blank line is then output,
followed by lines of data retrieved from the header input dataset.
After the common header text, one line of student award detail per
award is output. When LAST.SSN is true, the common trailer
portion of the body is output, followed by a line of output containing a
single period in column one. If an additional e-mail is to follow, a
RSET line is written out to mark the end of the current mail
transmission. RFC821 commands for the next e-mail then begin.
Otherwise, a QUIT line is output which signals SMTP to terminate
connection and close the transmission channel.

COMMENTS ON RFC821 AND RFC822
It is recommended that one review RFC821 and RFC822 in their
entirety before writing SAS code to create the output file. However,
a few specifics are worth mentioning.

• Commands, replies and host names are not case

sensitive; however, mailbox user names may be case
sensitive for some hosts.

• All commands and replies should be composed of
characters from the ASCII character set.

• Although headers in the inner envelope must precede the
message body, they are not required to appear in any
particular order.

• If e-mails are being sent from a region that practices
Daylight Saving Time, logic should be included to
determine the proper time zone for the DATE field.

• A line containing only a period is output to indicate the end
of the body. If for some reason it is desired to actually
send a period in column one as part of the body, it is
necessary to append a second period so that the period
within the body will not be interpreted as the end of the
body. The double period will be converted by the receiver
host back to a single period.

PROGRAM II – DIVIDE THE E-MAIL DATASET FOR
SMTP

WHY MULTIPLE DATASETS?
Theoretically, the dataset of batched e-mail messages generated by
the Program I can be read and processed directly by the SMTP mail
server. In reality, however, a single feed of a few hundred e-mails
during peak times of the day can result in an overload. To avoid this
problem, Program II is used to divide the large dataset into multiple
smaller ones before being sent to SMTP. Although the SAS code in
this program is more complex than in the one just described, the
concept behind “dividing and conquering” the large dataset is quite
simple.

DETERMINE THE OPTIMAL NUMBER OF E-MAILS PER
SMALL BATCH AND THE TOTAL NUMBER OF SMALL
BATCHES
How small are the smaller batches? The answer to this question
may vary for each application and is dependent on internal
parameters and available disk space at the time of execution. Using
trial and error, we have determined that executing during late night
hours and reducing the size of single feeds to 30 e-mails is
sufficient to avoid overloading SMTP in our application. You may
need to experiment to find an optimal batch size.

The large dataset of all batched e-mail messages is read in one line
at a time. Using the RSET and QUIT commands as markers, the
total number of e-mails is calculated. This total is then divided by
the predetermined number of e-mails to be sent in a single batch.
The result is rounded up to the next whole number and represents
the total number of small batches needed.

%LET NUMBMAIL = 30;

DATA _NULL_;
 RETAIN NUMRSET 0;
 LENGTH LINE $200;
 INFILE PASSONE LENGTH=THELEN END=LASTONE;
 INPUT @1 PEEK $CHAR1. @;
 IF THELEN > 200 THEN READLEN = 200;

 ELSE READLEN = THELEN;
 INPUT @1 LINE $VARYING. READLEN;
 IF LINE = ‘RSET’
 OR LINE = ‘QUIT’
 THEN NUMRSET = NUMRSET + 1;

 IF LASTONE THEN DO;
 NUMBAT = CEIL(NUMRSET / &NUMEMAIL);
 CALL SYMPUT(‘NUMBATCH’,PUT(NUMBAT,5.));
 END;
RUN;

ALLOCATE FILE NAMES
A DO loop is utilized to dynamically allocate file names OUT1
through OUTnn, where nn is the total number of small batches
needed to send the entire set of e-mails to SMTP. Each file name
has a destination of SMTP and SYSOUT=A for immediate
processing by the mail server.

%MACRO XXFNAMES;
 %DO I=1 %TO &NUMBATCH;
 FILENAME OUT&I PRINTER SYSOUT=A
 DEST=SMTP RECFM=FB %STR(;)
 %END;
%MEND XXFNAMES;

DIVIDE E-MAILS AMONG THE SMALLER BATCHES
The input dataset of all e-mail messages is read in a second time. A
macro is used to determine the appropriate output file for each line of
data. RSET and QUIT lines are again used as markers to keep
track of which e-mail is being processed. The e-mail number is
compared to the range of numbers to be included in each of the
smaller datasets. For example, e-mails 1 through 30 are output to
file OUT1, e-mails 31 through 60 are output to file OUT2, and so on.

As mentioned previously, RFC821 requires that batched e-mails be
separated by a RSET command. The final e-mail being sent in a
transmission must be concluded by a QUIT command to close the
transmission channel. Each of the smaller datasets is sent as an
independent batch to SMTP. For this reason, the RSET command
following the final e-mail in each batch is converted to a QUIT. A
’trick’ is used to ensure that the RSET commands being evaluated
are in fact RFC821 commands and not part of the RFC822
message body.

%MACRO XXDOFILE;
 %DO I=1 %TO &NUMBATCH;
 %LET J = %EVAL((&I-1)*&NUMEMAIL);
 %LET K = %EVAL(&I*&NUMEMAIL);
 IF &J <= RSETNUM <=&K THEN
 FILE OUT&I NOPRINT NOTITLES %STR(;)
 %END;
%MEND XXDOFILE;

DATA _NULL_;
 RETAIN RSETNUM 00

NUMBAT 00
RFC821 1;

 LENGTH LINE $200;

 INFILE EMAILIN END=LASTONE LENGTH=LINELEN;
 INPUT @1 PEEK $CHAR1. @;
 IF LINELEN > 200 THEN THELEN = 200;
 ELSE THELEN = LINELEN;
 INPUT @1 LINE $VARYING. THELEN;

 %XXDOFILE

 IF RFC821 THEN DO;
 IF LINE = ‘QUIT’ THEN DO;
 DORSET = 1
 LINE = ‘RSET’;
 END;
 IF LINE = ‘RSET’ THEN DO;
 RSETNUM = RSETNUM + 1;
 IF MOD(RSETNUM,&NUMEMAIL) = 0 THEN
 DOQUIT = 1;
 IF LASTONE THEN DOQUIT = 1;
 END;
 IF LINE = ‘DATA’ THEN RFC821 = 0;
 END;
 ELSE IF LINE = ‘.’ THEN FRC821 = 1;

 IF DOQUIT THEN DO;
 NUMBAT + 1;
 PUT ‘QUIT’;

 END;
 ELSE IF DORSET THEN PUT ‘RSET’;
 ELSE PUT _INFILE_;
RUN;

RELEASE THE BATCHES TO SMTP
A final statement deallocates all of the dynamically allocated files
allowing the messages to go to SMTP.

FILENAME _ALL_ CLEAR;

CONCLUSION
The basic functions of the two SAS programs described in this
paper can easily be applied to other applications requiring the
capability to send a large number of personalized e-mails. At LSU, a
similar batch process has been developed to contact employees
when supplemental checks have been directly deposited into their
bank accounts. Another batch process sends e-mail notifications to
individuals responsible for submitting procurement card accounting
requests. In both of these cases, Program I was modified to create
the master e-mail dataset. Program II was then used to divide the
datset before sending the e-mails to SMTP.

The ultimate success or failure in developing such an e-mail
application is dependent upon the ability of the program to access a
stable, reliable source of current e-mail addresses for the population
being contacted. Therefore, every effort should be made to ensure
that this data is current. Due to the fact that individuals change e-
mail addresses frequently and e-mail messages are sometimes
retrieved on an irregular basis, it may be advisable to develop
applications that send messages as a courtesy to clients, rather than
messages of a critical nature.

REFERENCES
The two SAS programs presented in this paper can be viewed in
their entirety by visiting the following web site:

http://www.lsu.edu/ocs/conference/ssu2001

ACKNOWLEDGMENTS
Program II and key elements of Program I were designed by Frank
O’Quinn, Associate Director, Technology Support Center, Louisiana
State University. He has also been an invaluable resource during
the writing of this paper.

CONTACT INFORMATION
Your comments and questions are valued and encouraged. Contact
the authors at:

Michelle Gillespie
Louisiana State University
Baton Rouge, LA 70803
Work Phone: (225) 578-4727
Email: mgilles@lsu.edu

Douglas Pacas
Louisiana State University
Baton Rouge, LA 70803
Work Phone: (225) 578-3718
Email: doug@lsu.edu

Using SAS to Create Presentation Quality Spreadsheets in Excel
By Joyce R. Hartley, Infineon Technologies – Richmond

Abstract

How often have you been asked to produce a
report that has subtotals here, grand totals
there, ratios two lines down, bold this label,
change that font… in short, a report better
created in Excel? But all your data are in SAS
data sets? Using PC SAS, DDE (Dynamic
Data Exchange), and a little bit of cleverness,
it’s now easier than ever to produce nicely
formatted Excel spreadsheets that are
populated with SAS data. This technique is
particularly useful for the report that needs to
be repeated for multiple units (i.e.
departments), where each sheet needs to be
customized. An intermediate skill level in both
base SAS and Excel is recommended.

Background

Imagine a project that requires you to produce
displays with fairly similar data, grouped by
management unit or division, but with slightly
different categories on each display. And you
want your lines in a specific order, with
subtotals and percentages interspersed
throughout the display. DATA _NULL_ is a
fairly good option, although it can be rather
tedious to go through all the iterations,
especially when it comes to handling missing
data. For example, a university budget office
might require analysis of data by “budget unit”
or “school” categories. These categories will
be similar in some ways—they would all have
budget for salaries—but very dissimilar in
other ways. A School of Medicine would have
a rather different budget from Facilities
Management, as would a School of Business
from Academic Technology. Wouldn’t it be
nice to write a single program to handle all the
various cases and be able to create a
spreadsheet with special formatting (fonts,
headers, etc.) as well?

Method

The first step is to create an Excel template
that is later copied as a blank “form” to be
completed by the inclusion of your data output
from SAS. This template needs to include all
special formatting, formulae, and links to the
worksheet that will contain the SAS data.
Once you’ve created the template, the next
step is to get your SAS data in order, all in
one dataset, in the final form to be output to
the Excel file. Then the program will execute
the command to open Excel, send the SAS
data to the workbook, and save and close the
workbook.

Create an Excel Template

The first step in this process is to create your
Excel template. This file needs to include all
possible rows and columns that would appear
on any of the spreadsheets that you plan to
populate. These will simply be hidden in the
spreadsheets where they are not applicable.
Leave all the data cells blank, but apply any
desired formatting to those cells; the data that
come from SAS will be unformatted. Also
select any page breaks, if applicable. My
sample template includes rows for resource
data such as degrees conferred and
headcount; these rows would be hidden for a
budget unit such as Facilities. Because my
spreadsheet includes subtotals, percentages,
and ratios, these formulae were also entered
in the template file.

Create a second sheet in your workbook;
keep the default sheet name of Sheet2. This
is the sheet that will contain the data that are
output from SAS, but it will be hidden from the
user. Decide in what row and column your
data will begin. Plan to populate all the cells
in a rectangular area to match corresponding
area in your main spreadsheet. That is, if you
have blank columns as spacers in your main
sheet, allow for blank columns in your SAS

sheet. You will be linking this sheet to the
main sheet, and it is much easier to do if you
map large sections of one to the other. To do
this, select the cells on Sheet2 you want to
link, and Copy; go to the main sheet, right
click on the cell where you want the data to
appear; choose Paste Special; then choose
Paste Link. Plan your rows and columns well,
so that you can highlight whole areas of your
data sheet, and paste the whole unit to the
formatted sheet.

You can protect the workbooks you create so
that no one can change the displays you’ve
created, while still allowing SAS to update
them. To do this, make Sheet2 the active
sheet. Select Format > Sheet > Hide to make
this sheet invisible to the viewer. Then select
Tools > Protection > Protect Sheet to put
password protection on your main sheet, and

Tools > Protection > Protect Workbook to
protect the workbook itself (so that no one can
unhide Sheet2). SAS can still write to the
hidden sheet, but without the password,
changes can’t be made in Excel.

Once you have finished all the testing and
debugging, make a copy of the template for
each spreadsheet you want to create.

Create and Output the Data

Your SAS data may be coming from several
different datasets. The goal is to get all the
data combined into one dataset, ordered in
such a way that there is a single sort column
and the variable names, regardless of what
kind of data they contain, all reference the
columns in which

Template Before SAS Data

Anywhere University
Template

1994-95 1995-96 1996-97 1997-98 1998-99 1999-00 6-Yr Ave.
Headcount 0 0 0 0 0 0 0

Degrees Conferred 0 0 0 0 0 0 0

Annual Credit Hours 0 0 0 0 0 0 0

Expenditures by Ledger
E&G $0 $0 $0 $0 $0 $0 $0
Sponsored Programs 0 0 0 0 0 0 0
Facilities 0 0 0 0 0 0 0
Auxiliary Enterprises 0 0 0 0 0 0 0
Local Funds 0 0 0 0 0 0 0
State Funds 0 0 0 0 0 0 0
Aquarium Services 0 0 0 0 0 0 0

Grand Total $0 $0 $0 $0 $0 $0 $0

Expenditures by Category
Teaching/Research $0 $0 $0 $0 $0 $0 $0
Graduate/Teaching Assistant 0 0 0 0 0 0 0
Adjunct Faculty 0 0 0 0 0 0 0
Other Personal Services 0 0 0 0 0 0 0

Total Personal Services $0 $0 $0 $0 $0 $0 $0

Contracts 0 0 0 0 0 0 0
Travel 0 0 0 0 0 0 0
Equipment 0 0 0 0 0 0 0
Other Nonpersonal Services 0 0 0 0 0 0 0

Total Nonpersonal Services $0 $0 $0 $0 $0 $0 $0

Grand Total $0 $0 $0 $0 $0 $0 $0

E&G Expenditures per Headcount #DIV/0! #DIV/0! #DIV/0! #DIV/0! #DIV/0! #DIV/0! #DIV/0!

Total Expenditures per Headcount #DIV/0! #DIV/0! #DIV/0! #DIV/0! #DIV/0! #DIV/0! #DIV/0!

% of E&G Expenditures to Total #DIV/0! #DIV/0! #DIV/0! #DIV/0! #DIV/0! #DIV/0! #DIV/0!

they will be placed. In my example, my sort
column is called “order”, and my column
variable names are c95, c96, c97, c98, c99,
and c00. Also include a dataset like this one
when you combine all your data, to ensure
that every row in your template Sheet 2 will
get populated:

data dummy;
do i=1 to 30;
order=i;

output;
end;

run;

I try to match rows to rows in my two
spreadsheets, that is, row 6 to row 6, which
often leaves space in the first few rows for
label variables that can be linked to the main
sheet as well. A main title could be output to
row 1, so that the titles don’t have to be typed
into each individual spreadsheet.

Putting It All Together

The final step in the process is for your
program to send the command to open Excel,
create a filename to write the data to Sheet2,
and use DATA _NULL_ to populate the sheet,
and then close Excel. If you are doing
multiple sheets, you can enclose part of the
code within a macro, passing the different
filenames with each macro call. Then you get
to sit back and watch while SAS fills in all your
spreadsheets for you.

In order to send the command to open Excel,
you need to know what directory excel.exe is
in. I do this by exiting to the DOS prompt, and
poking around until I find the right directory. It
is usually in something like c:\Program
Files\Microsoft Office\Office\Excel, but you
need to find the right 8-character name for the
directory, i.e.
c:\progra~1\micros~4\office\excel. The code
to open Excel will look something like this:

options noxwait noxsync;
/* this opens Excel */
x c:\progra~1\micros~4\office\excel';

data _null_;
x=sleep(2);

/* this pauses SAS to
give Excel time to open */

run;

Before submitting this code, be sure that
Excel is not already open.

Here’s the code to create the needed
filenames and open the proper workbook:

filename cmds dde 'excel|system';
%let newfile=c:\my documents\my sas
files\v8\ssupaper\wkb2.xls;

/* create macro var with name of
excel file, since you can't use
macro vars directly w/in an OPEN
statement w/DDE */

data _null_;
call symput

("exdata","'"||'[OPEN("'||
"&newfile"||'")]'||"'");

run;

/* open the file */
data _null_;
file cmds;
put &exdata;

run;

Next, create a filename to reference sheet2
and specify the rows and columns that you will
be writing to. In the example below, I’ve
created an additional variable called sp (for
space) that simply writes blanks to map to my
blank columns in my template worksheet.

/* output data to the temp1data
worksheet */

filename worksht dde
'excel|Sheet2!r1c1:r30c15' notab;

data _null_;
set temp1data;
file worksht;
sp=' ';

SAS Output formatted in Excel

Anywhere University
School of Marine Biology

1994-95 1995-96 1996-97 1997-98 1998-99 1999-00 6-Yr Ave.
Headcount 123 118 120 124 129 132 124

Degrees Conferred 20 21 18 19 20 23 20

Annual Credit Hours 814 850 864 833 861 851 846

Expenditures by Ledger
E&G $2,415,339 $2,538,813 $2,242,864 $2,453,342 $2,864,638 $2,776,644 $2,548,606
Sponsored Programs 13,172 29,191 3,650 2,959 17,125 50,592 19,448
Facilities 28,352 13,773 185,578 41,207 80,701 88,151 72,960
Local Funds 435,104 597,610 783,491 490,266 356,959 475,495 523,154
State Funds 263,858 301,926 161,254 301,760 314,551 432,642 295,999
AquariumServices 1,329 2,847 6,247 80,071 85,492 15,378 31,894

Grand Total $3,157,153 $3,484,160 $3,383,084 $3,369,605 $3,719,466 $3,838,903 $3,492,062

Expenditures by Category
Teaching/Research $1,142,762 $1,084,864 $870,751 $889,878 $1,233,944 $1,188,039 $915,748
Graduate/Teaching Assistant 236,388 319,235 338,948 473,161 494,795 505,053 338,226
Adjunct Faculty 798,249 792,401 738,633 872,478 1,000,191 1,068,892 752,978
Other Personal Services 301,549 402,256 400,039 378,054 297,886 273,433 293,317

Total Personal Services $2,478,948 $2,598,756 $2,348,371 $2,613,571 $3,026,815 $3,035,418 $2,300,268

Contracts 61,235 52,252 127,088 89,780 86,463 102,247 74,152
Travel 129,476 283,483 352,524 125,657 96,183 104,361 155,955
Equipment 487,108 518,231 559,395 545,505 510,409 596,877 459,646
Other Nonpersonal Services 386 31,438 (4,295) (4,907) (404) 0 3,174

Total Nonpersonal Services $678,205 $885,404 $1,034,713 $756,035 $692,651 $803,485 $692,927

Grand Total $3,157,153 $3,484,160 $3,383,084 $3,369,605 $3,719,466 $3,838,903 $2,993,196

E&GExpenditures per Headcount $19,637 $21,515 $18,691 $19,785 $22,206 $21,035 $20,478

Total Expenditures per Headcount $25,668 $29,527 $28,192 $27,174 $28,833 $29,083 $28,079

%of E&GExpenditures to Total 76.50% 72.87% 66.30% 72.81% 77.02% 72.33% 72.98%

put order '09'x sp '09'x
c95 '09'x sp '09'x
c96 '09'x sp '09'x
c97 '09'x sp '09'x

c98 '09'x sp '09'x
c99 '09'x sp '09'x
c00 '09'x sp '09'x cavg ;

run;

And finally, close Excel:

/* close Excel */
data _null_;
file cmds;

put '[SAVE()]';
put '[QUIT()]';

run;

Finishing Touches

Once all your workbooks are filled in, all you
need to do is hide any rows that you choose
to. You may find that some cells containing
formulas come up with Excel errors, such as
division by zero. In these cases, you can
apply conditional formatting to these cells to
replace the error with “N/A” or some other

indicator. It will probably take a few runs
before you get your template file perfected,
but once you do, you can copy it over for as
many units as you need, and re-use it as often
as you need. Nicely formatted monthly or
weekly reports can be produced in minutes
now, just by copying over the template file and
changing the input and output filenames. The
possibilities are endless.

Acknowledgments

Thanks to Mike Newsome for encouraging me
to push my limits, and to Andre Walker, Jim
Moyar, Bennie Fiol, Delores Anderson, Greg
Vaeth and Michelle Vucci for all their help.

SAS is a registered trademark of SAS
Institute, Inc.
Excel is a registered trademark of Microsoft
Corporation.

Contact Information

The author can be reached via e-mail at
joyce.hartley@infineon.com, or by mail at
Joyce R. Hartley
Infineon Technologies Richmond
6000 Technology Boulevard
Sandston, VA 23150
(804)952-8262

V6 to V8 Applications: To Web or Not To Web?
Sharon Muha, SAS® Institute, Cary, NC

Elizabeth Malcom, SAS® Institute, Cary, NC

ABSTRACT
When upgrading a V6 SAS/AF� application to V8, what are the
possibilities? Should the application be web-enabled? If not, why
not and what are the other options? Should it make use of Java�
technology? What are the platform restrictions? What are the
interface issues? Are there data-integrity concerns? These
questions are just some of the issues that must be addressed
when retooling applications. This paper steps you through the
decision-making process and highlights decisions made by
developers who were tasked with upgrading a SAS Publications
Division V6 SAS/AF FRAME application to a web-enabled V8
application.

INTRODUCTION
When an application must be upgraded to use a new SAS
software release, the process occasionally involves only a simple
change to point to the executable file of the new release rather
than the executable file of the old release. However, application
upgrades are unfortunately rarely that simple. Over the life of the
application, user requirements frequently change, as do the
business problems that the application was originally created to
solve. In such cases, upgrading to a new software release often
provides an opportunity to re-examine the application to
determine what enhancements can or should be made.

As developers in the Business Applications Department of the
Publications Division at SAS, we were recently tasked with
upgrading a Release 6.09 application to Version 8. When
upgrading an application from Version 6 of SAS software to
Version 8 of SAS software, one of the key decisions that we
faced and that you will face is whether to web-enable the
application. In the current business atmosphere, where all things
web and wireless are hot, it is tempting to assume that your
application should automatically go to the web. However, there
may be compelling reasons not to make that jump.

To determine whether web-enabling your application is
appropriate, we recommend first stepping back and examining
the scope and requirements of your application. What are the
user requirements? What constraints do the user requirements
put on your system? What are the system requirements? Are
there new applications that will need to interface with your
existing application? If so, what platforms are these new
applications on and should your application be on the same
platform? Only after examining such issues can you make an
educated decision about which implementation (stand-alone
application, Java applet, JavaServer Pages� technology, and so
on) to pursue.

DEFINING USER REQUIREMENTS
Knowing who your users are and what your users need to
accomplish by using your application is critical to successfully
upgrading the application. Especially if your system has not been
upgraded or enhanced recently, your user base may have shifted,
and the problems that your users are trying to solve may have
changed.

IDENTIFY THE USER BASE
Do you know who your users are? It may sound like a ridiculous
question, but it can be easy to overlook segments of your user
population. For example, sales staff may use your application to
record sales data, but do executives, middle management, or
project managers need reports from that data? If so, those
people are also indirect users of your application, and you must

be certain that your application allows for gathering the data that
are needed for their reports. In short, as you prepare to gather
user requirements, be sure that you have identified at least one
representative from each significant group in your user
population.

IDENTIFY THE BUSINESS PROBLEMS
Do you know what your problem is, or more accurately in this
case, do you know what business problems your application
addresses? Are those problems, in fact, the problems that still
need to be addressed? As business models change, your user
base may shift and the problems that your application was
designed to address may become obsolete. For example, if your
application tracks sales by region, but your sales regions have
been redefined since the application was updated, you will need
to redefine the regions for which data can be entered.

Ideally, the information that you are looking for when identifying
the business problem is what your application can do to help your
users do their jobs more effectively and efficiently. Keep in mind
that different users may need different things from the same
application.

IDENTIFY CURRENT APPLICATION DEFICIENCIES
Although we strive to create intuitive, bug-free, user-friendly
applications, the truth is that there is some shortcoming in almost
every application. Find out from your users if there are aspects of
your current application that are problematic to them. For
example, are your users entering data on one platform and then
having to port that data to a different platform for reporting or for
use in another application? Is there a button whose label makes
no sense to them? Is there a required selection buried in a
secondary window when it should be in a more obvious location
that is easily accessible in the application? Is it obvious how to
save data that have been entered and then exit the application or
move to a different area in the application? It is obviously
impossible to include here an exhaustive list of questions you
could pose to your users about your application. However, if you
simply ask, "What do you find difficult about this application?"
most users will be more than happy to tell you.

DETERMINE THE NECESSARY LEVEL OF ENHANCEMENT
Once you have identified your users, determined what business
problems your application is working to solve, and identified any
current deficiencies in your application, you will be in a position to
determine how much enhancing you need to do to your
application as you upgrade to the new version of SAS software. If
your application is meeting your users needs and addressing the
problems they need it to, congratulations -- you are likely in the
rare and fortunate position that you simply need to port your
application to the new version with no significant changes. On the
other hand, if there are new users or new problems that your
application needs to address or if the usability of the application
needs to be improved, yours is the far more common situation,
and you can now embark on determining further system
requirements before selecting which implementation option is
most appropriate when you convert your application.

USER REQUIREMENTS CASE STUDY
As applications developers in the Business Applications
Department of the Publications Division at SAS Institute, we were
recently tasked with converting a Release 6.09 SAS/AF time-
tracking application to Version 8.

Following our recommended user-requirements definition
strategy, we examined our user population and determined that
we had several distinct groups of users: writers and editors,
project managers for individual documentation projects,

department and group managers of the various departments and
groups internal to the Publications Division, and the vice
president of the Publications Division. Additionally, while in the
past only writers and editors were required to track their time
using the application, it was decided that after the first of the
year, all Publications Division employees would be tracking their
time, which meant that we had the needs of additional
departments to consider. We selected representatives from the
various employee groups and questioned all of the managers to
determine how they were using the application and what they
needed from it.

As we tried to identify the business problems our application
needed to solve, we determined that the writers, editors, and
other employees, while they were required to use the application
to enter data, rarely needed to report on the information that they
entered. Project managers did not need to enter data (at least not
in the context of being a project manager); however, they did
want to be able to get reports on the data related to their projects.
Group and department managers also needed reports related to
their employees (overtime reports, time away from work, and so
on). Finally, the vice president needed to be able to report on the
data for business-reporting purposes (to provide IRS data and to
determine cost of books, for example).

Our users had no trouble at all identifying deficiencies in the 6.09
application. The reporting system was sorely lacking to create
adequate human-resources management reports and made no
allowance for project-management reports. The interface that
writers and editors used to enter data was antiquated by Version
8 standards and in many cases was non-intuitive or slowed down
what should have been a fairly quick data-entry process. Finally,
tracking codes needed to be created to support data entry by
employees other than writers and editors.

After gathering our user requirements, it was clear that we
needed to overhaul the time-tracking application in the process of
upgrading it to Version 8, and we moved on to determining what
our system requirements would be for the new version of the
application.

DETERMINING SYSTEM REQUIREMENTS
Now that you have gathered your user requirements, your focus
can shift to the application itself and to the system in which that
application must function. You will likely find that your user
requirements constrain how you implement your application.
Additionally, you will need to consider issues such as platform
availability, user location (anywhere from the same floor of a
building to multiple international offices), and data integrity and
security.

All the issues that must be addressed and the questions that
must be asked to determine system requirements for any given
system cannot realistically be included in this paper. However,
keeping in mind that our ultimate goal is to convert an application
from Version 6 to Version 8 and to determine whether the Version
8 application should be a web implementation, this section poses
general questions in some of the major areas that you should
address as you plan your conversion.

IDENTIFY PLATFORM ISSUES
Should your application continue to reside on its current platform?
Have the user requirements indicated that there may be a need
to change platforms? For example, you could move your
mainframe application to a PC platform and, leaving the
application data on the mainframe, use SAS/CONNECT�
software to access the data.

Consider whether your application currently interacts with or will
need to interact with other applications. Are the applications on
the same platform, and if they are not, should they be? Because
SAS software provides numerous tools for cross-platform

communication, running related applications on different
platforms is a realistic scenario; however, there may be additional
considerations that make a different implementation a better
choice.

IDENTIFY YOUR USERS
The location of your user population may greatly influence the
implementation option you ultimately select for converting your
application to Version 8. Are your users centrally located so that
you have immediate access to the machines from which they will
run your application? Will your application simply be installed on
a network so that users throughout the office complex, city, state,
country can run it from the network?

IDENTIFY DATA CONCERNS
The form, integrity, and security of the data created and
accessed by your application are obviously key issues with
respect to application development. As you consider upgrading,
note whether your application is to be used for simultaneous data
updates. Is there already code in place to ensure data integrity
(i.e., record locking to ensure that one update does not incorrectly
write over another)? Is access to some or all of your data
restricted to a particular user or groups of users? Does your
application access or create data that must be kept secure? For
example, does your data contain financial information or account
numbers that must be kept private?

IDENTIFY YOUR DEVELOPMENT STRENGTHS
As you consider your implementation options, also consider your
development strengths. What are your areas of expertise? Can
you write SCL code easily but have no experience with Java
technology, or conversely, do you have Java experience but no
experience creating SAS/AF applications?

If you have more than one implementation option and
development time is critical, play to your strengths and use the
implementation option with which you have the most experience.
If you have several implementation options and you have enough
time in your development cycle to absorb a learning curve,
consider selecting an implementation strategy that will enable you
to develop your skills in a new area.

SYSTEM REQUIREMENTS CASE STUDY
Once the user requirements for the Publications Division's
updated time-tracking application had been determined, we
turned our attention to defining system requirements. The
application we were upgrading was originally a stand-alone
application; however, as one of our first requirements, we knew
that the new application would need to interface with a new,
undeveloped system that would be used to track the life-cycle of
Publications Division products. Although the new tracking system
was not yet developed, we had to consider ways in which the new
system and the time-tracking system would interact and model
our data tables accordingly. Additionally, we were told that the
application needed to be web-based. Ideally, your users will give
you, the developer, the opportunity to determine based on all the
available information what platform and implementation is most
appropriate. However, in many cases, as in this case, you will
simply be told which strategy must be used.

In examining our user base, we determined that our users were
primarily local users and users from one regional office. However,
we also noted that the users of the larger tracking application into
which the time-tracking application would be integrated are
located worldwide. Given that we knew that the two tracking
applications would potentially share data, we felt that we needed
to locate the data where the larger application (and the worldwide
users of the larger application) could access that data.

With respect to data concerns, we did not have to concentrate
greatly on this area. The applications that we develop run
completely behind a firewall and, at least with respect to the time-
tracking application that we were immediately concerned with, do
not contain sensitive, private data. Our primary concern in this

area was being certain that records were not being updated
simultaneously, but those concerns were alleviated by
constructing the data tables to avoid this problem.

The strengths and areas of expertise in our development group
were largely in the SAS/AF software area. None of us had
significant Java experience though all of us were familiar with
object-oriented programming principles.

Having determined the user and system requirements, we were
now in a position to examine all of our data and determine an
implementation strategy for the conversion of our application.

SELECTING AN IMPLEMENTATION OPTION
Now that you have identified your requirements, you can begin to
tackle the big question: will your application be a stand-alone
application or a web-enabled application?

Because the application we were tasked with converting is an
internal application that runs completely behind a firewall and
does not contain particularly sensitive data, we had the luxury of
not having to address data and server security issues; therefore,
because these issues are very much outside the realm of our
experience, we do not make recommendations here for which
implementation is best suited to deal with data and server
security. We recommend that you discuss such concerns with
your systems-support staff and if necessary with your SAS
representative or a SAS consultant.

STAND-ALONE APPLICATION
Despite the fact that the web is hot and everyone seems to want
to use it, there are some advantages to using a stand-alone
application instead. If your application depends heavily on users
navigating through it in a particular way, you may want to
consider a stand-alone application. In a web-based application,
there is no guarantee that your user will step through the
application as you expect. For example, a user could simply shut
down the browser (intentionally or accidentally) halfway through
executing an application task. A user could return to a previous
application web page without saving data from the current page.
There are ways to exert some control over a wandering user; for
example, you could use JavaScript to identify and respond to
particular events. However, if you find yourself thinking that it
would be great if a user could bring up a separate browser
completely dedicated to your application, then consider going
with a stand-alone application because users typically cannot be
counted on to use web browsers that way.

Just as you avoid the wandering-user problem by implementing a
stand-alone application, so too do you avoid dealing with data-
caching issues. Generally speaking, you can count on knowing
the settings of a stand-alone application window because you
programmed them to act the way that they do. Knowing the
settings, you can program the window to refresh after particular
events. You cannot count on all users to have data-caching
options set the same way on their browsers, and making sure
that users are looking at the most up-to-date data on any given
web page can be a challenge.

Another advantage is that it is easier to control simultaneous
access to the same record in a stand-alone application. Record
locking is difficult when implementing a web application but is
relatively straightforward to manage in a stand-alone application.

With respect to user-interface considerations, stand-alone
applications have the advantage of allowing you more control
over the application window, for example, the size of the window
and where it will appear when it comes up. Also, you can more
easily create complex graphical user interfaces (GUIs) that
change based on selections the user makes as he or she makes
them. For example, a checkbox the user selects may change
which items are available on a selection list in the same window.

If you are working in a PC networked environment, a
considerable disadvantage to a stand-alone application is that
either you have to have the application installed on each user's
machine and then any time a patch is needed, everyone has to
install the patch or upgrade individually, or you have to have an
application server that is powerful enough to handle your number
of users (which can be a challenge if you have a significant
number of users and a complex application). If applications are
installed locally, it is difficult to guarantee that all users have
installed the most recent version. In the application-server
scenario, in the event of an update, you can at least put an icon
on the desktop that would point to the latest version of the
application.

In a Unix environment, the issues seem to be more ease of
maintenance and performance considerations. The farther away
your users are from where your application is running, the slower
the stand-alone application runs because data related to both the
compiled catalog entries and the data sets need to be transmitted
so the processing can be done at the client. One way around this
problem is to install the application locally, which can require a
heavy maintenance load. Another possibility is to surface the
application to regional offices on the web via a Hydra application
server. In this scenario only small amounts of data are
transmitted, and all the real work is being done on an application
server at your headquarters. This approach still requires a second
installation of the catalogs on the Hydra application server, but
maintenance is not quite so heavy as installing the application
locally. The advantage to using a web implementation,
specifically a JSP solution, in this situation is that theoretically
there is only one copy of the application and the data to maintain
and performance should be relatively the same regardless of the
access location.

WEB IMPLEMENTATION
Hip, hot, here, and now - it's the web and your application can be
on it. In addition to the "hipness" factor, though, it is true that web
applications are generally viewed by users as being more easily
accessible. They also have the distinct advantage that there is no
need to install an application on everyone's desktop. Also, using
tools provided with SAS software, you can access your
application data on virtually any platform. For example, you could
use the ROCF classes provided with webAF� software to access
your data, or you could use JDBC calls. So, even if your
application data are stored on a mainframe, that in itself should
not keep you from putting your application out on the web. An
additional advantage to pursuing a web-based implementation is
that you can use the functionality already built into the browser for
basic searching capabilities and for common tasks such as
printing.

A disadvantage to a web implementation is that if you are dealing
with a complex GUI, it can be difficult or impossible to reproduce
your stand-alone application interface in a web page. For
example, if you need to vary the available selections in a list
based on information that the user provides elsewhere in the
GUI, you may not be able to do that in a single web page. In
addition, you will need to address data-caching issues to be sure
that pages are generated appropriately (or not generated at all)
when a user attempts to revisit a page. Finally, you must
determine where your web server is going to reside and make
sure that all the necessary servers to run your application can
communicate with each other where they are.

There are two obvious choices for a web implementation: Java
applets and JavaServer Pages (JSP�) technology. Each option,
as you might expect, has advantages and disadvantages.

JAVA APPLET
If you use a Java applet rather than JSP technology, you have
more control over the GUI than you do if you use the available
HTML entities. The Swing classes, in fact, enable you to create
fairly elaborate interfaces.

A major disadvantage to pursuing an applet over a JSP solution
is that you have to be sure when using an applet that everyone
has the correct plug-in. Alternatively, if users do not install the
expected plug-in, the rendering of your application GUI may vary
widely relative to the browser configuration. Also, download time
for applets can be significant. Will your users be patient enough
to wait for the download?

Data processing is another area where there is some advantage
to using a JSP solution rather than an applet because data
processing in an applet is confined to the client. If you have to
write back to the server using an applet, you will need to
implement a SAS middleware technology solution, and while that
is certainly possible, writing data can be much more
straightforward with JSP technology.

JAVASERVER PAGES TECHNOLOGY
Using JSP technology, you can process your data on the server
side, which allows you a very thin client. Also, you do not have to
deal with download issues in the same way you do with applets.
There can be an initial download hit the first time a user runs a
JSP solution, but after that, the process speeds up considerably.

With respect to GUI development, because most developers are
generally familiar with the existing HTML entities, the learning
curve to implement a JSP GUI will likely be lower than the
learning curve to create an applet GUI. However, your JSP GUI
may not be as snazzy unless you are willing to branch out and
implement some JavaScript or pull in a graphic designer to assist
with livening things up with graphics (keeping in mind that
graphics will affect load time).

IMPLEMENTATION OPTION CASE STUDY
Deciding which implementation to pursue was frankly the most
difficult decision we dealt with in converting our application. We
had been instructed to pursue a web-enabled solution, so that
decision was easy. However, figuring out which web
implementation to pursue on what platform, was a challenge.

Our current application data lived on Unix, but we had the option
of moving it to an NT environment for the new time-tracking
application. The future Publications tracking application that our
time-tracking application will interact with will have data on
numerous platforms, so the location of the data we might need to
access in the future was not really a deciding factor when
choosing our data platform. The current development platform in
our department is primarily HP-UX reached via an emulator
running on an NT workstation. There were indications that the
department would move to the NT platform for future
development. That being the case, we decided that our data
would live on the NT platform.

The server issue, which servers we needed and what platforms
they would live on, was another one that dogged us for longer
than we would have wished. We determined that based on our
number of users (about 150 occasional users and 10-15 constant
users), either a Unix or an NT application server would be
reasonable to meet our needs. With respect to web servers, we
found that we were more familiar with NT web servers and could
more easily run and test web servers on our NT workstations than
on our Unix network. Additionally, we found that we could get an
NT application server cheaper and faster, so we concluded that
an all-NT solution would best suit our needs.

We ultimately chose to pursue a JSP implementation over a Java
applet. Although in either case we had to learn how to program in
Java, a JSP implementation seemed easier to understand, and
we had more JSP sample programs available to use as models.
We also wanted to avoid plug-in issues and hoped to capitalize
on data-processing efficiency by taking advantage of the server-
side processing that JSP technology provides.

CONCLUSION
Unfortunately, there simply is not a unique set of steps you can
follow to convert your application from Version 6 to Version 8.
The response "Well, that depends..." followed closely by yet
another question will persist through most of your conversion-
implementation analysis. However, patient and detailed
examination of your current application and the goals of your new
application will ultimately yield a workable implementation
strategy that will in turn ultimately yield a V8 application best
suited to the needs of your users.

ACKNOWLEDGMENTS
Thanks go to Leah Redfern for her contributions to this paper and
to the project on which the paper was based.

CONTACT INFORMATION
If you have any comments or questions, please feel free to
contact either author at:

Sharon Muha / Elizabeth Malcom
SAS Institute Inc.
SAS Campus Drive
Cary, NC 27513
Phone: 919-677-8001
Fax: 919-677-4444
Email: sharon.muha@sas.com
 liz.malcom@sas.com

SAS and all other SAS Institute Inc. product or service names are
registered trademarks or trademarks of SAS Institute Inc. in the
USA and other countries. � indicates USA registration.

Other brand and product names are registered trademarks or
trademarks of their respective companies.

Java and all Java-based marks are trademarks or registered
trademarks of Sun Microsystems, Inc. in the U.S. and other
countries.

Point and Click Web Pages with Design-Time Controls and SAS/IntrNet®
Vincent DelGobbo, SAS® Institute Inc., Cary, NC

John Leveille, iBiomatics LLC™, Cary, NC

ABSTRACT
SAS® Design-Time Controls (DTCs) are a powerful and exciting
addition to SAS Web Technologies. These add-in software
components integrate back-end SAS® software functionality with
your desktop HTML editor. You can now create Web pages that
contain SAS content in a WYSWIG, point-and-click fashion using
any one of several popular HTML editors. In most cases, you do
not have to write a single line of code.

INTRODUCTION
This paper provides a brief overview of the SAS/IntrNet
Application Dispatcher. You do not need to know how to use this
product in order to understand this paper. However, you need a
working knowledge of the Application Dispatcher to use DTCs to
generate Web pages.

This paper explains SAS Design-Time Controls and how you can
use them to ease the task of building attractive Web pages. It
also explains how to generate Web pages that use Java Server
Page (JSP) and Active Server Page (ASP) technology.

SOFTWARE AND HARDWARE REQUIREMENTS
In order to use Design-time Controls, you must meet the following
software and hardware requirements.

• You must license SAS/IntrNet software Version 6.09E,
Version 6.12, Release 8.0 or later and have SAS installed
and ready to run.

• You must license SAS/GRAPH® software if you wish to use
Design-Time Controls that produce graphics.

• You must license SAS/EIS® software to use the MDDB
Report control in Version 6 of the SAS System. If you are
using Version 8, you must license either the SAS/EIS®
software or SAS OLAP Server software. If you wish to build
a SAS Multidimensional Database (MDDB) in Version 6 or 8,
you must license SAS/MDDB® Server software.

• You must have a Web server in order to store and serve the
Web pages you create. If you wish to use Design-Time
Controls to create JSP-based or ASP-based Web pages,
the Web server you choose must support these application
types.

• You are not required to have the SAS System installed on
your development machine in order to use SAS Design-
Time Controls. However, SAS must be installed and
configured to run as a SAS/IntrNet Application Server on
some machine on your network. You must also have a Web
server installed on some machine on your network.

• You must be running the Microsoft Windows operating
system on the machine that you use to create the Web
pages. Microsoft Internet Explorer Version 4.0 or later and
one of the following HTML editors must be installed on this
machine.

• Microsoft FrontPage 98 or 2000
• Softquad HoTMetaL Pro 5 or 6
• Microsoft Visual InterDev
• Macromedia Dreamweaver 2, 3, or 4
• Macromedia Dreamweaver UltraDev
• webAF™ 2.0 (part of AppDev Studio™ 2.0)
• Macromedia Drumbeat 2000

Note that the Microsoft Windows requirement applies
only to the machine used to develop the Web pages.
The machine that serves the pages and the machines
that browse the pages can be any operating system.

APPLICATION DISPATCHER OVERVIEW
The Application Dispatcher is a component of SAS IntrNet
software. The Dispatcher allows you to execute SAS programs
from a Web browser. These programs can consist of any
combination of DATA step, PROC, MACRO, or SCL code,
allowing you to immediately leverage your SAS skills and deploy
a truly thin-client Web application.

APPLICATION DISPATCHER ARCHITECTURE
The Application Dispatcher is comprised of three components, as
shown in Figure 1:

• Thin Client
• SAS Application Broker
• SAS Application Server

Figure 1. SAS Application Dispatcher Architecture and
Execution Flow

The thin client is simply your Web browser. It is used to interact
with any SAS programs that execute on the SAS Application
Server. The user interface is typically an HTML page with a
number of HTML form elements, and possibly some client-side
script such as JavaScript. SAS software is not required on the
client machine.

The SAS Application Broker is a very lightweight program that
must be installed on your Web server machine. It is used to
"broker" communication between the Web browser and the SAS
Application Server using the Common Gateway Interface (CGI).
You do not need CGI programming experience to use the
Application Dispatcher.

The final component of the Application Dispatcher is the SAS
Application Server. The server executes the SAS programs that
you write and the results are returned to the Web browser via the
Application Broker. Later you will see that Design-Time Controls
alleviate this requirement to write your own SAS programs.

TYPICAL APPLICATION DISPATCHER EXECUTION FLOW
Figure 1 illustrates the typical execution flow of an Application
Dispatcher request. As previously mentioned, the user interface
is usually an HTML page containing HTML form elements. A
user presented with this page will make appropriate choices and
then submit the form for processing.

At this point, any data that are contained in the form are passed
to the SAS Application Broker. The Application Broker
determines which SAS Application Server is to handle the
request and forwards all data to that server. The data are then
converted to SAS macro variables and are also stored in an SCL
list. Thus, the data contained on the HTML form are made
available to your SAS program.

You should write your SAS program so that it uses the data
passed from the Application Broker. After the SAS program
finishes execution, you can display in your Web browser, the
content that is generated by the program. HTML generated by
the SAS Output Delivery System (ODS) or by the SAS HTML
Formatting Tools are examples of appropriate content. A typical
Application Dispatcher program is responsible for creating an
entire page of content. This content is passed to the Application
Broker, which in turn sends it back to the Web browser.

WHAT ARE DESIGN-TIME CONTROLS?
Design-Time Controls are add-in components that can be used
with your Windows-based HTML editor. DTCs allow you to easily
add SAS content to your Web pages. Using the interface of your
HTML editor, you can insert a Design-Time Control into your Web
page. The control assists you by presenting a dialog of choices
and settings. After you make selections and close the dialog, the
Design-Time Control will cause an Application Dispatcher
program to execute, and the appropriate SAS-based content will
be written into your Web page. Design-Time Controls act like
page component wizards that help you build parts of your Web
page.

After you publish your Web page anyone can browse the content
that you have created. The Web browser user does not have to
have Design-Time Controls installed on his/her machine in order
to see the pages you have created, just as other people do not
need your HTML editor to see pages you have created. Thus, the
Windows restriction is imposed at design time, but not on clients
that wish to view the page.

Design-Time Controls are very powerful. They can generate
many forms of Web page content including HTML, JavaScript,
Java applets, ActiveX controls, ASP, and JSP code. They
present a user-friendly, intuitive interface that insulates you from
much of the complexity that comes along with sophisticated Web
content design. The SAS Design-Time Controls allow you to
access the power of SAS Software, surface the results in your
Web page, and still control the look and feel of your pages in a
WYSIWYG editor environment.

Design-Time Controls contrast with Application Dispatcher
programs in several ways.

• They generate only part of a page.
• You typically do not have to write the SAS

program.
• The HTML editor handles HTML layout.
• They integrate with ASP and JSP.

As previously noted, typical Application Dispatcher programs
generate a full page of content. Since the HTML editor is
responsible for handling layout, the Design-Time Controls are
solely responsible for generating fragments of SAS content. As
will be discussed later, you can use Design-Time Controls to
generate ASP- and JSP-based Web pages.

WHO USES SAS DESIGN-TIME CONTROLS?
SAS Design-Time Controls are intended to be used by someone
who has knowledge of both the desired Web pages and the
underlying data structures on which those pages are based. This
may or may not be the same person in charge of the aesthetic
design of the Web pages. It is possible for one person to lay out
a series of Web pages including backgrounds, color schemes,
and graphics, and a second person to use DTCs to insert the
SAS content in the appropriate locations on these pages. Each
Design-Time Control encapsulates its content, making it safe for
anyone to edit the Web page without disturbing either the layout
or the SAS content.

Of course, the page designer and SAS content builder may be
the same person. In this case the SAS Design-Time Controls are
still of considerable benefit. In the past, creating Web pages with
a SAS server often meant having to write HTML and SAS code
by hand. SAS Design-Time Controls make both tasks easier.
Writing HTML is easy when you use a WYSIWYG HTML editor.
Additionally, writing code is much simpler when you use the
control property dialogs because they write it all for you.

When combined with the SAS/ACCESS® software products, the
SAS Design-Time Controls have the added benefit of being able
to reach from your Web page editor through SAS to external data
sources, such as Oracle, DB2, and Excel. This means that a
person in charge of creating Web-based reports for these other
databases can also use SAS Design-Time Controls.

When your task is to analyze, construct reports, and surface that
content to the Web, SAS Design-Time Controls make life easier
for everyone involved.

HOW SAS DESIGN-TIME CONTROLS WORK WITH
SAS/INTRNET SOFTWARE
You are not required to have the SAS System installed on your
development machine in order to use SAS Design-Time Controls.
However, SAS must be installed and configured to run as a
SAS/IntrNet Application Server on some machine on your
network. You must also have a Web server installed on some
machine on your network. The Web server must be accessible
from the development machine where you are creating the Web
pages and from your users’ machines where they will view the
pages using Web browsers. The following diagram illustrates the
required infrastructure to run Design-Time Controls with
SAS/IntrNet.

Figure 2. Design-Time Control and SAS/IntrNet
Infrastructure

It is possible for the development, Web server, and SAS server
machines to be three different machines, two different machines,
or a single machine. It is also likely that the development
machine (with the HTML editor) will function as a Web browser
machine.

When you insert a SAS Design-Time Control into a Web page it
reads the Windows registry and loads your default SAS server
connection information. This information is set when the Design-
Time Controls are installed on your machine. The control does
not connect to the SAS server at this time. When you invoke the
properties dialog for the control and make selections on the
various tabs of the dialog, the control makes connections to the
SAS server. The control queries the server for information such
as a list of available data sets or a list of variables, and presents
this information to you in the properties dialog.

A series of events occur when you save the Design-Time Control
and when the Web page is browsed. The specific events that
occur depend upon the current processing mode of the control.
The processing mode can be set so that the control generates
static content or dynamic content. Static content is content that
does not change after construction of the page is complete.
Conversely, a page that contains dynamic content, which is
achieved through the use of ASP and JSP, will change if the
underlying data changes.

If the control is set to generate static content, certain events
occur, as shown in Table 1.

If the control’s processing mode is set to static

When the control is saved When the Web page is
browsed

• Control property settings
are serialized into the
Web page as an HTML
comment.

• Control connects to the
SAS server and sends
the current property
settings.

• SAS server runs a
program stored on the
server using the current
control settings as input.

• SAS server returns static
content (usually HTML).

• Control deposits content
into the Web page

Static content is returned to
the browser each time the
page is viewed. No SAS
processing is performed at
this point.

Table 1. Static Processing Mode

If the control is set to generate dynamic content you have a
choice of generating ASP code or JSP code. In either case, the
events occur as shown in Table 2.

If the control’s processing mode is set to dynamic

When the control is saved When the Web page is
browsed

• Control property settings
are serialized into the
Web page as an HTML
comment.

• Control generates a URL
string containing all the
property settings.

• Control wraps the URL
string in ASP or JSP
code and deposits the
code into the Web page.
No SAS processing is
performed at this point.

• ASP or JSP code
connects to SAS server
and sends the current
property settings.

• SAS server runs a
program stored on the
server using the current
control settings as input.

• SAS server returns
content (usually HTML)

• ASP or JSP code
deposits content into the
Web page.

Table 2. Dynamic Processing Mode

When viewed in a Web browser, the resulting page should initially
look identical for both the static and dynamic cases. However,
over time the dynamic output may change if the underlying data
changes. For static pages, the SAS processing is performed
once, at the time when you construct the page. This is
advantageous when your data is not changing because you only
pay the processing cost once. It is not as beneficial if you need
to see the latest data values and your data source is changing.
For dynamic pages, the SAS processing is performed for each
user that visits the page. This is advantageous because it shows
up to the minute data values, which is very important for volatile
data sources. However, this can become prohibitive if the
processing takes a long time or if the page gets a lot of visitors.
It is recommended that you consider the pros and cons of
dynamic publishing before deploying your Web pages.

Sometimes you may find it necessary to blend the publishing
modes of static and dynamic. For more information how to get
the best of both techniques, see the "Advanced Topic: Scheduled
Publishing" section of this paper.

AVAILABLE CONTROLS
Currently there are seven controls that you can use. Table 3 on
the following page lists the controls and shows the minimum
required release of the SAS/IntrNet Application Dispatcher
software that is required for each control.

Control Name Output
Description

SAS Release or
Version

SAS Critical
Success Factor

Critical Success
Factor Java Applet 6.09E, 6.12, or 8

SAS MDDB
Report

Multidimensional
database report in
HTML form

6.12 or 8

SAS Stored
Program

Output from your
SAS/IntrNet
program

6.09E, 6.12, or 8

SAS Table HTML table from a
SAS data set 6.09E, 6.12, or 8

SAS Tabular
Report

HTML table from
PROC TABULATE 8

SAS Thin Client
Graphics

SAS graphic Java
applet or ActiveX
control

6.09E, 6.12, or 8

SAS TreeView
Java applet to
visualize
hierarchical data

8.2

Table 3. Available Design-Time Controls

These controls are described as follows:

• The SAS Critical Success Factor control is a point and click
interface to the SAS RangeView HTML Generator (DS2CSF
Macro).

• The SAS MDDB Report control is modeled after the Layout
page of the SAS MDDB Report Viewer.

• The SAS Stored Program control is used to run any
standard SAS/IntrNet Application Dispatcher program. It
provides a way for you to integrate your existing or new
program output into a Web page.

• The SAS Table control is a point and click interface to the
SAS HTML Data Set Formatter.

• The SAS Tabular Report control surfaces some of the
functionality of the SAS TABULATE procedure.

• The SAS Thin Client Graphics control is a point and click
interface to the SAS Graph Applet HTML Generator.

• The SAS TreeView control is a point and click interface to
the SAS TreeView HTML Generator.

BUILDING YOUR FIRST WEB PAGE
In this section you will learn how to use a SAS Design-Time
Control to add some SAS-based content to your Web page. For
the purpose of illustration, the SAS Table control will be used.
You can adapt the steps outlined below to work with any of the
Design-Time Controls.

Once you install the SAS Design-Time Controls on your
development machine and set up the SAS Application
Dispatcher, you are ready to incorporate SAS content into your
Web pages. You use the functionality of your HTML editor to do
the entire layout of your page. In most cases, you can create an
attractive Web page without having to write any HTML code.

Start your HTML editor and spend a few minutes adjusting the
layout and appearance of your page. You may want to change
the background color or add some text and images to make the

page more attractive. Once all the layout tasks are complete,
you are ready to insert a SAS Design-Time Control into the page.

The act of inserting a Design-Time Control is different based on
the HTML editor you are using. Typically, you can do this by
finding the correct menu, such as Insert, and then selecting the
proper submenu item, such as Design-Time Control. In
Microsoft FrontPage, for example, the menu path is:

Insert ➨ Advanced ➨ Design-Time Control

Dreamweaver and Dreamweaver UltraDev users can insert
Design-Time Controls through the Insert menu or via the SAS
panel of the object palette. Other editors may have slightly
different mechanisms for inserting controls. Please consult the
documentation for your HTML editor if you are unsure how to
insert an object.

Choose to insert a SAS Table DTC. At this point a thumbnail
icon representing the Design-Time Control is placed into the
page. Note that this is simply a placeholder to indicate that there
is some piece of content at this point in your HTML page. You
then must display the properties dialog of the Design-Time
Control in order to make appropriate selections.

Some HTML editors may automatically display this dialog.
Others will require you to invoke the dialog by double clicking the
control, accessing a right mouse button menu, or some other
technique. Access to the properties dialog in Dreamweaver and
Dreamweaver UltraDev is provided through the property inspector
for that object. If you are unable to access the properties dialog
for the Design-Time Controls please consult the documentation
for your HTML editor.

In Microsoft FrontPage, you can access the properties dialog
either by double clicking the thumbnail icon or by selecting the
icon and then choosing Design-Time Control Properties… from
the popup menu. Figure 3 shows the Dataset tab of the SAS
Table control properties dialog.

Figure 3. Dataset tab of the SAS Table control properties
dialog

Select the data set SASHELP.RETAIL from the Data Set Name
dropdown list.

You should now choose the variables that you wish to display in
the HTML table. Go to the Variables tab and click the Select
button next to the Display variables field. When the variable
selector dialog opens, select the variables MONTH, DAY and
SALES, in that order. Then click OK to close the Variable
Selector dialog. Click the Select button next to the ID variables
field. Select the variable DATE and click OK to close the variable

selector dialog. Type SALES in the Sum variables field to
indicate that you want to sum the SALES column. Note that all of
the fields on the Variables tab are text boxes. If you know the
name of a variable you can type it in the box instead of opening
the Variable Selector dialog.

Click OK to close the Table control properties dialog. At this
point a SAS server program executes and returns an HTML table
that contains the columns DATE, MONTH, DAY and SALES from
the data set SASHELP.RETAIL. Save this HTML page and view it
using your Web browser or using the preview window of your
HTML editor. Figure 4 shows that the HTML table that was
generated is pretty bland looking, so we will now set some other
properties to make the table more attractive.

Figure 4. Basic HTML table generated by the SAS Table
control

Access the properties dialog of the Table control and go to the
Appearance tab. Supply a value of 10 for Cell Padding and a
value of 0 for Cell Spacing. Go to the Color tab and supply the
following colors for the various elements.

Element Foreground Color Background
Color

Variables Teal Silver
Sum Variables White Red
Column Labels White Navy
ID Variables White Navy

Click OK to close the Table control properties dialog and save the
HTML page. To see the enhanced table appearance (shown in
Figure 5), view the page using your Web browser or using the
preview window of your HTML editor.

Figure 5. Enhanced HTML table generated by the SAS Table
control

STATIC PROCESSING VS. DYNAMIC PROCESSING
The SAS Design-Time Controls can operate in a few different
processing modes. These processing modes produce either
static output or dynamic output. If you examine the Connection
tab in the properties dialog for each control you will see that the
first field has the following options.

• Perform SAS processing once when building this page.
• Perform SAS processing when Java Server Page is invoked.
• Perform SAS processing when Active Server Page is

invoked.

Note: The MDDB Report control does not have this field, but
rather has a field named “Show MDDB Report.” Refer to the
Design-Time Control documentation for information on this field.

The first option “once when building this page” is the static
processing mode. If you select this option, the DTC connects to
SAS when you save the control properties or when you save the
Web page. A program runs inside the Application Server, and
HTML is deposited into the Web page that you are editing. The
output from the control is static when you use this mode. It will
not change until the next time you modify the control or save the
page (depending upon your HTML editor behavior).

Static processing mode may be appropriate for a lot of pages.
This mode can be used to construct static content for HTML,
ASP, or JSP pages. It also means that each time a user browses
this page on your Web site you are not incurring the cost of
running a SAS program. However, if you are using static
processing mode, the Web page may not display the latest data.
This may be just fine if you are displaying a table of last year’s
revenue. Since that data will not change, it makes sense to use
static processing mode. However, if you want to display a report
based on some underlying data source that is rapidly changing
then you probably want to consider a dynamic processing mode.

The second and third options, “when Java Server Page is
invoked” and “when Active Server Page is invoked,” are
dynamic processing modes. SAS Design-Time Controls use JSP
and ASP in a similar manner. Therefore, consider statements
about dynamic processing to apply equally to either ASP or JSP.

To use dynamic processing you must first make sure that your
Web server is ASP or JSP enabled. Then, you must make sure
that the file name for the Web page you are creating ends in .asp,
if you intend to use ASP for dynamic processing, or .jsp if you
intend to use JSP. Next, set the processing mode on the
Connection tab to match the file name extension you are using.

Dynamic processing mode is powerful, but the differences from
static mode can be subtle. The power of dynamic processing
mode surfaces when you want to display the latest data in your
Web page. When the Web server serves the dynamic page, the
code generated by the SAS Design-Time Control will connect to
SAS and run a program. This program will return HTML output
representing the very latest data values. This is invaluable if you
have a data source that is changing frequently. By using
dynamic processing your Web page evolves and stays current
without your intervention. From the perspective of editing the
Web page content, dynamic seems almost exactly like static
processing mode. However, there are some differences to
consider. It is worth noting that you will probably be unable to
use the preview feature of the HTML editor with dynamic
processing mode. The best technique is to construct the page
using static processing mode. Then, switch the processing mode
on the control and change the file name extension when you are
finished creating the page. When you are ready to view the Web
pages, you must make sure to use an address that starts with
“http” to see the result of the dynamic controls.

BUILDING A DYNAMIC WEB PAGE USING ASP OR JSP
The process of building dynamic Web pages is very similar to the
process of creating static pages. The major difference is that for
dynamic pages, you defer the execution of the Application
Dispatcher program, and hence, generation of the SAS content,
until you view the page in your browser. For the sake of brevity
we will start with the static Web page that was constructed
earlier, and shown in Figure 5.

Make a copy of the HTML file and open it in your HTML editor.
Access the Design-Time Control properties dialog and go to the
Connection tab. Note that the value specified in the Perform
SAS processing dropdown list is once when building this
page. This indicates static processing mode. To convert to a
dynamic processing mode, select either when Java Server Page
is invoked or when Active Server Page is invoked, depending
on the type of dynamic page you wish to generate. Close the
properties dialog and save the Web page.

Using your HTML editor, view the HTML code that was
generated. You will see that the Design-Time Control did not
create static HTML. Rather you will see VB Script or Java code,
depending on the processing mode you chose. This code will run
when a Web browser views the page. Thus, if the data that are in
the SAS data set SASHELP.RETAIL change over time, the Web
page will reflect that change when viewed in a Web browser.
This is the difference between static and dynamic processing.

You must now give your Web page the correct file extension
based on the dynamic processing mode that you chose. Use an
extension of .asp for Active Server Pages and .jsp for Java
Server Pages. You are now ready to view the page via your Web
browser. Note that as mentioned earlier, you must use a Web
browser to view dynamic pages, because the preview feature of
your HTML editor will likely fail.

The result you see should be exactly the same as the page
shown in Figure 5. Again, if the data had changed, then what you
are viewing now would look different from the static page.

ADVANCED TOPIC: SCHEDULED PUBLISHING
If you take advantage of the dynamic publishing features of the
SAS Design-Time controls, the ASP or JSP pages you create
can be run on a scheduled basis. That is, the dynamic pages
can be run periodically and the HTML that is generated can be
stored as static pages on your Web server. This is useful if you
have data that changes on a periodic basis, and you want to
refresh the HTML pages that contain the time-sensitive content.

The remainder of this section discusses how you can accomplish
this using the SAS System. Additionally, you will need
scheduling software that is capable of running a program at a
specified time. Examples include cron on Unix systems, at on
Windows systems and Control-M on IBM mainframe systems.
Alternatively, the SAS/Warehouse Administrator® software can
be used to schedule your job.

Suppose you have data that is updated at 6:00 a.m. each day.
You would like to generate reports that reflect the updated data
and then store those reports on your Web server.

First, use the SAS Design-Time Controls to generate either ASP
or JSP pages that represent your report, and store the pages on
your Web server. Then, modify the following SAS program and
schedule it to run at a specific time, for example, 6:10 a.m. This
sample code uses the SAS software URL access method to
retrieve the dynamic DTC page and store it as a static page on a
Web server using the SAS software FTP access method.

*;
* Provide the path to the dynamic DTC page
* using the SAS URL access method.
*;
filename dtcpage url “http://myserver/path-

to-dynamic-dtc-page”;
*;
* Provide the name of the static HTML page
* to be created, the domain of the Web
* server machine where the static page is to
* be stored, the user name a password to be
* used to log into the Web server machine
* and any other host commands using the SAS
* URL access method.
*;
filename static ftp “path-to-static-page”

host=”myserver”
user=”userid” pass=”password”
rcmd=”ascii”
rcmd=”site umask 002”;

*;
* Run the dynamic DTC page by accessing it
* via the SAS URL access method. Then
* publish the resulting HTML to the
* Web server using the SAS FTP access
* method.
*;
data _null_;
infile dtcpage;
file static;
input;
put _infile_;

run;

Note that if the SAS log contains the error message "ERROR:
Service httpd not found" or "ERROR: Service ftp not found”,
please refer to the Troubleshooting section of the SAS Design-
Time Controls documentation.

CONCLUSION
SAS Design-Time Controls are a powerful and easy way to add
SAS-based content to your Web pages. They allow you to build
attractive Web pages with a minimal amount of effort.
SAS/ACCESS software also provides powerful data access
capabilities in this easy-to-use environment. By supporting Active
Server Pages and Java Server Pages, Design-Time Controls
bring a new dimension to the types of applications you can
develop with the SAS Application Dispatcher.

SAS and all other SAS Institute Inc. product or service names are
registered trademarks or trademarks of SAS Institute Inc. in the
USA and other countries. Indicates USA registration.

Other brand and product names are registered trademarks or
trademarks of their respective companies.

REFERENCES
SAS/IntrNet Web Site, SAS Institute Inc., Cary, NC.
http://www.sas.com/rnd/web/intrnet/

SAS Application Dispatcher documentation, SAS Institute Inc.,
Cary, NC. http://www.sas.com/rnd/web/intrnet/dispatch.html

SAS HTML Formatting Tools Web Site, SAS Institute Inc., Cary,
NC. http://www.sas.com/rnd/web/intrnet/format

SAS MDDB Report Viewer Web Site, SAS Institute Inc., Cary,
NC. http://www.sas.com/rnd/web/intrnet/mddbapp.html

SAS/IntrNet Papers and Presentations, SAS Institute Inc., Cary,
NC. http://www.sas.com/rnd/web/intrnet/papers/

SAS Design-Time Controls Web Site, SAS Institute Inc., Cary,
NC. http://www.sas.com/rnd/web/dtc/

"SAS Design-Time Controls Now Available as Downloadable
Component for SAS/IntrNet® Software," SAS Institute Inc., Cary,
NC, 2000.
http://www.sas.com/service/news/feature/03jul00/sas_dtc.html

"SAS Design-Time Controls Add Support for Macromedia
Dreamweaver," SAS Institute Inc., Cary, NC, 2000.
http://www.sas.com/service/news/feature/18dec00/dtcs2.html

"SAS Design Time Controls: New Tools for Information Delivery
in the Enterprise," SAS Institute Inc., Cary, NC, 2000.
http://www.sas.com/rnd/web/intrnet/papers/dtcDec00.pdf

“Microsoft Design-Time Controls Overview,” Microsoft Corp.,
Redmond, WA, 1997.
http://msdn.microsoft.com/workshop/components/dtctrl/doc/overv
iew.asp

CONTACT INFORMATION
Your comments and questions are valued and encouraged. If
you have specific needs for controls and/or use an HTML editor
or other application that does not support DTCs, let me know and
I will evaluate your request as a future enhancement.

Contact the author at:

Vincent DelGobbo
SAS Institute Inc.
SAS Campus Drive
Cary, NC 27513
Phone: (919) 677-8000
Fax: (919) 677-4444
Email: Vincent.DelGobbo@sas.com
Web: http://www.sas.com/rnd/web/dtc/

AppDev Studio® Release 2.0
Carl LaChapelle, SAS Institute Inc., Cary, NC

ABSTRACT
Version 2 of AppDev Studio is shipping! What is AppDev Studio
you ask? AppDev Studio provides a single interface for the
development of thin- and power-client business intelligence
applications. It is the first suite of application development
products tailored specifically for developing information delivery
applications. It draws upon the proven strengths of SAS
software, including an open architecture for developing solutions
on every major Web standard on both the server and the client
side.

This presentation will highlight many of the enhancements that
have been made to this release of the software with live
demonstrations of new features available in webAF® and
webEIS™, two of the components that make up the AppDev
Studio bundle.

A copy of the finished paper can be found under the Reference
link on the AppDev Studio® Developer’s Site
(www.sas.com/rnd/appdev).

INTRODUCTION
With AppDev Studio you have everything you need to create Java
client applications and applets; Java server applications (servlets,
JavaServer Pages and Enterprise JavaBeans); CGI/HTML
applications; Active Server Pages applications and traditional full-
client applications.

The remainder of this paper will focus primarily on enhancements
made to two of the Java-based technologies available with
AppDev Studio: webAF and webEIS software.

webAF software is an integrated visual programming environment
that enables you to rapidly build Java applications, applets,
servlets and classes using a drag-and-drop object-oriented
interface that helps reduce the amount of programming needed.
webAF software helps you build applications that are easy to
manage and that instantly connect to SAS software. New
features found in V2 of webAF include:

Enhancements to the development environment
• Support for Java 2 and JFC/Swing technologies
• Support for drag-and-drop building of both AWT and Swing

dialogs
• Improved packaging support including JAR signing
• A new Enterprise JavaBean (EJB) Wizard
• A pure Java implementation of SASNetCopy (called

JSASNetCopy) that uses JDK 1.3 extensions mechanism for
downloading required extension jars

Improved server-side Java development capabilities
• Improved support for servlet projects, including full support

for the Servlet 2.2/JSP 1.1 specification
• Extended the ability for JSP and Servlet execution in the

built-in Apache/Tomcat Web server, or any local Web server
that you specify

• Provided new “WebAppDev” project area to build J2EE-
compliant Web applications that can be easily deployed

• Added Visual Builder tool for JavaServer Page (JSP)
projects

• Support for JSP tag libraries (also referred to as “custom
tags”)

New Java components and enhanced TransformationBeans
• New “Intelligent Page” (iPage) TransformationBeans for

wireless/handheld device tasks that render an appropriate
markup (WML, HDML, or HTML) based on the user request

• Enhanced MDTable TransformationBean for display of
multidimensional data, including several new selector
components enabling you to build complete OLAP
applications

• New Chart TransformationBeans (both 2-D and multi-
dimensional)

• New MenuBar TransformationBean for XHTHML/DHTML
output

• Other enhanced TransformationBeans include the Table and
TreeView

• New components for JDBC support
• Added components for IOM support

webEIS is an OLAP (Online Analytical Processing) application for
the Web. An easy-to-use, drag-and-drop environment enables
business analysts to build their own Web-based documents for
sharing and viewing multidimensional data structures (MDDBs).
OLAP documents can be published as either Java applets or
using JSP technology without having to write a single line of Java
code. The applets or JSPs are generated automatically and can
be viewed with a familiar browser such as Microsoft Internet
Explorer or Netscape.

Version 2 enhancements for webEIS® include:
• Improvements made to both the build-time and run-time

pulldown menus, dialogs and toolbars to be more intuitive
and to better follow GUI standards

• Run-time toolbars can be created via a drag-and-drop GUI
from a full-featured suite of defined actions

• Charting improved to include independent specification of
category and group variables, as well as formatted labels

• Formats can be applied to computed values
• Styles can be applied to totals
• NUNIQUE support
• Packaging process rewritten and simplified as “Save as

Applet” and includes better support for images
• Documents can be deployed as JavaServer Pages using

“Save as JSP…” option

This paper will discuss these and more of the features that
Version 2 of AppDev Studio brings to help you build your
enterprise applications.

CONTACT INFORMATION
Your comments and questions are valued and encouraged.
Contact the author at:

Carl LaChapelle
SAS Institute Inc.
SAS Campus Drive
Cary, NC 27513
Work Phone: (919) 531-7712
Email: Carl.LaChapelle@sas.com

Applicatons Development

AA MMoodduullaarr AApppprrooaacchh ttoo PPoorrttaabbllee PPrrooggrraammmmiinngg

Michael A. Litzsinger, Quintiles Inc.
Lisa Kaye Brooks, Quintiles Inc.

There is a balance between programming in a
flexible modular manner versus a direct
standalone manner. Segmenting programs into
components aids flexibility but also introduces
complexity. Creating standalone programs from
redundant and repetitive components makes
applying widespread changes tedious and time
consuming. Consistency and version issues are
raised as a program library grows.

This paper presents SAS® programming
techniques that allow operating system and
project assignments to be made centrally.
Components generally include anything that can
be best defined in a single location, such as
LIBNAMEs, TITLEs, FOOTNOTEs, or system
options. More advanced uses include single-
source definition of macro variables in a
conditional manner, allowing numbering or key
elements to be controlled from one place.

This paper also details the use of MFILE, in
conjunction with MPRINT, to direct executed
program statements to a standalone output
program. MFILE is a relatively unknown system
option that was known as RESERVEDB1 in SAS
6.12. It is a simple way to port code using the
output directing capabilities of the MPRINT
system option. The resulting SAS program is
stripped of all traces of modularity and
underlying macros, and can be executed as a
standalone program. The combination of these
two techniques results in truly portable SAS
programs while retaining the flexibility.

Modular versus Standalone:

Modular programming is the breaking down of
a program into parts that are of more manageable
size and have a well-defined purpose. Modules
should fit intuitively together into a system of
components. In any development environment,
including SAS, modular programming is how
larger, more complicated programs are
constructed. The first step is to break the task
into its basic parts, which leads to defining
intermediate steps, and ultimately devising a
comprehensive and efficient solution. Modules
can be developed individually, validated, and

then used throughout an organization, promoting
teamwork, efficiency, and innovation.

The advantages of modularity are obvious. Code
only needs to be written once, which allows
quick modifications. It provides a framework
that dictates how subsequent programming
should be incorporated. Modularity fits an
environment where several programmers share
work. The drawbacks include a slightly higher
learning curve, a moderate level of complexity
(even for simple tasks), and some required
management of the macro libraries of SAS
programs. An important issue is how to deliver
simple portable programs to achieve contractual
client obligations without providing proprietary
SAS programs. Lastly, programs must adhere to
corporate or departmental standards to maximize
work sharing.

Standalone programs however are inherently
portable. Consultants and service industry
programmers create code that may be used
across platforms or systems, and are often asked
to provide executable SAS programs to satisfy
documentation or audit trail requirements.
Standalone programs are also the obvious
method for starting a task from scratch. There is
no reason to build in any unneeded complexity
as the development unfolds. This works best for
a single programmer, or in an environment
where specifications do not change. De-
macrotized standalone programs are the way to
provide code without disclosing proprietary
work.

The main drawback of standalone programming
can be quite problematic. Without the planning
intrinsically provided by modular programming,
it can be difficult to quickly apply unexpected
changes. In fact, the redundant nature of
standalone programs can make applying
modifications very tedious.

Presented on the next page is an example of a
modular program and a standalone program side-
by-side for easy comparison followed by a table
that contrasts the advantages of each method:

Modular Program (demo_itt.sas):
*System options;
%include “settings.sas”;

*Define project libraries;
%include “libnames.sas”;

*Define output settings;
%include “titles.sas”;
%include “tnum.sas”;
%include “foots.sas”;

*Define macro library;
%include “age.sas”;
%include “freq.sas”;
%include “npct.sas”;
%include “maketbl.sas”;

*Main program;
data agedata;
 set datalib.demo;
 age=%age(birthdt,visitdt);
run;
%freq(indsn=agedata,colvar=pop,total=Y,
 npct=”000 (000%)”,out=freqout1);
%freq(indsn=agedata,depvar=age,
 colvar=pop,rowvar=sex,total=Y,
 npct=”000 (000%)”,out=freqout2);
data tbldata;
 set freqout1
 freqout2;
run;
%maketbl(indsn=tbldata,

 method=ProcReport,
 style=Standard3,source=Y)

Standalone Program (demo_itt.sas):
*System options;
options nocenter ls=150 ps=55 yearcutoff=1910;

*Define project libraries;
libname datalib “c:\datalib”;
libname library “c:\datalib”;

*Define output settings;
title1 “My Project”
title2 “Table 10.1.1 (Draft)”;
title3 “Demographics Summary”;
title4 “Intent-to-Treat Population”;
footnote1 “Note: Only randomized subjects
are presented.”;
footenote2 “Source: DEMO_ITT.SAS,
&sysdate9 &systime”;

*Main program;
data agedata;
 set datalib.demo;
 age= (year(visitdt)-year(birthdt))-
(month(visitdt)<=month(birthdt))+
(month(visitdt)=month(birthdt)&
day(visitdt)>=day (birthdt)));
run;
[… some code has been skipped …]
proc freq data=agedata;
tables pop/out=freqout1;
run;
proc freq data=agedata;
tables pop*sex/out=freqout2;
run;
[… some code has been skipped …]
data tbldata;
 if _n_=1 then set pct;
 set freqout1
 freqout2;
 array n n1-n3;
 array pct pct1-pct3;
 array val $ val1-val3;
 do val=1 to pop;
 val=put(n,3.)||” (“||put(pct,3.)||”%)”:
 end;
run;
proc report data=tbldata;
[… some code has been skipped …]
run;

Modular:
1. Best for medium and large solutions, whether

static or dynamic.
2. Facilitates solving complex problems by

breaking them down.
3. Global modification is made easy by only

having to update one location.
4. Flexible structure encourages innovation.
5. Eliminates/reduces re-inventing the wheel.
6. Creates environment conducive to sharing

workload and farming out programming tasks.

Standalone:
1. Best for small static solutions.
2. Large problems are not clearly defined and thus

can be overwhelming.
3. Widespread changes are likely repetitive and

tedious.
4. Reluctance to try new ideas because changes

are difficult to implement.
5. Code is generated as many times as needed.
6. Only one person can work on a program at a

given time.

Primary Components:

For this presentation, the modules have been
grouped together into five primary functions
(these are the first five listed below). A sixth
module type, really a technique to automate
elements of the other five modules, will be
discussed briefly.

Modules discussed in this presentation:
1. System options, draft stamps
2. Library names and formats
3. Titles, numbering of tables, footnotes
4. Macros for data step manipulations and

customized procedures
5. Main program body
6. (Advanced) Conditional execution of code

based on macro variable (automatic or
explicit)

System Options
Placing system options in their own programs
facilitates making project-wide system changes.
For example, during SAS Y2K remediation each
project had to incorporate the appropriate cutoff
year. It was only necessary to add the
YEARCUTOFF option to the existing system
option module.

Library Names and Formats
A single location for LIBNAMEs and
FORMATs is a natural solution for portability.
Projects can easily share programs with
colleagues on different platforms or directory
structures. Referencing unique LIBNAME
modules makes it unnecessary to update
individual programs.

Titles, Tables Numbers, and Footnotes
Placing project specific details in one location
facilitates making quick changes. If an
additional table is inserted, this technique makes

it easy to renumber subsequent tables. A central
location for table components allows code to be
easily reused across similar projects. Differences
can be clearly specified, aiding understanding as
well.

Macros
The macro language can do some slick tricks in
controlling program execution. But macros do
not have to be complicated to be extremely
useful. The primary use of macro language at all
programming levels is the ability to use code
repeatedly. Modularizing macros makes them
more reusable with availability to all programs
within a project or even an organization.

Main Program Body
This is the primary module. It contains code that
is unique to the purpose of the program. It
usually brings in data and manipulates and/or
presents it. The main program brings together
all of the sub-modules by calling or passing
parameters to them.

Conditional Execution of Code
This applies mainly to the assignment of titles,
table numbers and footnotes. Efficiencies can
be gained by uniquely setting a macro variable
within each of the main program bodies (for
example: %LET PGMNAME=DEMO_ITT).
Code can then be conditionally executed based
on which program is accessing the module. This
is a time saver when a global change has a
domino effect, like the change of table numbers.
A detailed example can be found later in this
paper. The SAS system can automatically set
program specific macro variables (SYSPARM),
but this method is outside the scope of this paper.

Generating Code Using MFILE:

In SAS 6.12, “ MFILE” debuted as system option
RESERVEDB1. It became MFILE in SAS 7.

The MPRINT option is traditionally used as a
technique in debugging or to display all executed
statements to the log. MPRINT sends macro
generated code to the log with the prefix
MPRINT beginning each line:
MPRINT(PGMCODE): libname datalib "c:\datalib";
MPRINT(PGMCODE): data newdemo;
MPRINT(PGMCODE): set datalib.demo;
MPRINT(PGMCODE): dsvar=12;
MPRINT(PGMCODE): run;

This code has all macro variables and references
resolved and can be thought of as source or
“compiled” code reduced to its simplest form. A
great feature of MPRINT is that this code can be
directed to an external file.

SAS program code is redirected to an output
destination when:
x FILENAME MPRINT path is defined
x MPRINT and MFILE are in effect
x Code is executed through a macro
The required parts are bolded below. Using this
technique, the macro facility saves every
executed statement to a file for you.

Running this code:
filename mprint “c:\pgmlib\newdemo.pgm”;
options mprint mfile;

%macro pgmcode;
 libname datalib “c:\datalib”;
 %let var1=12;
 data newdemo;
 set datalib.demo;
 dsvar=&var1;
 run;
%mend pgmcode;
%pgmcode;

creates this executable code (newdemo.pgm):
libname datalib “c:\datalib”;
data newdemo;
 set datalib.demo;
 dsvar=12;
run;

By now you may have realized an obstacle: SAS
will automatically resolve all macro elements in
the code it redirects to your saved file. You can’t

have it selectively pass code that contains desired
macro elements, such as %include. Because our
goal here is to create standalone code containing
some modular elements (the ability to change
system options and LIBNAMEs/FILENAMEs
location), we have to be creative in how and
when MFILE is used. Generally, we want to use
it to create a standalone file of the proprietary
elements, and then tweak this file so it can run
on a new system. There are several ways to do
this, and most methods have a “burden” of
knowing the new operating system and location.

The best way to end the redirection of statements
is by ending the macro. Other methods write an
unwanted remnant to the redirected program:
x OPTIONS NOMFILE; or OPTIONS

NOMPRINT; will become the last statement
written to the output program.

x FILENAME MPRINT path; becomes the
last statement written to the first output
program. Then the second output program
picks up where the previous one left off.

An important decision that must be made upfront
is which type of comment text should be used in
your source programs. Not all types of
comments are passed to the standalone program:
Comment type Result
*Comment; Passed through as is:

*Comment;
*Comment1
*Comment2;

Text will flow to long lines:
*Comment1 *Comment2;

/*Comment*/ Ignored
%*Comment; Ignored

Thus, only “*” comments are passed unchanged
through to the MPRINT file. To avoid long
comments on a single line, always end each line
with a semicolon. Documentation blocks need to
use “*;” comments to neatly pass them through
to the standalone program. Comments in macros
should not use “*” comments as these are not
desired in the standalone program (proprietary
elements should be kept transparent).

Outlined in the following table are solutions that
make standalone programs created by MFILE
more portable. They range from the simple
“Text Replacement” method to the most portable
“Append” method. The method of choice
depends on the knowledge of the target operating
system, the degree of desired portability, and the
client’s ability to alter and run SAS programs.

MFILE Methods to Create Portable Standalone Programs:

Method Issues for provider Issues for client True Standalone?
Text replacement Create upfront if

OS/location known
Client must replace token
text in each program
(Operating system may have
a text replacement utility to
make this easier)

Yes

Portable Media Define on portable
media (Zip disk or
diskette)

Client must leave work on
media

Yes, restricted – must
run directly on media
(rules out CDs)

Comprehensive
Program

Client must modify a single
program in a directory

No – runs all programs
in directory

Interactive Program Client must set LIBNAMEs/
FILENAMEs once per
session

No – requires
interactive mode

Append Create upfront if
OS/location known

Client must run macro to
create

Yes

Text Replacement Method:
The most straightforward method for creating
portable standalone programs is to place a token
string at the beginning of each source program.
This token can then be replaced or swapped out
prior to running the program on the new system
once it is determined where datasets and
included programs will reside. However, for this
token text to be benignly passed through, it must
be defined as a “*comment;”. Remember, you
cannot pass “%include …” through because it is
resolved by the MPRINT facility. Other types of
comments are not passed through at all.

Running this code:
filename mprint “c:\pgmlib\newdemo.pgm”;
options mprint mfile;

%macro pgmcode;
 **** new libnames go here ****;
 %let var1=12;

 data newdemo;
 set saslib.demo;
 dsvar=&var1;
 run;
%mend pgmcode;
%pgmcode;

creates this code (newdemo.pgm):
**** new libnames go here ****;
data newdemo;
 set datalib.demo;
 dsvar=12;
run;

A swap or replacement in each program will
need to be made.

Replace the text:
**** new libnames go here ****;

with the text:
%include c:\pgmlib\libnames.sas”;

and define LIBNAMEs centrally in libnames.sas.

This process can be automated using operating
system specific utilities, or each program can be
modified individually. For example, a DOS com
file or Visual Basic macro can make such
changes automatically. And on an OpenVMS
system, a SWAP com file can easily make large-
scale replacements from one command.

Thus, if the target operating system and file
locations can be determined in advance, the
standalone programs can be readily created prior
to shipment. Alternately, if the client is able to
make the changes, they could determine the
locations.

Portable Media Method:
Packaging all programs and data onto read/write
media (zip drive, diskette) allows programs to be
run in place. The programming environment is
dependent on the media. There must be ample
space available to write back to the disk when
required (creating files, table output, SAS system
writes, etc.). If LIBNAME and operating system
definitions are known prior to delivery it is
possible to prepare the programs ahead of time.

MFILE Methods, continued:

The resulting code is “ready to run” and would
need no manipulation at run time. The
programmer could develop the code directly onto
the delivery media. Or it can be created in a
testing area and then the text replacement or
append method can be used to prepare the code
for porting to the new media. This method is
really only an option for smaller projects unless
an external hard drive is delivered, or higher-
density portable read/write storage becomes
available.

Prologue to the Comprehensive Program and
Append Methods:
The comprehensive and append methods require
the program created by MFILE to be stripped of
all operating system specific code (such as
LIBNAMEs). A program is then run to attach
code necessary for running on the new system.

The following example shows how you can
modularize specific elements of the source
program to make it more portable. Specifically,
libnames.sas resides outside of the macro that
redirects code to the standalone program. The
librefs are available for running on the original
system but are not included in the output
standalone program.

Running this code (newdemo.sas):
*Code not directed to the output program;
%let pgmname=newdemo;
%include "c:\pgmlib\libnames.sas";

*set up program for mfile;
options mprint mfile ls=230 ps=80;
filename mprint "c:\pgmlib\&pgmname..pgm";

*Code directed to the output program;
%macro pgmcode;
%let var1=12;
 data newdemo;
 set datalib.demo;
 dsvar=&var1;
 run;
%mend pgmcode;
%pgmcode;

creates this standalone executable code
(newdemo.pgm):
data newdemo;
 set datalib.demo;
 dsvar=12;
run;

Comprehensive Program Method:
For this method, a comprehensive program is
built in addition to each individual program
provided. The logical arrangement is to link
similar tasks or group all the programs from a
subdirectory. So if you had 20 summary table
programs in a subdirectory, you would create
another program that called the other 20
programs sequentially. If the operation system
and location were known in advance, the
comprehensive program could be built upfront.
If not, the client user would have to fill in
information for file locations (LIBNAMEs/
FILENAMEs) and the location of the included
program library.

This method is not a true standalone because all
programs are launched from one program. But
the simplicity of this approach means that the
LIBNAMEs only have to be defined once at the
top of the comprehensive program. This
approach may be clear enough to the client that
they are willing to fill in the location information
themselves.

For individual program execution, just comment
out unwanted macro calls. For the same result,
submit only a highlighted selection of code in an
interactive session.

To run this code below, either the program and
data locations need to be defined upfront or the
client must provide this information in each
comprehensive program:
%let srcpath=c:\pgmlib\;
%let datpath=c:\datalib\;

options nocenter ls=150 ps=55 yearcutoff=1910;

libname datalib "&datpath";

%macro runall(&pgmname=);
 proc printto file=”&srcpath.&pgmname..tbl”;
 run;
 %include “&srcpath.&pgname..pgm”
%mend runall;

%runall(newdemo);
%runall(neweff);
[… et cetera …]

MFILE Methods, continued:

An alternate to the comprehensive program
solution is the Interactive Program solution,
where LIBNAMEs define temporary work files,
and individual programs merely call work files
and are run subsequently. LIBNAMEs must
define work files at the start of every session.
The Interactive Program method isn’t really a
viable solution in a validated program
environment, so an example is not provided, but
it could be an option in some situations.

Append Method:
In the append method, a library name module is
appended to each standalone program generated
by MFILE. The following code (append.sas)
attaches libnames.sas to newdemo.pgm to create
the new program newdemo.sas.

The append.sas program makes use of put, input,
and file statements to build the portable program
that contains both the libnames.sas component
and the standalone program created by MFILE.
It is only necessary to update the macro
variables DATPATH and PGMPATH in
append.sas. The libnames.sas program uses
these macro variables to set the librefs.

Run this program (append.sas):
%let pgmpath=c:\pgmlib;**target programs;
%let datpath=c:\datalib; **data directory;

%macro append(pgm=,srcpath=);
filename pgmout "&srcpath.&pgm..sas";
data _null_;
 file pgmout;
 put @1 "%" "let pgmname=&pgm;";
 put @1 "%" "let srcpath=&srcpath;";
 put @1 "%" "let datpath=&datpath;";
run;
data _null_;
 infile "&srcpath.libnames.sas" pad;
 input @1 line $256.;
 file pgmout mod;
 put line;
run;
data _null_;
 infile "&srcpath.&pgm..pgm" pad;
 input @1 line $256.;
 file pgmout mod;
 put line;
run;
%mend append;
%append(pgm=newdemo,srcpath=&pgmpath);

along with this code (c:\pgmlib\libnames.sas):
libname datalib "&datpath";
libname library "&datpath";

to create this executable code (newdemo.sas):
%let pgmname=newdemo;
%let srcpath=c:\datalib\;
%let datpath=c:\pgmlib\;
libname datalib "&datpath";
libname library "&datpath";
data newdemo;
 set datalib.demo;
 dsvar=12;
run;

Note that a single append.sas program can be
constructed to process multiple programs. The
append method is probably the best all-around
solution. It can be set up to prompt for dataset
and program locations in an intuitive manner.

Advanced Components:

One of the most helpful ways to automate
modular programs is the use of single-source
macro variables. Passing the program name in a
macro variable can be used to conditionally
select code to be executed in other modules. In
the following example, table attributes are
assigned based on the name of the program (on
the next page):

Section of code (tnum.sas):
%macro tnum;

%if pgmname=DEMO_ITT %then %do;
 %let tnum=10.1.1;
 %let tbltitle=Demographics Summary;
%end;
%else if pgmname=DEMO_SAF %then %do;
 %let tnum=10.1.2;
 %let tbltitle=Demographics Summary;
%end;
[… more definitions have been skipped …]

%if %index(&pgmname,_ITT)>0 %then %let
 pop=Intent-to-Treat Population;
%else %if %index(&pgmname._SAF)>0
 %then %let pop=Safety Population;

%mend tnum;

title2 “&tnum”;
title3 “&tbltitle”;
title4 “&pop”;

Advanced Components, continued:

Running this section of code (demo_itt.sas):
%let pgmname=DEMO_ITT;
%include tnum.sas;
%tnum;

The resulting macro variables assigned:
%let tnum=10.1.1;
%let tbltitle=Demographics Summary;
%let pop=Intent-to-Treat Population;

The resolved code:
title2 “Table 10.1.1”;
title3 “Demographics Summary”;
title4 “Intent-to-Treat Population”;

Whenever you want to plug in the values 10.1.1,
Demographics Summary, or Intent-to-Treat
Population, you need only use the tokens
&tnum, &tbltitle, or &pop respectively.

Lastly, such conventions make it much easier to
rename the delivered programs to number-based
names. During development, it is preferred to
have function-based program names (program
demo_itt produces the Demographic Summary
for the ITT population). However, the client
may prefer to receive number-based program
names (program t10_1_1 produces table 10.1.1)
or even both (program t10_1_1_demo_itt
produces Table 10.1.1 - Demographic Summary
for the ITT population).

Conclusion:

The optimal solution combines the flexibility of
modular programming and the
straightforwardness of standalone programming.
This solution must provide comprehensive code
that still allows proprietary work to be preserved.
Providing system options and LIBNAME project
declarations in a modular format allows true
portability to another platform/system. Other
components are then delivered as “compiled”
non-proprietary code, void of all macros, so that
the entire set of programs serves as
documentation. This permits easy replication of
work. This approach is the most intuitive and is
fairly straightforward.

An alternative is to also provide the project
specific details (table numbers, titles, and
footnotes) to the client in a modular format. This

would allow renumbering and other cosmetic
modifications to be made by the client, but this
depends on the purpose of the ported code and
the roles of those involved. This risks
overwhelming the client. The system option and
LIBNAME components also can be largely pre-
built should that information be determined as a
project is being set up. Changing the degree of
modularity provided in the portable programs
"after the fact" is significantly more time-
consuming.

Version Note:

“MFILE” first appeared as a system option
named RESERVEDB1 in SAS version 6.12.
Beginning with SAS version 7 this system option
was renamed MFILE. The functionality
remained the same. Companies running both
6.12 as well as a more recent version will need to
remember this and to change the system option
name when moving programs across versions.

Contact Information:

Michael A. Litzsinger
Lisa Kaye Brooks
Quintiles, Inc.
Statistical Programming
P.O. Box 13979
Research Triangle Park, NC 27709-3979
(919) 998-2888
mike.litzsinger@quintiles.com
lisa.brooks@quintiles.com

SAS and all other SAS Institute, Inc. product and
service names are registered trademarks or
trademarks of SAS Institute, Inc. in the USA and
other countries.

Other brand and product names are registered
trademarks or trademarks of their respective
companies.

OOP Needs OOA and OOD

Andrew Ratcliffe, Ratcliffe Technical Services Limited

Abstract
So SAS/AF® supports object-oriented programming
(OOP), but does that mean that all applications
developed using SAS/AF® are object-oriented? Not
so. This paper provides an outline of an object-
oriented approach to producing true object-oriented
applications. The paper emphasises a focus on
objects, not processes, combined with proper object-
oriented analysis (OOA) and design (OOD).

Techniques and practices covered in more detail
include the use of CRC (Class, Responsibility, and
Collaboration) cards, the UML (Unified Modelling
Language), software modelling, and an iterative
approach to OO projects.

Introduction
Since reading Grady Booch[1] in the early 90's, I
have been convinced of the merits of the OO
approach. I have also been convinced that it takes a
lot of work for those like me, brought-up with a
procedural and modular training, to learn and truly
understand the new approach.

The introduction of Frame entries to SAS/AF® at
around the same time was accompanied by a large
amount of talk about SAS software applications being
object-oriented. The truth was that a) the
programmer's interface with the SAS system had
gained a large amount of object orientation, and b)
programmers now had the opportunity to write
object-oriented applications. However, not all
programmers took that opportunity.

To this day, the majority of my new clients are not
producing object-oriented applications. Many of them
believe that they are, but a five-minute chat about the
classes that they have in their applications soon
convinces them otherwise.

The objects in object-oriented applications are
represented by classes. Objects are items in the
business-world that have attributes, states, and
behaviour. Examples of objects include accounts,
patients, users, and production lines. Actions like run,
load, and measure are not objects, they are behaviours
of one or more objects. I often get questioned "but
running has attributes such as speed, so surely it's an
object." Think carefully: the attribute of speed more
accurately pertains to the object that is running.
Running is behaviour, and speed is an attribute of the
thing that is running.

With this brief paper I aim to guide the reader
towards a clearer understanding of the object-oriented
approach. I will do this with brief descriptions of
some key areas of interest and with copious pointers
to further reading.

Objects and
Processes
In some ways, the OO approach is an evolution of the
modular school. Before I get flamed by groups of OO
enthusiasts, let me explain. One of the key concepts
of modularity is that of breaking the problem down
into pieces, defining the interfaces between the
pieces, and then solving the individual problems
without a great deal of cross-reference between the
individual pieces and their solutions. It's called loose-
coupling.

Loose-coupling is a key concept of OO too, but the
loose-coupling is combined with other concepts such
as abstraction, polymorphism, and hierarchies.

Using the traditional modular approach, data would
be analysed almost independently of the tasks
(processes) to be performed upon it by the
application. OO bundles data and processes together
into objects. Thus, individual items of data and

related processes are tightly-coupled, whilst different
data items are loosely-coupled.

One of the key tasks in building an OO application is
finding the right classes in your analysis phase. This
is distinct from the traditional programming methods
where one would be looking for algorithms. A class
should provide a representation of something in the
vocabulary of the problem domain (or solution
domain). It should be simple (small) yet flexible (and
extendable). It should provide a good abstraction
whilst hiding its implementation. Each class should
have a clearly identifiable responsibility to fulfil, just
like each person in a team.

In your search for candidate classes, look for nouns
not verbs. Interview users and sweep any
documentation you can find (requirements documents
and sample reports, for example).

Things such as 'run,' 'load,' and 'validate' are typically
not good classes. The fact that these words are verbs
is a major clue. In these cases the more appropriate
classes are likely to be things such as a database or a
transaction.

When implementing your classes, keep the principal
of abstraction in your mind. The consumer of your
class (the programmer who calls your methods)
should be ignorant of how your class is implemented.
A clear example is that your consumer should not
need to know whether you're storing your data in a
data set, an SLIST, or an external file. Your consumer
should focus on what your class delivers, not how it is
delivered, and your consumer should never access
your class's data directly.

For further reading on the subject of good classes and
responsibility-driven design, see Booch[1] or
Rebecca Wirfs-Brock[2].

CRC Cards
As I said, the majority of SAS software application
developers have adopted a procedural approach to
their work. This has come about from a number of
reasons, not least being that the DATA step and
PROC approach is very sequential and procedural in
nature. To change one's entire mind-set on application
design can be very challenging. Class, Responsibility,
and Collaborations (CRC) cards provide an excellent,
natural means of adjusting that mind-set.

First introduced by Kent Beck and Ward Cunningham
in 1989, CRC cards are easy to use and have
additional benefits arising from their interactive

nature. In simple terms, the idea is that you create a
4" x 6" index-card for each proposed class in your
application. On each card, you identify the name of
the class, its responsibilities, and the classes with
which it collaborates to fulfil its responsibilities. Then
you run through scenarios of activities that the
application must perform ('use cases' in UML
terminology).

In running-through the scenarios, participants in the
exercise take hold of the cards and act-out the
responsibilities of their given classes. The cards act as
a central part of an iterative exercise: running a
scenario, analysing the outcome, and adjusting the
classes and responsibilities.

Responsibilities are high-level descriptions of the
purpose of the class. The size of the card prevents the
creation of over-loaded classes, i.e. those that have
too many responsibilities.

The simplicity of the CRC card concept (and its
practical implementation in index cards) results in a
concentration on the analysis and design rather than
the implementation. It is ideal! Participants focus
upon the objects in the system and are divorced from
platform-dependence and language-dependence. By
physically holding the cards and acting-out their
classes' responsibilities, participants are forced to
identify with their classes, to see the design from the
perspectives of their classes.

The cards form a communication medium that is
acceptable to both business-focused and technically
focused participants. I find them to be an excellent
facilitator when trying to get users, designers, and
developers to sit around one table.

The physical interaction between participants is
unavoidable and desirable. It contributes a) to the
understanding of the design, and b) to the
effectiveness of the team both during and after the
exercise. CRC card activities are good team-building
exercises.

In addition to using CRC cards as part of analysis and
design phases, I have found them to be tremendously
useful as training tools for those who are new to OO
concepts. Students are taken away from all that they
have learnt about traditional techniques and take to
the class-focused approach very quickly.

For further reading on the subject of CRC cards, see
Beck[3] and David Bellin[4]. Wirfs-Brock's[2]
approach is responsibility-driven and supports the use
of CRC cards.

QuickCRC is a software product produced by Excel
Software. It permits CRC cards to be created and
stored on MS-Windows and Macintosh. Further, it
permits scenarios to be created, stored, and acted-out.
Information is available at
http://www.excelsoftware.com. Note, however, one
of the big benefits of the CRC card approach is its
interactivity. This benefit is lost with the use of
computer software. As a means of storing the
outcome of a CRC exercise, QuickCRC does have
benefits.

Methods of Control
The interactions that occur between objects should
also be the subject of your design thoughts. There are
several different patterns of collaboration and control
that might be used.

All objects are not created equal. Some are tasked
with cajoling others into doing detailed work, in a
pattern similar to the manager-staff relationship most
of us work with in our own lives. Objects might be
classified as controllers, information holders, or
interfaces. Those objects that are more active (such as
controllers) warrant more of our attention.

Methods of control range from 'uncontrolled' through
to 'centralised' and 'de-centralised.' Applications that
use an uncontrolled style usually result from lack of
design. Thus, control and co-ordination is performed
in many different parts of the application without any
structure to it.

I have found that novice OO designers tend toward
the centralised approach. In this approach, one (or a
small number) of the objects takes a large amount of
responsibility for interfacing with other objects. The
central object acts like a traditional procedural
solution, "running" one object after another in order
to run through a sequence of tasks.

The centralised approach tends to result in a complex
controller object that is difficult to maintain because
of its complex code. In addition, it can be difficult to
assign work to teams of developers when the bulk of
the application's logic is contained in one single class.

I much prefer the de-centralised method of control.
Applications designed using this style tend to have
clusters of objects. Each cluster has a clearly defined
purpose and role within the application. Each object
in a cluster co-operates and interacts with its partners
rather than being centrally controlled. Similarly, a
sub-set of classes in each cluster will co-operate and
interact with classes in other clusters.

On the down-side, the de-centralised approach can
make it harder for a maintenance programmer to
follow the flow of events within the application. But,
on the plus-side, responsibilities are spread more
evenly (and to a shallower depth) amongst the
application's classes. Each and every class is easier to
maintain and enhance because of this.

For further reading on the subject of control styles,
see Wirfs-Brock[5].

The UML
Drawing diagrams to describe your OO application
needs something more than simple flow-charts. The
UML (Unified Modelling Language) is the definitive
notation for describing OO applications.

The UML is just a notation - a series of symbols and
diagrams. The set of symbols (and associated
semantics) that comprises the UML is designed to
optimise the information conveyed by any diagram
that you should draw. The UML defines seven types
of diagrams: use case, class, package, sequence,
collaboration, state, activity, and deployment. The
scope of the diagrams runs all of the way from high-
level analysis down to individual class’s methods and
attributes (instance variables) and the ways in which
they interact.

The OMG (Object Management Group) are the
independent standards group for all things object-
oriented. They have accepted the UML as the
standard modelling language. Thus, diagrams drawn
using the UML notation will be more easily

understood by your peers than those drawn using any
other notation or style.

The class diagram is the one that most people
instantly associate with. It represents the static

relationships between the classes: association ("has
a") and subtypes ("is a"). It also documents the
attributes and operations of the classes. The figure
above shows an example class diagram.

Sequence diagrams have similarities with flow-charts.
They demonstrate the sequence of communication
between objects at run-time. All of the objects
involved in the activity are listed across the top of the
diagram, and the sequence runs down the page.
Horizontal lines represent communication between
objects. The figure alongside shows an example
sequence diagram.

They say a picture paints a thousand words. Drawing
diagrams as part of your design is almost a necessity.
If you use UML diagrams then the "language" of your
diagrams is universal, so your diagram will be
understood by a greater number of people.

There are many sources for further reading on the
subject of the UML. For those new to it I recommend
the OMG Primer[6] and Martin Fowler[7].

Software Modelling
Drawing UML diagrams can be done with pencil and
paper, but in many cases it is preferable to use some
computer-based drawing package to ease storage and

maintenance of the diagrams. A number of
specialised packages are available for drawing and
modelling.

Modelling packages are superior to plain drawing
packages because they build a model behind the
scenes that collates all the information from all of
your diagrams. If you’ve already drawn and
defined a class on one diagram and then choose to
show it on another, the information you entered on
the first diagram will automatically be echoed to
the second. If you change the information in one
diagram, all others are automatically updated.
Thus, your diagrams remain consistent with each
other.

A number of packages are available commercially.
A selection of these were given a review[8] in the
newsletter of the UK independent SAS User Group
(VIEWS). The two figures shown in "The UML"
were drawn with MagicDraw
(http://www.nomagic.com) and Rational Rose
(http://www.rational.com) respectively.

Iterative
Development
There is no hard-and-fast reason why they should be
but iterative development seems to be associated with
OO and waterfall with traditional approaches.
Certainly, the vast majority of OO practitioners use
the iterative development method.

In my experience, iterative development pleases
sponsors, users, and developers alike. Sponsors like it
because it decreases the inevitable risk involved in
any sizeable project. Users like it because a) they do
not feel bound-in to a large complicated specification
from the outset, and b) they see results quickly.

Traditional waterfall development consists of three
key phases: Define, Build, and Test. These are run
sequentially. Iterative uses the same phases but they
are used for small parts of the project, and those parts
of the project run in parallel.

As the project progresses, the delivered article at the
end of each phase grows in size. The risk in the
project is attacked at earlier stages because the
deliverables are functional, integrated articles.

One of the deliverables of the initial planning phase is
often an architecture that will provide a solid, resilient
baseline for the subsequent detailed design and
development. Achieving a solid architecture is
crucial. That architecture will have been built using
many of the techniques that I have discussed earlier,
such as CRC cards for analysis and UML modelling
software for documenting and communicating the
architectural design.

Conclusion
Object-oriented techniques are an established means
of developing applications. SAS software supports
the development of object-oriented applications, but it
does not do the object-oriented analysis and design.
Without an object-based analysis and design, the
resulting application will not be taking advantage of
the merits of object-orientation.

Whilst CASE tools continue to grow in their abilities,
they show no signs yet of replacing the analyst and
designer! The tasks of analysing and designing
continue as a requirement for successful application
development. If

• CRC cards are used with the analysis;

• an appropriate method of control is chosen at the
design stage; and

• the architecture and design are documented and
communicated with the UML,

then the developers will be better able to create a
truly object-oriented application (and achieve some or
all of the associated benefits).

References
[1] Booch, Grady 1994. Object-Oriented
Analysis and Design With Applications.
The Benjamin/Cummings Publishing
Company, Inc.

[2] Wirfs-Brock, Rebecca 1990.
Designing Object-Oriented Software.
PTR Prentice-Hall, Inc.

[3] Beck, Kent 1989. A Laboratory for
Teaching Object-Oriented Thinking.
http://c2.com/doc/oopsla89/paper.html

[4] Bellin, David 1997. The CRC Card Book.
Addison, Wesley, Longman, Inc.

[5] Wirfs-Brock, Rebecca. Characterising Your
Application's Control Style. http://www.wirfs-
brock.com/characterizing_object_control_style
.htm

[6] OMG 1998. What Is OMG-UML and Why Is It
Important?
http://www.omg.org/news/pr97/umlprimer.ht
ml

[7] Fowler, Martin 1997. UML Distilled. Addison,
Wesley, Longman, Inc.

[8] VIEWS 1999. VIEWS News, issue 5.
http://www.views-uk.demon.co.uk/issue5.pdf

Biography
Andrew Ratcliffe is a freelance SAS software
consultant with over 15 years experience of SAS
software. He specialises in object-oriented application
development. Through his company (Ratcliffe
Technical Services Limited), he is able to offer
services including analysis and design, consultancy,
and mentoring. Andrew is editor of the NOTE: free e-
newsletter.

Email: andrew@ratcliffe.co.uk

Web: www.ratcliffe.co.uk

Newsletter subscription:

www.ratcliffe.co.uk/note_colon

Initial
Planning

Planning

Requirements
Capture

Analysis
& Design

Implementation

Deployment

Test
Evaluation

Optimizing Data Extraction from Oracle Tables

Caroline Bahler, Meridian Software, Inc.

Abstract

The SAS/ACCESS product for Oracle offers a fast
and easy interface for reading Oracle tables -
access views or SQL Pass-Thru facility. However, if
your extraction requirements include joining Oracle
tables or extracting date ranges then you need to
know Oracle's "flavor" of SQL. In addition, efficient
use of SAS/ACCESS methods may require some
knowledge of how the Oracle database was
designed and what Oracle operational options are in
effect. The objective of this paper is to discuss
some of the potential pitfalls and efficiencies when
working with SAS/ACCESS to extract information
from Oracle. This paper assumes the reader is
familiar with the SAS/ACCESS product and
specifically targets SAS/ACCESS and Oracle
operational and SQL options that can be used to
optimize data retrieval.

Extracting Data from Oracle

ACCESS Views

An Access view creates a “road map” to the location
of a table and permits data extraction to occur.
Access views are created using PROC ACCESS. A
typical invocation of the ACCESS procedure would
be:

proc access dbms=oracle;

/* create access descriptor */
create work.sales.access;
user=MyUserid;
orapw=MyPassword;
path='@ORAPATH.WORLD';
table=acme_na.Sales_NorthAmer_1999;
assign=yes;
list all;

/* create view descriptor */
create work.sales.view;
select all;

run;

(Note - @ is an Oracle specific term used to
designate the correct Oracle SQLNET path.
Whether the @ is utilized is dependent upon how
Oracle is set-up at your site.)

In the example above a view is created instead of a
data set. The advantage of this is that the view only
needs to be created once and then can be reused.
A new view needs to be generated only when the
Oracle table is modified (new columns added or new

indexes NOT new rows). Therefore, a permanent
set of views can be created that can be used over
and over without worrying about new rows within the
table.

Tip 1 – Assess when to allow SAS to automatically
assign variable name to Oracle table columns.
Note: this tip is now specific for those users who still
work with SAS version 6.12 and below.

In the example above, the use of the ASSIGN
statement automatically creates a SAS variable
name for each Oracle column. The new variable
name consists of the first eight (8) characters of
each column name1. The problem with allowing
SAS to automatically assign variable name is
illustrated below:

Oracle Column Name SAS Variable Name
Product_Number Product
Product_Type Product1
Product_Serial_Number Product2
Product_Sales Product3

In each case the first eight (8) characters is
product_. SAS handles this situation by adding a
number to the end of each variable name. Unique
variable names are created, but the names are not
indicative of the data stored within each variable. To
assign unique variable names to these columns, use
the RENAME statement within the CREATE
statement to individually assign variable names to
columns. So from the previous example:

proc access dbms=oracle;
/* create access descriptor */
create work.sales.access;
user=MyUserid;
orapw=MyPassword;
path='@ORAPATH.WORLD';
table=acme_na.Sales_NorthAmer_1999;
assign=yes;

/* rename oracle columns to meaningful */
/* SAS variable names */
rename Product_Number = prodno

Product_type = prodtype
Product_Serial_Number=serialno
Product_Sales = prodsale;

list all;

/* create view descriptor */
create work.sales.view;

select all;
run;

Note: The RENAME statement must be used when
the access descriptor is created. RENAME and
ASSIGN=YES are mutually exclusive and cannot be
used together.

Therefore, if the column names are eight (8)
characters or less or uniquely named, then having
SAS assign the name is appropriate.

Tip 2 – Efficiency considerations

The amount of data within a table will directly affect
the time and resources needed in both SAS and
Oracle to extract the information requested by the
view. An ACCESS view reads and extracts from the
Oracle table every time it is utilized. This is not a
problem if the table from which you are extracting is
a small lookup table containing a few hundred rows.
However, if the table contains many thousands of
rows, it may be more efficient to utilize the view to
create a data set1. This data set is then available for
use. The key factors that should be evaluated when
considering this strategy are:

1. How many times is the table accessed within a
program or application? If the table is accessed
several times within a program or application,
then creating a data set is a good choice.

2. How much temporary space is available for SAS
data?

3. Can the data extracted from the table be subset
when the table is accessed by using a WHERE
statement? Use of an efficient where clause can
reduce the amount of data and the amount of
time needed for data extraction.

4. Can you reduce the number of columns you are
selecting? SAS must convert the data within
each column selected from Oracle to SAS
format. So, by decreasing the number of
columns selected, the resources and time
needed to extract data is decreased. You can
select columns when a view is created by using
a KEEP or DROP statement within a DATA step
or a VAR statement within a procedure.

You may need to benchmark to determine whether
creation of a data set or a view is the more efficient
option.

For example:

proc access dbms=oracle;
/* create access descriptor */
create work.sales.access;
user=MyUserid;
orapw=MyPassword;
path='@ORAPATH.WORLD';
table=acme_na.Sales_NorthAmer_1999;
assign=yes;

/* rename oracle columns to */
/* meaningful SAS variable names */

rename Product_Number = prodno
Product_Type = prodtype
Product_Serial_Number=serialno
Product_Sales = prodsale;

list all;

/* create data set */
create work.sales;
select Product_Number

Product_Type
Orderno
Product_Sales;

subset where Product_Sales > 100000;
run;

Note: The where clause of the SUBSET statement is
sent "as is" to Oracle, so it must contain correct
Oracle syntax.

When to Use Access Views

• Information from only one table at a time is
required.

• You are extracting data from a table with a small
number of rows.

• You are accessing table information one row at
a time or allowing a user to update data within a
table row.

SQL Pass-Thru

PROC SQL allows you to execute Oracle1

commands or create SAS data sets/views from
Oracle queries through the SQL Pass-Thru facility.

Connection options - SQL Pass-Thru requires that
a connection to Oracle first is established before an
Oracle command or query can be executed. The
CONNECT statement requires the same information
as in PROC ACCESS user id, password, Oracle
path. For example the following statements will
connect PROC SQL to Oracle with the same
parameters specified for PROC ACCESS.

proc sql;
Connect to oracle(

userid=’MyUserid‘
orapw=’MyPassword’
path=”@ORAPATH.WORLD”);

...

quit;

Tip 3 – Other CONNECT options. SQL Pass-Thru
has two (2) other connection options, buffsize and
preserve_comments, that can decrease the amount
of time required to extract data from the results of an
Oracle query.

1 All Oracle comments refer to Oracle version 7, 7.1, 7.2

BUFFSIZE – this option specifies the number of
rows that will be transferred from Oracle to SAS
when a fetch occurs, i.e. the number of rows that go
into a buffer which moves the Oracle table rows from
Oracle to SAS1. The default BUFFSIZE is 25 rows
and the maximum is 32,767 rows. Increasing the
number of rows within the buffer can enhance
extraction performance.

Depending upon your particular hardware and
Oracle setup using a BUFFSIZE between 5,000 and
10,000 will give the best performance in most cases.
Somerville and Cooper in their SUGI 23 paper ran
tests with Oracle tables containing 5.8 million
records and found that a BUFFSIZE of 5000 gave
them their best results3. Note that BUFFSIZE can
not be set within PROC ACCESS or DBLOAD.
An example of using BUFFSIZE:

proc sql;
Connect to oracle(

userid=’MyUserid‘
orapw=’MyPassword’
path=”@ORAPATH.WORLD,buffsize=5000”)
;

create table sales as
select *

from connection to Oracle
(select *

from acme_na.Sales_NorthAmer_1999);
quit;

When to Use SQL Pass-Thru

• The output data set requires information from
more than one Oracle table.

• Subqueries – this is a technique that uses the
information from one table to subset another.
Subquerying can be a very efficient way of
selecting only the information needed from a
table. For example –

proc sql;
connect to oracle(

userid=’MyUserid’
orapw=’MyPassword’
path=”@ORAPATH.WORLD,buffsize=5000”)
;

create table sales as
select *

from connection to Oracle
(select *

from acme_na.Sales_NorthAmer_1999
where CustomerID in

(select CustomerID
from acme_na.Customer

where region like ‘NORTH%’)
);

quit;

In the example above, a subquery made sense
because we wanted just the customers residing
in the northern regions. It is also efficient since
only the required information was selected from
both tables.

• Joins – Two or more tables are joined using
either an inner or outer join. Note: It is a good
idea to evaluate whether it is more efficient to
join the tables within Oracle or SAS.

• Extracting data from a table with a large number
of rows. The use of the BUFFSIZE option within
the path connect parameter greatly speeds up
extracting data from a large table.

• Need to perform an Oracle command. There
are instances where the ability to submit an
Oracle command first is important. For example
you need to load a table from a SAS data set
using PROC DBLOAD, but first you need to drop
the table so that new columns can be added.

Dynamic DBMS Engines

Dynamic DBMS Engines – this essentially replaces
SAS/ACCESS views and descriptors! In version 7
and 8 the LIBNAME statement now connects to the
DBMS server. For example:

Libname oralib oracle user=MyUserId
password=MyPassword
path=”@ORAPATH.WORLD”
readbuff = 5000
;

This means that all Oracle tables are accessible
through the use of LIBNAME statement! Oracle
tables are accessed in this case identically to SAS
data sets.

Querying the Oracle Data

Oracle Meta Data

Oracle meta data consists of an extensive set of
tables containing information about all database
tables, user privileges, etc. The main meta data
tables of interest are those containing information
about the tables you need to access to obtain the
information needed. Note: While the term table is
used for descriptive purposes, Oracle considers all
data dictionary tables to be views. Table 1 lists all
Oracle dictionary tables4 of interest.

Tip 4 – Listing Oracle table columns. A quick way to
get basic information about the columns in an Oracle
table is to use the DESC command (it does not need
to be capitalized) in SQLPLUS. The DESC
command prints a listing of all columns in
alphabetical order with their associated format and
length.

Table 1. Oracle Data Dictionary Tables4.

Table Name* Description
USER_ : these are views containing information about tables owned by a particular user id

USER_TABLE Table listing

USER_TAB_COLUMNS Column listing by table

USER_CONSTRAINTS Listing of constraints defined for a table (primary, foreign, unique).

USER_CONS_CONSTRAINTS Used with USER_CONSTRAINTS to define a table’s primary and foreign keys.

USER_INDEXES Listing of indexes defined for a table.

USER_IND_COLUMNS Used with USER_INDEXES to defined which columns within a table are used
within an index. Note – Oracle automatically creates an unique index for all
unique and primary keys.

ALL_ : these are views containing information about all tables accessible by a particular user id

ALL_TABLE Table listing

ALL_TAB_COLUMNS Column listing by table

ALL_CONSTRAINTS Listing of constraints defined for a table (primary, foreign, unique).

ALL_CONS_CONSTRAINTS Used with ALL_CONSTRAINTS to define a table’s primary and foreign keys.

ALL_INDEXES Listing of indexes defined for a table.

ALL_IND_COLUMNS Used with ALL_INDEXES to defined which columns within a table are used
within an index. Note – Oracle automatically creates an unique index for all
unique and primary keys.

*Note: In addition, Oracle is case sensitive when using these table(view) names in queries the table name MUST
be capitalized.

Why do you need meta data?

In many cases, a programmer can go to the dba and
get a printed copy of the data dictionary including
the entity relationship diagrams. However that may
not always be the case, so the programmer is forced
to dig for the information that is needed (i.e. the dba
for table names and meta data for table information).
Also remember Oracle is a relational database and a
single database can contain hundreds (even
thousands) of tables! Relationships (primary and
foreign keys) between tables become extremely
important when joining these tables. Finally, meta
data can be used to write queries on the “fly” by
utilizing the data dictionary within query–writing
macros or SCL.

Where to do joins

In general, Oracle tables should be joined within
Oracle, because all optimization features are
available to enhance the performance of a join. To
evaluate where to join Oracle tables, you should ask
the following questions:

• What type of join is needed to provide the
required information in the resulting data set?

Determining what the result data set should look like
will identify the type of join needed. Oracle has two

types of joins available – an inner and an outer
join5,6.

�� The inner join produces a result data set that
contains only those rows that match exactly in
all parent tables.

�� The outer join will produce a result data set that
contains all rows from all parent tables (similar
to using a MERGE statement with a BY
statement in a DATA step)5.

Make sure that using either type of SQL join will
provide the needed results. Remember, within SQL
(SAS and Oracle) both types of joins can result in
Cartesian products, so check the parent tables
carefully to prevent unintended extra rows7.

However, there are cases where Oracle does not
have the tools to allow for the type of join necessary.
Table 2 lists all of the types of joins available within
SAS and Oracle. Oracle cannot perform joins B or D
but SAS can8.

To perform an inner join within Oracle, use the
following syntax:

create table sales as
select *

from connection to Oracle
(select b.CompanyName, a.Sales

from acme_na.Sales_NorthAmer_1999 a,
acme_na.Customer b

where a.CustomerId=b.CustomerId);

Table 2. Types of joins and their availability within SAS and Oracle.
Availability

Result Data Set Type of Join SAS Oracle
A. All data values from all parent* tables. Full Outer Join X X
B. All data values from a single parent table

(base) and all data values from the other
table(s) that match the data values of the
joining variables within the base.

Non-base parent data set(s) are
used as
• “Look-up” table(s)
• Right or Left outer join.

X

C. Only those data values from all parent tables
that contain the same data values within the
joining variables.

Inner Join X X

D. Placement of parent tables side by side One-to-one Merge X
E. Expansion of the result data set to include all

levels of a non-common variable (Cartesian
products).

Many-to-many Join (Inner or
Outer Join)

X X

* Parent table = one of the tables joined to produce the result data set.

To perform an outer join, use the following syntax:

create table sales as
select *

from connection to Oracle
(select a.Region,

a.Territory,
b.Sales_Rep

from acme_na.NorthAmer_Region a,
acme_na.Sale_Representative b

where a.Region=b.Region(+));

• Can the table be joined by primary or foreign
keys? Are indexes available?

Using the primary and foreign keys within tables
improves the performance of joins. This is because
Oracle automatically creates indexes on the tables
for these keys and the optimizer within Oracle will
use these indexes during any join4. In addition, all
other indexes on a table are available so
performance of the join will be enhanced. By
moving the tables into SAS data sets, these indexes
are lost and the join is performed on unindexed
variables.

• What are the sizes of the tables to be joined?

The decision to join a set of tables within Oracle or
SAS can be affected by table size. To join the
tables within SAS, all tables must first be extracted
to SAS and then joined. The larger the table, the
more time it takes to extract it to SAS. CPU time is
expended before the join takes place. In
comparison, by joining the tables within Oracle, with
indexes in place, the join takes less time and only
one extract needs to take place.

However, there is a circumstance where joining the
tables within SAS may have to occur – when Oracle
does not have enough temporary tablespace (work
space) for the joins to occur. Finally, if one or more
of the tables is extremely large, (1 million plus

records) then the join may have to occur in smaller
subsets with the total result data set being
concatenated within SAS.

Is the database optimized for OLTP (on-line
transaction processing) or as a data warehouse?

A database that is optimized for OLTP will be
extremely fast at getting all of the information
required about a single customer for example.
Other types of joins may be much slower within that
type of database than within SAS. In addition, your
DBA may not approve of any large CPU drain during
“peak” usage times. In contrast, a database
optimized for data warehouse usage will be
designed to optimize joins requiring large amounts
of data.

• What does your DBA say?

Finally, the DBA is your best source of information
about the database. They can suggest “best”
practices for joining tables within the database.

Oracle SQL Tips

Dates

Oracle Date Formats9

MM Number of month for example 12
MON Three letter abbrev for example NOV
MONTH Full month name
DD Day of month
YYYY Four digit year
YY Two digit year
HH Hour 1-12
HH24 Hour 1-24
MI Minutes
SS Seconds

Some useful Oracle date functions9 are

��SysDate – this is equivalent to the DATE() or
TODAY() functions within SAS and returns the
current date and time.

��TO_CHAR(date,’format’) – used in queries to
change an Oracle datetime value into a
formatted value. Similar in function to using the
following SAS syntax - put(date,mmddyy10.).
This format can be used within a query as
follows:

create table sales as
select *

from connection to Oracle
(select b.CompanyName, a.Sales

from acme_na.Sales_NorthAmer_1999 a,
acme_na.Customer b

where a.CustomerId=b.CustomerId and
to_char(Updt_date,’MM/DD/YYYY’) =
‘01/01/2000’);

Using TO_CHAR can be tricky since you are
specifically turning a numeric datetime value into
a character. You need to be careful how you
use this function, in general TO_CHAR is more
useful in an equality situation.

��TO_DATE(‘date’,’format’) – from my own
experience and talking to knowledgeable Oracle
programmers this is the preferred function. For
example:

create table sales as
select *

from connection to Oracle
(select b.CompanyName, a.Sales

from acme_na.Sales_NorthAmer_1999 a,
acme_na.Customer b

where a.CustomerId=b.CustomerId
and Updt_date between

to_date(‘01/01/2000’,’MM/DD/YYYY’) and
to_date(‘02/15/2000’,’MM/DD/YYYY’));

Tip 5 – Feeding dates into an Oracle query.

Using the same query as above, we can generalize
for dates as follows:

Data _null_;
To=today();
From=intx(‘week’,to,-8);
Call symput(‘from’,”’”||

put(from,mmddyy10.)||”’””):
Call symput(‘to’,”’”||

put(to,mmddyy10.)||””’””);
Run;

Proc sql;
Connect to oracle(

userid=’MyUserid‘
orapw=’MyPassword’

path=”@ORAPATH.WORLD,buffsize=5000”)
;

create table sales as
select *

from connection to Oracle
(select b.CompanyName, a.Sales

from acme_na.Sales_NorthAmer_1999 a,
acme_na.Customer b

where a.CustomerId=b.CustomerId
and Updt_date between

to_date(&from , ’MM/DD/YYYY’) and
to_date(&to , ’MM/DD/YYYY’));

disconnect from oracle;

quit;

Note: Double quotes (“) are not used around the
macro variables as in SAS. Instead, the quotes are
included as part of the macro variable value. Macro
variables are extremely useful within SQL Pass-Thru
in automating the Oracle query.

One use of macro variables and meta data tables is
to determine the fields within a table. The resulting
data set can be used to build a query by passing the
fields into the query as macro variables.

Other Tricks of the Trade

��Quotes – the use of quotes can be tricky within
Oracle. As stated above, it is best to pass the
quotes within the macro variable value. Oracle
does not handle double quotes (“) within the
WHERE portion of a query. Use of double
quotes results in a cryptic error message.
Instead, incorporate the quotes into the macro
variable passed.

In the example below, each of the passed macro
variables contains the necessary quote for the
character values.

Data _null_;
Set param;
To=today();
From=intx(‘week’,to,-8);

Call symput(‘state’,”””||
trim(state)||”’”);

Call symput(‘from’,”’”||
put(from,mmddyy10.)||”’””):

Call symput(‘to’,”’”||
put(to,mmddyy10.)||””’””);

Run;

Proc sql;
Connect to oracle(

userid=’MyUserid‘
orapw=’MyPassword’
path=”@ORAPATH.WORLD,buffsize=5000”)
;

create table sales as

select *
from connection to Oracle
(select b.CompanyName, a.Sales

from acme_na.Sales_NorthAmer_1999 a,
acme_na.Customer b

where a.CustomerId=b.CustomerId
and Updt_date between

to_date(&from , ’MM/DD/YYYY’) and
to_date(&to , ’MM/DD/YYYY’)

and state = &state);

disconnect from oracle;

quit;

Tip 6 - Handling a quote embedded within a field
value. If a field value has an embedded quote in its
value, a comment field or company name for
example, then you should use special care when
you are within a query. In the following example a
title contains a single quote:

Mr. Roger’s Neighborhood

To use this title in a PROC SQL query, surrounding
the title with double quotes is sufficient. In an Oracle
query, the following is needed:

‘Mr. Roger’’s Neighborhood’

Note: the two single quotes are side by side5.
Therefore, any text value that may contain quotes
could be handled as follows:

Data _null_;
Set titles end=eof;

Where title contains “SESUG”;
Quottest=index(title,”’”);
If quottest > 0 then

Title=scan(title,1,”’”)||”’’”||scan(title,2
,”’”);

If _n_=1 then titles=”’”||trim(title)||”’”;
Else title=trim(title)||”’’,”||

trim(title)||”’”;

If eof then call symput(‘titles’title’);
Run;

Proc sql;
Connect to oracle (

userid=’MyUserid‘
orapw=’MyPassword’
path=”@ORAPATH.WORLD,buffsize=5000”)
;

create table proceeds as
select *

from connection to oracle
(select author_lastname lastname,

author_firstname firstnme,
title

from bibliography
where title in (&titles));

disconnect from oracle;
quit;

��“Temporary Tables” – within Oracle, each user
has personal tablespace for creating tables.
This tablespace can be put to use for creating
temporary query result tables depending upon
their size. The idea here is to run a query
subsetting a much larger table and then use the
results of that query to subset other tables. For
example –

Data _null_;
Set titles end=eof;

Where title contains “SESUG”;
Quottest=index(title,”’”);
If quottest > 0 then

Title=scan(title,1,”’”)||”’’”||scan(title,2
,”’”);

If _n_=1 then titles=”’”||trim(title)||”’”;
Else title=trim(title)||”’,”||

trim(title)||”’”;

If eof then call symput(‘titles’title’);
Run;

Proc sql;
Connect to oracle (

userid=’MyUserid‘
orapw=’MyPassword’
path=”@ORAPATH.WORLD,buffsize=5000”)
;

execute
(create table temp as

select author_lastname lastname,
author_firstname firstnme,
title

from bibliography
where title in (&titles))

by oracle;

create table advtut as
select *

from connection to oracle
(select *

from temp
where title like ‘SQL%’);

execute (drop table temp) by oracle;

disconnect from oracle;
quit;

Note: The temporary table needs to be dropped
when you are finished! A permanent Oracle table is
being created, so this house-cleaning step is
important.

Tip 7 – Reserved words, “words” that cannot be
used in a query except within the correct syntax for
that “word”. Appendix 1 contains the whole list of
Oracle reserved words. For example, count is a

function both in Oracle and SAS it’s syntax is
count(*) or count(field_name). This is the only way
that count can be used in Oracle otherwise an error
message will occur.

References

1. SAS Institute Inc. 1993. SAS/ACCESS Interface
to Oracle Usage and Reference. Version 6,
Second Edition, Cary, NC. SAS Institute Inc.

2. SAS Institute Inc. 1994. SAS/ACCESS Software
for Relational Databases: Reference, Version 6,
First Edition, Cary, NC. SAS Institute Inc.

3. Somerville, Clare and Copper, Clive. 1998.
Optimizing SAS Access to an Oracle Database
in a Large Data Warehouse. Proceedings of the
Twenty-Third Annual SAS Users Group
International Conference, Cary, NC. SAS
Institute. pp 511-520.

4. Koch, George and Loney, Kevin. 1995. Chapter
24. The Hitchhiker’s Guide to the ORACLE7
Data Dictionary. Oracle: Complete Reference
Third Edition. Oracle Press, Berkeley, CA.
Osborne McGraw-Hill Inc. pp 540-586

5. Koch, George and Loney, Kevin. 1995. Chapter
25. Alphabetical Reference. Oracle: Complete
Reference Third Edition. Oracle Press,
Berkeley, CA. Osborne McGraw-Hill Inc.

6. Koch, George and Loney, Kevin. 1995. Chapter
10. When One Query Depends Upon Another.
Oracle: Complete Reference Third Edition.
Oracle Press, Berkeley, CA. Osborne
McGraw-Hill Inc.

7. Koch, George and Loney, Kevin. 1995. Chapter
9. Grouping Things Together. Oracle: Complete
Reference Third Edition. Oracle Press,
Berkeley, CA. Osborne McGraw-Hill Inc.

8. Bahler, Caroline. 1996. It Takes at Least Two to
Tango -A Data Set Joining Primer. Proceedings
of the Twenty-Second Annual SAS Users Group
International Conference, Cary, NC. SAS
Institute. pp 190-198.

9. Koch, George and Loney, Kevin. 1995. Chapter
7. Dates: Then, Now, and the Difference.
Oracle: Complete Reference Third Edition.
Oracle Press, Berkeley, CA. Osborne
McGraw-Hill Inc. pp. 173-189.

10. Gona, Vino and Van Wyk, Jana. 1998. Version 7
Enhancements to SAS/ACCESS Software.
Proceedings of the Twenty-Third Annual SAS

Users Group International Conference, Cary,
NC. SAS Institute. pp 336-341.

Trademarks

SAS®, SAS/ACCESS®, and all SAS products are
trademarks or registered trademarks of SAS Institute
Inc.

Meridian Software, Inc.� is a registered trademark
of Meridian Software, Inc.

Oracle® and all Oracle products are trademarks or
registered trademarks of Oracle Corporation.

Contact Information

Caroline Bahler

Meridian Software, Inc.

12204 Old Creedmoor Road

Raleigh, NC 27613

(919) 518-1070

merccb@meridian-software.com

Appendix 1: Oracle Reserved Words

access database increment set
add datafile index share
admin date indicator size
after dba infile smallint
all dec initial start
allocate decimal initrans successful
alter declare insert synonym
analyze default instance sysdate
and delete int table
any desc integer then
archive disable intersect to
archivelog dismount into trigger
as distinct is uid
asc double key union
audit drop language unique
authorization dump layer update
avg each level user
backup else like validate
become enable link values
before end lock varchar
begin escape long varchar2
between events maxextents view
block exceptions minus whenever
body exclusive mode where
by exec modify with
cache exists noaudit
cancel explain nocompress
cascade extent not
change externally nowait
char fetch null
character file number
check float of
checkpoint flush offline
close for on
cluster force online
cobol foreign option
column fortran or
comment found order
commit freelist pctfree
compile freelists prior
compress from privileges
connect function public
constraint go raw
constraints goto rename
contents grant resource
continue group revoke
controlfile groups row
count having rowid
create identified rownum
current immediate rows
cursor in select
cycle including session

SECTION CHAIRS

Derek Nguyen
 DataLogic Consulting, Inc.

Ian Whitlock
Westat

S
E

R
E

N
D

IP
IT

Y

SERENDIPITY

Elegant Tables: Dressing Up Your TABULATE Results

Lauren Haworth
Genentech, Inc., South San Francisco

� INTRODUCTION

Once you’ve taken the time to learn the basics of
TABULATE, you’ll quickly discover that
creating the table is the easy part. It’s making it
look nice that’s hard.

This paper will show you a number of tips and
tricks for designing and formatting your table to
make it concise, informative and attractive. The
paper then goes on to show how to move your
output to HTML and to a word processor so that
your results can be easily distributed to others.

� TIP #1: MODIFYING STATISTIC LABELS

This first tip is designed to make your table
easier to understand. When we put statistics in
our tables, PROC TABULATE adds labels for
the appropriate rows or columns that indicate
which statistic has been selected. As SAS
programmers, the labels N, MEAN, and STD
may make perfect sense. However, what about
the end-users?

To give them a hand, you can rename the default
statistics. The following code shows how it’s
done. The gray shaded areas are the parts of the
code that have been modified to change the
labels. To give a statistic a new label to replace
the default, place an equal sign after the statistic
keyword, and follow that with the new label in
quotes.

PROC TABULATE DATA=TEMP;
 VAR RENT;
 TABLE RENT, ALL*
 (N='Number of Observations'
 MEAN='Average'
 STD='Standard Deviation');
RUN;

The resulting table is shown below. Notice that
since the new labels were longer than the
originals, PROC TABULATE made the spaces
for the labels two lines deep. PROC
TABULATE will make room for whatever labels
you create, but you should try to keep them as
short and simple as possible.

„ƒƒƒƒƒƒƒƒƒƒƒƒƒ…ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒ†
‚ ‚ All ‚
‚ ‡ƒƒƒƒƒƒƒƒƒƒƒƒ…ƒƒƒƒƒƒƒƒƒƒƒƒ…ƒƒƒƒƒƒƒƒƒƒƒƒ‰
‚ ‚ Number of ‚ ‚ Standard ‚
‚ ‚Observations‚ Average ‚ Deviation ‚
‡ƒƒƒƒƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒƒƒƒƒ‰
‚rent ‚ 126.00‚ 1129.66‚ 544.77‚
Šƒƒƒƒƒƒƒƒƒƒƒƒƒ‹ƒƒƒƒƒƒƒƒƒƒƒƒ‹ƒƒƒƒƒƒƒƒƒƒƒƒ‹ƒƒƒƒƒƒƒƒƒƒƒƒŒ

� TIP #2: MODIFYING VARIABLE LABELS

Just as we changed the labels for the statistics in
the previous example, we can also change the
labels for the variables. In the following code, a
variable has been labeled in the TABLE
statement by using an equal sign after the
variable name and then putting the label in
quotation marks.

PROC TABULATE DATA=TEMP;
 VAR RENT;
 TABLE RENT='Monthly Rent',
 ALL*(N='Number of Observations'
 MEAN='Average'
 STD='Standard Deviation');
RUN;

The new table is shown below.
„ƒƒƒƒƒƒƒƒƒƒƒƒƒ…ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒ†
‚ ‚ All ‚
‚ ‡ƒƒƒƒƒƒƒƒƒƒƒƒ…ƒƒƒƒƒƒƒƒƒƒƒƒ…ƒƒƒƒƒƒƒƒƒƒƒƒ‰
‚ ‚ Number of ‚ ‚ Standard ‚
‚ ‚Observations‚ Average ‚ Deviation ‚
‡ƒƒƒƒƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒƒƒƒƒ‰
‚Monthly Rent ‚ 126.00‚ 1129.66‚ 544.77‚
Šƒƒƒƒƒƒƒƒƒƒƒƒƒ‹ƒƒƒƒƒƒƒƒƒƒƒƒ‹ƒƒƒƒƒƒƒƒƒƒƒƒ‹ƒƒƒƒƒƒƒƒƒƒƒƒŒ

� TIP #3: HIDING STATISTIC LABELS

The next area of cleanup we’ll tackle is
excessive statistic labels. Every time you display
a statistic in a table, by default PROC
TABULATE generates a row or column heading
for that statistic.

In the example below, we have a table that
calculates mean rent by city. Because there are
three cities, the label “Mean” is repeated three
times.

„ƒƒƒƒƒƒƒƒƒƒƒƒƒ…ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒ†
‚ ‚ city ‚
‚ ‡ƒƒƒƒƒƒƒƒƒƒƒƒ…ƒƒƒƒƒƒƒƒƒƒƒƒ…ƒƒƒƒƒƒƒƒƒƒƒƒ‰
‚ ‚ ‚ San ‚ ‚
‚ ‚ Portland ‚ Francisco ‚ Seattle ‚
‚ ‡ƒƒƒƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒƒƒƒƒ‰
‚ ‚ Mean ‚ Mean ‚ Mean ‚
‡ƒƒƒƒƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒƒƒƒƒ‰
‚Monthly Rent ‚ 859.67‚ 1691.79‚ 1010.37‚
Šƒƒƒƒƒƒƒƒƒƒƒƒƒ‹ƒƒƒƒƒƒƒƒƒƒƒƒ‹ƒƒƒƒƒƒƒƒƒƒƒƒ‹ƒƒƒƒƒƒƒƒƒƒƒƒŒ

This table would be much more attractive if we
could get rid of the repeated labels. This can be
done by using the row variable label to hold the
information about the statistic, and then deleting
the statistic label. The revised code is below.

PROC TABULATE DATA=TEMP;
 CLASS CITY;
 VAR RENT;
 TABLE RENT='Average Monthly Rent',
 CITY*MEAN=' ';
RUN;

The statistic label is deleted by assigning it a
blank label, which is created by putting a space
between two quotes. This code produces the
following table. Now the output is much more
attractive, but no meaning has been lost (no pun
intended).
„ƒƒƒƒƒƒƒƒƒƒƒƒƒ…ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒ†
‚ ‚ city ‚
‚ ‡ƒƒƒƒƒƒƒƒƒƒƒƒ…ƒƒƒƒƒƒƒƒƒƒƒƒ…ƒƒƒƒƒƒƒƒƒƒƒƒ‰
‚ ‚ ‚ San ‚ ‚
‚ ‚ Portland ‚ Francisco ‚ Seattle ‚
‡ƒƒƒƒƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒƒƒƒƒ‰
‚Average ‚ ‚ ‚ ‚
‚Monthly Rent ‚ 859.67‚ 1691.79‚ 1010.37‚
Šƒƒƒƒƒƒƒƒƒƒƒƒƒ‹ƒƒƒƒƒƒƒƒƒƒƒƒ‹ƒƒƒƒƒƒƒƒƒƒƒƒ‹ƒƒƒƒƒƒƒƒƒƒƒƒŒ

� TIP #4: ANOTHER WAY TO RELOCATE THE
STATISTIC LABEL

If you don’t want to move your statistic into the
row label, or it doesn’t easily fit into the row
label, there’s another place you can put the extra
information. If you look at the table above, you
can see that there’s a big empty box in the top
left corner of the label. This is valuable space,
and TABULATE lets you use it by adding a
BOX= option. The code below illustrates how to
use this option.

PROC TABULATE DATA=TEMP;
 CLASS CITY;
 VAR RENT;
 TABLE RENT='Monthly Rent',
 CITY*MEAN=' '
 / BOX='Averages';
RUN;

The new table looks like this:

„ƒƒƒƒƒƒƒƒƒƒƒƒƒ…ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒ†
‚Averages ‚ city ‚
‚ ‡ƒƒƒƒƒƒƒƒƒƒƒƒ…ƒƒƒƒƒƒƒƒƒƒƒƒ…ƒƒƒƒƒƒƒƒƒƒƒƒ‰
‚ ‚ ‚ San ‚ ‚
‚ ‚ Portland ‚ Francisco ‚ Seattle ‚
‡ƒƒƒƒƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒƒƒƒƒ‰
‚Monthly Rent ‚ 859.67‚ 1691.79‚ 1010.37‚
Šƒƒƒƒƒƒƒƒƒƒƒƒƒ‹ƒƒƒƒƒƒƒƒƒƒƒƒ‹ƒƒƒƒƒƒƒƒƒƒƒƒ‹ƒƒƒƒƒƒƒƒƒƒƒƒŒ

� TIP #5: HIDING A VARIABLE LABEL

Getting rid of the repeated ‘MEAN’ labels
helped simplify the table. However, in the
previous example, there’s another superfluous
label.

If you look at the column headings of the above
table, putting the label ‘city’ above the three
values ‘Portland’, ‘San Francisco’, and ‘Seattle’
is redundant. It’s obvious that they are cities.
This variable label can be removed the same way
the ‘MEAN’ statistic labels were removed, by
assigning a blank label.

PROC TABULATE DATA=TEMP;
 CLASS CITY;
 VAR RENT;
 TABLE RENT='Monthly Rent',
 CITY=' '*MEAN=' '
 / BOX='Averages';
RUN;

The new table is shown below.
„ƒƒƒƒƒƒƒƒƒƒƒƒƒ…ƒƒƒƒƒƒƒƒƒƒƒƒ…ƒƒƒƒƒƒƒƒƒƒƒƒ…ƒƒƒƒƒƒƒƒƒƒƒƒ†
‚Averages ‚ ‚ San ‚ ‚
‚ ‚ Portland ‚ Francisco ‚ Seattle ‚
‡ƒƒƒƒƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒƒƒƒƒ‰
‚Monthly Rent ‚ 859.67‚ 1691.79‚ 1010.37‚
Šƒƒƒƒƒƒƒƒƒƒƒƒƒ‹ƒƒƒƒƒƒƒƒƒƒƒƒ‹ƒƒƒƒƒƒƒƒƒƒƒƒ‹ƒƒƒƒƒƒƒƒƒƒƒƒŒ

Compare this to the original table at the top left
of this page. Notice how much more elegant the
table looks, and no information has been lost.
This is your goal in creating TABULATE
output: to refine and simplify the table as much
as possible, to make it easier for the reader to
follow.

� TIP #6: CLEANING UP THE ROW HEADINGS

The previous examples looked at how to get rid
of excess column headings. But you can also
have problems with row labels. Consider the
following table. It’s the same table as the
previous examples, but turned on its side.

PROC TABULATE DATA=TEMP;
 CLASS CITY;
 VAR RENT;
 TABLE CITY=' '*MEAN=' ',
 RENT='Average Monthly Rent';
RUN;

All that has changed is that the row and column
dimensions have been reversed. However, if you
look at the output below, something is wrong.
„ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒ…ƒƒƒƒƒƒƒƒƒƒƒƒ†
‚ ‚ Average ‚
‚ ‚Monthly Rent‚
‡ƒƒƒƒƒƒƒƒ…ƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒƒƒƒƒ‰
‚Portland‚ ‚ 859.67‚
‡ƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒƒƒƒƒ‰
‚San ‚ ‚ ‚
‚Francis-‚ ‚ ‚
‚co ‚ ‚ 1691.79‚
‡ƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒƒƒƒƒ‰
‚Seattle ‚ ‚ 1010.37‚
Šƒƒƒƒƒƒƒƒ‹ƒƒƒƒƒƒƒƒ‹ƒƒƒƒƒƒƒƒƒƒƒƒŒ

This table has an extra set of blank boxes in the
row heading. That’s because the label for city
has been set to a blank label. In the column
heading, the box for a blank label is removed
from the table. In a row heading, TABULATE
leaves behind the empty box. To fix this, you
need use the ROW=FLOAT option, as shown in
the code below.

PROC TABULATE DATA=TEMP;
 CLASS CITY;
 VAR RENT;
 TABLE CITY=' '*MEAN=' ',
 RENT='Average Monthly Rent'
 / ROW=FLOAT;
RUN;

Now the table looks like this:
„ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒ…ƒƒƒƒƒƒƒƒƒƒƒƒ†
‚ ‚ Average ‚
‚ ‚Monthly Rent‚
‡ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒƒƒƒƒ‰
‚Portland ‚ 859.67‚
‡ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒƒƒƒƒ‰
‚San Francisco ‚ 1691.79‚
‡ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒƒƒƒƒ‰
‚Seattle ‚ 1010.37‚
Šƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒ‹ƒƒƒƒƒƒƒƒƒƒƒƒŒ

The ROW=FLOAT option is a good thing to
leave turned on all of the time. It does no harm if
you have no blank variable or statistic labels in
your row headings, and you will need it
whenever you do have blank labels.

� TIP #7: MODIFYING ROW HEADING WIDTHS

By default, TABULATE divides the line width
between the row headings and the table cells

holding row values. It uses a simple formula,
which unfortunately does not account for the
width of your row variable labels. So quite often,
the row headings have too much or too little
space for your labels.

In this example, a narrow line size setting has
caused the space available for the row heading to
become too small to hold the text of the label
without wrapping.
„ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒ…ƒƒƒƒƒƒƒƒƒƒƒƒ…ƒƒƒƒƒƒƒƒƒƒƒƒ…ƒƒƒƒƒƒƒƒƒƒƒƒ†
‚ ‚ ‚ San ‚ ‚
‚ ‚ Portland ‚ Francisco ‚ Seattle ‚
‡ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒƒƒƒƒ‰
‚Average Monthly ‚ ‚ ‚ ‚
‚Rent ‚ 859.67‚ 1691.79‚ 1010.37‚
Šƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒ‹ƒƒƒƒƒƒƒƒƒƒƒƒ‹ƒƒƒƒƒƒƒƒƒƒƒƒ‹ƒƒƒƒƒƒƒƒƒƒƒƒŒ

To provide more space, you can override the
default width for the row heading using the RTS
option. The code for this is as follows:

PROC TABULATE DATA=TEMP;
 CLASS CITY;
 VAR RENT;
 TABLE CITY=' '*MEAN=' ',
 RENT='Average Monthly Rent'
 / ROW=FLOAT RTS=22;
RUN;

The RTS setting of 22 was computed by taking
the width of the label and adding two (for the
borders of the row heading). The revised table is
shown below
„ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒ…ƒƒƒƒƒƒƒƒƒƒƒƒ…ƒƒƒƒƒƒƒƒƒƒƒƒ…ƒƒƒƒƒƒƒƒƒƒƒƒ†
‚ ‚ ‚ San ‚ ‚
‚ ‚ Portland ‚ Francisco ‚ Seattle ‚
‡ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒƒƒƒƒ‰
‚Average Monthly Rent‚ 859.67‚ 1691.79‚ 1010.37‚
Šƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒ‹ƒƒƒƒƒƒƒƒƒƒƒƒ‹ƒƒƒƒƒƒƒƒƒƒƒƒ‹ƒƒƒƒƒƒƒƒƒƒƒƒŒ

� TIP #8: MODIFYING COLUMN WIDTHS

To change the width of row headings, you use
RTS. Unfortunately, there isn’t an equivalent
CTS option for columns. Instead, to adjust the
width of a column, you modify the format of the
data displayed in that column.

By default, TABULATE uses the format
BEST12.2 for all table values. This means unless
you specify otherwise, every column will be 12
spaces wide. In our sample table, 12 spaces looks
okay, but if we wanted to save space, we could
reduce this to 9 spaces, which is the width of the
longest word in a column label.

To change the format, add a FORMAT= option
to the PROC TABULATE statement as in the
following code.

PROC TABULATE DATA=TEMP FORMAT=9.2;
 CLASS CITY;
 VAR RENT;
 TABLE CITY=' '*MEAN=' ',
 RENT='Average Monthly Rent'
 / ROW=FLOAT RTS=22;
RUN;

The new table is shown below: It’s a bit more
compact than the original.
„ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒ…ƒƒƒƒƒƒƒƒƒ…ƒƒƒƒƒƒƒƒƒ…ƒƒƒƒƒƒƒƒƒ†
‚ ‚ ‚ San ‚ ‚
‚ ‚Portland ‚Francisco‚ Seattle ‚
‡ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒƒ‰
‚Average Monthly Rent‚ 859.67‚ 1691.79‚ 1010.37‚
Šƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒ‹ƒƒƒƒƒƒƒƒƒ‹ƒƒƒƒƒƒƒƒƒ‹ƒƒƒƒƒƒƒƒƒŒ

� TIP #9: USING APPROPRIATE FORMATS

Using the FORMAT= option allowed us to pick
an appropriate column width. However, we
haven’t yet taken full advantage of this option.
This table displays results that are dollar
amounts. We can use the FORMAT= option to
display the results in a more appropriate format.
The DOLLAR format adds “$” and commas to
dollar amounts. In addition, since these are large
dollar amounts, we can get rid of the decimal
places to make the table easier to read.

PROC TABULATE DATA=TEMP FORMAT=DOLLAR9.;
 CLASS CITY;
 VAR RENT;
 TABLE CITY=' '*MEAN=' ',
 RENT='Average Monthly Rent'
 / ROW=FLOAT RTS=22;
RUN;

The new table is shown below:
„ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒ…ƒƒƒƒƒƒƒƒƒ…ƒƒƒƒƒƒƒƒƒ…ƒƒƒƒƒƒƒƒƒ†
‚ ‚ ‚ San ‚ ‚
‚ ‚Portland ‚Francisco‚ Seattle ‚
‡ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒƒ‰
‚Average Monthly Rent‚ $860‚ $1,692‚ $1,010‚
Šƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒ‹ƒƒƒƒƒƒƒƒƒ‹ƒƒƒƒƒƒƒƒƒ‹ƒƒƒƒƒƒƒƒƒŒ

� TIP #10: RE-ORDERING THE HEADINGS

When you generate a TABULATE table, by
default the values of your CLASS variable are
listed based on their internal values (their
unformatted values). TABULATE gives you
options to change this to the order of the data (so
you can sort the data into the order that you
want) or the order of the formatted values.

However, sometimes the table values and their
formatted values are not in the order you want.
There’s a trick you can use to force your
headings into the order you desire. To illustrate

the technique, let’s say we want to change the
table from the previous examples so that the
cities are listed in geographic order from north to
south.

To get the table in this order you create a new
format with leading blanks added to force the
formatted values to sort into the order that you
want. Then you use the ORDER=FORMATTED
option on your PROC TABULATE statement.

PROC FORMAT;
 value cityft 1=' Portland'
 2='San Francisco'
 3=' Seattle';
RUN;
PROC TABULATE DATA=TEMP FORMAT=9.
 ORDER=FORMATTED;
 CLASS CITY;
 VAR RENT;
 TABLE RENT='Average Monthly Rent',
 CITY=' '*MEAN=' '
 / RTS=22;
RUN;

In this example, since we want Seattle to come
first, its format is given two leading blanks.
Portland comes next, so it gets one leading
blank, and San Francisco is left alone. When the
table is created, TABULATE uses these blanks
to create the column heading order, but strips off
the blanks before displaying the table. The result
is that the resulting table is in the correct order
but doesn’t have any extra spaces.
„ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒ…ƒƒƒƒƒƒƒƒƒ…ƒƒƒƒƒƒƒƒƒ…ƒƒƒƒƒƒƒƒƒ†
‚ ‚ ‚ ‚ San ‚
‚ ‚ Seattle ‚Portland ‚Francisco‚
‡ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒƒ‰
‚Average Monthly Rent‚ $1,010‚ $860‚ $1,692‚
Šƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒ‹ƒƒƒƒƒƒƒƒƒ‹ƒƒƒƒƒƒƒƒƒ‹ƒƒƒƒƒƒƒƒƒŒ

� TIP #11: FORMATTING PERCENTAGES

One of the most powerful parts of PROC
TABULATE is the ability to specify complex
percentages to display in your table. However,
the default formatting of these percentages
leaves a little to be desired.

For example, the following code is used to
produce the table below. It calls for a table of
parking availability by city, with column
percentages and totals at the end of each column.

PROC TABULATE DATA=TEMP
 ORDER=FORMATTED;
 CLASS PARKING CITY;
 TABLE (PARKING='Has Parking' ALL)
 *PCTN<PARKING ALL>=' ',
 CITY=' '
 / ROW=FLOAT RTS=13;
RUN;
„ƒƒƒƒƒƒƒƒƒƒƒ…ƒƒƒƒƒƒƒƒƒƒƒƒ…ƒƒƒƒƒƒƒƒƒƒƒƒ…ƒƒƒƒƒƒƒƒƒƒƒƒ†
‚ ‚ ‚ ‚ San ‚
‚ ‚ Seattle ‚ Portland ‚ Francisco ‚
‡ƒƒƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒƒƒƒƒ‰
‚Has Parking‚ ‚ ‚ ‚
‡ƒƒƒƒƒƒƒƒƒƒƒ‰ ‚ ‚ ‚
‚No ‚ 47.37‚ 40.74‚ 29.41‚
‡ƒƒƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒƒƒƒƒ‰
‚Yes ‚ 52.63‚ 59.26‚ 70.59‚
‡ƒƒƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒƒƒƒƒ‰
‚All ‚ 100.00‚ 100.00‚ 100.00‚
Šƒƒƒƒƒƒƒƒƒƒƒ‹ƒƒƒƒƒƒƒƒƒƒƒƒ‹ƒƒƒƒƒƒƒƒƒƒƒƒ‹ƒƒƒƒƒƒƒƒƒƒƒƒŒ

Instead of putting percent signs after the
percentages, TABULATE uses its standard
BEST12.2 format. You might think that
switching to the PERCENT format would solve
the problem. However, here’s what you get if
you assign the format of PERCENT9. in the
PROC TABULATE statement:
„ƒƒƒƒƒƒƒƒƒƒƒ…ƒƒƒƒƒƒƒƒƒ…ƒƒƒƒƒƒƒƒƒ…ƒƒƒƒƒƒƒƒƒ†
‚ ‚ ‚ ‚ San ‚
‚ ‚ Seattle ‚Portland ‚Francisco‚
‡ƒƒƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒƒ‰
‚Has Parking‚ ‚ ‚ ‚
‡ƒƒƒƒƒƒƒƒƒƒƒ‰ ‚ ‚ ‚
‚No ‚ 4737% ‚ 4074% ‚ 2941% ‚
‡ƒƒƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒƒ‰
‚Yes ‚ 5263% ‚ 5926% ‚ 7059% ‚
‡ƒƒƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒƒ‰
‚All ‚ 10000% ‚ 10000% ‚ 10000% ‚
Šƒƒƒƒƒƒƒƒƒƒƒ‹ƒƒƒƒƒƒƒƒƒ‹ƒƒƒƒƒƒƒƒƒ‹ƒƒƒƒƒƒƒƒƒŒ

What happens is that TABULATE multiplies all
calculated percentages by 100 before displaying
the results. Unfortunately, the PERCENT format
also multiplies values by 100, so what you get is
values that have been multiplied by 1000!

To add percent signs to TABULATE
percentages, you need to create your own
percentage format. You can do this with a
PICTURE format.

PROC FORMAT;
 PICTURE PCTPIC low-high='000%';
RUN;
PROC TABULATE DATA=TEMP
 ORDER=FORMATTED FORMAT=PCTPIC9.;
 CLASS PARKING CITY;
 TABLE (PARKING='Has Parking' ALL)
 *PCTN<PARKING ALL>=' ',
 CITY=' '
 / ROW=FLOAT RTS=13;
RUN;

The new table now has percent signs, but the
values have not been altered.
„ƒƒƒƒƒƒƒƒƒƒƒ…ƒƒƒƒƒƒƒƒƒ…ƒƒƒƒƒƒƒƒƒ…ƒƒƒƒƒƒƒƒƒ†
‚ ‚ ‚ ‚ San ‚
‚ ‚ Seattle ‚Portland ‚Francisco‚
‡ƒƒƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒƒ‰
‚Has Parking‚ ‚ ‚ ‚
‡ƒƒƒƒƒƒƒƒƒƒƒ‰ ‚ ‚ ‚
‚No ‚ 47%‚ 40%‚ 29%‚
‡ƒƒƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒƒ‰
‚Yes ‚ 52%‚ 59%‚ 70%‚
‡ƒƒƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒƒ‰
‚All ‚ 100%‚ 100%‚ 100%‚
Šƒƒƒƒƒƒƒƒƒƒƒ‹ƒƒƒƒƒƒƒƒƒ‹ƒƒƒƒƒƒƒƒƒ‹ƒƒƒƒƒƒƒƒƒŒ

� TIP #12: ANOTHER WAY TO DISPLAY
PERCENTAGES

Sometimes TABULATE gives you more output
than you need. For example, in the above table
we can see that 52% of the Seattle apartments in
our dataset have parking available. We don’t
really need to know that 47% do not. In fact,
with the rounding error in this table, it’s
somewhat confusing to show the percentages for
“Yes” and “No”. It would be more useful to
display a single percentage that shows what
percentage of apartments have parking, and
ignore the percentage that do not (since it is
implied).

You can do this with a simple DATA step trick.
You compute a dummy variable that indicates
whether the building has parking. All “Yes”
answers are coded to 1; all “No” answers are
coded to 0. Then you take the mean of that
variable in your TABULATE table, and format it
as a percentage.

PROC TABULATE DATA=TEMP
 ORDER=FORMATTED FORMAT=PERCENT9.;
 CLASS CITY;
 VAR PARKING;
 TABLE PARKING='% With Parking'*MEAN=' ',
 CITY=' '
 / ROW=FLOAT RTS=16;
RUN;

In this example, the variable PARKING happens
to already be created as 1=Yes, 0=No, so we
don’t even need a data step. Also note that we
can now use the PERCENT format, because we
are calculating the percent ourselves so
TABULATE will not multiply it by 100. The
new table is shown below.
„ƒƒƒƒƒƒƒƒƒƒƒƒƒƒ…ƒƒƒƒƒƒƒƒƒ…ƒƒƒƒƒƒƒƒƒ…ƒƒƒƒƒƒƒƒƒ†
‚ ‚ ‚ ‚ San ‚
‚ ‚ Seattle ‚Portland ‚Francisco‚
‡ƒƒƒƒƒƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒƒ‰
‚% With Parking‚ 53% ‚ 59% ‚ 71% ‚
Šƒƒƒƒƒƒƒƒƒƒƒƒƒƒ‹ƒƒƒƒƒƒƒƒƒ‹ƒƒƒƒƒƒƒƒƒ‹ƒƒƒƒƒƒƒƒƒŒ

This version of table is much smaller and easier
to interpret. Keep this trick in mind whenever
you are displaying percentages of a dichotomous
variable.

� TIP #13: FORMATTING MISSING VALUES

No data is ever perfect, so chances are you’re
going to run into the problem of missing data.
TABULATE can’t make your missing data go
away, but it does give you some control on how
it is displayed. For example, look at the
following table:
„ƒƒƒƒƒƒƒƒƒƒƒƒƒ…ƒƒƒƒƒƒƒƒƒ…ƒƒƒƒƒƒƒƒƒ…ƒƒƒƒƒƒƒƒƒ†
‚Number of ‚ ‚ ‚ San ‚
‚Observations ‚ Seattle ‚Portland ‚Francisco‚
‡ƒƒƒƒƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒƒ‰
‚Has Parking ‚ ‚ ‚ ‚
‡ƒƒƒƒƒƒƒƒƒƒƒƒƒ‰ ‚ ‚ ‚
‚No ‚ .‚ 22‚ 10‚
‡ƒƒƒƒƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒƒ‰
‚Yes ‚ 20‚ 32‚ 24‚
Šƒƒƒƒƒƒƒƒƒƒƒƒƒ‹ƒƒƒƒƒƒƒƒƒ‹ƒƒƒƒƒƒƒƒƒ‹ƒƒƒƒƒƒƒƒƒŒ

This table has a period in one cell where there is
missing data. This convention is familiar to SAS
programmers, but the end user of your table may
not know what the “.” stands for.

Since this is a table of Ns, it would be nice to
display a zero in that empty cell instead of the
period. You can request this with the
MISSTEXT option.

PROC TABULATE DATA=TEMPMISS
 ORDER=FORMATTED FORMAT=9.;
 CLASS CITY PARKING;
 TABLE PARKING='Has Parking'*N=' ',
 CITY=' '
 / ROW=FLOAT RTS=15
 BOX='Number of Observations'
 MISSTEXT='0';
RUN;

The revised table is displayed below.

„ƒƒƒƒƒƒƒƒƒƒƒƒƒ…ƒƒƒƒƒƒƒƒƒ…ƒƒƒƒƒƒƒƒƒ…ƒƒƒƒƒƒƒƒƒ†
‚Number of ‚ ‚ ‚ San ‚
‚Observations ‚ Seattle ‚Portland ‚Francisco‚
‡ƒƒƒƒƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒƒ‰
‚Has Parking ‚ ‚ ‚ ‚
‡ƒƒƒƒƒƒƒƒƒƒƒƒƒ‰ ‚ ‚ ‚
‚No ‚ 0‚ 22‚ 10‚
‡ƒƒƒƒƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒƒ‰
‚Yes ‚ 20‚ 32‚ 24‚
Šƒƒƒƒƒƒƒƒƒƒƒƒƒ‹ƒƒƒƒƒƒƒƒƒ‹ƒƒƒƒƒƒƒƒƒ‹ƒƒƒƒƒƒƒƒƒŒ

� TIP #14: REMOVING REDUNDANT
INFORMATION

This next example uses several tricks to simplify
a table with redundant information.

PROC TABULATE DATA=TEMP
 ORDER=FORMATTED FORMAT=6.;
 CLASS CITY;
 VAR RENT BEDROOMS;
 TABLE RENT='Monthly Rent'
 BEDROOMS='Number of Bedrooms',
 CITY=' '*(N MEAN)
 / ROW=FLOAT RTS=14.;
RUN;

The table is designed to show the N and MEAN
for two variables for each city. However, notice
that the N is the same for both variables in each
case. So space is being wasted displaying the N
twice in each column.
„ƒƒƒƒƒƒƒƒƒƒƒƒ…ƒƒƒƒƒƒƒƒƒƒƒƒ…ƒƒƒƒƒƒƒƒƒƒƒƒ…ƒƒƒƒƒƒƒƒƒƒƒƒƒ†
‚ ‚ Seattle ‚ Portland ‚San Francisco‚
‚ ‡ƒƒƒƒƒ…ƒƒƒƒƒƒˆƒƒƒƒƒ…ƒƒƒƒƒƒˆƒƒƒƒƒƒ…ƒƒƒƒƒƒ‰
‚ ‚ N ‚ Mean ‚ N ‚ Mean ‚ N ‚ Mean ‚
‡ƒƒƒƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒˆƒƒƒƒƒƒˆƒƒƒƒƒˆƒƒƒƒƒƒˆƒƒƒƒƒƒˆƒƒƒƒƒƒ‰
‚Monthly Rent‚ 38‚ 1010‚ 54‚ 860‚ 34‚ 1692‚
‡ƒƒƒƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒˆƒƒƒƒƒƒˆƒƒƒƒƒˆƒƒƒƒƒƒˆƒƒƒƒƒƒˆƒƒƒƒƒƒ‰
‚Number of ‚ ‚ ‚ ‚ ‚ ‚ ‚
‚Bedrooms ‚ 38‚ 2‚ 54‚ 2‚ 34‚ 2‚
Šƒƒƒƒƒƒƒƒƒƒƒƒ‹ƒƒƒƒƒ‹ƒƒƒƒƒƒ‹ƒƒƒƒƒ‹ƒƒƒƒƒƒ‹ƒƒƒƒƒƒ‹ƒƒƒƒƒƒŒ

The table can be simplified by only displaying
the N for one of the two variables. It can also be
made more user friendly by displaying the
results in one column per city instead of two.

PROC TABULATE DATA=TEMP
ORDER=FORMATTED;
 CLASS CITY;
 VAR RENT BEDROOMS;
 TABLE RENT='(N)'*N=' '*F=9.
 RENT='Average Rent'
 *MEAN=' '*F=DOLLAR9.
 BEDROOMS='Average Bedrooms'
 *MEAN=' '*F=9.2,
 CITY=' '
 / ROW=FLOAT RTS=16.;
RUN;

The trick in this table is to move the statistics to
the row dimension and to use the variable RENT
twice in the table statement. The first time it is
labeled as “(N)” and is used to compute the N
statistic. The second time it is labeled as
“Average Rent” and it is used to compute the
MEAN statistic. The second variable
BEDROOMS is only used to compute a mean.

Also, notice how formats have been used in the
TABLE statement. If you want to use a single
format for the whole table, specify it in the
PROC TABULATE statement. However, if you
want to use different formats for each statistic or
variable, you can apply the format directly to the
statistic or variable by using an asterisk and the
FORMAT= or F= syntax. In this example, F= is
used to format the N as an integer, the variable
RENT as a dollar amount, and the variable
BEDROOMS as a number with two decimal
places.

The new table, shown below, now has only three
columns (instead of 6) and has one new row.
„ƒƒƒƒƒƒƒƒƒƒƒƒƒƒ…ƒƒƒƒƒƒƒƒƒ…ƒƒƒƒƒƒƒƒƒ…ƒƒƒƒƒƒƒƒƒ†
‚ ‚ ‚ ‚ San ‚
‚ ‚ Seattle ‚Portland ‚Francisco‚
‡ƒƒƒƒƒƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒƒ‰
‚(N) ‚ 38‚ 54‚ 34‚
‡ƒƒƒƒƒƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒƒ‰
‚Average Rent ‚ $1,010‚ $860‚ $1,692‚
‡ƒƒƒƒƒƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒƒ‰
‚Average ‚ ‚ ‚ ‚
‚Bedrooms ‚ 1.50‚ 1.50‚ 1.50‚
Šƒƒƒƒƒƒƒƒƒƒƒƒƒƒ‹ƒƒƒƒƒƒƒƒƒ‹ƒƒƒƒƒƒƒƒƒ‹ƒƒƒƒƒƒƒƒƒŒ

Whenever your table has repeated information,
think of using tricks like this to simplify it.

� TIP #15: REMOVING THE ROW DIVIDERS

In each of the examples so far, we’ve used the
default PROC TABULATE table grid. The table
grid is the horizontal and vertical bar characters
that make up the borders of the table rows,
columns, and cells. The default table grid puts a
border around every cell, row, column, and page.
However, you don’t have to use the standard
table grid. If you’d like a table that looks a little
less “boxy,” you can tell PROC TABULATE to
remove the row dividers.
„ƒƒƒƒƒƒƒƒƒƒƒƒƒƒ…ƒƒƒƒƒƒƒƒƒ…ƒƒƒƒƒƒƒƒƒ…ƒƒƒƒƒƒƒƒƒ†
‚Average Rent ‚ ‚ ‚ San ‚
‚ ‚ Seattle ‚Portland ‚Francisco‚
‡ƒƒƒƒƒƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒƒ‰
‚1 Bedroom ‚ $887‚ $621‚ $1,284‚
‡ƒƒƒƒƒƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒƒ‰
‚2 Bedrooms ‚ $1,134‚ $1,099‚ $2,100‚
Šƒƒƒƒƒƒƒƒƒƒƒƒƒƒ‹ƒƒƒƒƒƒƒƒƒ‹ƒƒƒƒƒƒƒƒƒ‹ƒƒƒƒƒƒƒƒƒŒ

If you look closely at the above table, you will
see that each row in the table actually requires

two lines of text. One has the data that goes in
each of the table cells. The second line consists
of a series of characters that form the divider
between the rows. The following code uses the
NOSEPS option to remove these row dividers
from your table.

PROC TABULATE DATA=TEMP NOSEPS
 ORDER=FORMATTED F=DOLLAR9.;
 CLASS CITY BEDROOMS;
 VAR RENT;
 TABLE RENT=' '*BEDROOMS=' ',
 CITY=' '*MEAN=' '
 / ROW=FLOAT RTS=16
 BOX='Average Rent';
RUN;

The new table retains the boxes around the
column headers, but now there are no row
dividers in the body of the table.
„ƒƒƒƒƒƒƒƒƒƒƒƒƒƒ…ƒƒƒƒƒƒƒƒƒ…ƒƒƒƒƒƒƒƒƒ…ƒƒƒƒƒƒƒƒƒ†
‚Average Rent ‚ ‚ ‚ San ‚
‚ ‚ Seattle ‚Portland ‚Francisco‚
‡ƒƒƒƒƒƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒƒ‰
‚1 Bedroom ‚ $887‚ $621‚ $1,284‚
‚2 Bedrooms ‚ $1,134‚ $1,099‚ $2,100‚
Šƒƒƒƒƒƒƒƒƒƒƒƒƒƒ‹ƒƒƒƒƒƒƒƒƒ‹ƒƒƒƒƒƒƒƒƒ‹ƒƒƒƒƒƒƒƒƒŒ

This can be a great space-saving tool if you have
a table that is too tall to fit on the page, but be
careful. If your table has many columns, it may
be hard to see which numbers line up across a
row without the help of the row dividers.

� TIP #16: MODIFYING THE BORDER STYLE

Throughout this paper, the tables have been
displayed with high-resolution smooth lines as
borders. However, when you run TABULATE,
your tables may look more like this:
--
|Average Rent | | | San |
| | Seattle |Portland |Francisco|
|--------------+---------+---------+---------|
|1 Bedroom | $887| $621| $1,284|
|2 Bedrooms | $1,134| $1,099| $2,100|
--

This setup is designed so that it can be displayed
on low-resolution monitors, and printed on a line
printer. But these days, even if you’re on a
mainframe, you’re probably printing to a high-
resolution laser printer. If you’d like to set up
TABULATE to print tables with smooth line
borders, you need to change your FORMCHAR
option setting.

There are two ways to do this. One is to look up
the hex codes for each of the special border
characters for your printer. This means digging

out the printer manual and finding the codes for
characters like “†” and “…”.

The other option is to use the following
FORMCHAR setting:

OPTIONS FORMCHAR='82838485868788898A8B8C'X;

If you’re running SAS on Windows, you can
change your font setting to SAS Monospace, and
your table will be displayed and printed with the
smooth borders of the previous examples.

If you’re running SAS in an environment where
you can’t change the display and printing font,
then you’ll need to save your output and open it
in a word processor. You can change the font to
SAS Monospace and print it from there.

� TIP #17: EXPORTING TO HTML
If you plan on displaying your results on the
Internet, or sharing them via the company
intranet, or e-mailing the results to a client, the
best thing you can do to make your output more
attractive is to convert it to HTML.

In version 6, the code for creating HTML is:

OPTIONS FORMCHAR='82838485868788898A8B8C'X;
%TAB2HTM (CAPTURE=ON, RUNMODE=B);
PROC TABULATE DATA=TEMP NOSEPS
 ORDER=FORMATTED F=DOLLAR9.;
 CLASS CITY BEDROOMS;
 VAR RENT;
 TABLE RENT=' '*BEDROOMS=' ',
 CITY=' '*MEAN=' '
 / ROW=FLOAT RTS=16
 BOX='Average Rent';
RUN;
%TAB2HTM(CAPTURE=OFF, RUNMODE=B,
 OPENMODE=REPLACE,
 HTMLFILE=C:\TEMP\MYFILE1.HTML);

This example shows a minimal set of options,
there are many more. In particular, note the
FORMCHAR setting, which is required. The
output is shown below.

In version 8, the syntax is even easier:

ODS HTML BODY='C:\TEMP\MYFILE2.HTML';
PROC TABULATE DATA=TEMP NOSEPS
 ORDER=FORMATTED F=DOLLAR9.;
 CLASS CITY BEDROOMS;
 VAR RENT;
 TABLE RENT=' '*BEDROOMS=' ',
 CITY=' '*MEAN=' '
 / ROW=FLOAT RTS=16
 BOX='Average Rent';
RUN;
ODS HTML CLOSE;

The output for version 8 is shown below:

� TIP #18: IMPORTING INTO OTHER
APPLICATIONS

Once you’ve created HTML output, it’s easy to
move your table into other applications. To move
your table into a word processor, you can simple
open the HTML file directly from the word
processor.

If you want to add your table to an existing
document, simply open it in a browser, highlight
the table, and use copy and paste to drop it into
your word processor.

The same technique works well for moving your
table into a spreadsheet. Just open the file
directly from your spreadsheet.

You can also open an HTML file from
PowerPoint. You may find that your file needs a
bit of formatting once it is imported. Generally,
you’ll need to move the table to where you want
it on the page, and you may need to resize the
table and fonts.

Save this file as a PowerPoint presentation. Then
you can either add the rest of your slides to this
file, or import this file into another presentation.

� CONCLUSIONS

This paper has shown a number of tips and tricks
for taking your TABULATE output to the next
level. This procedure can be a powerful table
generator if you take a little time to learn how to
enhance your output.

There are many more ways to enhance your
output. Check the SUGI proceedings for
Tutorials and Coders Corner papers on the
procedure. There are also more techniques in my
book “PROC TABULATE by Example”.
Finally, you can probably figure out some new
tricks on your own, based on the needs of your
organization.

� ACKNOWLEDGEMENTS

SAS is a registered trademark of SAS Institute
Inc. in the USA and other countries. � indicates
USA registration.

Other brand and product names are registered
trademarks or trademarks of their respective
companies.

� CONTACTING THE AUTHOR

Please direct any questions or feedback to the
author at: info@laurenhaworth.com

Creating Adobe Pdf Files from SAS Graph Output
Patrick M. McGown, FSD Data Services, Inc., Winston-Salem, NC

Introduction

As more companies and individuals move online, the
demand for reporting information electronically will
continue to increase. The need to provide information
electronically is confounded by the variety of hardware
and software platforms in use. This variability in systems
can result in files being reformatted for a particular device
or resolution, preventing a standard presentation of the
information to the audience. Adobe Portable Document
Format (Pdf) provides a method for ensuring standard
presentation of information across the different hardware
and software used by the end users. This paper
discusses the different methods for creating Adobe Pdf
files from SAS Graph output. For this paper, all files and
graphs were created on a Windows NT 4.0 system with
Adobe Acrobat and Reader 4.0 installed.

PDF files, what are they good for?

Pdf files are used with increasing frequency for on-line
forms, documents, manuals and reports. They can be
found in many places including the SAS Online
Documentation and IRS Tax forms and publications. The
Adobe Portable Document Format provides a platform for
ensuring the standard presentation of information across
different hardware and software systems. Once created,
the Pdf file retains all of the fonts, graphics, colors and
formatting regardless of the platform. By downloading
and installing the free Adobe Acrobat Reader, most
anyone can open Pdf files. The Adobe Acrobat Reader is
available for systems such as Windows, Macintosh, Linux,
Solaris, Unix, IBM AIX, OS2, Sun SPARCstation and the
recently released version for Palm OS 3.1 or higher. The
ability to provide individual users with the same file
regardless of their system saves time and money and
greatly simplifies the publishing process.

Creating Pdfs using SAS Version 6

Version 6 does not include any Pdf drivers, requiring a
multi-step process for generating Pdf files from SAS
Graph output. Both of the processes discussed here
require the installation of Adobe Acrobat, software used to
generate Pdf files from other systems. Once installed,
Adobe Acrobat provides two methods for placing SAS
Graphs into Pdf files, the Adobe PDFWriter print driver
and the Adobe Acrobat Distiller.

Creating Single Page PDF files

For creating single page file from a single SAS Graph, the
process includes running the graph, selecting File/Print
from the SAS menu bar, then selecting the Adobe
PDFWriter under the printer name list, and providing a
path and filename when prompted.

If you have several single page Graphs to process, this
can take some time to do and for large scale processing,
it is not an efficient process.

Creating Multi-Page PDF Files

Creating a single Pdf file from multiple SAS Graphs
requires a different process. This method may also be
used if the job requires numerous single page files,
making the above method too time consuming. This
requires the graphs to be saved as Postscript files and
then translated into Pdf files using the Adobe Distiller.
The following program creates two graphs from
SASHELP.RETAIL with the output being saved to a
Postscript file named Sample2.ps. The filename
statement assigns a Graphics Stream File destination for
the output and the GACCESS option directs the output to
the postscript file. GSFNAME may be substituted for
GACCESS. The GSF file will contain the SAS Graphs
exported in the format specified by the device listed in the
goptions statement. In this case, the graphs are being
exported using the 300 DPI Postscript Driver. In order to
export multiple graphs to a single file, GSFMODE must be
set to APPEND.

filename gsasfile ’d:\projects\ssu2001_pdf\Sample2.ps’;
goptions device=ps300 gaccess=gsasfile gsfmode=append;
proc gchart data=sashelp.retail;
title ’Sample Graph’;
hbar sales;
vbar sales;
run;
quit;

Once the graphs have been export to the Postscript file,
Adobe Distiller can be used to translate the Postscript into
a multi-page Pdf file like the one below.

This method requires Adobe Distiller, part of the Adobe
Acrobat package but it provides a powerful tool for
generating numerous Pdfs from SAS Graph output, either
single page or multi-page by dynamically creating the
filerefs for storing the exported graphs. The following
macro creates three two-page postscript files by using the
macro variable FILENAME to assign the fileref for each
file.

%macro graphs(filename);
 filename gsasfile "d:\projects\ssu2001_pdf\&filename..ps";
 goptions dev=ps300 gaccess=gsasfile gsfmode=append;
 proc gchart data=sashelp.retail;
 title "&filename";
 hbar sales;
 vbar sales;
 run;
 quit;
%mend;
%graphs(sample2a);
%graphs(sample2b);
%graphs(sample2c);

Once this program is run and the postscript files created,
the Adobe Distiller can be set to watch the folder and it
will process all postscript files within the folder. The
advantage to this is that hundreds or thousands of
postscript files can be created and the Adobe Distiller can
translate them to Pdfs during off hours.

Creating Pdfs using SAS Version 7

Version 7 of SAS introduces the PDF and PDFC (color)
device drivers for creating Pdf output directly from SAS.
Instead of specifying the postscript driver for the device,
specify either of the two PDF drivers to create the file or
files.

Creating Single Page PDF files

The following code creates a single page Pdf file from a
single SAS Graph. The program is the same for the
single postscript file but the device is set to PDF instead
of PS300 and the file extension is PDF instead of PS.

filename gsasfile ’d:\projects\ssu2001_pdf\sample3.pdf’;
goptions gaccess=gsasfile dev=pdf ;
 proc gchart data=sashelp.retail;
 title ’Sample Graph’;
 hbar sales;
 run;
quit;

The resulting Pdf file looks like:

Creating Multi-Page PDF Files

The method for creating a multi-page Pdf from more than
one SAS Graph is the same with one exception.

filename gsasfile ’d:\projects\ssu2001_pdf\sample4.pdf’;
goptions reset=all gaccess=gsasfile dev=pdf target=ps300
gsfmode=append ;
 proc gchart data=sashelp.retail;
 title ’Sample Graph’;
 hbar sales;
 vbar sales;
 run;
quit;

In this situation, a target device must be specified and it
must contain a value other than Pdf. In the above
example, the target device is the 300 DPI Postscript
driver. If the target device is not specified or the target
device is set to Pdf, an error will occur when viewing the
second page and it will appear blank. Using the above
code to create a two page Pdf file from the two graphs
with the device target set to PS300 results in the following
Pdf file. This method works when the graphs are
produced under the same SAS Graph procedure.

An exception to the rule: SAS Graph Output from
Multiple SAS Graph Procedures

There is a problem with using the Pdf device driver to
create multi-page Pdf files from multiple SAS Graph
Procedures. The following program creates a single page
Graph output using one Proc Gslide procedure to display
simple Annotate graphics.

filename gsasfile ’d:\projects\ssu2001_pdf\sample5.pdf’;
%annomac;
goptions reset=all device=pdf target=ps300 gaccess=gsasfile
gsfmode=append ;

data temp;
 length text $100 function color style $8;
 retain xsys ysys ’3’;
 %label(50,95,’Test of Annotate Output’,black,0,0,2,swiss,5);
 %label(50,85,’Page 1’,black,0,0,1.5,swiss,5);
run;
proc gslide anno=temp;
run;
quit;

Below is the result of this program.

The problem arises when the output from more than one
SAS Graph procedures are exported to the same
Graphics Stream File using the PDF driver. If we put the
code above into a macro and run the Proc Gslide twice to

create a two page Pdf file, only the last page is created in
the file.

filename gsasfile ’d:\projects\ssu2001_pdf\sample5b.pdf’;
%annomac;
goptions reset=all device=pdf target=ps300 gaccess=gsasfile
gsfmode=append ;
%macro test(page);
 data temp;
 length text $100 function color style $8;
 retain xsys ysys ’3’;
 %label(50,95,’Test of Annotate Output’,black,0,0,4,swiss,5);
 %label(50,85,’Page ’||left(trim("&page")),black,0,0,3,swiss,5);
 run;
 proc gslide anno=temp;
 run;
 quit;
%mend;
%test(1);
%test(2);

This programs creates two pages but only the second
page is viewable in the Pdf file.

Likewise, running two different SAS Graph Procedures
and exporting the results to the same Graphics Stream
File produces the same result, only the last page is saved.
For example,

filename gsasfile ’d:\projects\ssu2001_pdf\sample5c.pdf’;
goptions reset=all gaccess=gsasfile dev=pdf target=ps300
gsfmode=append ;
 proc gchart data=sashelp.retail;
 title ’Sample Graph 1’;
 hbar sales;
 run;
 quit;
 proc gchart data=sashelp.retail;
 title ’Sample Graph 2’;
 vbar sales;
 run;
 quit;

This program results in a Pdf file that only contains the
vertical bar chart run in the second procedure.

SAS Note SN-000918 deals with this issue and provides a
solution to the problem.

filename gsasfile ’d:\projects\ssu2001_pdf\sample5c.pdf’;
%annomac;
goptions reset=all;
goptions nodisplay device=pdf ;
%macro annotest(page);
data temp;
 length text $100 function color style $8;
 retain xsys ysys ’3’;
 %label(50,95,’Test of Annotate Output’,black,0,0,2,swiss,5);
 %label(50,85,’Page ’||left(trim("&page")),black,0,0,1.5,swiss,5);
run;
proc gslide anno=temp;
run;
quit;
%mend;
%annotest(1);
%annotest(2);
goptions display gaccess=gsasfile gsfmode=append;
proc greplay nofs;
 igout work.gseg;
replay _all_;
run;
quit;

In this situation, the output from the two separate Gslide
procedures are stored in the work.gseg catalog and then
replayed to the Graphics Stream File using a single SAS
Graph Procedure, Proc Greplay. This allows both pages
to be created correctly in the Pdf file.

The caution here is that if multiple files are to be created
using this method, the work.gseg catalog needs to be
deleted before each file is created otherwise the next file
will contain the graph output from the current output as
well as the previous output.

Creating Pdfs using SAS Version 8.01

The major difference between Version 7 and Version 8.01
is that for creating multi page files from a single SAS
Graph Procedure, the target device is no longer needed.
The two page Pdf file can be created without specifying
the target device.

filename gsasfile ’d:\projects\ssu2001_pdf\sample6b.pdf’;
goptions reset=all gaccess=gsasfile dev=pdf gsfmode=append ;
proc gchart data=sashelp.retail;
 title ’Sample Graph’;
 hbar sales;
 vbar sales;
run;
quit;

Taking out the target=PS300 has no effect on the
exporting of the graphics output except that the bars are
shaded instead of solid.

As in Version 7, if the graphics output is generated by
multiple SAS Graph procedures, the Proc Greplay method
described above must be used.

Creating Pdfs using SAS Version 8.2

In Version 8.2, the multiple SAS Graph Procedure output
to a single Graphics Stream File problem using the Pdf
driver still exists. The Adobe Distiller method or the Proc
Greplay method are still options in Version 8.2 using the
Pdf driver.

Last but not least, ODS

In Version 8.1, ODS provided a method for exporting
output to Pdf files using ODS PRINTER PDF but only
under certain conditions. This was experimental in 8.1 but
is production in Version 8.2. This method allows for the
exporting of output from multiple SAS Graph Procedures
to a single Pdf file.

ods printer pdf file=’d:\projects\ssu2001_pdf\sample7c.pdf’;
goptions target=winprtg;

 proc gchart data=sashelp.retail ;
 title ’Sample Graph 1’;
 hbar sales ;
 run;
 quit;

 proc gchart data=sashelp.retail ;
 title ’Sample Graph 2’;
 vbar sales ;
 run;
 quit;
ods printer close;

This program creates the following file.

There are a couple of details worth mentioning. In order
to force the bars to be black, the goptions statement with
target=winprtg was added to format the output based on
the Windows gray scale print driver. The second detail to
note is when ODS creates the Pdf file, it also creates
bookmarks, which are located in the far left column of the
file above. In Pdf files, the bookmarks allow for moving
from page to page by clicking on any given bookmark.
The bookmark display can be hidden in Adobe Reader
under Window\Hide Bookmarks. ODS PRINTER PDF
provides a method for the direct creation of multipage Pdf
files from multiple SAS Graph Procedures.

Conclusion

This paper provides a simple overview of creating Pdf files
from SAS Graph Output. The ability to create Pdf files
from SAS Graph Output provides a powerful tool for
distributing information electronically in a consistent
format. The flexibility and power of SAS linked with the
universal nature of the Portable Document Format
provides a way to generate thousands of documents that
can be made available on the web or distributed in other
electronic medium.

References

SAS and SAS/GRAPH are registered trademarks or
trademarks of SAS Institute Inc. in the USA and other
countries. indicates USA registration.

Adobe, Acrobat and the Acrobat logo are trademarks
of Adobe Systems Incorporated which may be
registered in certain jurisdictions.

Contacting the Author
Please direct any questions or feedback to the author at:

FSD Data Services, Inc.
1001 S. Marshall Street
Suite 125, Box 25
Winston-Salem, NC 27101

E-mail: patrickm@fsddatasvc.com

Behind the Scenes at SAS-L

Francis Joseph Kelley
University of Georgia, Athens, GA

Abstract: Since the Fall of 1986, there has been a Listserver-based discussion group called
"SAS-L". For almost 15 years it has been an active, sometimes argumentative, group
discussing everything from the conditional probability of selecting a prize-winning "door" to
correct JCL to sound programming practices to search algorithms to the SAS macro
language to good programming editors to ... Well, the list continues, seemingly without end.
This is a discussion group that one participant once likened to "asking a colleague down the
hall." This paper isn’t about that. This paper is about why the mail sometimes doesn’t go
through, about using the SAS-L archives to help answer questions (and how to do so more
effectively), about strangely-behaving mailers. It is also about some plans and thoughts for
the future of SAS-L.

Dynamically Instantiating Widgets on SAS® Frames – Why, How, and When A Sample
David Ward, InterNext, Inc., Somerset, NJ

ABSTRACT
SAS/AF Frames can be a quick and powerful way to build SAS-based
application in your organization. There may be times when you need
your users to be able to build frames dynamically, for example, to build
data entry screens. It is possible to use the work area class from
version 6 to build a run-time frame “editor” by which you can allow
users to add/remove/move widgets and set their properties. A frame
can then be written which will dynamically instantiate widgets the user
has built at design-time. The parent frame can even add and change
methods and properties of those widgets as needed. Presented in this
paper is a data entry application that allows users to build screens and
uses a SAS/AF Frame to draw the screens at run-time. This technique
can provide a wealth of rich functionality to your SAS/AF applications,
especially if you need your users to design part of your application.

INTRODUCTION
The ability to dynamically instantiate widgets on your SAS/AF frames
comes from two SCL operators: _new_ and _neo_. According to the
SAS OnlineDoc version 8, _new_ "creates an object and runs an
associated class constructor". The class constructor is also referred
to in AF-speak as the _init method. This method is called
automatically, just like the _term method when an object is deleted.
Again, according to OnlineDoc, "the _NEO_ operator provides a faster
and more direct way to create an object. It combines the actions of
loading a class with LOADCLASS and initializing the object with the
_new method, which invokes the object's _init method".

YOUR FIRST EXPERIMENT
To get an idea of what creating widgets at run time looks like, create a
test frame named sasuser.widgets.test1.frame. Do not create any
widgets; simply go directly to the source code for the frame. Enter the
following code:

Import sashelp.classes;
Dcl textentry_c text1 = _new_ textentry_c();
init:
return;

The code above creates a new object named text1 when the frame is
executed. You may have seen this syntax when creating non-visual
objects such as the logical, library, or catalog classes in the catalog
sashelp.fsp. In version 6, SCL used the instance() and loadclass()
functions. The _new_ operator provides a more intuitive syntax to do
the same thing. In this example, however, we are creating a new
instance of the text entry class, the same class used to create text
boxes on frames.

Next, run the frame. Immediately you will see the outline of a text
entry box that follows your mouse pointer around the frame. Clicking
anywhere on the frame displays your text entry in the location where
you clicked. You can now reference the text entry box in the same
way you always have.

We can add a button to the frame at design time that sets the text
property of our text entry box. Once the widget is created, clicking on
the button will display the text.

button1:
 text1.text='Set Text';
return;

SETTING THE LOCATION OF THE WIDGET
The previous example would prove frustrating to end-users.
Each time they ran the frame they would be forced to decide
where to place the text entry box. As a developer, you
would probably not want to give that kind of control to your
users either. The solution is to pass the _neo_ operator a
list of region attributes so that the text box will know how to
"draw" itself. The frame SCL should now be:

Import sashelp.classes;
Dcl textentry_c text1;
init:
 startcol=10; startrow=10;
 AttrList={};
 RegionList={};
 rc = setniteml(AttrList, RegionList,
'_region_');
 rc = setnitemn(AttrList, -1, 'num');
 rc = setnitemn(RegionList, startcol,
'ulx');
 rc = setnitemn(RegionList, startrow,
'uly');
 text1=_neo_ textentry_c(AttrList);
return;
button1:
 text1.text='Set Text';
return;

We have added code to create an attribute list with two
parameters, ULX and ULY. These correspond to the
column/row position that the text entry control should be
created at.

Once your widget has been created and is placed on the
screen you can set other desired properties. Any editable
property (see the OnlineDoc or the properties window of the
frame builder) can be accessed. If you wanted to change
the color of the text entry box you would write:

text1.backgroundcolor='red';

Of course, make sure you place this code after the _neo_
statement.

SAVING WIDGET PROPERTIES
Typically, developers would use this kind of functionality to allow users
to build or customize part of an application themselves. For example,
you could allow your users to drag and drop and set properties for a
welcome frame or main menu. This way, they could customize
images, widget sizes, etc. But how can we save the information each
user creates about where they would like their widgets placed and
what properties they would like to set? The answer is the work area
control from version 6. It allows users to create and manipulate
widgets at run time and to save the entire area out as an SCL list.

Create a new frame called sasuser.widgets.workarea.frame. Place a
simple workarea in the frame and add a push button anywhere. Your
frame should now look something like this:

Enter the following SCL code for the frame:
pushbutton1:
 widgets=makelist();
 call notify ('obj1','_get_widgets_',widgets);
 rc=putlist(widgets,'',0);
 rc=dellist(widgets,'Y');
return;

After running the frame, you will notice that you can right-click
anywhere inside the workarea control and choose the option "add
item". Doing so shows you a list of all built-in SAS widgets (or
controls). Choosing the text entry control will display an outlined
control much like in our first example. It is up to you to decide where
to place it. Once you have created a widget, right-clicking on the
widget and choosing "properties" will allow you to set design-time
properties of the widget. Once you have created some widgets and
set their properties click on the push button. In your log you should
see a rather large list containing one sublist per widget. The list
contains all information about each widget, even the ULX and ULY
values we looked at earlier. You can use the _region_ sublist in
conjunction with the _neo_ operator to create exact copies of the
designed widgets on a frame.

USING THE WORKAREA LISTS
After saving the list you viewed in our last example, you need to use it
in a practical way to generate widgets. Simply using the workarea
again is not practical because users can make changes and you
cannot easily manipulate widgets inside programmatically. The
answer is to build a new frame that reads the widget list and creates a
new widget for each in the list. Here is some code to get you started:

In this case we need to use the "old-fashioned" instance() and
loadclass() functions because the type of widget is not known at

compile time. Notice that each time we used _neo_ we had
to hard-code the widget type (textentry_c above).

Here is a screen shot of our simple example and the SCL
code used to create it:

And the SCL source code:
Dcl object widget;
Dcl char classname;
init:
 widgets={};
 rc=fillist('catalog',
 'sasuser.widgets.workarea.slist',
 widgets);
 do i = 1 to listlen(widgets)-2;
 * LAST 2 ARE NOT WIDGETS *;
 sublist=getiteml(widgets,i);

region=getniteml(sublist,'_REGION_');
** REMOVE BORDER ATTRIBUTE NONE **;
rc=delnitem(region,'border_style');
classname=getnitemc(sublist,

 '_CLASSNAME_');
 classname='sashelp.classes.'||
 scan(classname,1,'.');

widget=instance(loadclass(classname),
 sublist);
 end;
return;

This code exactly reproduces what the user designed in the
workarea.

NEXT STEPS
In order to use your instantiated widgets effectively, you will
need to store the object identifiers in SCL variables or in an
SCL list. If you have an undetermined number of widgets
you should use an SCL list with the inserto(), getitemo()
functions. This way, you can programmatically set
properties of the widgets. Additionally, you can use the
_addEvent, _addAttribute, etc. functions to trap events,
override methods, or do anything else that you would
normally do at design time. This way you can execute code
when a user uses these new widgets.

In the presentation of this paper a data entry screen builder
will be demonstrated that uses these techniques to allow the
design of potentially complex screens.

CONCLUSION
In this paper you have been exposed to a technique to
dynamically instantiate widgets on AF frames. This is a
powerful way to let your users customize or design part of
your application and can be used for such things as building
data entry screens.

ACKNOWLEDGMENTS
SAS and SAS product names are registered trademarks of the SAS
Institute. Other trademarks are the properties of their respective
owners.

CONTACT INFORMATION
Your comments and questions are valued and encouraged. Contact
the author at:

David L. Ward
InterNext, Inc.
254 Resnik Ct.
Somerset, NJ 08873
Work Phone: (732) 745-9823
Email (preferred): dward@sashelp.com

Proc Format, a Speedy Alternative to Sort/Merge
Jenine Eason, AUTOTRADER.COM, Atlanta, Georgia

ABSTRACT

Many users of SAS System software, especially
those working with large data sets, are often
confronted with several challenges. How can one
reduce the data set size and reduce the amount of
time required retrieving specific data? In this paper,
we attempt to do both using a matching method
utilizing Proc Format to replace the CPU heavy
Sort/Merge. It is ideal for situations when a key from
one file is needed to extract data from another file. It
is more apparently useful when at least one of the
files is quite large. This method has been proven
time and again to decrease CPU by 70 – 80%. This
paper is intended for the intermediate to advanced
SAS user. It is effective on all platforms and uses
Base SAS.

INTRODUCTION

Many users of SAS System software, especially
those working with large data sets, are often
confronted with several challenges. How can one
reduce the data set size and reduce the amount of
time required retrieving specific data? In this paper,
we attempt to do both using a matching method
utilizing Proc Format to replace the CPU heavy
Sort/Merge. It is ideal for situations when a key from
one file is needed to extract data from another file. It
is more useful when at least one of the files is quite
large. This method has been proven time and
again to decrease CPU by 70% - 80%.

First, let’s look at the traditional matching routine
Sort/Merge.

TRADITIONAL SORT/MERGE

Proc Sort data=key(keep=key) nodupkey;
 By key;
Run;

Proc Sort data=bigfile;
 By key;
Run;

Data all; merge bigfile(in=a)
 key(in=b);
 By key;
 If a and b;
Run;

Sort/Merge is used here when key values from one
file are needed to extract records from another file
with the same key. For a clean merge, both data

sets have to be sorted. Note that both files have to
be read twice. If either or both the files are large,
CPU time can be considerable.

 There are other basic concerns when running any
Sort/Merge. Are there any duplicate records in
either data set being used in the merge? Is the
"king" merge logic being handled properly, so that
required data from matching data sets will not be
accidentally overlaid? These are no longer
concerns with the Proc Format method.

SPEEDY METHOD USING PROC
FORMAT

Data key; set keyfile(keep=key);
 rename key = start ;
 Fmtname = ‘$key’;
 Label = ‘*’;
Run;

Proc Sort data=key nodupkey;
 By start;
Run;

Proc Format cntlin=key;
Run;

Data all; Set bigfile;
 If put(key,$key.)=’*’ ;
Run;

First, a SAS data set needs to be created from the
input file with the required format variables LABEL,
START, and FMTNAME.

• START is set to the variable assigned as
the key.

• FMTNAME becomes the format name to
be referenced later. (cannot end in a numeric)

• LABEL becomes the symbol that the
desired key values are associated with.

It is very important that the symbol assigned to
LABEL will never have an occurrence in the key
character string of the master file. Otherwise, an
unwanted hit will occur. The asterisk (*) symbol
works in most situations.

This pre-format data set needs to be sorted and any
duplicates eliminated. Format will not allow
duplicate values and will present a “this range is
repeated” error. This also holds true for version 8
SAS.

To actually create a working format, execute PROC
FORMAT using the CNTLIN= option. It converts the
data stored in the pre-format SAS data set to a SAS
format.

Example of a format created using this method:

data keyfile;
 infile cards;
 input key $8.;
 cards;
Ohio
Georgia
Idaho
Virginia
;
run;

~~~~~~  code creating format ~~~~~~ 
 
proc format library=work fmtlib; 
 select $key; 
run; 
 
+-----------------------------------------------------+ 
|FORMAT NAME:$KEY  LENGTH: 1  NUMBER OF VALUES:  4    | 
|MIN LENGTH: 1  MAX LENGTH:40  DEFAULT LENGTH: 1      | 
|---------------_-------------------------------------| 
|START    |END     |LABEL (VER. 8.230APR2001:14:04:25)| 
|-----------------------------------------------------| 
|Georgia  |Georgia |*                                 | 
|Idaho    |Idaho   |*                                 | 
|Ohio     |Ohio    |*                                 | 
|Virginia |Virginia|*                                 | 
+-----------------------------------------------------+ 
 
 
This format can be used anywhere in a program for 
selecting matches to the key.  In essence, the 
assignment statement gives the value of LABEL (in 
this case *) to a matching key. This in turn can be 
used for additional coding.  In the above script, it is 
used to select records matching the key. 
 

Using the Proc Format method, only 
one file is processed twice and only 

one variable is needed from it.  Sorting 
of the master file is not required. 

 
 
ALTERNATIVE METHODS COMPARING 
EXACT RESULTS 
 
For the non-believers, the results below show 
several different methods for comparison. The same 
input files were used in all examples.  All tests were 
run using the same Unix Sun platform on Version 6 
SAS. The key file had 730 observations.   The larger 
file has over 1.5 million records.  For these 
examples, the following CPU times were recorded.  
 

Comparing the Proc Format method to the traditional 
Sort/Merge; the additional CPU time required to 
create the pre-format data set and create the format 
is more than made up by avoiding the pre-sort of the 
large file.   The selection data step instead of the 
merge is 14.4% more efficient and the results are 
exactly the same.  
 
      CPU  % time reduction 
Proc Format Method    10.267sec.  - 
 
Sort/Merge     42.823sec.  76% 
 
Indexing      8.000sec.  73% 
 
 
ADDITIONAL USES 
 
Merging  using more than 1 Variable 
 
Frequently, merging requires more than one 
variable.   Two solutions would include 
concatenation or the use of more than one format.  
The examples below show the combination of key1 
and key2 as the selection criteria.   
 
 
2 Formats Method 
 
 
data keya; set keyfile(keep=key1); 
  start = key1; 
  fmtname = '$keya'; 
  label = '*'; 
run; 
 
proc sort data=keya nodupkey; 
  by start; 
run; 
 
proc format cntlin=keya; 
run; 
 
data keyb; set keyfile(keep=key2); 
  start = key2; 
  fmtname = '$keyb'; 
  label = '*'; 
run; 
 
proc sort data=keyb nodupkey; 
  by start; 
run; 
 
proc format cntlin=keyb; 
run; 
 
data all; set bigfile; 
  if put(key1,$keya.) = '*'  and 
     put(key2,$keyb.) = '*'; 
run; 
 
 
 
 
Concatenation of 2 Variables Method 
 



data key; set keyfile; 
  start = trim(key1)||trim(key2); 
  fmtname = '$key'; 
  label = '*'; 
run; 
 
proc sort data=key nodupkey; 
 by start; 
run; 
 
proc format cntlin=key; 
run; 
 
data all; set bigfile; 
  if put(trim(key1)||trim(key2),$key.) = '*'; 
run; 
 
Using a Numeric Variable as a Key 
 
data key; set keyfile; 
  start = key; 
  fmtname = 'key'; 
  label = '*'; 
run; 
 
proc sort data=key nodupkey; 
 by start; 
run; 
 
proc format cntlin=key; 
run; 
 
data all; set bigfile; 
  if put(key,key.) = '*'; 
run; 
 
Many other solutions could be used to perform 
special processes only for those records matching 
the key or eliminating records that match the key.   
 
• Make the LABEL more meaningful. 

   
(In first data step) 
 
label = ‘Match’;     
 

• Creating more than one format using unique keys. 
  
(In first data step) 

  
             if key = ‘one’ then label = ‘one’; 
             if key = ‘two’ then label = ‘two’; 
 
             (In last data step) 

 
data testone testtwo; set bigfile; 
  if put(key,$key.)='testone' then output 
    test one; else 
  if put(key,$key.)='testtwo' then output 
    testtwo; else 
  delete; 
runl 

 
 

LOGS FOR 3 VERSIONS FOR TIME 
SAVINGS COMPARISON 
 
Proc Format Method LOG (Total CPU time 
10.267) 
 
data key; set key(keep=key); 
    start = key; 
    fmtname = '$key'; 
    label = '*'; 
    keep start fmtname label; 
  run; 
 
NOTE: The data set WORK.KEY has 730 observations and 3 
variables. 
NOTE: DATA statement used: 
      real time           0.210 seconds 
      cpu time            0.058 seconds 
 
  proc sort data=key nodupkey; 
    by fmtname start; 
  run; 
 
NOTE: 0 observations with duplicate key values were deleted. 
NOTE: The data set WORK.KEY has 730 observations and 3 
variables. 
NOTE: PROCEDURE SORT used: 
      real time           0.200 seconds 
      cpu time            0.043 seconds 
 
 
  proc format cntlin=key; 
 
NOTE: Format $KEY has been output. 
  run; 
 
NOTE: PROCEDURE FORMAT used: 
      real time           0.080 seconds 
      cpu time            0.055 seconds 
 
 
  data all; set bigfile; 
    if put(key,$key.)='*'; 
  run; 
 
NOTE: The data set WORK.ALL has 13705 observations and 9 
variables. 
NOTE: DATA statement used: 
      real time           13.000 seconds 
      cpu time            10.053 seconds 
 
 
Sort/Merge method LOG (Total CPU time 42.823) 
 
   proc sort data=key(keep=key) nodupkey; 
     by key; 
   run; 
 
NOTE: 0 observations with duplicate key values were deleted. 
NOTE: The data set WORK.KEY has 730 observations and 1 
variables. 
NOTE: PROCEDURE SORT used: 
      real time           0.500 seconds 
      cpu time            0.062 seconds 
 
   proc sort data=bigfile; 
     by key; 
   run; 
 
NOTE: The data set WORK.BIGFILE has 1548721 observations 
and 9 variables. 



NOTE: PROCEDURE SORT used: 
      real time           40.480 seconds 
      cpu time            31.013 seconds 
 
  data all; merge bigfile(in=a) 
                  key(in=b); 
    by key; 
    if a and b; 
  run; 
 
NOTE: The data set WORK.ALL has 13705 observations and 9 
variables. 
NOTE: DATA statement used: 
      real time           15.890 seconds 
      cpu time            11.748 seconds 
 
 
Indexing Method LOG (Total CPU time 38.000) 
 
proc datasets lib=home; 
                                      -----Directory----- 
 
                                Libref:            HOME 
                                Engine:            V612 
                                Physical Name:     /home/jeason 
                                File Name:         /home/jeason 
                                Inode Number:      101001 
                                Access Permission: rwxr-xr-x 
                                Owner Name:        jeason 
                                File Size (bytes): 8192 
 
                                 #  Name      Memtype  Indexes 
                                 ----------------------------- 
                                 3  KEY       DATA 
       modify key; 
       index create key; 
NOTE: Single index KEY defined. 
  run; 
 
NOTE: PROCEDURE DATASETS used: 
      real time           3.550 seconds 
      cpu time            0.185 seconds 
 
data test1all; set bigfile; 
                 set home.key key=key; 
    if _error_ = 1 then do; 
       _error_ = 0; 
    end; 
    else output; 
  run; 
 
NOTE: The data set WORK.TEST1ALL has 13705 observations 
and 9 variables. 
NOTE: Compressing data set WORK.TEST1ALL decreased size 
by 0.00 percent. 
      Compressed is 2 pages; un-compressed would require 2 
pages. 
NOTE: DATA statement used: 
      real time           39.330 seconds 
      cpu time            37.757 seconds 
 
 
REFERENCES 
 
SAS Procedures Guide ver. 6. Page 282 
 
Rick Aster and Rhena Seidman, Professional SAS 
Programming Secrets, Matching pp. 251-258 
 

AUTHOR CONTACT INFORMATION 
Jenine Eason 
Autotrader.com 
5775 Peachtree Dunwoody Road 
Atlanta, Georgia 30342 

 
Phone: (404) 843-7199 
Email:   Jenine.eason@autotrader.com 
Home:   Easonconsulting@aol.com 



Using the SAS Annotate Facility for Creating Custom Graphs 
Patrick M. McGown, FSD Data Services, Inc., Winston-Salem, NC 

 
 
Introduction 
 
With survey reporting, it is often necessary to produce 
graphical reports with pages of horizontal or vertical bar 
charts.  Originally, these report applications used Proc 
Gchart to produce the graphs.  However, when the 
customer changed the number of groups for a report, the 
application had to be modified to accommodate the new 
specifications.  It became obvious that time was being 
wasted having to modify the report programs for different 
specifications.  For that reason, it was decided to program 
the report applications using SAS Annotate.  Combined 
with a macro loop, the system provided flexibility in 
placing different numbers of items and groups on any 
given page and being able to control all aspects of the 
formatting and presentation of the data. 
 
This paper will provide a brief introduction to the SAS 
Annotate Facility and some of its key features.  The rest of 
the paper will work through building a sample graph from 
generating the summary data set to the final result. 
 
Defining the Work Space 
 
The features provided in the SAS Annotate Facility can be 
used either to modify graphics produced using the SAS 
Graph procedures or by itself to create custom graphics.  
This paper focuses on using Annotate as a separate tool.  
SAS defines three different regions on the page when 
producing graphics: the data area, the procedure output 
area and the graphics output area (pg. 476.)  For the 
purpose of creating custom graphics, the graphics output 
area provides access to the entire page.  
 

 
 
In addition, there is an absolute and relative coordinate 
system for each of the three areas.  Within each area by 
system combinations, the coordinates can be percentage 
based or cell based.  This paper utilizes the absolute 
percentage coordinate system in the graphics output area.  
In SAS code, this is specified by setting the coordinate 
system variables, xsys and ysys, to ‘3’ (pp. 476-477.) 
 

 
 
The numbers in the figure are percentages of the graphic 
output area of a landscape 8.5 x 11 page. 
 
Starting the SAS Annotate Macros 
 
Using the SAS Annotate Facility as a separate tool utilizes 
annotate macros.  In order to use the macros, they must 
first be compiled.  This is done by executing the following 
statement: 
 
%annomac; 
 
Once the macros have been compiled, the annotate data 
set can be created from the summary data set created 
earlier.  A couple of statements need to be included in the 
data step, namely, the length and the retain statements.  
The text, function, color and style variables are used by 
the annotate macros and the retain statement sets the 
coordinate system to use for the macros. 
 
data slide; 
 set sketch; 
length text $200 function color style $8; 
retain xsys ysys ’3’; 
 
The data step above doesn't contain any instructions for 
the Annotate Facility and would not produce any graphics.  
The next section will begin to add the macros that produce 
the graphics.   
 
Using the Annotate Macros 
 
This paper will discuss three of the annotate macros, 
%label, %line and %bar.  There are several more that can 
be used but are not presented in this paper.  The syntax 
for the three macros is: 
 
%label(x1,y1,text,color,ang,rot,ht,font,pos); 
%line(x1,y1,x2,y2,color,linetype,linewidth); 
%bar(x1,y1,x2,y2,color,bartype,pattern); 
 
The x and y values used in the macros will be absolute 
percentages of the graphics output area.  These can be 



expressed explicitly or stored in variables.  The details of 
the syntax for the three macros follows. 
 
%label(x1,y1,text,color,ang,rot,ht,font,pos); 
 
The text field contains the text to be printed on the page 
with the formatting specified by the rest of the fields.  ’Ang’ 
specifies the angle of the text string from horizontal and 
the ’rot’ field slants the string from vertical.  ’Ht’ defines the 
size of the text and font specifies the font.  The ’pos’ or 
position is the placement of the text relative to the x,y 
coordinates specified.  There are 15 possible placements 
for the text (pg. 522.) 
 
%line(x1,y1,x2,y2,color,linetype,linewidth); 
 
The line macro is fairly straightforward with the x1,y1 
values providing the starting point of the line and the x2,y2 
values defining the end point.  There are 46 different line 
types including solid, dashed, dotted and combinations of 
dashes and dots (pg. 429.) 
 
%bar(x1,y1,x2,y2,color,bartype,pattern); 
 
As with the line macro, the x1,y1 values give the starting 
point of the bar and the x2,y2 values provide the end 
point.  In the case of the bar, the x1,y1 would be the lower 
left hand corner of the bar and the x2,y2 would be the 
upper right.  There are four different bar type options, 0-3, 
with 0 providing a solid bar, 1 giving a vertically adjusted 
bar, 2 outputs a horizontally adjusted bar and 3 creates a 
bar without a border.  The pattern variable can be solid, 
empty or crosshatched.  The crosshatching is defined by 
R|X|L and the density of the hatching goes from 1-5 with 5 
being most dense.   
 
The %label, %line and %bar macros can be used to 
create custom bar charts and displayed using Proc 
Gslide. 
 
Creating the Summary Data 
 
In report applications, the summary data sets are 
generated either using SAS procedures or in data steps.   
The following code creates the summary data set used to 
create the sample graphs.  Perfav and perunf represent 
percent favorable and percent unfavorable respectively 
with perneu being percent neutral.  N represents the 
sample size for each group. 
 
data sketch; 
length group $15; 
input n perfav perunf group $; 
perneu=100-(sum(of perfav,perunf)); 
cards; 
112 45 22  Professional 
105 23 40  Administration 
74  39 50  Manufacturing 
68  47 15  Executive 
215 36 40  Warehouse 
98  25 38  Other 
; 
run; 
 
 
 
 

One Time Details 
 
In generating graphs using the SAS Annotate Facility, 
there are items that need to be created once and items 
that will need to be created for every observation in the 
summary data set.  Features such as titles and page 
numbers need to be drawn only once while group labels 
and bars need to drawn for every observation in the 
summary data set.  To create the one time details, the 
program executes those statements for only the first 
observation in the summary data set.  See the example 
program below. 
 
data slide; 
 set sketch; 
length text $200 function color style $8; 
retain xsys ysys ’3’; 
if _n_=1 then do; 

*Include one time statements here; 
end; 
 *Rest of annotate statements here; 
run; 
 
For example, if a title is needed for the graph, the 
following code can be used: 
 
data slide; 
 set sketch; 
length text $200 function color style $8; 
retain xsys ysys ’3’; 
if _n_=1 then do; 
 %label(50,95,’Title 1’,black,0,0,3.5,swissb,5); 
end; 
run; 
 
This code produces a data set that includes the 
commands from the macro statement to plot the title.  To 
display the title, use Proc Gslide (pp.1261-1268) with the 
following syntax: 
 
proc gslide annotate=slide; run; 
 
This statement performs all of the commands listed in the 
annotate data set and produces a slide based on those 
commands.   

 
 
If this statement was executed for all observations in the 
summary data set, the ’Title 1’ data would be in six 
observations in the annotate data set and would be drawn 
onto the graph six times.  This can take up space in the 
data set and time in resolving the graph.   
 



The following example provides a more complete program 
displaying features that only need to be processed once 
such as item text and page number. 
 
data slide; 
 set sketch; 
length text $200 function color style $8; 
retain xsys ysys ’3’; 
if _n_=1 then do; 
 %label(50,95,’Sample Graph’,black,0,0,3.5,swissb,5); 
 %label(50,85,’One Time Details’,black,0,0,2.5,swissi,5); 
 %label(5,75,’My supervisor is a nice 

person.’,black,0,0,2.5,swissb,6); 
 %label(50,5,’Page 1’,black,0,0,1.5,swiss,5); 
 %line(1,99,99,99,black,1,5); 
 %line(1,1,1,99,black,1,5); 
 %line(1,1,99,1,black,1,5); 
 %line(99,1,99,99,black,1,5); 
end; 
run; 
 

 
 
In addition to titles, page numbers and frame lines, items 
like legends can also be included in this block of code.  
Inserting the following code into the program in the do-
loop above results in the legend in the upper right hand 
corner of the page. 
 
*Legend Definition; 
 
%label(90,95,’Legend’,black,0,0,1.5,swiss,5); 
%bar(85,90,88,88,black,0,solid); 
%bar(85,86,88,84,black,0,empty); 
%bar(85,82,88,80,gray,0,solid); 
%label(89,90,’% Favorable’,black,0,0,1,swiss,6); 
%label(89,86,’% Neutral’,black,0,0,1,swiss,6); 
%label(89,82,’% Unfavorable’,black,0,0,1,swiss,6); 
%line(83,76,99,76,black,5,3); 
%line(83,76,83,99,black,5,3); 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
Depending on the type of presentation desired, more or 
fewer details can be used. 
 
Multi-Observation Statements 
 
The macro statements used to create the bars need to be 
executed for each observation in the summary data set.  
There are several components that make up the bars: the 
group label, the three bar components and the numeric 
labels for each part of the bar.  Since these need to be run 
for each observation, the statements will follow the do-
loop containing the one time details.  One important part 
of this process is retaining the value of y as the 
statements are processed.  To do this, the value of y is 
retained using a retain statement and a starting point is 
set using the y=75 statement prior to leaving the do-loop.  
The following code places the group labels down the left 
hand side of the page.   
 
data slide; 
 set sketch; 
length text $200 function style color $8; 
retain xsys ysys ’3’; 
if _n_=1 then do; 
 %label(50,95,’Sample Graph’,black,0,0,3.5,swissb,5); 
 %label(50,85,’Observation Data’,black,0,0,2.5,swissbi,5); 
 %label(5,75,’My supervisor is a nice 

person.’,black,0,0,2.5,swissb,6); 
 %label(50,5,’Page 1’,black,0,0,1.5,swiss,5); 
 %line(1,99,99,99,black,1,5); 
 %line(1,1,1,99,black,1,5); 
 %line(1,1,99,1,black,1,5); 
 %line(99,1,99,99,black,1,5); 
 
*Legend Definition; 
 %label(90,95,’Legend’,black,0,0,1.5,swiss,5); 
 %bar(85,90,88,88,black,0,solid); 
 %bar(85,86,88,84,black,0,empty); 
 %bar(85,82,88,80,gray,0,solid); 
 %label(89,90,’% Favorable’,black,0,0,1,swiss,6); 
 %label(89,86,’% Neutral’,black,0,0,1,swiss,6); 
 %label(89,82,’% Unfavorable’,black,0,0,1,swiss,6); 
 %line(83,76,99,76,black,5,3); 
 %line(83,76,83,99,black,5,3); 
 y=75; 
end; 
retain y; 
y=y-10; 
%label(5,y,group,black,0,0,2,centb,6); 
run; 
The code added to the previous program (underlined) sets 
the starting y value at 75 before ending the do-loop.  



When SAS processes the next observation, the value of y 
goes to 65 and the label is printed on the page.  The next 
observation will have a y value of 55 and continues until 
all of the observations in the summary data set are 
processed.  The added code results in this graph: 
 

 
 
By using the vertical coordinate value stored in the y 
variable, it takes only one label command to put the label 
for each of the six groups on the page.  Likewise, by 
adding the following code to the above program after the 
last label macro statement, it will add the sample size for 
each group to the graph. 
 
%label(30,y,left(put(n,3.0)), black,0,0,2,centb,6); 
 
The text field is 200 characters long and without the ’left’ 
function, the numbers would be plotted off the page to the 
right. 
This results in the following graph: 
 

 
 
 
 
 
 
Creating the Bars 
 
The first step in creating the bars is defining a plotting 
area for the bars.  For this graph, the starting point will be 
x=40 and the finishing point will be x=80.  This provides 
the system with 40% of the page width for plotting the 
bars.  Determining the length of the bar segments is a 
matter of calculating the percentage of the plotting area 

for each segment.  The statement for plotting the percent 
favorable bar is: 
 
%bar(40,y,40+(40*(perfav/100)), 

y-3,black,0,solid); 
y=y+3; 
 
The first x value, 40, is the starting value of the plotting 
area.  The second x value is the proportion of the plotting 
area for the percent favorable value.  The equation for this 
value is: 
 
40+(40*(perfav/100)) 
 
This equation places the perfav value on the scale of the 
plotting area and then adds that value to the starting value 
of the plotting area.  The y=y+3; is added to maintain the 
spacing between the groups on the page.  If this value 
was not added back in, the lower groups would plot off the 
page and the spacing between them would increase by 
3%.  The above statements added to the program result 
in: 
 

 
 
The vertical dotted lines represent x=40 and x=80 and are 
put there for reference only.  The bar for percent 
unfavorable is plotted in the same fashion but instead of 
starting at x=40 and adding some value, the bar will start 
at x=80 and subtract the scaled percentage of the plotting 
area.  The statement for the percent unfavorable bar is: 
 
%bar(80,y,80-(40*(perunf/100)),y+3, gray,0,solid); 
*y=y+3; 
 
The y=y+3; is commented out since the 3 % is added 
back during this %bar statement.  Adding this statement 
produces the following: 
 



 
 
The final step in completing the bars is plotting the 
percent neutral bar in the middle.  This statement uses 
both equations in determining the right and left hand side 
of the bar.  The code for the percent neutral bar is: 
 
%bar(40+(40*(perfav/100)),y, 

80-(40*(perunf/100)), y-3,black,0,empty); 
y=y+3; 
 
The first x value is the same as the x value calculated for 
the right hand side of the percent favorable (black) bar.  
The second value is the same as the x value calculated 
for the left hand side of the percent unfavorable (gray) 
bar.  The ’empty’ option will give a white box with black 
line borders.  Once again, the y=y+3; must be used to 
maintain the spacing between the groups.  The graph 
appears like this: 
 

 
 
 
Adding the Labels for the Bars 
 
The last step for completing the graph is inserting the 
percentage values into the bars.  This is done in the same 
manner as calculating the start and end points for the 
bars.  The easiest to plot is the percent unfavorable (gray) 
value.  This value will be plotted to the right of the left 
hand edge of the gray bar.  The statement is: 
 
%label(80,y-.25,left(put(perunf,3.0)), 

black,0,0,1.5,centb,4); 
 
The .25 is subtracted from y to bring the number down a 
little from the top of the bar.  Once again, without the ’left’ 

statement, the text would print off the page since the text 
field is 200 characters long.  The ’4’ position option places 
the label to the right of the x,y coordinate.  The results is: 

 
 
Adding the labels for percent favorable and percent 
unfavorable is done in the following code: 
 
%label(40+(40*(perfav/100)),y,left 

(put(perfav,3.0)),white,0,0,1.5,centb,4); 
%label(80-(40*(perunf/100)),y,left 

(put(perneu,3.0)),black,0,0,1.5,centb,4); 
 
The x value for the percent favorable label uses the value 
for the right hand side of the bar and then the ’4’ position 
option used before plots the text to the left.  The percent 
neutral statement uses the same syntax but is plotted at 
the left hand side of the percent unfavorable (gray) bar.  
The two statements added produces: 
 

 
 
After removing the reference lines from the program and a 
title change, the final graph appears as: 
 



 
 
The code to produce this final graph using the data set 
created earlier is: 
 
data slide; 
 set sketch; 
length text $200 function style color $8; 
retain xsys ysys ’3’; 
if _n_=1 then do; 
 %label(50,95,’Supervisor Feedback 

Survey’,black,0,0,3.5,swissb,5); 
 %label(5,75,’My supervisor is a nice 

person.’,black,0,0,2.5,swissb,6); 
 %label(50,5,’Page 1’,black,0,0,1.5,swiss,5); 
 %line(1,99,99,99,black,1,5); 
 %line(1,1,1,99,black,1,5); 
 %line(1,1,99,1,black,1,5); 
 %line(99,1,99,99,black,1,5); 
 
*Legend Definition; 
 
 %label(90,95,’Legend’,black,0,0,1.5,swiss,5); 
 %bar(85,90,88,88,black,0,solid); 
 %bar(85,86,88,84,black,0,empty); 
 %bar(85,82,88,80,gray,0,solid); 
 %label(89,90,’% Favorable’,black,0,0,1,swiss,6); 
 %label(89,86,’% Neutral’,black,0,0,1,swiss,6); 
 %label(89,82,’% Unfavorable’,black,0,0,1,swiss,6); 
 %line(83,76,99,76,black,5,3); 
 %line(83,76,83,99,black,5,3); 
 y=75; 
 
end; 
retain y; 
y=y-10; 
%label(5,y,group,black,0,0,2,centb,6); 
%label(30,y,left(put(n,3.0)),black,0,0,2,centb,6); 
%bar(40,y,40+(40*(perfav/100)),y-3,black,0,solid); 
%bar(80,y,80-(40*(perunf/100)),y+3,gray,0,solid); 
%bar(40+(40*(perfav/100)),y,80-(40*(perunf/100)),y-

3,black,0,empty); 
y=y+3; 
%label(80,y-.25,left(put(perunf,3.0)),black,0,0,1.5,centb,4); 
%label(40+(40*(perfav/100)),y,left(put(perfav,3.0)),white,0,0,1.5,c

entb,4); 
%label(80-

(40*(perunf/100)),y,left(put(perneu,3.0)),black,0,0,1.5,c
entb,4); 

run; 
 
proc gslide anno=slide; 
run; 
 
 
 

Adding Flexibility to the System 
In this example, the six bars for the one item fit on one 
page, but in actual applications, most of the reports either 
put multiple items on one page or there are so many 
groups for each item, the items have to be spit between 
multiple pages.  Using a macro variable to designate the 
total number of groups and a macro loop, it is possible to 
dynamically calculate the number of items and/or groups 
to put on each page.   
 
Determining the Number of Groups 
 
The first step in this process is to find out how many 
groups there are for each item.  By running a frequency of 
the group variable and outputting the results to a 
datastep, the value of _N_ for the last observation will 
indicate how many groups there are and put this value to 
a macro variable.  
 
proc freq data=sketch noprint; 
tables group/out=counts; 
run; 
 
data _null_; 
 set counts end=final; 
  if final=1 then do; 
   call symput(‘ngroups’,_n_); 
 end; 
run; 
 
The macro variable NGROUPS now has a value of 6, 
representing the total number of groups for each item. 
 
Adding an Index Variable 
 
In order to utilize the NGROUPS variable, a unique index 
value for each group is needed so that the macro loop can 
select the groups for each page.  A quick way to 
accomplish this is to sort the data by the group variable 
and then create a variable called order to store the unique 
identifier.  This will also result in the data being ordered 
alphabetically by group. 
 
proc sort data=sketch; 
 by group; 
run; 
 
data sketch; 
 set sketch; 
 by group; 
 retain order; 
 if _n_=1 then order=0; 
 if first.group then order=order+1; 
run; 
 
Creating the Macro Loop 
 
By utilizing a macro and a macro do loop along with the 
macro variables, MIN, MAX, NUMBER, NGROUPS, and 
PAGE, the system can dynamically put different bars on 
separate pages.  NGROUPS is the number of groups 
determined by the frequency procedure in an earlier step 
and is equal to 6.  The MIN variable stores the first 
observation in the range of observations to keep for each 
page.  For the first page, MIN=1 and in the second page, 
MIN=4.  MAX stores the last observation in the range of 
observations to keep for each page.  For the first page, 



MAX=3 and MAX=6 for the second page.  The MIN and 
MAX values provide the range of valid values of the order 
variable to select for each page.  The first page presents 
the groups where order equals 1, 2, or 3.  The second 
page presents the groups where order equals 4, 5, or 6.  
NUMBER represents the number of bars per page minus 
1.  In this example, it is set to 2, resulting in three bars per 
page.  PAGE stores a count of the pages and is used to 
put the page number at the bottom of the page using the 
Label macro in the program below.   
 
 
%macro pages; 
%let min=1; 
%let max=; 
%let number=2; 
%let page=0; 
%do %until(&max>=&ngroups); 
data _null_; 
call symput(’max’,&min+&number); 
run; 
data temp; 
set sketch(where=(&min<=order<=&max)); 
call symput(’page’,&page+1); 
run; 
data slide; 
set temp; 
length text $200 function style color $8; 
retain xsys ysys ’3’; 
if _n_=1 then do; 
 %label(50,95,’Supervisor Feedback 

Survey’,black,0,0,3.5,swissb,5); 
 %label(5,75,’My supervisor is a nice 

person.’,black,0,0,2.5,swissb,6); 
 %label(50,5,’Page ’||left(trim("&page")),black,0,0,1.5,swiss,5); 
 %line(1,99,99,99,black,1,5); 
 %line(1,1,1,99,black,1,5); 
 %line(1,1,99,1,black,1,5); 
 %line(99,1,99,99,black,1,5); 
 
*Legend Definition; 
 
 %label(90,95,’Legend’,black,0,0,1.5,swiss,5); 
 %bar(85,90,88,88,black,0,solid); 
 %bar(85,86,88,84,black,0,empty); 
 %bar(85,82,88,80,gray,0,solid); 
 %label(89,90,’% Favorable’,black,0,0,1,swiss,6); 
 %label(89,86,’% Neutral’,black,0,0,1,swiss,6); 
 %label(89,82,’% Unfavorable’,black,0,0,1,swiss,6); 
 %line(83,76,99,76,black,5,3); 
 %line(83,76,83,99,black,5,3); 
 y=75; 
end; 
retain y; 
y=y-10; 
%label(5,y,group,black,0,0,2,centb,6); 
%label(30,y,left(put(n,3.0)),black,0,0,2,centb,6); 
%bar(40,y,40+(40*(perfav/100)),y-3,black,0,solid); 
%bar(80,y,80-(40*(perunf/100)),y+3,gray,0,solid); 
%bar(40+(40*(perfav/100)),y,80-(40*(perunf/100)),y-

3,black,0,empty); 
y=y+3; 
%label(80,y-.25,left(put(perunf,3.0)),black,0,0,1.5,centb,4); 
%label(40+(40*(perfav/100)),y,left(put(perfav,3.0)),white,0,0,1.5,c

entb,4); 
%label(80-

(40*(perunf/100)),y,left(put(perneu,3.0)),black,0,0,1.5,c
entb,4); 

run; 
 
proc gslide anno=slide; 
run; 

quit; 
 
data _null_; 
call symput(’min’,&max+1); 
run; 
%end; 
%mend; 
%pages; 
 
The above program results in the following two graphs. 
 

 
 

 
 
As specified using the macro variable, the system plots 
three groups per page and the page number automatically 
increments by one.  If the value of NUMBER were set to 1, 
the system would generate three pages with two groups 
per page. 
 
New Feature in V8: Including an Image 
 
In version 8, the Annotate Facility has added an image 
function, allowing for the inclusion of an image on SAS 
Graphs.  The following code places an image called 
‘fsdlogo.gif’ on the center of the page.  The two x and y 
values define the area for the image to be placed.  The 
image file is fit into the space defined by the x,y pairs. 
 
x=40; y=65; function=’move’; output; 
x=60; y=35; imgpath="fsdlogo.GIF"; 
style = ’fit’; 
function=’image’; output; 
 



 
 
This slide was produced using the following program: 
 
data slide; 
 set sketch; 
length text $200 function style color $8; 
retain xsys ysys ’3’; 
if _n_=1 then do; 
  %label(50,95,’Sample of Image File’,black,0,0,2,swiss,5); 
  x=40; y=65; function=’move’; output; 
  x=60; y=35; 
imgpath="d:\projects\ssu2001_anno\fsdlogo.GIF"; 
  style = ’fit’; 
  function=’image’; output; 
  %line(1,1,99,1,black,1,5); 
  %line(1,1,1,99,black,1,5); 
  %line(1,99,99,99,black,1,5); 
  %line(99,1,99,99,black,1,5); 
 
end; 
run; 
 
 
Limitations 
 
While this technique is very useful in creating graphs that 
are completely customized, programming annotate graphs 
can be a time consuming process.  The placement of 
objects and text may take many iterations of trying 
different values.  This technique is also susceptible to 
exceptions that don’t work with the above code like zero 
percentage values and text strings that overlap bars.  
These exceptions can be solved through more detailed 
programming. 
 
Conclusions 
 
This paper examined a technique using the SAS Annotate 
macros for creating custom graphs.  While the 
programming can be time consuming, once the code is 
finalized, you can have a powerful tool for creating graphs 
that are completely customizable and can end the 
frustration of trying to label, place titles and create 
legends in the SAS Graph Procedure output.   
 
 
 
 
 
 

References 
 
SAS Institute Inc. (1990), SAS/GRAPH Software: 
Reference, Version 6, First Edition, Volumes 1 & 2, Cary, 
N.C.: SAS Institute 
 
SAS and SAS/GRAPH are registered trademarks or 
trademarks of SAS Institute Inc. in the USA and other 
countries.  indicates USA registration. 
 
Contacting the Author 
Please direct any questions or feedback to the author at: 
 
FSD Data Services, Inc. 
1001 S. Marshall Street 
Suite 125, Box 25 
Winston-Salem, NC 27101 
 
E-mail: patrickm@fsddatasvc.com 



Paper 607

An Assembler Written in SAS®
Ed Heaton, Westat, Rockville, MD

ABSTRACT
Is SAS a programming language, i.e. can it handle problems

typically in the domain of a real language like C? To prove the
point, when I was asked to write an assembler for a hypothetical
machine (Leland Beck's SIC/XE) as a class project for a Systems
Programming class at Johns Hopkins University, I chose to write
the program in SAS.

This paper will present the programming strategy, techniques,
and problems encountered in carrying out the task. Structured
programming methods will be emphasized. Macro is used.
Numerous functions and formats will be encountered along the
road to success. In short, a lot of basic SAS is used and can be
learned in this presentation.

THE HYPOTHETICAL MACHINE
This assembler was written to produce object code for the

hypothetical machine described in Leland L. Beck’s book, “An
Introduction to Systems Programming.” That text describes two
machines: a basic machine called SIC (Simplified Instructional
Computer) and an extended-feature machine called SIC/XE.
This program will assemble code for either machine.

THE SIC
The features of the SIC machine include:
1. Memory – 8-bit bytes in 3-byte words for a total of 215 bytes.
2. Registers – 24-bits each consisting of:

a. A (0) – accumulator (used for arithmetic operations);
b. X (1) – index register (used for addressing);
c. L (2) – linkage register (the Jump to Subroutine (JSUB)

instruction stores the return address in this register);
d. PC (8) – program counter (contains the address of the

next instruction to be fetched for execution); and
e. SW (9) – status word (contains a variety of information,

including a Condition Code).
3. Data formats:

a. Character – strings of 8-byte ASCII codes and
b. Integer – 24-bit, 2’s complement.

4. Instruction formats (24-bit) consisting of:
a. first 8 bits contain the operation code (OpCode);
b. 9th bit is a flag (X) to indicate indexed-addressing; and
c. last 15 bits for the address.

5. Addressing modes (re. the X bit):
a. direct – the address is the target address and
b. indexed – the contents of the X register is added to the

address to get the target address.
6. An instruction set consisting of 24 distinct instructions.

THE SIC/XE
The XE version of the hypothetical machine includes the

following features:
1. Memory increased to 220 bytes.
2. Registers – four additional registers:

a. B (3) – base register (used for addressing);
b. S (4) – general working register (no special use);
c. T (5) – another general working register; and
d. F (6) – floating-point accumulator (48 bits).

3. Data formats – allows 48-bit floating-point numbers:
a. First bit indicates the sign;
b. Next 11 bits hold the exponent; and
c. Last 36 bits hold the mantissa.

4. Instruction formats:

a. Format 1 (1 byte) is simply the OpCode;
b. Format 2 (2 bytes) consists of

i. 8 bits for the OpCode,
ii. 4 bits for the address of the first register, and
iii. 4 bits for the address of the second register;

c. Format 3 (3 bytes) consists of
i. 6 bits for the OpCode,
ii. a bit-flag (n) requests indirect addressing,
iii. a bit-flag (i) specifies immediate operands,
iv. a bit-flag (x) to indicate indexed addressing,
v. a bit-flag (b) for base-relative addressing,
vi. a bit-flag (p) for program-counter-relative addressing,
vii. a bit-flag (e) which must be 0 for this format, and
viii. 12 bits for the displacement.

d. Format 4 (4 bytes) consists of
i. 6 bits for the OpCode,
ii. the same six flags as in the 3-byte instruction, and
iii. 20 bits for the address.

5. Addressing modes – the XE machine allows two additional
addressing modes:
a. Base-relative – the displacement (0 ≤ displacement ≤

4095) from the Format-3 instruction is added to the value
in the B register to get the address in memory and

b. Program-counter – the displacement (-2048 ≤
displacement ≤ 2047) from the Format-3 instruction is
added to the value in the PC register to get the address in
memory.

6. Instruction set – the XE machine has an additional 35
operation codes.

ASSEMBLY CODE
The format for the assembly code is as follows.
• 1 A decimal point indicates a comment line.
• 1-6 Statement label.
• 8-14 Mnemonic operation code.
• 16-21 Operand.
• 23-60 Comment.
• 16-60 Byte Literal. Hexadecimal literals are of the form

X'000030'
and character literals should be of the form

C'The prime numbers less than 1024.'
Comments can follow the Byte Literal.

THE ASSEMBLER
Most assemblers make two passes of the source program.

This assembler is no exception. The first pass collects label
definitions and assigns addresses. The second pass performs
most of the work. The top-level macro of the assembler (macro
MAIN – called at the end of the code) consists mainly of two
macro calls.

%Macro MAIN ;
%PassOne()
%PassTwo()

%Mend MAIN ;
We need to generate error messages; so start a macro to do

just that. We will add WHEN statements as we go along.
%Macro GenerateErrorMessage ( errorNumber ) ;

error = &errorNumber ;
Put

@01 "ERROR("
@07 error
@11 "): Line="
@19 lineNumber



@ ;
Select ( error ) ;

…
Otherwise ;

End ;
%Mend GenerateErrorMessage ;

PASS 1
Ok, now to work. Start with pass one. Here we will define our

symbols. The tasks are:
• Assign addresses to all statements in the program;
• Save the values (addresses) assigned to all labels for use in

Pass 2; and
• Perform some processing of assembler directives. (This

includes processing that affects address assignments, such
as determining the length of data areas defined by BYTE,
RESW, etc.).

We need to read the source code and create two tables. One
is the symbol table and the other is simply an intermediate
working file. The following DATA step will create the two tables
and an ASCII text file of error messages. The SymTab table
includes the name and the location counter for each statement
label in the source program. The IntermediateFile contains each
soruce statement with its assigned address, error indicators, etc.
The error file gets written to by the %GenerateErrorMessage
macro.

We need to create an array to hold the statement labels so that
we can check to assure that they are unique. There can only be
one label per statement, so set the length of the array is equal to
the number of statements. Add the task of finding the number of
statements to the macro before the DATA step.

%Macro PassOne () ;
%GetNumberOfProgramStatements()
Data

%DefineSymTab()
%DefineIntermediateFile()

;
File Errors ;
%DefinePassOneColumns()
InFile Program

lRecL=60
pad
end=_lastRecord

;
Input @ ;
lineNumber = _n_ ;
code = _inFile_ ;
If ( subStr( code , 1 , 1 ) eq "." )

then go to FINISH ;
Else do ;

%ProcessAStatement()
End ;

FINISH: Output library.IntermediateFile ;
Run ;

%Mend PassOne ;
The input to the DATA step is the assembly program. The

record length is 60 characters; I like to use LRECL and PAD to
ward off input errors. The END statement is not required in the
assembly language, so we used END= to mark the last record.

Notice that we did not really input anything. We just read the
record into the input buffer. The contents of the input buffer is
simply a character string; we can process this character string
like we could any character variable.

Lines beginning with “.” contain comments only.
That’s the end of the DATA step and the first pass.

PASS 2
In the second pass we will assemble the instructions and

generate the object program. The tasks are:
• Assemble instructions (translating operation codes and

looking up addresses).
• Generate data values defined by BYTE, WORD, etc.
• Perform additional processing of assembler directives.
• Write the object program and the assembly listing.

%Macro PassTwo () ;
%GetLabelAddresses()
%SetBaseAddresses()
%If &XEFlag %then %do ;

%CalculateDisplacement()
%End ;
%CreateInstructionCodes()
%CreateObjectCodes()
%WriteProgramListing()
%WriteObjectCodeFile()

%Mend PassTwo ;
That's it. Done.

DETAILS
Oh, yeah. We need to define these macros that we used.

SUPPORTING MACROS

GET NUMBER OF PROGRAM STATEMENTS
We chose to store the labels in an array and in the SymTab

table. The array is used to assure that the label is unique. To set
the upper bound for the array, scan the assembler code, reading
only the first byte of each record into the buffer. Then save the
number of records in a macro variable. Here is a macro to get
this upper bound. Comments start with a decimal point (.); let's
not include them in the count.

%Macro GetNumberOfProgramStatements () ;
%Global statements ;
Data _null_ ;

InFile program lRecL=1 end=eof ;
Input ;
If ( _inFile_ ne "." ) then

statements ++1
;
If eof then call symPut(

"statements"
, left( put( statements , 8. ) )
) ;

Run ;
%Mend GetNumberOfProgramStatements ;

DEFINE SYMTAB
The symbol table includes the name and value (address) for

each label in the source program.
%Macro DefineSymTab () ;

library.symTab (
label= "Symbol Table"
index= ( label )
keep= label locCtr
where= ( label not in ( " " , "." ) )

)
%Mend DefineSymTab ;

DEFINE INTERMEDIATE FILE
Pass 1 usually writes an intermediate file that contains each

source statement together with its assigned address, error
indicators, etc.

%Macro DefineIntermediateFile () ;
library.IntermediateFile (

label= "Intermediate File"
keep=

lineNumber loc code locCtr label
mnemonic operand literal byteString
nFlag iFlag xFlag bFlag pFlag eFlag
eFlagShift format2Flag error

)
%Mend DefineIntermediateFile ;

DEFINE PASS-ONE COLUMNS
Let's use an ATTRIB statement to define the columns of both

tables output by the %PassOne macro.
%Macro DefinePassOneColumns () ;

Attrib
lineNumber

label="Line Number"
format=z4.

loc



label="Address of Instruction"
format=hex6.

Code
label="Code"
length=$60
format=$60.

locCtr
label="Location Counter"
format=hex6.

label
label="Label"
length=$6
format=$6.

mnemonic
label="Mnemonic Operation Code"
length=$6
format=$6.

operand
label="Operand"
length=$8
format=$8.

literal
label="Literal Value"
format=hex6.

byteString
label="Literal Value Byte String"
length=$84

nFlag
label="Indirect Flag"

iFlag
label="Immediate Flag"

xFlag
label="Index Flag"

bFlag
label="Base-Relative Flag"

pFlag
label="Program-Counter Flag"

eFlag
label="Extended-Addressing Flag"

eFlagShift
label="Extended-Address Bit-Shifter"
format=hex4.

format2Flag
label="Format 2 Flag"

error
label="Error Code"
format=z4.

;
Length _label1-_label&statements $6 ;
Array symTab [*] $

_label1-_label&statements
;
Retain _firstRecord 1 ;
Retain locCtr _label1-_label&statements ;

%Mend DefinePassOneColumns ;

We retained _firstRecord; it will keep us informed on how to
process the statements. We also retained the location counter
(locCtr) and buckets for the statement labels (_label1-
_label&statements).

PROCESS A STATEMENT
Read the characters in columns 1-6 of the assembler code;

this is reserved for labels. Then compare the length of the label
with all leading and trailing spaces removed with the length of
the label with all spaces removed to determine if there are
imbedded spaces.

%Macro ProcessAStatement () ;
Input label $ 1-6 @ ;
label = upCase( label ) ;
If (

length( label ) ne
length( compress( label ) )

) then do ;
%GenerateErrorMessage( 1 )

End ;
%CheckForEFlag()
%ReadMnemonic()
Select ;

When ( _firstRecord ) do ;

%ProcessFirstStatement()
End ;
When ( mnemonic eq "END" ) do ;

%ProcessEndStatement()
End ;
Otherwise do ;

%ProcessMiddleStatement()
End ;

End ;
%Mend ProcessAStatement ;

We checked to see if the E flag needed to be set because
extended format instructions are four bytes long. We also read
the value in the field for mnemonic operation codes; if it contains
the END directive, we need to proceed differently.

The %GenerateErrorMessage macro will write error
messages; let's put this message in the macro before we forget.

When ( 1 ) put @24
"Label contains imbedded spaces."

;

GET LABEL ADDRESSES
Add the location counter values from the Symbol Table to the

records that have a symbol in the Operand Field. First merge the
location counter values into the table created by %PassOne.

Then we need to generate errors for those assembler
statements where the operation code requires a valid label (SIC
machine only).
We will use the ?? modifier to supress SAS error handling as we
attempt to read the operand into a numeric field. If the
conversion works, we will write that number to the target address.

We need a list of the mnemonic operation codes to be sure
that the statement is valid. We will use a macro variable to hold
this list. This macro variable will look like the following.

"ADD" "ADDF" "ADDR" "AND" ... "TIXR" "WD"

The OpCodes are stored in a SAS data set called OpTab. Let’s
look at the code to create this macro variable.

%Macro GetOpCodes () ;
%Global opCodes ;
Proc sql noPrint ;

Select
quote( trim(mnemonic) )

into :opCodes separated by " "
from library.OpTab

;
Quit ;

%Mend GetOpCodes ;

We will call this macro from the %PassOne macro.
%Macro PassOne () ;

%GetNumberOfProgramStatements()
%GetOpCodes()
Data

…
Run ;

%Mend PassOne ;

Now, we can code our %GetLabelAddresses macro.
%Macro GetLabelAddresses () ;

Proc sql ;
Create table PassTwo as

select
IntermediateFile.*

, symTab.locCtr as targetAddress
from library.IntermediateFile

left join library.symTab
on (

IntermediateFile.operand
= symTab.label
)
order by IntermediateFile.lineNumber

;
Quit ;
Data PassTwo ;

File Errors mod ;
Set PassTwo ;
If (

not &XEFlag
& ( mnemonic in ( &opCodes ) )



& ( mnemonic not in (
&standAloneOpCodes

) )
& missing( targetAddress )
) then do ;

%GenerateErrorMessage( 2 )
End ;
If (

missing( targetAddress )
& not missing( input(operand,?? 9.) )
) then

targetAddress = input(operand,?? 9.)
;

Run ;
%Mend GetLabelAddresses ;

Add the error message to the %GenerateErrorMessage
macro.

When ( 2 ) put @24
"Your operand is not a defined label."

;

SET BASE ADDRESSES
Search for the BASE assembler directive. If found, store the

address for computing base-relative addressing.
%Macro SetBaseAddresses () ;

Data PassTwo ;
Set PassTwo ;
Attrib

baseAddr
label= "Base Address"
length= 4
format= hex6.

;
Retain baseAddr ;
If ( mnemonic eq "BASE" ) then do ;

baseAddr = targetAddress ;
targetAddress = . ;

End ;
Run ;

%Mend SetBaseAddresses ;

CALCULATE DISPLACEMENT
If we are assembling code for an XE machine, then we need to

calculate the displacement for relative addressing.
If the operand field contains a number, we do not want to

calculate a displacement. To test for the number, attempt to
convert the value to a number with the INPUT function. Use the
?? format modifier to suppress error messages. If the field does
not contain a number, the the INPUT function will return a
missing value which can be tested with the MISSING function.

We will first test to see if we can use program-counter-relative
addressing. If we cannot, we will test to see if we can use base-
relative addressing. If we can't use either, then the E flag had
better be set.

%Macro CalculateDisplacement () ;
Data PassTwo ;

Set PassTwo ;
File Errors mod ;
If missing(

input( operand , ?? 9. )
) then select ;

When (
-2048 le
( targetAddress – locCtr ) le
2047

) do ;
pFlag = 1 ;
targetAddress =

targetAddress - locCtr
;
If ( targetAddress lt 0 ) then

targetAddress =
input( subStr( put(

targetAddress , hex6.
) , 4 )

, hex6.
)

;

End ;
When ( 0 le (

targetAddress – baseAddr
) le 4095 ) do ;

bFlag = 1 ;
targetAddress =

targetAddress - baseAddr
;

End ;
Otherwise if (

missing( eFlag )
& ( upCase( mnemonic ) ne "END" )
& not missing( targetAddress )
) then do ;

%GenerateErrorMessage( 3 )
End ;

End ;
Run ;

%Mend CalculateDisplacement ;

Add the error message to the %GenerateErrorMessage
macro.

When ( 3 ) put @24
"You must use extended format for direct"
" addressing."

;

CREATE INSTRUCTION CODES
This macro will combine the OpCode, the address, and, if

necessary, an index flag to create an Instruction Code.
• The n flag bit is used to indicate indirect-addressing mode.

It is the 18th bit from the right. E.g.:
0000 0010 0000 0000 0000 0000 -> X'020000'

• The i flag bit is used to indicate immediate-addressing
mode. It is the 17th bit from the right. E.g.:
0000 0001 0000 0000 0000 0000 -> X'010000'

• The x flag bit is used to indicate indexed-addressing mode.
It is the 16th bit from the right. E.g.:
0000 0000 1000 0000 0000 0000 -> X'008000'

• The b flag bit is used to indicate base-relative-addressing
mode. It is the 15th bit from the right. E.g.:
0000 0000 0100 0000 0000 0000 -> X'004000'

• The p flag bit is used to indicate program-counter-
addressing mode. It is the 14th bit from the right. E.g.:
0000 0000 0010 0000 0000 0000 -> X'002000'

• The e flag bit is used to indicate extended-addressing mode.
It is the 21st bit from the right of this 4-byte instruction. E.g.:
0000 0000 0001 0000 0000 0000 0000 0000 -> X'00100000'
%Macro CreateInstructionCodes ;

Proc sql ;
Create table library.PassTwo as

select
PassTwo.*

, OpTab.opCode
, sum(

OpTab.opCode
* input( "010000" , hex6. )
* eFlagShift

, PassTwo.nFlag
* input( "020000" , hex6. )
* eFlagShift
* &XEFlag

, PassTwo.iFlag
* input( "010000" , hex6. )
* eFlagShift
* &XEFlag

, PassTwo.xFlag
* input( "008000" , hex6. )
* eFlagShift

, PassTwo.bFlag
* input( "004000" , hex6. )
* eFlagShift
* &XEFlag

, PassTwo.pFlag
* input( "002000" , hex6. )
* eFlagShift
* &XEFlag



, PassTwo.eFlag
* input( "00100000" , hex8. )
* &XEFlag

, PassTwo.targetAddress
) as instructionCode format=hex6.

from PassTwo left join library.OpTab
on (
PassTwo.mnemonic eq OpTab.mnemonic

)
order by PassTwo.lineNumber

;
Quit ;

%Mend CreateInstructionCodes ;

We have not created the variable eFlagShift. When we do, it
will be used to left-shift the bits of the Instruction Code so that we
have a Format-4 instruction. EFlagShift will have values of
X'0001' or X'0100'. If the instruction code is multiplied by the
latter, it becomes a 4-byte instruction. Multiplying by the former
does nothing.

The flags nFlag, iFlag, xFlag, bFlag, pFlag, and eFlag have
values of zero or one. If zero, then zero is added to the sum.

CREATE OBJECT CODES
Let's create character-based, user-readable representations of

the object code for our instructions.
%Macro CreateObjectCodes () ;

Data library.PassTwo ;
Length objectCode $100 ;
Set library.PassTwo ;
If ( mnemonic not in (

"START","BASE","EQU","ORG","END"
) ) then do ;

If ( eFlag )
then objectCode = put(

instructionCode , hex8.
) ;
Else objectCode = put(

instructionCode , hex6.
) ;

End ;
If format2Flag then objectCode =

subStr( objectCode , 1 , 4 )
;
If not missing( literal ) then

objectCode = put( literal , hex6. )
;
If not missing( byteString ) then

objectCode = byteString
;

Run ;
%Mend CreateObjectCodes ;

WRITE PROGRAM LISTING
Write a file that contains the program listing and the errors.

Notice that I used the MOD option so that I could append the
error file to the assembler listing. For that listing I simply read a
record using the INPUT statement and wrote that record using
the _INFILE_ automatic variable.

%WriteProgramListing () ;
Title2 "Assembler Listing" ;

Proc printTo print=listing new ;
Proc print data=library.PassTwo ;

Id lineNumber ;
Var loc code objectCode ;

Run ;
Proc printTo print=print ;
Data _null_ ;

InFile Errors ;
File listing mod ;
Input ;
If ( _n_ eq 1 ) then put //

"***** Error Messages *****"
/ ;
Put _inFile_ ;

Run ;
Title2 ;

%Mend WriteProgramListing ;

WRITE OBJECT CODE FILE
Create the Object Code File. Well, actually create a file of

ASCII records of the hexidecimal representation of the object
code using a header record, text records, and an end record. We
will use two passes of the library.PassTwo data set to
accomplish this: pass one will write the Header and Text records;
pass two will write the Modify and End records.

To make the Object Code File easier for humans to read, we
will insert a caret (^) between each instruction. We will use the
COMPRESS function to find the length of the object code with the
carets removed. This is the true length of the object code, which
is limited to 30 bytes (60 half-bytes).

A character string input by a BYTE directive can contain more
than 30 bytes, so we need to be able to partition that string
across two text records.

First we will cycle through the object code for the program
instructions, accumulate lines of object code, and write either a
header record or text records to the Object Code File.

%Macro WriteObjectCodeFile () ;
Data _null_ ;

Format
startingAddress hex6.
lengthOfObjectCodeField hex2.

;
Length objectCodeField $90 ;
Retain startingAddress objectCodeField;
Retain splitFlag 0 ;
Set library.PassTwo ( where=(

subStr( code , 1 , 1 ) ne "."
) ) ;
File objCode ;
Select ( mnemonic ) ;

When ( "START" ) do ;
%WriteHeaderRecord()

End ;
When ( "END" ) do ;

%WriteTextRecord()
End ;
Otherwise do ;

If (
mnemonic in ("RESW","RESB")

) then do ;
%WriteTextRecord()
%ProcessTextRecord()

End ;
If missing( objectCodeField )

then startingAddress = loc
;
If ( (

length( compress(
objectCodeField , "^"

) ) + length( objectCode )
) le 60 )

then do ;
%AccumulateObjectCode()

End ;
Else do ;

If ( length( compress(
objectCodeField , "^"

) ) gt 60 )
then do ;
%SplitLongByteString()
%ProcessTextRecord()

End ;
Else do ;
%WriteTextRecord()
%ProcessTextRecord()

End ;
End ;

End ;
End ;

Run ;
Next, cycle through the object code again, searching for

extended-format flags. When found, write Modify records. Write
an End record when done.

Data _null_ ;
Length objectCodeField $90 ;



Format startingAddress hex6. ;
Set library.PassTwo ( where=

( subStr( code , 1 , 1 ) ne "." )
) ;
File objCode mod ;
Select ;

When (
( eFlag eq 1 )

& missing( input(operand, ?? 9.) )
) do ;

%WriteModifyRecord()
End ;
When ( mnemonic eq "END" ) do ;

%WriteEndRecord()
End ;
Otherwise ;

End ;
Run ;

%Mend WriteObjectCodeFile ;

CHECK FOR E FLAG
If the 4-byte extended format (Format 4) is used, the format

must be specified with the prefix + added to the operation code in
the source statement. It is the programmer's responsibility to
specify this form of addressing when it is required.

%Macro CheckForEFlag () ;
Input @7 _eFlagField $char1. @ ;
Select (_eFlagField) ;

When (" ") eFlagShift = 1 ;
When ("+") do ;
eFlag = 1 ;
eFlagShift = input("0100",hex4.) ;

End ;
Otherwise do ;
%GenerateErrorMessage( 4 )

End ;
End ;

%Mend CheckForEFlag ;
Of course we don't want to forget to describe error 2 in our

%GenerateErrorMessage macro.
When ( 4 ) put @24

"Column 7 must be"
%If (&XEFlag eq 1) %then " a + or" ;
" blank."

;

READ MNEMONIC
The mnemonic operation code is restricted to columns 8

through 14. This macro will read the mnemonic code and test to
assure that it contains no blanks.

%Macro ReadMnemonic () ;
Input mnemonic $ 8-14 @ ;
mnemonic = upCase( mnemonic ) ;
If (

length(mnemonic) ne
length( compress(mnemonic) )

) then do ;
%GenerateErrorMessage( 5 )

End ;
%Mend ReadMnemonic ;

Now let's go back to our %GenerateErrorMessage macro and
describe error 3.

When ( 5 ) put @24
"The Mnemonic contains imbedded spaces."

;

PROCESS FIRST STATEMENT
The processing of the first record is unique enough that we

have a macro just to read it.
%Macro ProcessFirstStatement () ;

If (mnemonic eq "START")
then do ;

%ProcessNOriFlag()
%ReadOperand()
locCtr = input( operand , hex6. ) ;
Call symPut(

"StrtAddr"
, trim( left( put(locCtr,hex6.) ) )

) ;
End ;
Else locCtr = 0 ;

loc = locCtr ;
_firstRecord = 0 ;

%Mend ProcessFirstStatement ;

PROCESS END STATEMENT
The processing of the last record is unique enough that we

have a macro just to read it.
%Macro ProcessEndStatement () ;

loc = locCtr ;
Call symPut(

"EndAddr"
, trim( left( put(locCtr,hex6.) ) )
) ;
% ReadOperand()

%Mend ProcessEndStatement ;

PROCESS MIDDLE STATEMENT
First we want to store the address of the instruction. If we

have a value in the space reserved for statement labels we need
to make sure it is a valid label. Finally, we need to determine if
the OpCode is a Format-2 instruction and proceed accordingly.

%Macro ProcessMiddleStatement () ;
loc = locCtr ;
If ( upCase( label ) ne " " ) then do ;

%VerifyLabel
End ;
If ( mnemonic in ( &opCodes ) )

then do ;
%ProcessOpCodeInstruction()

End ;
Else do ;

%ProcessAssemblerDirective()
End ;

%Mend ProcessMiddleStatement ;

WRITE HEADER RECORD
This macro will write a header record. The format of the

header record is as follows; the numbers are the columns.
• 1 H
• 2 field separator (^)
• 3-8 program name
• 9 field separator (^)
• 10-15 starting address of object program (hexadecimal)
• 16 field separator (^)
• 17-22 length of object probram in bytes (hexadecimal)
%Macro WriteHeaderRecord () ;

_ProgramLength = put(
input( "&EndAddr" , hex6. ) -
input( "&StrtAddr" , hex6. )

, hex6.
) ;
Put

@01 "H^"
@03 label
@09 "^&StrtAddr"
@16 "^"
@17 _ProgramLength

;
%Mend WriteHeaderRecord ;

WRITE TEXT RECORD
This macro will write a text record. The format of the text

record is as follows; the numbers are the columns.
• 1 T
• 2 field separator (^)
• 3-8 starting address for object code in this record

(hexadecimal)
• 9 field separator (^)
• 10-11 length of object code in this record in bytes

(hexadecimal)
• 12 field separator (^)
• 13-?? object code, represented in hexadecimal (2 columns



per byte of object code -- This section of the record
will have field separators between each section of
object code. The object code is limited to 60 half-
bytes, but the field separators will lengthen this.)

%Macro WriteTextRecord () ;
lengthOfObjectCodeField = length(

compress( objectCodeField , "^" )
) / 2 ;
If (

lengthOfObjectCodeField gt 1
) then put

@01 "T^"
@03 startingAddress
@09 "^"
@10 lengthOfObjectCodeField
@12 objectCodeField

;
%Mend WriteTextRecord ;

PROCESS TEXT RECORD
Start a text record by initializing the object code field to a caret

followed by the first object code. If the split flag is set, then there
is already some object code, so simply append to it.

%Macro ProcessTextRecord () ;
If splitFlag

then do ;
objectCodeField =

trim( objectCodeField )
|| "^" || objectCode

;
splitFlag = 0 ;

End ;
Else do ;
If not missing( objectCode )

then do ;
objectCodeField =

"^" || objectCode
;
startingAddress = loc ;

End ;
Else objectCodeField = " " ;

End ;
%Mend ProcessTextRecord ;

ACCUMULATE OBJECT CODE
Add the new object code to the text record, and increment the

lengthOfObjectCode variable.
%Macro AccumulateObjectCode () ;

If ( not missing( objectCode ) ) then do ;
objectCodeField =

trim(objectCodeField)
|| "^" || objectCode

;
lengthOfObjectCodeField =

lengthOfObjectCodeField
+ length( objectCode ) / 2
;

End ;
%Mend AccumulateObjectCode ;

SPLIT LONG BYTE STRING
First set the split-code flag. Then write the extra object code to

the RemainingObjectCode variable. Now write the text record
with the first 60 half-bytes of object code. Finally, initialize the
object code field of the new text record with the bytes of object
code that we chopped off from the too-long object code.

%Macro SplitLongByteString () ;
splitFlag = 1 ;
remainingObjectCode = subStr( compress(

objectCodeField , "^"
) , 61 ) ;
objectCodeField = subStr(

objectCodeField , 1 , 61
) ;
%WriteTextRecord
startingAddress = startingAddress + 30 ;
objectCodeField =

"^" || remainingObjectCode

;
%Mend SplitLongByteString ;

%WRITEMODIFYRECORD
This macro will write a MODIFY record. The format of the

modify record is as follows.
• 1 M
• 2 field separator (^)
• 3-8 starting location of the address field to be modified,

relative to the beginning of the program
(hexadecimal)

• 9 field separator (^)
• 10-11 length of the address field to be modified, in half-

bytes (hexadecimal)
%Macro WriteModifyRecord () ;

startingAddress = loc + 1 ;
Put

@01 "M^"
@03 startingAddress
@09 "^"
@10 "05"

;
%Mend WriteModifyRecord ;

%WRITEENDRECORD
This macro will write an END record.
• 1 E
• 2 field separator (^)
• 3-8 address of first executable instruction in object

program (hexadecimal)
%Macro WriteEndRecord () ;

Put @01 "E^" @03 instructionCode ;
%Mend WriteEndRecord ;

PROCESS N OR I FLAG
In our assembler language, indirect addressing is indicated by

adding the prefix @ to the operand. The n bit is set to indicate
that the contents stored at this location represent the address of
the operand, not the operand itself. A # prefix indicates
immediate addressing where the target address (not the contents
stored at that address) becomes the operand; so we will set the i
bit.

%Macro ProcessNOrIFlag () ;
Input @15 _NIFlagField $char1. @ ;
If ( (nFlag + iFlag) ne 0 )

then select ( _NIFlagField )
;

When ( " " ) do ;
nFlag = 1 ;
iFlag = 1 ;

End ;
When ( "@" ) do ;

nFlag = 1 ;
iFlag = 0 ;

End ;
When ( "#" ) do ;

nFlag = 0 ;
iFlag = 1 ;

End ;
Otherwise do ;

%GenerateErrorMessage( 6 )
End ;

End ;
%Mend ProcessNOrIFlag ;

Finnally describe error 6 in the %GenerateErrorMessage
macro.

When ( 6 ) put @24
"Invalid character in OpCode previx."

/ @30 "Specify @ for Indirect addressing"
/ @30 "or # for Immediate addressing "
;

READ OPERAND
This macro will read the operand and set the x flag. Things

can get a bit tricky here; the operand can be:



• a statement label followed by a comma and an X (for
indexed addressing),

• an integer if the mnemonic field contains the RESB,
RESW, or WORD directives, or

• a character or hex string if the mnemonic field contains
the BYTE directive.

Not all of these are limited to eight characters, so let's just
read the entire remainder of the record and then throw away all
that follows the first blank space.

%Macro ReadOperand () ;
Input _opPlus $ 16-60 @ ;
If not missing( _opPlus ) then

_opPlus = subStr(
_opPlus

, 1
, index( _opPlus , " " ) - 1
)

;
If (

length( _opPlus ) gt 8
) then do ;

%GenerateErrorMessage( 7 )
End ;
operand = upCase( _opPlus ) ;
If index( operand , ",X" )

then do ;
operand = subStr(

operand
, 1
, index( operand , "," ) - 1
) ;
xFlag = 1 ;

End ;
Else xFlag = 0 ;

If (
subStr( left(operand) , 1 , 1 ) eq "="

) then do ;
%GenerateErrorMessage( 8 )

End ;
If (

indexC(
operand

, "'"
, '"'
, "!@#$%^&*()_=|\:;<>?./~`"
)

| ( indexc(operand,"+-") gt 1 )
) then do ;

%GenerateErrorMessage( 9 )
End ;
If (

length( operand ) ne
length( compress( operand ) )

) then do ;
%GenerateErrorMessage( 10 )

End ;
%Mend ReadOperand ;

So let's add the error descriptions to the
%GenerateErrorMessage macro.

When ( 7 ) put @24
"Comments must be blank-separated from"
" the operand."

;
When ( 8 ) put @24

"This assembler does not support"
" literals."

;
When ( 9 ) put @24
"You have an illegal character in your"
" operand."

;
When ( 10 ) put @24

"The operand contains imbedded spaces."
;

VERIFY LABEL
The label field should contain only labels. So use the array of

previously stored labels to determine that we have no duplication.

If the label already exists in symTab, there is an error. If we have
searched all the previously stored labels and have not found the
current label, then we will add the current label to the stored
labels and cease looking.

%Macro VerifyLabel () ;
Do _i=1 to dim( symTab ) ;

If ( label eq symTab[_i] )
then do ;

%GenerateErrorMessage( 11 )
End ;
Else if missing( symTab[_i] )
then do;

symTab[_i] = label ;
Go to WRITETOSYMTAB ;

End ;
End ;

WRITETOSYMTAB: Output library.symTab ;
%Mend VerifyLabel ;

Now let's write the error message.
When ( 11 ) put @24

"The label has already been used."
;

PROCESS OPCODE INSTRUCTION
Some of the operation codes are 2-byte instructions. We need

to know which ones. So let's go back to the beginning of our
assembler create a list of the mnemonics for these OpCodes.

%Let Format2OpCodes =
"CLEAR"

, "COMPR"
, "DIVR"
, "MULR"
, "RMO"
, "SHIFTL"
, "SHIFTR"
, "SUBR"
, "SVCR"
, "TIXR"
;

Compare the mnemonic of the OpCode against this list and, if
this is a two-byte instruction, set the appropriate flags and
increment the location counter.

%Macro ProcessOpCodeInstruction () ;
If ( mnemonic in ( &Format2OpCodes ) )

then do ;
%ProcessFormat2Instruction()

End ;
Else do ;

format2Flag = 0 ;
locCtr = sum( locCtr , 3 , eFlag ) ;
%ProcessNOrIFlag()
%ReadOperand()
If (

( mnemonic not in (
&standAloneOpCodes

) )
& missing( operand )
) then do ;

%GenerateErrorMessage( 12 )
End ;
If (

not &XEFlag
& not missing(

input( operand , ?? 9. )
)

) then do ;
%GenerateErrorMessage( 13 )

End ;
End ;

%Mend ProcessOpCodeInstruction ;

Only the XE machine allows numbers in the operand field. So,
if we assembled on the basic SIC machine, we tested the
operand by attempting to write the characters to a number. Use
the ?? format modifier to suppress messages to the log.

We used a macro variable called &standAloneOpCodes that
we need to define. Let’s define it at the beginning of our
assembler where we defined &Format2OpCodes.



%Let standAloneOpCodes =
"FIX"

, "FLOAT"
, "HIO"
, "NORM"
, "RSUB"
, "SIO"
, "TIO"
;

Again, we need to add the error descriptions to the
%GenerateErrorMessage macro.

When ( 12 ) put @24 "Operand required." ;
When ( 13 ) put @24

"Your basic SIC computer cannot use"
" numbers for operands."

;

PROCESS ASSEMBLER DIRECTIVE
Assembler directives tell the assembler how to reserve

memory and how to preload that memory. They optionally control
addressing modes.

• Let's start with the WORD directive. This directive tells the
assembler to generate a one-word integer constant.

• Next we have the RESW directive. It tells the assembler to
reserve the indicated number of words for a data area.

• Now lets process the RESB directive to tell the assembler to
reserve the indicated number of bytes for the data area.

• Next comes the BYTE directive. It is used to generate a
character or hexadecimal constant, occupying as many
bytes as necessary.

• The BASE directive is only for the SIC/XE machine which
allows base-relative addressing. The programmer must tell
the assembler what the base register will contain during
execution of the program so that the assembler can
compute displacements.
%Macro ProcessAssemblerDirective () ;

format2Flag = 0 ;
Select ( mnemonic ) ;

When ( "WORD" ) do ;
locCtr ++3 ;
%ReadOperand()
If missing(

input( operand , ?? 9.)
) then do ;

%GenerateErrorMessage( 14 )
End ;
Else literal = operand ;

End ;
When ( "RESW" ) do;

%FindLengthOfRESW()
locCtr = locCtr + _length ;

End ;
When ( "RESB" ) do ;

%FindLengthOfRESB()
locCtr = locCtr + _length ;

End ;
When ( "BYTE" ) do ;

%ProcessBYTE()
locCtr = locCtr + _length ;

End ;
When ( "BASE" ) do ;

%ReadOperand()
End ;
Otherwise do ;

%GenerateErrorMessage( 15 )
End ;

End ;
Again, we need to add the error descriptions to the

%GenerateErrorMessage macro.
When ( 14 ) put @24

"Undefined mnemonic."
;
When ( 15 ) put @24

"WORD must be a number."
;

PROCESS FORMAT-2 INSTRUCTION

If this is a two-byte instruction, set the appropriate flags and
increment the location counter. Two-byte instructions allow
register addresses as the operands; read these addresses.

%Macro ProcessFormat2Instruction () ;
Format2Flag = 1 ;
NFlag = 0 ;
IFlag = 0 ;
LocCtr = LocCtr + 2 ;
%ReadRegisters()

%Mend ProcessFormat2Instruction ;

FIND LENGTH OF RESW
Read the number for the WORD directive directly from the

assembler statement. Use the ?? input modifier, it will suppress
error handling so that anything read that is not the character
representation of a number will cause a missing value but no
error message will be written to the SAS log.

%Macro FindLengthOfRESW () ;
Input @16 _words ?? @ ;
If missing( _words )

then do ;
%GenerateErrorMessage( 16 )

End ;
Else _length = 3 * _words ;

%Mend FindLengthOfRESW ;

And add the error message to the %GenerateErrorMessage
macro.

When ( 16 ) put @24
"Invalid number of reserved words."

;

FIND LENGTH OF RESB
Read the number of requested reserved words directly from

the assembler statement. Again, use the ?? input modifier.
%Macro FindLengthOfRESB () ;

Input @16 _length ?? @ ;
If missing( _length ) then do ;

%GenerateErrorMessage( 17 )
End ;

%Mend FindLengthOfRESB ;

Add the error message to the %GenerateErrorMessage
macro.

When ( 17 ) put @24
"Invalid number of reserved bytes."

;

PROCESS BYTE
To process the BYTE directive, we first need to determine if we

are reading a character string or a hexadecimal string. Since the
operands must start in the 16th column, and since the assembler
code is limited to 60 byte statements, we are limited to 43-byte
strings.

If the string in the assembler statement is a hexadecimal
string, then the length of the memory needed to store the string is
half the length of the byte string (It takes two characters to
represent a byte.).

If the string in the assembler statement is a character string,
then we must convert the character string to a hexadecimal
string.

%Macro ProcessBYTE () ;
Length _byteString $42 ;
Input _hexOrChar $ 16-16 @ ;
Select ( upCase( _hexOrChar ) ) ;

When ( "X" ) do ;
%GetByteString()
_length = length(_byteString) / 2 ;
byteString = _byteString ;

End ;
When ( "C" ) do ;

%GetByteString()
_length = length( _byteString ) ;
byteString = put(

trim( _byteString ) , $hex.
) ;

End ;
Otherwise do ;



%GenerateErrorMessage( 18 )
End ;

End ;
%Mend ProcessBYTE ;

Add the error message to the %GenerateErrorMessage
macro.

When ( 18 ) put @24
"Byte string must be hexadecimal (X) or"
" character (C)"

;

READ REGISTERS
This macro will read the registers for the two-byte instructions.

It will read the first character of operand as the first register and,
if the second character of operand is a comma, it will then read
the third character as the second register.

%Macro ReadRegisters () ;
Input operand $ 16-18 @ ;
operand = upCase( operand ) ;
Select ( subStr( operand , 1 , 1 ) ) ;

%AssignRegisterAddress( r1 )
End ;
If (subStr(operand,3,3) eq ",") then do ;

Select ( subStr(operand,3,3) ) ;
%AssignRegisterAddress( r2 )

End ;
End ;
operand = left( put( sum(

( r1 * input( "1000" , hex4. ) )
, ( r2 * input( "0100" , hex4. ) )
) , 6. ) ) ;

%Mend ReadRegisters ;

GET BYTE STRING
Read the remainder of the assembler statement starting with

the first character after the X or C character which indicates the
type of byte string. Check to ascertain that the string is delimited
by single quote marks. Then strip the quote marks and store the
string in _byteString.

%Macro GetByteString () ;
Input _byteString $ 17-60 @ ;
If ( subStr(_byteString,1,1) ne "'" )

then do ;
%GenerateErrorMessage( 19 )

End ;
Else do ;

_byteString = subStr(
_byteString , 2

) ;
If not indexC( _byteString , "'" )

then do ;
%GenerateErrorMessage( 19 )

End ;
Else _byteString = subStr(

_byteString
, 1
, index( _byteString , "'" ) - 1
) ;

End ;
%Mend GetByteString ;

Add the error message to the %GenerateErrorMessage
macro.

When ( 19 ) put @24
"Byte string must be enclosed in single"
" quotes."

;

ASSIGN REGISTER ADDRESS
This macro will convert the mnemonic register name to its

address.
%Macro AssignRegisterAddress ( register ) ;

When ( "A" ) &register = 0 ;
When ( "X" ) &register = 1 ;
When ( "L" ) &register = 2 ;
When ( "B" ) &register = 3 ;
When ( "S" ) &register = 4 ;
When ( "T" ) &register = 5 ;
When ( "F" ) &register = 6 ;

Otherwise do ;
%GenerateErrorMessage( 20 )

End ;
%Mend AssignRegisterAddress ;

Don't forget the error message.
When ( 20 ) put @24

"Register must be one of"
" A, X, L, B, S, T, or F."

;

CONCLUSION
This assembler operates from a %MAIN macro that is called

on the last line of the code. Some preliminary initialization code
precedes the %MAIN macro. This includes definition of global
macro variables, creation of a window to get user-supplied
information, and creation of references to working libraries and
files.

The %MAIN macro called the %PassOne and %PassTwo
macros. %PassOne generated a list of the mnemonic operation
codes and stored them in an array. It created another array to
store the statement labels. %PassOne then generated a SAS
data set (IntermediateFile) containing the line number, the
location in memory of the code that it will generate for each
statement, the statement label, the mnemonic operation code,
the operand for the operation codes, literal values, and
hexadecimal representations of BYTE directives. It also
produced flags for the n, i, x, b, p, and e bits, and for 2-byte
instructions. Finally, %PassOne created a symbol table
(SymTab).

%PassTwo merged the addresses from SymTab onto
IntermediateFile from %PassOne using the
%GetLabelAddresses macro. It assigned base addressees to
each record and calculated displacements. It then created
hexadecimal instructions and the object code for each assembly
statement. Finally, %PassTwo wrote the assembler listing,
including any error messages, and the object code file.

While this was an exercise for a college class, I hope that you
found something to take home with you. We used several data
manipulation techniques, and the overall scheme is an example
of top-down programming in SAS.

REFERENCES
Beck, Leland L., An Introduction to Systems Programming, 3d
ed. (Reading, Massachusetts: Addison Wesley Longman, Inc.,
1997).

ACKNOWLEDGMENTS
I want to thank Ian Whitlock of Westat for his continual support

and encouragement in my career growth. He was an inspiration
before I met him, and has proven to be a wonderful mentor and
friend since.

I also want to thank Dianne Rhodes of Westat, who directed
my focus toward more career-enhancing facilities such as SAS
Users Groups and the SAS-L list-server when we both worked
elsewhere.

Finally, I want to thank all the wonderful and insightful
contributors to SAS-L for their selfless contributions. They have
proven to be my most valuable teaching aid.

CONTACT INFORMATION
Your comments and questions are valued and encouraged.

Contact the author at:
Ed Heaton
Westat: An Employee-Owned Research Corporation
1650 Research Boulevard
Rockville, MD 20850
Work Phone: (301) 610-4818
Fax: (301) 294-3992
Email: EdwardHeaton@Westat.com



A Couple of Tasty SAS Programming Tunes 
 

Paul M. Dorfman 
 

CitiCorp AT&T Universal Card 
Jacksonville, Fl 

 
 
ABSTRACT 
 
Of all wildly different questions asked by daily 
participants in SAS-L jam sessions, programming 
problems in the strict sense of the word represent 
a relatively small part. An even smaller fraction 
belongs to interesting, difficult, or 
unconventional problems. While SAS programming 
puzzles of this nature stubbornly resist brute 
force, they quite often yield to a good measure of 
general-programming, not necessarily SAS-specific, 
thinking, applied before the first line of code 
has even been typed. When as a result, an 
efficient and complete SAS solution falls in place 
as if by magic, it feels not unlike finding a 
beautiful tune. One who discovers the music is 
rewarded by a SAS programming melody so tasty that 
it just must be heard outside of SAS-L. This 
presentation is an attempt to share a couple of 
such programming tunes with the SSU audience.   
 
 
INTRODUCTION 
 
In this paper, I am going to display a small 
miscellany of serendipitous programming problems 
asked on SAS-L, for which I was fortunate to offer 
a solution. All these problems were different in 
nature but shared one distinctive feature: None 
could be solved head-on using one of standard SAS 
programming techniques; or at least a standard 
solution, if found, would be quite inefficient due 
to either amount or shape of the data.   
In the ‘normal’ SAS programming practice, the 
necessity to code ab ovo, at a very low 
algorithmic level, is rarely required or, should 
such necessity arise, an attempt is usually made 
to circumvent the labor by  
 
1. Using a less efficient but standard method. 
2. Buying a piece of software designed to tackle 

this sort of problems. 
3. Asking a question on SAS-L.    
 
The latter method works particularly well, because 
many SAS-L responders: 
 
1. Are experienced, and not necessarily SAS-only, 

programmers. 
2. Are willing to take their time to help. 

3. Like programming challenges and view a 
difficult programming task as an interesting 
mental exercise. 

4. Test their solutions and offer their 
extensions if necessary. 

5. Are free. 
 
Besides, some, very rare respondents, such as Ian 
Whitlock, Peter Crawford, Pete Lund, Lauren 
Haworth, are known to always get is right and 
trusted with their solutions as if they had an 
iron-clad guarantee coming with them.  
 
I have always adhered to the thought that since 
SAS is a general programming language in its own 
right -- and would be even if its only component 
were the DATA step -- there is virtually no 
general programming problem that could be solved 
in a different software but not in SAS. By the 
‘general programming problem’, I mean not some 
fancy GUI development or systems programming, but 
rather the implementations of schemes described in 
general texts on algorithms, such as Knuth[1,2], 
Sedgewick[3], or Standish[4]. 
 
You will see that the problems examined below 
pretty much fall under the cover of this loose 
definition. They are presented almost ‘as is’, 
with the questions as formulated by the original 
poster and my answers edited only for the sake of 
making them more suited for a paper than a 
personal response.        
 
 
1. A KNAPSACK OF ADJUSTMENTS 
 
This question was asked twice, almost in the same 
terms, by two different posters a year or so 
apart. Here I adhere to the thread initiated by 
Greg Moron gmoron@netscape.net.  
 
Q.:  
 
I have 50 so-called usage charges: 
 
 48 30 45 08 19 22 37 46 13 14 
 49 36 05 25 44 01 11 03 32 32 
 09 05 35 32 03 41 03 20 28 39 



 40 46 47 33 03 03 08 13 50 15 
 06 42 20 09 32 24 16 41 21 01 
I also have a large (over 3 million observations) 
SAS data set TARGET with 1 variable called TARGET 
listing 'target adjustments'. For example: 
 
 OBS    TARGET 
   1       53 
   2      278 
   3      115 
   4       75 
   5      264 
   6      278 
   7      156 
   8      153 
   9       15 
  10       20 
 
For each target adjustment value in this file, I 
have to create a 'real' adjustment according to 
the following rules.  If the target adjustment 
matches one of the usage  charges, the charge is 
chosen as the real  adjustment. E.g., it would be 
the case for TARGET=15 and 20. If a match is not 
found, I must try to combine 2 charges so that 
their sum would equal the target adjustment. For 
instance, for TARGET=53 the charges 50+3 would 
produce the required adjustment. If I can't find 2 
terms like that I must try 3 terms, and so on, up 
to 6 terms. Generally, if a  target figure can be 
obtained in a number of ways, a combination with 
fewest terms and largest possible terms must be 
selected. If the TARGET value can't be matched by 
any  1-, 2-, ..., 6-term combination, TARGET+1 
value should be considered as a target adjustment, 
and so on. At end, I have to have a file ADJ 
written with TARGET and 6 variables ADJ1--ADJ6. 
For instance, for the first 10 observations from 
the file TARGET I can find ‘by hand’ that: 
 
TARGET    ADJ1    ADJ2    ADJ3    ADJ4    ADJ5    ADJ6 
 
    53      50       3       .       .       .       . 
   278      50      49      48      47      45      39 
   115      50      49      16       .       .       . 
    75      50      25       .       .       .       . 
   264      50      49      48      47      46      24 
   278      50      49      48      47      45      39 
   156      50      49      48      48       .       . 
   153      50      49      48      48       .       . 
    15      15       .       .       .       .       . 
    20      20       .       .       .       .       . 
 
As a matter of fact, I am not even sure I have 
selected the optimum required combinations for the 
large targets but at least, the terms total to the 
target adjustment. I am not so much confused about 
creating the combinations, rather as to how to 
search them efficiently in this particular case. 
Now -- to the response.  
 
 

 
A.: 
 
The task reminds the "knapsack" problem usually 
attacked using greedy algorithms. However, in this 
particular case, the number of combinations at 
hand does not prohibit an exact solution. The 
total number of 1-, 2-, ... 6-term combinations 
out of 50 is 18,260,635, believe it or count it. 
Of course, storing all of them in a kind of memory 
table to facilitate a comparison-type (i.e. 
sequential, binary, formatted, etc.) search for 
the needed sum each time a record comes from 
TARGET would be a painful experience. Moerover, it 
would be unclear how to make good use of equal 
usage charges such as 3 and 32. However, once we 
agree to forget about comparing TARGET to the 
usage charges and move from comparison-based 
searching to searching based on direct addressing 
into an array, the pieces of the puzzle fall in 
place as if by magic. 
 
Let us first consider what kind of sums we are 
dealing with. 
Rearranging the usage charges into descending 
order, we have: 
 
50 49 48 47 46 46 45 44 42 41 
41 40 39 37 36 35 33 32 32 32 
32 30 28 25 24 22 21 20 20 19 
16 15 14 13 13 11 09 09 08 08 
06 05 05 03 03 03 03 03 01 01 
 
Hence, the maximum sum the charges can adjust is 
(50 + 49 + + 48 + 47 + 46 + 46) = 286, the minimum 
sum obviously being 1. Therefore, instead of 
creating all the combinations to search, we can 
only compute all possible sums from 1 to 286 
that 1-, 2-,...6-term combinations are able to 
produce. Then we will key-index an 286-bucket 
array by the sums corresponding to different 
combinations. Each sum as a search key will be 
used as an index into the array itself (hence key-
indexing). 
 
To account for all six possible terms, we will 
need a 2-dimensional array S(1:6,1:286). By 
creating the needed combinations from an input 
containing the usage charges in descending order, 
we can satisfy the precedence requirement 
naturally by not allowing the buckets already key-
indexed (we will know it by the contents of the 
first row cell in the array S) to be overwritten 
by a combination having a lower priority. 
 
Data Uc; 
   Input Uc @@; 
Cards; 
48 30 45 08 19 22 37 46 13 14 
49 36 05 25 44 01 11 03 32 32 



09  5 35 32 03 41 03 20 28 39 
40 46 47 33 03 03 08 13 50 15 
06 42 20 09 32 24 16 41 21 01 
; 
Run; 
 
Proc Sort Data=Uc; By Descending Uc; Run; 
 
Data _Null_; 
   Do X=1 To N; 
      Set Uc Nobs=N; 
      If X Eq N Then Min  = Uc; 
      If X Le 6 Then Max ++ Uc; 
   End; 
   Call Symput ('Min',Compress(Put(Min,Best.))); 
   Call Symput ('Max',Compress(Put(Max,Best.))); 
   Call Symput ('Ucn',Compress(Put(N  ,Best.))); 
Run; 
 
Data Adj (Keep=Target Adj1-Adj6); 
   Array A   (       1:&Ucn) _Temporary_; 
   Array S   (1:6,&Min:&Max) _Temporary_; 
   Array Adj (1:6          )            ; 
  
  Do X=1 To &Ucn; 
      Set Uc; 
      A(X) = Uc; 
   End; 
 
   X0 = 0; 
   Do X1=X0+1 To &Ucn; 
      Sum = A(X1); 
      If S(1,Sum) Then Continue; 
      S(1,Sum) = A(X1); 
   End; 
 
   Do X1=X0+1 To &Ucn-1; 
   Do X2=X1+1 To &Ucn-0; 
      Sum = A(X1)+A(X2); 
      If S(1,Sum) Then Continue; 
      S(1,Sum) = A(X1); 
      S(2,Sum) = A(X2); 
   End; End; 
 
   Do X1=X0+1 To &Ucn-2; 
   Do X2=X1+1 To &Ucn-1; 
   Do X3=X2+1 To &Ucn-0; 
      Sum = A(X1)+A(X2)+A(X3); 
      If S(1,Sum) Then Continue; 
      S(1,Sum) = A(X1); 
      S(2,Sum) = A(X2); 
      S(3,Sum) = A(X3); 
   End; End; End; 
 
   <. . Fill the gap by induction . . > 
 
   Do X1=X0+1 To &Ucn-5; 
   Do X2=X1+1 To &Ucn-4; 
   Do X3=X2+1 To &Ucn-3; 
   Do X4=X3+1 To &Ucn-2; 

   Do X5=X4+1 To &Ucn-1; 
   Do X6=X5+1 To &Ucn-0; 
      Sum = A(X1)+A(X2)+A(X3)+A(X4)+A(X5)+A(X6); 
      If S(1,Sum) Then Continue; 
      S(1,Sum) = A(X1); 
      S(2,Sum) = A(X2); 
      S(3,Sum) = A(X3); 
      S(4,Sum) = A(X4); 
      S(5,Sum) = A(X5); 
      S(6,Sum) = A(X6); 
   End; End; End; End; End; End; 
 
   Do Until (Eof); 
      Set Target End=Eof; 
      If Not (&Min Le Target Le &Max) 
        Then Continue; 
      Do While (Not S(1,Target)); 
         Target ++ 1; 
      End; 
      Do X=1 To 6; 
         Adj(X) = S(X,Target); 
      End; 
      Output; 
   End; 
Run; 
 
The Data _Null_ step was used to find the minimum 
and maximum ranges pertaining to the usage charges 
and create macro variables for sizing up arrays in 
the subsequent step.       
In the code above, the combination loops are kept 
unrolled for the sake of initial clarity. However, 
now it is now clear by induction how to write a 
macro capable of assembling this code, the last 
step can be made much more concise. For example, 
the needed macro could be coded this way:  
 
%Macro Cmb(N); 
   %Local Z; 
   %Do Z=1 %To &N; 
      Do X&Z=X%Eval(&Z-1)+1 To &Ucn-(&N-&Z); 
   %End; 
   Sum = A(X1) 
   %Do Z=2 %To &N; +A(X&Z)             %End;; 
   If S(1,Sum) Then Continue; 
   %Do Z=1 %To &N; S(&Z,Sum) = A(X&Z); %End; 
   %Do Z=1 %To &N; End;                %End; 
%Mend Cmb; 
 
Now the macro can be used to shorten the program 
dramatically: 
 
Data Adj; 
   Array A   (       1:&Ucn) _Temporary_; 
   Array S   (1:6,&Min:&Max) _Temporary_; 
   Array Adj (1:6          )            ; 
   Do X=1 To &Ucn; 
      Set Uc; 
      A (X) = Uc; 
   End; 



   X0 = 0; 
 
   %Cmb (1)  %Cmb (2)  %Cmb (3) 
   %Cmb (4)  %Cmb (5)  %Cmb (6) 
 
   Do Until (Eof); 
      Set Target End=Eof; 

If Not (&Min Le Target Le &Max)   Then 
Continue; 

      Do While (Not S(1,Target)); 
         Target ++ 1; 
      End; 
      Do X=1 To 6; 
         Adj(X) = S(X,Target); 
      End; 
      Output; 
   End; 
Run; 
 
Computing the combinatorial sums and preparing the 
key-indexed table is the longest an most slowly 
executed part of the program. When the last 
combination macro has executed, the table is ready 
for searching. The TARGET file is then read in an 
explicit DO loop, and each target value coming 
from its observations is searched via a single 
array reference.  
 
How long does it take the computer to solve this, 
at the first glance, CPU and I/O intensive 
problem? With 1,000,000 observations in TARGET, 
going over all 18,260,635 combinations, using them 
to key-index the sums, and computing the 
adjustments takes about a minute, in all, on a 
233MHz P-II machine running 6.12 under Windows NT.  
 
 
2. KEY-LINKING  
  
This type of problem arises frequently in 
practical applications, especially in business 
situations where a customer is identified by a key 
(credit card number, telephone number) that is 
likely to change due a number of circumstances. A 
customer, for instance, could lose a credit card – 
in which case a new number is issued, while the 
old number remains in the database as a secondary 
key. Numerous changes of this kind produce a chain 
of keys that, in the absence of a unified shadow 
key, sooner or later needs to be traced. At the 
end of 1998, a problem of that sort was raised on 
SAS-L for the first time by Ludwig Boltzmann, and 
a number of people, notably Ian Whitlock, Karsten 
Self, and I offered solutions that basically 
differed in terms of methods different responders 
had employed to search the columns with ‘new’ and 
‘old’ keys.  
 
Here I am presenting the most recent version of 
this problem formulated and posted by Max Zwingli 

maxzwingli@mail.nu and my response, in which I 
took an opportunity to do an exercise in 
structured SAS programming comparing LINK and 
macro approaches, and, frankly, to throw in a 
couple of arguments for hashing as a searching 
technique.  
 
 
Q.: 
 
I've got a SAS file with 2 variables: OLD and NEW. 
They represent old and new phone numbers once the 
customer's phone has changed. When this happens 
the old-new obs is simply inserted somewhere in 
the file, no ordering or indexing of any kind, and 
the numbers have nothing to do with the time the 
record was inserted. Here's a snapshot of how the 
data might look like: 
 
  OLD         NEW 
8888888888 9999999999 
2222222222 3333333333 
5555555555 6666666666 
7777777777 8888888888 
0000011111 0000022222 
3333333333 4444444444 
9999999999 0000000000 
1111111111 2222222222 
 
A human eye will easily see that first-old to 
last-new chains are: 
 
1. 5555555555-6666666666 
2. 7777777777-8888888888-9999999999-0000000000 
3. 0000011111-0000022222 
4. 1111111111-2222222222-3333333333-4444444444 
 
The file having upwards of 800000 observations, I 
need to devise a programmatic means of doing this. 
Actually with the sample like above the output 
should look like this: 
 
   OLD           NEW        NLINKS 
5555555555    6666666666       2 
7777777777    0000000000       4 
0000011111    0000022222       2 
1111111111    4444444444       4 
 
Where NLINKS represents the number of links in 
each "chain". So far my efforts have resulted in 
about fifteen steps of sorts and merges taking 
quite some time to run. Could anyone suggest a 
more elegant and/or efficient approach with fewer 
passes through the input? 
 
A.:  
 
The principal algorithm for solving the problem is 
quite simple: 
 



1. Allocate 3 hash tables: 
• Containing OLD phones 
• Containing NEW phones 
• Containing NEW phones *parallel* to the 

first table. 
 
2. Read the file record by record and load the 

hash tables. 
3. Read a record from the file again. Search for 

OLD phone in the NEW hash table. If the search 
is unsuccessful, the OLD phone is the 
beginning of a chain. Otherwise go to step 3. 

4. Take the corresponding NEW phone and search it 
in the OLD table. If a match is found, take 
the corresponding NEW phone from the hash 
table 3 and search the OLD table again. 
Otherwise it is the end of the chain, so stop 
and output the endpoints, then go to step 3. 

 
Now we see that the problem boils down to repeated 
hash searches of the same kind, so it makes sense 
to concoct a unified procedure and apply it (with 
a degree of flexibility) throughout the program. 
First, let us try to make use of the Macro 
Language to create an %HSEARCH() routine that can 
chameleon itself depending upon the table and key 
it is searching. I assume that the input data set 
is called A. 
 
%Let H = 1000003; * Prime Number => Nobs*2; 
 
%Macro Hsearch (Table=, Key=); 
   %If       %Upcase(&Table) = %Upcase(Old) 
             %Then %Let Table = 1; 
   %Else %If %Upcase(&Table) = %Upcase(New) 
            %Then %Let Table = 2; 
   Found = 0; 
   Do J=1+Mod(&Key,&H) By 1 
      Until (H(&Table,J)=. Or Found); 
      If J = &H Then J = 1; 
      If H(&Table,J) = &Key Then Found = 1; 
   End; 
%Mend Hsearch; 
 
*H-dimensions: 1=Old, 2=New, 3=(Old||New) ; 
 
Data Oldnew (Keep=Old New Nlinks); 
   Array H (3,&H) _Temporary_;   
   Do Until (E1); 
      Set A End=E1; 
     %Hsearch (Table=Old, Key=Old); 
      H(1,J) = Old; 
      H(3,J) = New; 
     %Hsearch (Table=New, Key=New); 
      H(2,J) = New; 
   End; 
   Do Until (E2); 
      Set A End=E2; 
     %Hsearch (Table=New, Key=Old); 
      If Found Then Continue; 

      Do Nlinks=2 By 1 Until (Not Found); 
         %Hsearch (Table=Old, Key=New); 
         If Found Then New = H(3,J); 
      End; 
      Output; 
   End; 
Run; 
 
A good number of people dislike the Macro Language 
whenever a more conventional means of structured 
programming can be employed. I do not necessarily 
share that viewpoint given certain SAS 
limitations, but let us give the LINK subroutine a 
fair shot as well: 
 
*H-dimensions: 1=Old, 2=New, 3=(Old||New) ; 
 
Data Oldnew (Keep=Old New Nlinks); 
   Array H (3,&H) _Temporary_;   
   Do Until (E1); 
      Set A End=E1; 
      Table = 1; Key = Old; Link Hsearch; 
      H(1,J) = Old; 
      H(3,J) = New; 
      Table = 2; Key = New; Link Hsearch; 
      H(2,J) = New; 
   End; 
   Do Until (E2); 
      Set A End=E2; 
      Table = 2; Key = Old; Link Hsearch; 
      If Found Then Continue; 
      Table = 1; 
      Do Nlinks=2 By 1 Until (Not Found); 
         Key = New; Link Hsearch; 
         If Found Then New = H(3,J); 
      End; 
      Output; 
   End; 
   Stop; 
   Hsearch: 
   Found = 0; 
   Do J=1+Mod(Key,&H) By 1 
      Until (H(Table,J) = . Or Found); 
      If J = &H Then J = 1; 
      If H(Table,J) = Key Then Found = 1; 
   End; 
Run; 
 
In both cases, the problem is solved in a single 
step, albeit with two passes through the file. 
Above, hash table size is assumed about twice the 
number of the keys to search, in order to obtain 
the fastest searching speed with the simplest 
collision resolution policy -- the linear probing. 
 
 
 
 
3. TOPOLOGICAL SORT 
 



This very intriguing problem was posted by Alex 
Martchenko amartchenko@netscape.net ,who called it 
‘Job Scheduling’. This problem, too, lends itself 
to a kind of structured DATA step programming, but 
here it is more of a necessity, otherwise the 
algorithm is difficult to follow given the code. 
 
Q.: 
 
I have a bunch of 'jobs', and all I know 
about them is which must be execute  before which. 
Suppose the info is recorded in a SAS data set 
'pairs'. Every observation in PAIRS tells that 
some J_BEF must be performed before J_AFT. 
 
DATA PAIRS; 
INPUT J_GRP J_BEF: $8. J_AFT: $8.; 
LINES; 
1 III BBB 
1 CCC GGG 
1 GGG EEE 
1 EEE HHH 
1 HHH FFF 
1 DDD FFF 
1 AAA CCC 
1 GGG DDD 
1 III EEE 
1 BBB HHH 
3 555 888 
3 555 777 
3 666 999 
3 444 666 
3 000 111 
3 222 444 
3 111 222 
3 111 333 
3 000 999 
3 333 666 
3 444 777 
3 222 555 
; 
RUN; 
 
I need to identify distinct jobs within each group 
(1 and 3 above) and 
output them to a variable JOB_SEQ so that no job 
listed in J_BEF for that 
group follows J_AFT. I don't care about the exact 
output sequence as long as this rule is not 
violated. For example the output done by hand may 
look like shown below (in the 3-group I on purpose 
selected the jobs pairs to make the output look 
sorted like 000, 111, 222, 333...): 
 
Obs    J_GRP    JOB_SEQ 
   1      1        III 
   2      1        AAA 
   3      1        BBB 
   4      1        CCC 
   5      1        GGG 
   6      1        EEE 
   7      1        DDD 
   8      1        HHH 
   9      1        FFF 
  10      3        000 

  11      3        111 
  12      3        222 
  13      3        333 
  14      3        444 
  15      3        555 
  16      3        666 
  17      3        777 
  18      3        888 
  19      3        999 
 
In the example I used 3 byte character values for 
simplicity but in actuality J_BEF and J_AFT have 
full 8 bytes. Also even though the file is pretty 
big (> 21 m obs) each group is limited to no more 
than 500 records. Questions: 1) Is there a SAS 
procedure that can accomplish the task; 2) if not 
has someone an idea how to program it in base SAS. 
Frankly, I have none. First I decided it'd be easy 
to do with a couple of sorts and datasteps but the 
more I think of it, the more hazy it seems. 
 
A.: 
 
What we have got here is the simplest scheduling 
problem with a topological sort to be done within 
each by-group. Assuming that you have no cyclic 
references, it is fairly easy. At least the basic 
idea of the algorithm lies on the surface: Let us 
first find all the jobs having *no* predecessors. 
Apparently, we can place them in the output right 
away. Then if we remove them from the input, thus 
erasing their 'before-after' relationships with 
the remaining items, some other jobs will emerge 
with no predecessors. Repeating the process until 
the input has been exhausted, we will finally have 
output a linear list of items where no successor 
is listed before any of its predecessors. 
 
Telling the computer to do the same is, however, a 
more intricate matter. First, it is convenient 
(and apparently  more efficient) to (1) determine 
the number of predecessors of each job beforehand. 
Having obtained such a frequency, we can then 
safely (2) output the items with zero frequencies, 
since they have no predecessors. Then (3) for each 
item like that, we also want to look at each of 
its successors and decrease its predecessor count 
by a unity. As a result of this operation, some 
other items will end up having zero counts. Now we 
can go back to (3), repeating the process until 
all counts have been zeroed out. To facilitate it, 
we need to associate a list of successors with 
each job item. Since there are only 500 items 
maximum per group, it can be done using a 2-
dimensional 500x500 array instead of (more 
complex) collection of coalesced link lists. Of 
course, most of the memory space occupied by the 
array nodes will be wasted, but since it is only 2 
Mb, one can afford to sacrifice it for simplicity. 
 



The scheme described above might sound simple, but 
it is inefficient to scan the entire (modified) 
input for zero counts each time the process 
iterates. This can be avoided by maintaining an 
output queue. After the *initial* scan for zeroes 
the queue can be initialized by the items having 
zero predecessor counts. Then we eject the job 
sitting in the front of the queue, place it in the 
output, and decrease the predecessor counts of all 
its successors. If any of them have gone down to 
zero, the corresponding item is inserted in the 
rear of the queue. The new front queue item is 
ejected again, and the loop repeats until the 
queue is empty and there are no successors to deal 
with, at which point the goal is apparently 
reached. 
 
Let us consider the first group: 
 
1 III BBB 
1 CCC GGG 
1 GGG EEE 
1 EEE HHH 
1 HHH FFF 
1 DDD FFF 
1 AAA CCC 
1 GGG DDD 
1 III EEE 
 
and do the algorithm by hand - it will make the 
way of writing a program strikingly clear. First, 
let us enumerate all the distinct jobs in the 
group: 
 
III -> 1, BBB -> 2, CCC -> 3, GGG -> 4, EEE->5, 
HHH -> 6, FFF -> 7, DDD -> 8, AAA -> 9 
 
Second, let us read the input and populate the 
following table using the enumerating numbers 
instead of the actual job names: 
 
          1  2  3  4  5  6  7  8  9 10 11 12 ... 500 
---------------------------------------------------- 
Pre_Cnt   0  1  1  1  2  1  2  1  0  .  .  . 
Suc_Cnt   2  0  1  2  1  1  0  1  1  .  .  . 
Suc1      2  .  4  5  6  7  .  7  3  .  .  . 
Suc2      5  .  .  8  .  .  .  .  .  .  .  . 
Suc3      .  .  .  .  .  .  .  .  .  .  .  . 
....      .  .  .  .  .  .  .  .  .  .  .  . 
Suc500    .  .  .  .  .  .  .  .  .  .  .  . 
 
According to the plan above, since the items 1 and 
9 have zero predecessor counts, we grab them and 
insert in the rear of the queue one by one, so the 
initialized queue (rear to front as left to right) 
now looks like Q[9,1]. 
 
Item 1 is in the front of the queue, so we take it 
and move to the output: OUT[1]. Item 1 has two 
successors: 2 and 5. Decreasing the predecessor 
count if item 2 yields 0, so 2 goes in the rear of 
the queue, and thus now the queue is Q[2,9]. 
Decreasing PRE_CNT of item 5 yields 1, so we leave 

it alone -- for now. Since 9 has moved to the 
front of the queue, we take it and move to the 
output: OUT[1,9]. But item 9 has item 3 as its 
successor, so we should decrement PRE_CNT of item 
3 by 1. It yields 0, so 3 goes in the queue: 
Q[3,2]. At this point, the table has acquired the 
following form (only non-missing rows and columns 
shown): 
 
          1  2  3  4  5  6  7  8  9 
----------------------------------- 
Pre_Cnt   0  0  0  1  1  1  2  1  0 
Suc_Cnt   2  0  1  2  1  1  0  1  1 
Suc1      2  .  4  5  6  7  .  7  3 
Suc2      5  .  .  8  .  .  .  .  . 
 
Next item in front of the queue is 2, and so it 
goes to the output: OUT[1,9,2]. Item 2 has no 
successors, so we turn out attention back to the 
queue, which at the moment is Q[3]. Item 3 goes to 
the output: OUT[1,9,2,3], and it has item 4 as its 
sole successor. Subtracting 1 from PRE_CNT(4) 
knocks it down to zero, so 4 is inserted in the 
queue: Q[4]. There are no more successors to 
process for item 4, so we go back to the queue and 
eject item 4 into the output: OUT[1,9,2,3,4]. Its 
successors are 5 and 8. Decreasing PRE_CNT of both 
makes them ripe for the queue, and that is where 
they go: Q[8,5]. Front item 5 goes to the output: 
OUT[1,9,2,3,4,5]. Its successor 6 has 
PRE_CNT(6)=1, so decreasing it by 1 results in 0, 
and 6 goes in the queue: Q[6,8]. Item 8 is in 
front, so it is output: OUT[1,9,2,3,4,5,8]. It 
then causes PRE_CNT(7) of its only successor 7 to 
go down by 1, and the queue, now Q[6], spits out 
its only entry: OUT[1,9,2,3,4,5,8,6]. The only 
successor of 6, item 7, has thereby its PRE_CNT 
gone down to 0, and so it goes in the rear of the 
queue: Q[7]. Item 7 goes to the output list: 
OUT[1,9,2,3,4,5,8,6,7]. This terminates the 
process, since there are no more successors to get 
involved with, and the queue is empty: Q[]. All we 
have to do now is replace the numbers with their 
respective job names: 
 
JOB_SEQ [III AAA BBB CCC GGG EEE DDD HHH FFF]. 
 
Obviously, the scheme is very easy to program if 
the jobs are contiguously enumerated, for because 
the table is indexed by item numbers, any item in 
question is in effect located immediately by key-
indexed search. Otherwise we would have to conduct 
a search of a different type - and nothing comes 
close to key-indexing in speed and simplicity. 
Therefore, it makes sense to spend some time 
enumerating unique items within each by-group. It 
can be done on the fly, and the most natural 
medium to do it is a hash table. We simply 
allocate a hash table JN_HSH of a prime size about 
2*500 and try inserting the next job item. If it 
is the first time in, the item gets the next 



serial number recorded in a parallel table J_To_N, 
and the inverse relationship is recorded in a 
table N_To_J (apparently having to house maximum 
500 nodes). If the item is duplicate, we simply 
use the number already sitting in this hash 
location of J_To_N. 
 
Organizing a queue is even easier. (Note that 
here, SAS's ready-to-go method of organizing a 
queue, LAG, cannot go anywhere: We need a queue 
that would facilitate ejection of the item from 
the front asynchronous with insertion in the 
rear - while LAG does both simultaneously.) An 
array of size 500 will do the job if we use 2 
pointers, REAR and FRONT, initially positioned at 
0 and 1. To insert, we increment REAR by a unity 
and stick an item in QUEUE(REAR). To eject, we 
output QUEUE(FRONT) and increment FRONT, 
effectively moving the next array node to the 
front of the queue. FRONT = REAR means the queue 
having become empty. 
 
Neither the QUEUE, nor PRE_CNT array has to be 
cleaned up before the next by-group: The ex-
contents of the queue matter not when the 
FRONT/REAR pointers are initialized; and at the 
end of the process, all predecessor counts are 
zeroed out. However, both the hash table and the 
successor table have to be cleaned up properly. 
 
The DATA step program below solves the scheduling 
problem within given limitations (no more than 500 
distinct jobs per group). Writing the code, I have 
significantly deviated from my own non-structured, 
parsimonious practice in hope that it could make 
the intent of the instructions more transparent. 
You be the judge if I have failed or not. If you 
prefer a more concise style, you can, for 
instance, pack arrays Pre_Cnt, Suc_Cnt, and Queue 
in 0, -1, and -2 rows of Suc_Lst, shorten 
notation, and so on. 
 
Data Pairs; 
   Input J_Grp J_Bef: $8. J_Aft: $8.; 
Cards; 
1 III BBB 
1 CCC GGG 
1 GGG EEE 
1 EEE HHH 
1 HHH FFF 
1 DDD FFF 
1 AAA CCC 
1 GGG DDD 
1 III EEE 
1 BBB HHH 
3 555 888 
3 555 777 
3 666 999 
3 444 666 
3 000 111 
3 222 444 
3 111 222 

3 111 333 
3 000 999 
3 333 666 
3 444 777 
3 222 555 
2 LLL MMM 
2 LLL YYY 
2 TTT XXX 
2 VVV TTT 
2 SSS VVV 
2 UUU SSS 
2 UUU WWW 
2 XXX QQQ 
2 WWW TTT 
2 VVV YYY 
2 SSS LLL 
; 
Run; 
 
%Let M =  500; *Max Distinct Jobs Per Group; 
%Let H = 1009; *Hash Size For Enumeration  ; 
 
Data Schedule (Keep=J_Grp Job_Seq); 
   Array Suc_Lst (1:&M, 1:&M)    _Temporary_; 
   Array Pre_Cnt (1:&M      )    _Temporary_; 
   Array Suc_Cnt (1:&M      )    _Temporary_; 
   Array Queue   (1:&M      )    _Temporary_; 
   Array N_To_J  (1:&M      ) $8 _Temporary_; 
   Array J_To_N  (1:&H      )    _Temporary_; 
   Array JN_Hsh  (1:&H      ) $8 _Temporary_; 
 
   Link Init; 
 
   Do Until (Last.J_Grp); 
      Set Pairs; 
      By J_Grp Notsorted; 
 
      J = J_Bef; Link Enum; Pre_X = J_To_N (X); 
      J = J_Aft; Link Enum; Suc_X = J_To_N (X); 
 
      Pre_Cnt (Suc_X) ++ 1; 
      Suc_Cnt (Pre_X) ++ 1; 
      Suc_Lst (Pre_X, Suc_Cnt(Pre_X)) = Suc_X; 
   End; 
 
   Do Q = 1 To N; 
      Link Q_Insert; 
   End; 
 
   Do Front = 1 By +1 Until ( Front = Rear ); 
      Link Q_Eject; 
      Do X=1 By +1 While ( Suc_Lst(Q_Front,X) ); 
         Q = Suc_Lst (Q_Front,X); 
         Pre_Cnt (Q) +- 1; 
         Link Q_Insert; 
      End; 
   End; 
 
   Link Clean_Up; 
Return; 
 
Init: 



   Do X = 1 To &H; 
      JN_Hsh (X) = ' '; 
      J_To_N (X) =  0 ; 
   End; 
   N    = 0; 
   Rear = 0; 
Return; 
 
Enum: 
   Do X = Mod(Input(J,Pib6.),&H) + 1 By +1 
                   Until ( JN_Hsh(X) = J ); 
      If H > &H Then H = 1; 
      If Not J_To_N (X) Then Do; 
         N ++ 1        ; 
         J_To_N (X) = N; 
         N_To_J (N) = J; 
         JN_Hsh (X) = J; 
      End; 
   End; 
Return; 
 
Q_Insert: 
    If Not Pre_Cnt (Q) Then Do; 
       Rear ++ 1; 
       Queue (Rear) = Q; 
    End; 
Return; 
 
Q_Eject: 
      Q_Front = Queue (Front); 
      Job_Seq = N_To_J (Q_Front); 
      Output; 
Return; 
 
Clean_Up: 
   Do X = 1 To N; 
      Suc_Cnt (X) = 0; 
      Do Q = 1 To N; 
         Suc_Lst (X, Q) = 0; 
      End; 
   End; 
Return; 
Run; 
 
The topological sort program can be modified in 
order to detect vicious cycles (that is, 
intransitive relations of the type B->W W->Z Z-
>B). On a more philosophical note, the problem of 
topological sort is similar to that of delineating 
a directed acyclic graph. 
 
 
CONCLUSION 
 
SAS problems and, by consequence, SAS programs are 
not created equal. Some, even a majority, eagerly 
yield to a relatively few ready-to-go SAS coding 
techniques. Others, probably a minority, are more 
stubborn and need actual programming to tackle 
them. On the other hand, their solutions are quite 

useful to those asking for help and satisfactory 
to those finding solutions. Playing good music is 
a great gift. But finding a new, beautiful melody 
is unlike anything else. 
 
SAS is a registered trademark or trademark of SAS 
Institute, Inc. in the USA and other countries.  
indicates USA registration.  
  
     
REFERENCES 
 
1. D. E.Knuth, The Art of Computer Programming, 2. 
2. D. E.Knuth, The Art of Computer Programming, 3. 
3. R. Sedgewick, Algorithms in C, Parts 1-4. 
4. T. A. Standish. Data Structures, Algorithms and 

Software Principles in C.  
 
 
ACKNOWLEDMENTS 
 
My hat goes off to Ian Whitlock for providing his 
friendly support for this unconventional kind of 
SAS programming on SAS-L. I would also like to 
thank Ian for the invitation to present these SAS 
programming tunes in SSU Serendipity Section.    
 
And this paper would have never been written if it 
had not been for my wife Doris, her infinite 
patience and non-intrusive care.   
 
 
AUTHOR CONTACT INFORMATION 
 
Paul M. Dorfman,  
SAS Programmer 
 
10023 Belle Rive Blvd. 817,  
Jacksonville, FL 32256 
 
(904) 564-1931 (h)  
(904) 905-5428 (o) 
 
sashole@bellsouth.net  
paul_dorfman@hotmail.com 
 
 
 
 
 
 
 

 
 
 
 



Problem Solving Techniques with SQL
Kirk Paul Lafler, Software Intelligence Corporation

ABSTRACT
Solving technical problems involves the use of good
techniques. Data processing problems frequently
involve a great deal of data manipulation and
computing resources. When confronted with problems
of this nature, you could approach them using
conventional DATA, and/or PROC step methods, or you
could use the strengths of the SQL procedure to
manipulate and process this data. Attendees will learn
how SQL can be used to solve traditional, as well as not
so traditional, problems including sorting and grouping
data, using summary functions, performing two-, three-,
multi-table, and outer joins, and constructing
subqueries to pass results from one query to another
for further processing.

INTRODUCTION
The SQL procedure is a wonderful tool for querying and
subsetting data; creating tables; ordering, grouping, and
regrouping data; joining two or more tables (up to 32);
constructing views (virtual tables); and creating
subqueries. Occasionally, a problem comes along
where the SQL procedure is either better suited or
easier to code than conventional DATA and/or PROC
step methods.

Although each problem and proposed solution should
be examined on their own, an area where the SQL
procedure excels is in the joining of two or more tables.
In particular, joining two or more tables using the outer
join syntax (left, right, and full). One significant
difference between outer joins and conventional inner
joins is that outer joins can only join two tables at a
time, while inner joins can process up to sixteen tables.

The advantages of using an outer join becomes most
apparent when trying to determine not only the rows of
data that match the WHERE clause, but rows that don't
match. Certainly, these techniques can be
accomplished using other methods, but the conventions
used in the SQL procedure are especially interesting.

This paper presents how views and outer joins can be
used to accomplish ordinary data processing tasks.

VIEW ADVANTAGES - WHY USE THEM
There are many reasons for constructing and using
views. A few of the more common are presented here.

Minimize, or perhaps eliminate, the need to know
the table or tables underlying structure. Often a
great degree of knowledge is required to correctly
identify and construct the particular table interactions
that are necessary to satisfy a requirement. When this
prerequisite knowledge is not present, a view becomes
a very attractive alternative. Once a view is constructed,
users can simply execute the view. This results in the
baseline or underlying tables being processed.
Consequently, data integrity and control is maintained
since a common set of instructions (view) is used.

Reduce the amount of typing for longer requests.
Often, a query will involve many lines of instruction
combined with logical and comparison operators. When
this occurs, there is any number of places where a
typographical error or inadvertent use of a comparison
operator may present an incorrect picture of your data.
The construction of a view is advantageous in these

circumstances, since a simple call to a view virtually
eliminates the problems resulting from a lot of typing.

Knowledge of SQL language syntax is non-existent
or lacking among users. When users are unfamiliar
with the SQL language or the construction techniques
of views, they only need to execute the desired view (by
specifying its name) using simple calls (or select
choices from a menu). This simplifies the process and
enables users to perform simple to complex operations
with custom-built views.

Provide security to sensitive parts of a table.
Security measures can be realized by designing and
constructing views designating what pieces of a table's
information is available for viewing. Since data should
always be protected from unauthorized use, views can
provide some level of protection (one should also
consider and use security measures at the operating
system level).

Change and customization independence.
Occasionally, table and/or process changes may be
necessary. When this happens, it is advantageous to
make it a painless process for users. When properly
designed and constructed, a view modifies the
underlying data without the slightest hint or impact to
users, with the one exception that results and/or output
may appear differently. Consequently, views can be
made to maintain a greater level of change
independence.



TYPES OF VIEWS
Views can be typed or categorized according to their
purpose and construction method. Joe Celko, author of
SQL for Smarties and a number of other SQL-related
books, describes views this way, "Views can be
classified by the type of SELECT statement they use
and the purpose they are meant to serve." To classify
views in a SAS System environment, one looks at how
the SELECT statement is constructed. The following
classifications are useful when describing a view's
capabilities.

Single-Table Views
Views constructed from a single table are often used to
control or limit what is accessible from that table. These
views generally limit what columns, rows, and/ or both
are viewed.

Ordered Views
Views constructed with an ORDER BY clause arrange
one or more rows of data in some desired way.

Grouped Views
Views constructed with a GROUP BY clause divide a
table into sets for conducting data analysis. Grouped
views are more often than not used in conjunction with
aggregate functions (see aggregate views below).

Distinct Views
Views constructed with the DISTINCT keyword tell the
SAS System how to handle duplicate rows in a table.

Aggregate Views
Views constructed using aggregate and statistical
functions tell the SAS System what rows in a table you
want summary values for.

Joined-Table Views
Views constructed from a join on two or more tables
use a connecting column to match or compare values.
Consequently, data can be retrieved and manipulated
to assist in data analysis.

Nested Views
Views can be constructed from other views, although
extreme care should be taken to build views from base
tables.

CREATING VIEWS
When creating a view, its name must be unique and
follow SAS naming conventions. Also, a view cannot
reference itself since it does not already exist.

The following example illustrates the process of
creating an SQL view.

PROC SQL;
CREATE VIEW PERM.COLLGRAD AS

SELECT LASTNAME, SSN, DOB
FROM PERM.EMPLOYEE

WHERE EDUC > 16
ORDER BY LASTNAME;

QUIT;

In this example the CREATE VIEW statement tells the
SAS System that a view is to be created using the
instructions and conditions specified in the SELECT
statement. The resulting view for all intensive purposes
looks and behaves like a real table. Although in this
case, something similar to a temporary internal table is
created.

OUTER JOIN SYNTAX
Most often, we think of joins as being able to relate
rows in one table with rows in another. But occasionally,
you may want to include rows from one or both tables
that have no related rows. This concept is referred to as
row preservation and is a significant feature offered by
the outer join construct.

There are operational and syntax differences between
inner (natural) and outer joins. First, the maximum
number of tables that can be specified in an outer join
is two (the maximum number of tables that can be
specified in an inner join is 32). Like an inner join, an
outer join relates rows in both tables. But this is where
the similarities end because the result table also
includes rows with no related rows from one or both of
the tables. This special handling of “matched” and
“unmatched” rows of data is what differentiates an outer
join from an inner join.

An outer join can accomplish a variety of tasks that
would require a great deal of effort using other
methods. This is not to say that a process similar to an
outer join could not be programmed – it would just
require more work. Let’s take a look at a few tasks that
are possible with outer joins:

• List all customer accounts with purchases during
the month, including customer accounts with no
purchase activity.

• Compute the number of orders placed by each
customer, including customers who have not
placed an order.

• Identify automobile owners who had their 35,000-
mile checkup at the scheduled interval, and those
who did not.

Another obvious difference between an outer and inner
join is the way the syntax is constructed. Outer joins
use keywords such as LEFT JOIN, RIGHT JOIN, and
FULL JOIN, and has the WHERE clause replaced with
an ON clause. These distinctions help identify outer
joins from inner joins.

Finally, specifying a left or right outer join is a matter of
choice. Simply put, the only difference between a left
and right join is the order of the tables they use to relate
rows of data. As such, you can use the two types of
outer joins interchangeably and is one based on
convenience. The syntax requirements for left outer
joins follows:



Left Outer Join

proc sql;
title1 'Left Outer Join Syntax';
select *

from libref.left
left join
libref.right

on left.key = right.key;
quit;

Figure 1.

The syntax requirements for right outer joins follows:

Right Outer Join

proc sql;
title1 'Right Outer Join Syntax';
select *

from libref.left
right join
libref.right

on left.key = right.key;
quit;

Figure 2.

The syntax requirements for a full outer join follows:

Full Outer Join

proc sql;
title1 'Full Outer Join Syntax';
select *

from libref.left
full join
libref.right

on left.key = right.key;
quit;

Figure 3.

USING A LEFT OUTER JOIN
The following data sets are used as input to illustrate
left outer join results.

DATASET - AUTOS

Variable Type Length

CODE Char 4
TYPE Char 15
YEAR Num 4

Figure 4.

DATASET - INVEST

Variable Type Length

CODE Char 4
GRADE Char 1
COLOR Char 8
OWNER Char 8

Figure 5.

Figure 6 illustrates the result of using a left outer join to
identify and match investment autos having an 'A' grade
from the AUTOS and INVEST data sets. The resulting
output displays all rows for which the SQL expression
matched in both tables (is true) and all rows from the
left table (AUTOS) that did not match any row in the
right (INVEST) table.

Left Outer Join

proc sql;
title1 'Left Outer Join';
select *

from work.autos
left join
work.invest

on autos.code = invest.code and
invest.grade = 'A';

quit;

Figure 6.

Figure 7 illustrates the result of using a right outer join
to identify and match investment autos having an 'A'
grade from the AUTOS and INVEST data sets. The
resulting output displays all rows for which the SQL
expression is true and all rows from the right table
(INVEST) that do not match any row in the left (AUTOS)
table.

Right Outer Join

proc sql;
title1 'Right Outer Join';
select *

from work.autos
right join
work.invest

on autos.code = invest.code and
invest.grade = 'A';

quit;

Figure 7.

Figure 8 illustrates the result of using a full outer join to
identify and match investment autos having an 'A' grade
from the AUTOS and INVEST data sets. The resulting
output displays all rows for which the SQL expression
is true and all rows from both tables (AUTOS and
INVEST) that do not match any row in the other table.



Full Outer Join

proc sql;
title1 'Full Outer Join';
select *

from work.autos
full join
work.invest

on autos.code = invest.code and
invest.grade = 'A';

quit;

Figure 8.

CONCLUSION
The SQL procedure has an assortment of tools and
techniques for solving common data processing
problems. Although other methods may exist for
resolving certain tasks, at times one method stands out
as either being the best or possibly the easiest to code.
Performing outer joins in the SQL procedure can
certainly be classified as a technique worth further
research.

Trademark Citations
SAS, SAS Quality Partner, and SAS Certified
Professional are registered trademarks of SAS Institute
Inc. in the USA and other countries.
® indicates USA registration.

ABOUT THE AUTHOR
Kirk is a SAS Quality Partner® and SAS Certified
Professional® with 25 years of experience working with
the SAS System. He has authored over one hundred
articles on computing and technology that have appeared
in professional journals, SUGI, regional SAS User
Groups, and local SAS User Groups. His popular SAS
Tips column appears regularly in the SANDS and
SESUG Newsletters. His expertise includes application
design and development, training, and programming
using base-SAS, SQL, ODS, SAS/FSP, SAS/AF, SCL,
FRAME, and SAS/EIS software.

Comments and suggestions can be sent to:

Kirk Paul Lafler
Software Intelligence Corporation

P.O. Box 1390
Spring Valley, California 91979-1390

E-mail: KirkLafler@cs.com
Website: www.software-intelligence.com



Functional Functions

Gary M McQuown, Data and Analytic Solutions Inc., Fairfax, VA
Dorothy E. Brown, Independent Consultant, Matthews, NC

Abstract:

Functions are an important aspect of data step programming that
are often overlooked and under utilized.  Not only can functions
be used to resolve a data step dilemma; they can be mixed and
matched to create efficient and precise code.  The arrival of V8
includes a number of new functions, making it even more difficult
to stay up to date.  The following prose and examples cover many
of the newly introduced functions as well as some unusual
methods of using some old favorites.

Introduction:

SAS functions are among the most basic and commonly used
data step tools.   A SAS function performs a computation or
system manipulation on arguments and returns a value.  Most
functions use arguments supplied by the user, but a few obtain
their arguments from the operating environment.  In base SAS
software, you can use SAS functions in DATA step programming
statements, in a WHERE expression, in macro language
statements, in PROC REPORT, and in Structured Query
Language (SQL).  Some statistical procedures also use SAS
functions.  With V8, we have over fifty official new functions and
some minor enhancements to a few of our old favorites.  The
following is a collection of documentation and code from various
sources (mostly from SAS or SAS-L) intended to explain and
promote interest in these functions.

Many of the functions listed are not actually "new".  Most have
been around on an undocumented experimental basis since late
in the V6 series or emulate SCL function behavior.  Regardless of
their lineage or timing, they are worth learning more about.

Enhancements to PUT SCAN and QUOTE

Two of the most commonly used functions are PUT and SCAN.
PUT returns a value using a specified format.  It is often used to
convert numeric value as a character value.  With V8, we have
the option of specifying the alignment of the character value
returned in addition to its format.  This saves us the chore of
aligning the value in an additional step.  In many ways, that is
what functions are all about: making code more efficient, concise
and convenient.

• PUT(source, format.)
Returns a value using a specified format

The new alignment specifications for PUT are: -L  for left
alignment, -C for center alignment and –R for right alignment.

   Example:
   text = "Where does it go";
   put text $50. -L ;
   put text $50. -C ;
   put text $50. -R ;
   results =
   Where does it go
                  Where does it go
                                 Where does it go

• SCAN(argument,n<, delimiters>)
Selects a given word from a character expression

The SCAN function is used to select a given work from a
character expression.  It has been modified to accept a negative

value directing it to read character segments starting from the end
of the character string rather than from the beginning.
   Example:
   destination = “New Orleans LA”;
   state = scan(destination, -1);
   results =  LA .

• QUOTE(argument)
Adds double quotation marks to a character value

The third function to receive modifications is the QUOTE function.
The QUOTE function places double quotes around a character
value and now retains all trailing blanks.  Previous versions of this
function removed trailing blanks.

    Example:
x='George''s';
y=quote(x);
put y;
result = "George's"

The following SQL code uses quote to create a list of values.

PROC SQL noprint;
select quote( trim( string) ) into :list separated by ', ' from
data_set;
run;

New Mathematical and Probability Functions

The introduction of the new mathematical functions makes it
easier to compute factorials, permutation, and combinations.

• COMB(n, r)
Computes the number of combinations of n elements taken r at a
time and returns a value

• CONSTANT(constant<, parameter>)
Computes some machine and mathematical constants and
returns a value

CONSTANT allows you to pass certain mathematical values,
some of which may be platform or environment specific.

Example:
pi = constant ('PI');

The following is a list of the constants that can be returned.

Constant  'Argument'

The natural base 'E'
Euler constant 'EULER'
Pi 'PI'
Exact integer 'EXACTINT' <,nbytes>
The largest double-precision number 'BIG'
The log with respect to base of BIG 'LOGBIG' <,base>
The square root of BIG 'SQRTBIG'
The smallest double-precision number 'SMALL'
The log with respect to base of SMALL 'LOGSMALL' <,base>
The square root of SMALL 'SQRTSMALL'
Machine precision constant 'MACEPS'
The log with respect to base of MACEPS 'LOGMACEPS' <,base>
The square root of MACEPS 'SQRTMACEPS'



• DEVIANCE(distribution, variable, shape-parameter(s) <
,[EPSIV]>)

Computes the deviance and returns a value

• FACT(n)
Computes a factorial and returns a value

• PERM(n<,r>)
Computes the number of permutations of n items taken r at a time
and returns a value

• PROBBNRM(x, y, r)
Computes a probability from the bivariate normal distribution and
returns a value

• PROBMC(distribution, q, prob, df, nparms<, parameters>)
Computes a probability or a quintile from various distributions for
multiple comparisons of means, and returns a value

Character-String Matching Functions

The following RX functions and CALL routines provide character-
string matching functionality. That is, they enable you to search
for (and, optionally, to replace) patterns or characters in a string.

• CALL RXCHANGE (rx, times, old-string<, new-string>);
Changes one or more substrings that match a pattern

• CALL RXFREE (rx);
Frees memory allocated by other regular expression (RX)
functions and CALL routines

• CALL RXSUBSTR (rx, string, position, length, score);
Finds the position, length, and score of a substring that matches a
pattern

• position=RXMATCH (rx, string)
Finds the beginning of a substring that matches a pattern and
returns a value

• rx=RXPARSE(pattern-expression)
Parses a pattern and returns a value

The ability to parse strings can be useful in many different ways.
While some use these tools to explore, clean and modify their
data, others use the same tools to automate their processes.  The
following example shows how a SAS log or the output from PROC
CONTENTS can be processed to determine directory paths.

Parsing a SAS Entry Name from a Line of Text
By Jack Hamilton on SAS-L

data _null_;

length result $35.;
drop rx string;
retain rx;

if _n_ = 1 then
   rx = rxparse('` <:> <$n "." $n "." $n ".program"> <:> to =2');
infile cards end=end;
input string $char80.;
call rxchange(rx, 2, string, result);
put result=;
if end then
   call rxfree(rx);
run;

data:
0jd#abc.def.xyz.program6834efghijklmn.op.qr.program2633
123defghijklmn.op.qr.program2633
hijklmn.op.qr.programsandmore

results:   
abc.def.xyz.program
hijklmn.op.qr.program
hijklmn.op.qr.program

Variable Information Functions

The largest category of new functions supplies variable
information.  The information returned ranges from whether or not
the variable is in an array, is character or numeric, to the name of
the format or informat associated with the variable and its label.
This category is actually two complementary sets of functions that
perform the same task but with different arguments.  The first set
begins with the letter V and requires a variable name or array
reference as its argument.  The second also begins with a V, but
ends with an X and requires a character string as the argument.
For each of the V-X functions, SAS evaluates the argument to
determine the variable name.

• VARRAY (name)
Returns a value that indicates whether the specified name is an
array

• VARRAYX (expression)
Returns a value that indicates whether the value of the specified
argument is an array

• VINARRAY (var)
Returns a value that indicates whether the specified variable is a
member of an array

• VINARRAYX (expression)
Returns a value that indicates whether the value of the specified
argument is a member of an array

VARRAY, VARRAYX, VINARRAY, VINARRAYX, VTYPE, and
VTYPEX make determinations and return a specific value.
VARRAY and VARRAYX determine if the specified name or
expression is the name of an array.  VINARRAY and
VINARRAYX are used to determine if a specified name or
expression is a member of an array.  Both VARRAY and
VARRAYX return a 1 if the argument is the name of an array and
a 0 if it is not, but VARRAYX requires an expression rather than a
name.  The same is true for VINARRAY and VINARAYX, which
determine if the name or expression is a member of an array.
   Example:

an_array=varray(name);
an_array=varrayx(expression(x)) ;
in_array=vinarray(name);
in_array=vinarrayx(expression(x));

• VTYPE (var)
Returns the type (character or numeric) of the specified variable

• VTYPEX (expression)
Returns the type (character or numeric) for the value of the
specified argument

VTYPE and VTYPEX are a little different in that they return the
letter N if the variable is numeric and the letter C if it is a character
variable.
    Example:

v_type=vtype(name);
    v_type=vtypex(expression(x));

if vtype(&varname )='N' then do;
        /* code for numeric processing */
   end;
   else do;
       /* code for character processing */
end;



The VLABEL, VLENGTH and VNAME function pairs are
especially helpful tools when processing arrays.  VNAME and
VNAMEX return the name of the requested variable and VLABEL
and VLABELX return any label associated with it.  VLENGTH and
VLENGTHX return the length at processing time.

• VLABEL (var)
Returns the label that is associated with the specified variable

• VLABELX (expression)
Returns the variable label for the value of a specified argument

• VLENGTH (var)
Returns the compile-time (allocated) size of the specified variable

• VLENGTHX (expression)
Returns the compile-time (allocated) size for the value of the
specified argument

• VNAME (var)
Returns the name of the specified variable

• VNAMEX (expression)
Validates the value of the specified argument as a variable name

data a;
length x1-x3 $8;
label x1 = "first"
      x2 = "second"
      x3 = "third" ;
array x(3) x1-x3;
 x1 = 'abc';
 x2 = 'cde';
 x3 = '';
v_name=vname(x(1));
v_length=vlength(x(1));
x_length=length(x1) ;
v_label=vlabel(x(3));
put v_name= v_label= v_length= x_length=;
run;

results:
v_name=x1 v_label=third v_length=8 x_length=3

The remaining sixteen V functions return information about the
format or informats associated with a variable.  Because a
separate function exists for formats and another for informats as
well as the name or expression argument discussed earlier, we
now have two sets of pared functions.  Their tasks are to return
the format or informat, the format or informat name, the format or
informat length and the format or informat decimal value for the
given variable.   Those that are associated with formats begin with
VFORMAT and while those associated with informats begin with
VINFORMAT.  As with the other V Functions, those ending with
an X must receive an expression while those that do not end in an
X must receive a name or array reference.

• VFORMAT (var)
Returns the format that is associated with the specified variable

• VFORMATD (var)
Returns the format decimal value that is associated with the
specified variable

• VFORMATDX (expression)
Returns the format decimal value that is associated with the value
of the specified argument

• VFORMATN (var)
Returns the format name that is associated with the specified
variable

• VFORMATNX (expression)

Returns the format name that is associated with the value of the
specified argument

• VFORMATW (var)
Returns the format width that is associated with the specified
variable

• VFORMATWX (expression)
Returns the format width that is associated with the value of the
specified argument

• VFORMATX (expression)
Returns the format that is associated with the value of the
specified argument

• VINFORMAT (var)
Returns the informat that is associated with the specified variable

• VINFORMATD (var)
Returns the informat decimal value that is associated with the
specified variable

• VINFORMATDX (expression)
Returns the informat decimal value that is associated with the
value of the specified argument

• VINFORMATN (var)
Returns the informat name that is associated with the specified
variable

• VINFORMATW (var)
Returns the informat width that is associated with the specified
variable

• VINFORMATNX (expression)
Returns the informat name that is associated with the value of the
specified argument

• VINFORMATWX (expression)
Returns the informat width that is associated with the value of the
specified argument

• VINFORMATX (expression)
Returns the informat that is associated with the value of the
specified argument

The following example illustrates how V functions VYPE and
VFORMAT can be used to write a formatted value to another
variable, while retaining the original format.

if vtype(name)='N' then do;
    new_var=putn(name,vformat(name));
end;
else do;
    new_var= putc(name,vformat(name));
end;

New Date and Time Functions

A common topic among SAS programmers is the different ways to
determine and or define duration: roughly the amount of time
passing between two points in time.   In the past, most solutions
involved the use of INTCK or INTNX, which have their strong and
weak points.  The new functions DATDIF and YRDIF should
make the task of determining time duration easier.

• DATDIF(sdate,edate,basis)
Returns the number of days between two dates

• JULDATE7(date)
Returns a seven-digit Julian date from a SAS date value



• YRDIF(sdate,edate,basis)
Returns the difference in years between two dates

Both DATDIF and YRDIF use the arguments for start date, end
date and basis.  Start and End dates are very straightforward, but
defining "basis" is more complicated.   As per the on-line docs:

Basis identifies a character constant or variable that describes
how SAS calculates the date difference. The following character
strings are valid:

'30/360'
specifies a 30-day month and a 360-day year in calculating the
number of years. Each month is considered to have 30 days, and
each year 360 days, regardless of the actual number of days in
each month or year. Alias: '360'
Tip:  If either date falls at the end of a month, it is treated as if it
were the last day of a 30-day month.

'ACT/ACT'
uses the actual number of days between dates in calculating the
number of years. SAS calculates this value as the number of days
that fall in 365-day years divided by 365 plus the number of days
that fall in 366-day years divided by 366. Alias: 'Actual'

'ACT/360'
uses the actual number of days between dates in calculating the
number of years. SAS calculates this value as the number of days
divided by 360, regardless of the actual number of days in each
year.

'ACT/365'
uses the actual number of days between dates in calculating the
number of years. SAS calculates this value as the number of days
divided by 365, regardless of the actual number of days in each
year.

Example:
data _null;

startdate = '11jul71'd;
enddate = '11jul01'd;
actday = datdif(startdate, enddate, 'act/act');
days360 = datdif(startdate, enddate, '30/360');
months = yrdif(startdate, enddate, 'act/act')*12;
yr30 = yrdif(startdate, enddate, '30/360');
yract = yrdif(startdate, enddate, 'act/act');
yra_360 = yrdif(startdate, enddate, 'act/360');
yra_365 = yrdif(startdate, enddate, 'act/365');

put  actday = days360 = months = yr30 = yract =
       yra_360 = yra_365 = ;
run;

results:
actday=10958
days360=10800
months=360
yr30=30
yract=30
yra_360=30.438888889
yra_365=30.021917808

Missing and Error Functions

• MISSING(numeric-expression | character-expression)
Returns a numeric result that indicates whether the argument
contains a missing value

Like several of the previously mentioned functions, the MISSING
function returns an affirmative indicator of 1 if a variable contains
a missing value and negative indicator of  0 if the value is non-
missing. It works for both a character and numeric expressions.

• character-variable=IORCMSG()
Returns a formatted error message for _IORC_

IORCMSG returns the formatted error message associated with
the most recently posted IROC code.  A _IORC_ message is the
value of an automatic variable created when the Modify statement
or the Set statement with the KEY= option is used.   This return
code indicates whether the retrieval for matching observation was
successful.  A returned value of 0 indicates a successful
execution; a -1 indicates an end-of-file error; and any other value
indicates a non-match occurrence.

In the following program, observations are either rewritten or
added to the updated master file that contains bank accounts and
current bank balance. The program queries the _IORC_ variable
and returns a formatted error message if the _IORC_ value is
unexpected.

    Example:
libname bank 'SAS-data-library';

data bank.master;
   set bank.trans;
   modify bank.master key=Accountnum;
   if (_IORC_ EQ %sysrc(_SOK)) then
      do;
         balance=balance+deposit;
         replace;
      end;
else
   if (_IORC_ = %sysrc(_DSENOM)) then
      do;
         balance=deposit;
         output;
         _error_=0;
      end;
else
   do;
      errmsg=IORCMSG();
      put 'Unknown error condition:'
      errmsg;
   end;
run;

Web-Based Functions

• HTMLDECODE(argument)
Decodes a string containing HTML numeric character references
or HTML character entity references and returns the decoded
string

• HTMLENCODE(argument)
Encodes characters using HTML character entity references and
returns the encoded string

• URLDECODE(argument)
Returns a string that was decoded using the URL escape syntax

• URLENCODE(argument)
Returns a string that was encoded using the URL escape syntax

Example:
data _null_;
  text="This string contains characters !@#$%^& that must be
encoded";
  html=
     '<a href="/cgi-bin/broker.exe?_service=
        default&_program=test.echo.sas&text=
        '!!urlencode(text) !!'">Show encoded text</a>'
  ;
  put html;
  run;



  which produces the following valid HTML hyperlink:

  <a href="/cgi-
bin/broker.exe?_service=default&_program=test.echo.sas&text
=This%20string%20contains%20characters%20%21@%23%2
4%25%5E%26%20that%20must%20be%20encoded">Show
encoded text</a>

  Urldecode() works the other way to decode these cryptic
strings e.g.

  data _null_;
  text="%21Hello+World%21";
  text=urldecode(text);
  put text=;
  run;

  which produces:

  TEXT=!Hello World!

Financial Functions

With SAS being used by virtually all of the major financial
institutions, some financial functions were certainly in order.

• CONVX(y,f,c(1), ... ,c(k))
Returns the convexity for an enumerated cashflow

• CONVXP(A,c,n,K,k0,y)
Returns the convexity for a periodic cashflow stream, such as a
bond

• DUR(y,f,c(1), ... ,c(k))
Returns the modified duration for an enumerated cashflow

• DURP(A,c,n,K,k0,y)
Returns the modified duration for a periodic cashflow stream,
such as a bond

• PVP(A,c,n,K,k0,y)
Returns the present value for a periodic cashflow stream, such as
a bond

• YIELDP(A,c,n,K,k0,p)
Returns the yield-to-maturity for a periodic cashflow stream, such
as a bond

Interesting Uses of Functions

The use of functions is often limited only by the imagination,
creativity and need of the programmer.  The following code shows
how various functions can be combined to solve dilemmas and
make life easier.

• TIP 00270 from WWW.SCONSIG.COM ****/
A COMPRESS function for Macro Variables
By Peter Crawford

    %macro Remove__ ( STRING, REMVECHR );
     %sysfunc( compress( &string, &REMVECHR));
    %mend Remove__ ;

/*** Sample Call to Invoke ***/
%let  string__ = %remove__( "PLA" Derivative, '"');

%put &string__ ;
PLA Derivative

You will need to be careful in compressing quotes
(single or double) - make sure you surround your
preference (quotes to be compressed) with a pair of

opposite quotes (ie, '"'   or "'" ).
• TIP 00136 from WWW.SCONSIG.COM
To Generate Nine Variables from a Nine Length Character String
By  Paul Dorfman

       data manyvar2(drop=addr len);
         array v(10) $1;
         addr = addr(v(1));
         len  = dim(v);
         do until (eof);
           set in end=eof;
           call poke (string, addr, len);
           output;
         end;
       run;

About the Authors

Gary McQuown is a SAS Quality Partner with Data and Analytic
Solutions, Inc. of Fairfax VA.  He has previously presented at
NESUG and SESUG.

Dorothy Brown is a SAS Consultant currently on contract at Sprint
Communications World Headquarters in Kansas.  This is her first
presentation.

Author Contact

Gary McQuown
Data and Analytic Solutions, Inc.
10502 Assembly Drive, Fairfax, VA 2200
mcquown@DASconsultants.com
www.DASconsultants.com

Dorothy Brown
819-201 Cameron Village Drive, Matthews, NC 28105

Bibliography:

William F. Heffner, "DATA Step in Version 7: What's New?" SUGI
23 Proceedings

Denise J Moorman and Deanna Warner, "Updating Data Using
the Modify Statement and the KEY=Option" SAS Observations

Mike Rhoads, "Hidden Nuggets in Version 8: New Informats,
Formats and Functions" SUGI 23 Proceedings

SAS Institute Inc., Changes and Enhancements to Base SAS
Software Release V8.1, Cary, NC: SAS Institute,

Trademark Information

SAS and SAS Quality Partner are registered trademarks of SAS
Institute, Inc. in the USA and other countries.



Creating Regional Maps with Drill-Down Capabilities
Deb Cassidy

Cardinal Distribution, Dublin, OH

ABSTRACT

SAS/GRAPH includes many maps which are very
useful.  But what if you need a map that truly
represents your company?  Many companies
combine several states into a region.  My company
does not even follow state boundaries so some states
are split across more than one region.  This
presentation will show you how to turn the county-
level map into a region-level map.  Of course, with
the advent of ODS, no presentation is complete
without discussing ODS.  The presentation will also
cover the extra steps so you can have drill-down
capabilities with your new regional map.  This
presentation uses SAS/GRAPH.  It is assumed the
audience has some SAS knowledge but may not have
used SAS/GRAPH maps or ODS.

CREATING A REGIONAL MAP

My company currently divides the United States into
12 regions based on sales territories.  Some states are
split across regions.  In reality there are some areas
of the country which are shared by two regions.  It
was determined that all counties were to be assigned
to a single, primary region for analytical purposes.
However, when it came time to assign the states of
New York and New Jersey, it was determined that it
was easier to create a separate region for those states
that to decide which was the primary region.  Hence,
our regions are unique so a pre-existing map would
not work.

I already had a dataset with each state and county
combination although I could have used the
COUNTIES dataset provide with SAS/GRAPH as
my starting point.  The following code would create
a unique list of states and counties from the map
dataset.

PROC SQL;
   CREATE TABLE COUNTY_LIST AS
   SELECT UNIQUE STATE, COUNTY
   FROM MAPS.COUNTIES;

The dataset you use must use the same numeric state
and county codes used in the SAS/GRAPH
COUNTIES dataset.   You simply need to add a

variable indicating the region.  As explained below, I
used a numeric variable to represent region.

The COUNTIES dataset included with SAS/GRAPH
is merged with my region dataset. You may think
that is all you have to do but if you try to use this
dataset in PROC GMAP you will discover a problem
- the map is reversed.  Some of the SAS/GRAPH
maps are projected and others are not.  If they are
not, you need to run PROC GPROJECT which will
convert latitude and longitude into Cartesian
coordinates which are used by PROC GMAP.  This
PROC also has several options for controlling the
angle of the maps.

In most cases, you'll also want to use PROC
GREMOVE.  This will remove the county and state
boundaries within each region.  When mapping the
counties in the entire United States, the map will be
very cluttered if you don't perform this step.  There is
one other step that you may want to consider.  The
map dataset is very detailed and shows
the many curves the borders of the states have.  This
is particularly noticeable on states which have a body
of water as a boundary.  The COUNTIES dataset
includes a density variable which can be used to
eliminate some of the detail.  This will smooth out
the map which can be beneficial which when
showing a large area.  The code to do these steps is
shown at the end of the paper.

ADDING DRILL-DOWN CAPABILITY

The JAVA applet requires a "jar" file or a text
version of the map.  Since you have modified the
original map dataset, the supplied file is not usable.
Therefore you need to create your own.  Fortunately,
SAS provided a macro for this conversion. The
macro will create a text version of the map for use by
the applet.  The macro is shown at the end of the
paper.  The text file ends up in the following format.

REGION,SEGMENT,X,Y
numeric,numeric,numeric,numeric
1,1,0.2770831409,-0.005568895
…rest of coordinates for Region 1
2,1,0.2827390409,0.0396897128
…rest of coordinates for Region 2
…rest of coordinates for other Regions



So far you have created the custom map you need to
show regions and saved it as a text version.  The
next step is to generate the map using ODS.  The
options/parameters on the ODS statement provide
the information needed so it can be used with the
JAVA applet.  The DRILLPATTERN parameter
specifies where to look for the web pages.  There
needs to be a separate page for each value on your
map.  The example shown uses files on your pc.  On
a web site, this would be a web address.

There were two problems I encountered when
specifying the DRILLPATTERN.  At the time this
paper was written, I had not confirmed if these are
indeed problems or if there was simply something
about my data or my system causing the problems.
First, when I used a character variable for my
regions, the drill-down did not work.  Switching to a
numeric variable solved that problem.  Second, I
couldn't simply use c:\{regname}.htm.  I had to have
a prefix before the region value in the file names of
the web pages.

I also encountered another problem with the map.
Some of the states have lakes within  the state
boundaries.  Depending upon the states selected, the
output was either blank where the map should be or
a distorted map appeared.  Reducing the density
eliminated the distortion problem.  However, the
output was still blank if I left in the states of Florida,
Utah, New Jersey and Oregon regardless of what I
used for density. At the time this paper was written, I
was still investigating ways to eliminate the lakes in
these states.  So contrary to any ideas you might have
based on the final map, Florida has not been dropped
from the United States!

FINAL MAP

The final map is shown on the next page.  Also
shown is the original map with state boundaries to
show you how things have changed (the one with
county boundaries was far too cluttered to attempt to
print here).  When you move your cursor over each
region you will get a pop-up box giving you the
values of the variables used to created your map.
When you click on a given region, you will go to the
web page for that region.

CONCLUSION
SAS/GRAPH provides you with a variety of maps
which can then be used to create your own custom
map.  ODS offers additional functionality beyond
simply displaying the graph.

TRADEMARK INFORMATION
SAS is a registered trademark of SAS Institute, Inc.
in the USA and other countries.  indicates USA
registration.

REFERENCES

SAS Institute Inc., SAS/GRAPH Software:
Reference, Version 6, First Edition, Volume 2, Cary,
NC: SAS Institute Inc., 1990. 664 pp.

SAS Institute Inc., TS-625, Cary, NC: SAS Institute
Inc., 2000.

CONTACT INFO
Deb Cassidy
Cardinal Distribution
7000 Cardinal Place
Dublin, OH 43017
deb.cassidy@cardinal.com
614-757-7136



ORIGINAL STATE-LEVEL MAP

FINAL REGION-LEVEL MAP



CODE

*** ASSIGN ANY NECESSARY LIBNAME STATEMENTS TO ACCESS YOUR SAS/GRAPH MAPS OR
YOUR DATA;

*** Specify the file location to store the text version of the map.  This must be the same path as the JAR files
which are supplied with SAS/GRAPH.  A macro variable is used since this location is used more than once in the
program;

%let dataloc=c:\program files\sas institute\shared files\applets\SSU_Paper.txt;

**** This is the macro which will create the text version of the map;

%macro exportds(dataset,file);
%let delimiter=,;
proc contents data=&dataset out=temp;
run;

/*write out the variable names first*/
data a;
  set temp end=last;
  file "&file" dsd dlm="&delimiter";
  put name @;
run;

/*write out the variable types next*/
data a;
  set temp end=last;
length ctype $9;
file "&file" mod dsd dlm="&delimiter";

if type=1 then ctype='numeric';
  else ctype='character';
put ctype @;
run;

/*write out the data*/
data a;
  set temp end=last;
file 'temp.out';
  if _n_ = 1 then do;
    put "data a; set &dataset;";
    %let out="file '&file' mod dsd dlm='&delimiter';";
    put &out;
    put 'put ' @;
  end;
put name @;
  if last then do;
     put ';run;';
  end;
run;
%inc 'temp.out';



%mend;

*** PROC FORMAT is used to assign names to each region I have created;
PROC FORMAT;
VALUE REGNAME
  1='Southeast'
  2='Mid-Atlantic'
  3='Mid-America'
  4='Gulf'
  5='Northwest'
  6='Pacific Northwest'
  7='Pacific Southwest'
  8='North'
  9='Northeast'
  10='Southwest'
  11='Midwest'
  12='NY/NJ';

*** INN.MY_REGIONS is my dataset which contains the region assignment for each state and county;
*** For my purposes, Hawaii, Alaska and Puerto Rico were to be eliminated.  Florida, Utah, New Jersey and;
*** Oregon were also deleted due to the problems encountered with the lakes.  These last 4 states will be included ;
*** once that problem is resolved.  The numeric codes for each state are in the SAS/GRAPH manual.;

data work.mydata ;
   length regname $1020;
   set inn.my_regions;
   if state not in (2,15,72,12,49,41,34);
   regname=put(region,regname.);
run;

*** This step merges the SAS/GRAPH supplied COUNTIES map with my data to add the region variable;
*** As noted above, some states were deleted.  The DENSITY was restricted to have a cleaner looking map;
*** I experimented with different density cutoffs before deciding to use <1;
data mymap;
   merge maps.counties inn.my_regions;
   by state county;
   if state not in (2,15,72,12,49,41,34);
   if density<1;
run;

*** The map dataset must be sorted before using GREMOVE to eliminate the county and state boundaries;
*** In PROC GREMOVE, the BY statement specifies the boundaries you want to keep while the ID;
*** statement specifies the original boundaries;
proc sort data=mymap;
   by region;
run;

proc gremove data=mymap out=mymapR;
   by region;
   id county state;
run;

***PROC GPROJECT will convert latitude and longitude to Cartesian coordinates. If you are using maps other;



*** than the US, you may wish to use some of the options to modify the projection;
proc gproject data=mymapR out=mymapP;
   id region;
run;

*** This macro will convert the map dataset to the text file which is required for the JAVA applet.
%exportds(mymapP,&dataloc)

*** Close ODS listing to be able to route the output to the ODS HTMLfile;
*** The HTML file and the DRILLPATTERN files can be a web address.;
*** The DRILLDOWNMODE is set to HTML so a click will drive the drilldown;
*** MapLocation is the location of the text version of the map;
ods listing close;
ods html file="f:\dcassidy\DRILL_DOWN_MAP.htm"
    parameters=("DRILLDOWNMODE"="HTML")
    parameters=("DRILLPATTERN"='file:///c:\REG{&regname}.htm')
    parameters=("BACKCOLOR"="WHITE")
    parameters=("MapLocation"="&dataloc");

***This statement sets the device to Java to produce an HTML file that that will appear in your web browser.;
***It also sets up customizations for the graph.;
goptions reset=all
         dev=java
         cback=white
         border
         gunit=pct
         htext=3
        colors=( green, red, orange, pink, blue, cyan, magenta, lime, purple, yellow, violet, indigo);

***This proc produces the graph.;
title1 "Acme Distribution Regions";
proc gmap map=mymapP data=mydata all;
   id region;
   choro regname /   discrete
                  coutline=black
                  nolegend
                  des='Acme Distribution Regions'
                  name='Regions';
footnote 'Click on region to go to regional page';
run;
quit;

***  These statements close the HTML file and open the channel to the graph output windows.;
ods html close;
ods listing;



Paper P612

Structuring Base SAS for Easy Maintenance
Gary E. Schlegelmilch, U.S. Dept. of Commerce, Bureau of the Census, Suitland MD

(Note: this is an update of the paper W2282-26, presented
at SUGI 26.)

ABSTRACT

Computer programs, by their very nature, are
built to be flexible. A program is no more than
a series of versatile building blocks, stacked in
such a manner to produce a desired result.
However, the user requirements change over
time, and so must the program change to reflect
those new requirements. There are a number of
ways to lay out a program, so as to make it easy
to find the places where change is required.
And as always; it is far easier to start with a
solid foundation than to try and retool after the
fact.

INTRODUCTION

There is no single “perfect” set of rules for
structuring program code. In this paper, I have
made a series of suggestions and offered a
number of observations as to habits I have tried
to form over the years. I have found them to be
effective and helpful in creating code that is
easy to read, maintain, and understand.

SAMPLE CODE: LOGGING INTO A
REMOTE SITE

Imagine, if you will. A new program, named
MERGERMT.SAS is to be built on a VAX
Alpha platform. The program is to accept a file
from a remote site to update a local master.
Space is at a premium on the local site, so the
decision is made to log into the remote site
needed, and update from the remote transaction
file without copying it to the local site.

The files for interface are all in a uniform
format. The current requirement calls for the
transactions to be coming in from a UNIX
platform, but could be coming from a number
of different platforms in the future. So, I started
with a simple piece of code that could log into

one remote site, using the TCP/IP method, and
establish the SAS library containing the data I
needed to access.

/* Log into the UNIX
platform */

filename RLINK
‘LIBRARY:TCPUNIX.SCR';

%let UNIX01=184.131.137.13;

/* IP address for the node */

options comamid=TCP
remote=UNIX01;

signon;
libname REMOTE

‘/sys/update’
server=UNIX01;

Note: TCPUNIX.SCR is a script that contains
the SAS/CONNECT SIGNON/SIGNOFF script
for connecting to any UNIX host via the TCP
access method. The script is copyright 1990
by SAS Institute Inc. The script is associated
with filename RLINK to connect with the
SIGNON process. For purposes of this paper, I
have assumed there to be a central library for
utility files and programs, addressed by the
VAX logical LIBRARY:.

The %let is a Macro statement, which sets a
macro variable to the value specified. This is
required to be set to the IP address of the
platform to be contacted, and is used internally
by SAS/CONNECT.

Tip: To determine the IP address of a given
node or platform, enter grep <node>
/etc/hosts on UNIX, or PING <node
name> at a DOS prompt on a Windows
platform. These commands will return the IP
address for the requested node name, if it is
connected to the network on which you are
currently working. There is a utility program,
Multinet, available on some VAX/Alpha
systems; multinet nslookup <node>
will yield a IP address as well.



Notice that the few lines of the module already
reflect a few basic structuring items. Comments
are included, both to indicate the function of the
block, but also to point out uncommon features
in the code. Blank lines are added to separate
the code into small, readable blocks.

I also use both upper- and lower-case when
writing my code. This, of course, is a matter of
personal preference; SAS does not distinguish
between upper- and lower-case lettering.
However, you will note that I put all SAS
constructs in lower case, and data items in
upper-case. In Interspeak, the common dialect
for Internet communication, common text is in
lower-case, and items to be accentuated or
“shouted” are in upper-case. To my way of
thinking, the SAS code is set, checked by the
interpreter, and as such does not need to be
accented; the interpreter will flag any errors.
On the other hand, user-defined items like data
names and libraries are frequently things that
deserve extra notice during debug and
maintenance. So, I accent them by putting them
in upper-case. You can see even from the small
example here what stands out.

Another way you can help yourself in
maintaining the program is to use field names
that are as clear as possible. If a field is used
only as a macro to carry a text message to the
log in the event of an error, don’t call it TXT or
X2; call it ERRTEXT. That way, the program
becomes more self-documenting. That’s why
the program takes the generic variable
sysparm, and moves it into the more
recognizable node.

In Version 6.12 and earlier, it could become
difficult to clearly document data items solely
by name. So, take the time to comment the field
as soon as possible. An old documentation
standard is to define a term as soon as it is used;
it is helpful to do the same in your program. For
instance, if you needed to write an inventory
program for a retail store:

length NBRONHND 6.
/* Number of items

on hand */
NBRONORD 6.;

/* Number of items
on order */

In Version 8 on, the programmer can make use
of the 32-character field names, including
underscores. So the same names in the example
could be named NBR_ON_HAND and
NBR_ON_BACK_ORDER, respectively.

Back to MERGERMT.SAS. Now, once this
small login module is functional, let’s take it to
the next level; getting set up for different nodes.
For the sake of brevity, we’ll just use two nodes
here. A DATA Step is used here since the
abort statement and in operator must be used
within a DATA Step.

/* ensure the NODE field is in
uppercase to ensure correct
comparisons */

%let NODE=%upcase(&SYSPARM);
options comamid=TCP

remote=&NODE;
%let UNIX01=184.131.137.13;
%let UNIX02=184.131.137.18;

data_null_;
if “&NODE” in
(“UNIX01”,”UNIX02”)

then do;
signon;
libname REMOTE ‘\sys\update’

server=&NODE;
end;
else do;
put ‘INVALID NODE NAME ‘

‘ENTERED. LOGIN TO REMOTE ‘
‘NODE ABORTED.’;

put “&NODE”;
abort;

end;
run;

One of the main uses of indentation is to show a
more detailed level of program flow. In the
above example, it’s easy to see at a glance that
the signon and libname statements are
performed within the boundaries of the if. The
positive benefits become more noticeable in
later steps with the %macro statements.

The initial requirement calls for the remote
platform to be UNIX; so, the same libname
statement can be used for all valid nodes.
However, if the requirement changes later to
include different platforms, the libname



statement will have to reflect the directory
structure of the remote platform. Perhaps there
would be a second if...in statement for all
nodes of a different platform, reflecting the
appropriate directory structure for the platform;
or, in the event of different directories, there
might be an if for individual nodes.

Of course, the libname statement must follow
the signon; prior to successful completion of
the signon, the requested node isn’t available
to the local host, and results in an error.

Notice that I always put each statement on a
separate line. This not only makes each line
easier to read, by making it more clearly
defined; but it lends itself more easily to future
expansion of the code.

If you use the Data Step Debugger to find flaws
in your code, it becomes even more significant.
If multiple statements are on a single line, it is
more difficult to follow the flow of the code.
With a separate line for each statement, you can
readily see which line is being processed by the
Debugger, and hence more easily find the
flawed line.

Another time-saver; when an edit hinges on the
value of a variable, display the value of the
variable as a part of the abort message. It saves
time when trying to find out why a process
failed.

The code above was the second version of the
program. As I was always running the program
interactively, it was no problem to set the
NODE variable manually at runtime. And an
error routine was added in, just in case of a typo
in entering the node I wished to use.

This fulfills the immediate requirement; it
permits the program to log into either node, but
requires a program change if login to a different
node is desired. The next step is to make it
more versatile, and not require the program
change each time.

filename RLINK
'LIB:TCPUNIX.SCR';

%macro LOGNODE(NODE);
%let UNIX01=184.131.137.13;
%let UNIX02=184.131.137.18;

data _null_;
if “&NODE” in
(“UNIX01”,”UNIX02”)

then do;
::
::
::

run;;
%mend LOGNODE;

%LOGNODE(&SYSPARM);

Note: the :: here represents the code from the
previous example, so as not to take up the space
in this paper with repetitive code. Again, the
code is indented one level, to show that it is
subordinate to the %macro statement. To
further document, the %mend statement
includes the name of the Macro being used; it’s
not necessary, but it does clearly show where
the macro ended.

Using a Macro to define repetitive code has a
number of advantages. Compile time is reduced
slightly, as the code within the Macro is only
defined once. Your program will be smaller, for
the same reason. Most importantly, the overall
maintenance is reduced; in the event that future
enhancements are required, there will only be
one change to make, instead of searching the
program to ensure they are all made in the same
way in each place.

So, how does the name of the node get into the
program? By adding a parameter to the
runstream;

$ SAS/SYSPARM=”UNIX01” –
PROGRAM1.SAS

SYSPARM is an automatic macro variable; that
is, it is already defined by SAS. A parameter
passed in this manner is automatically passed
into the system-defined macro variable
SYSPARM, and requires no further definition
by the user.



Notice here that the indentation becomes more
significant. In each of the if... do blocks,
the terminating end is aligned with the if.
What happens if the statement is TRUE is quite
evident. Moreover, in the case of debugging, it
narrows down the focus of what is or is not
happening in the program. As an example; if
the “INVALID UNIX ID” prints in the log, you
can be certain that the content of the variable
&node is neither UNIX01 nor UNIX02.

Important note to all programmers; no matter
how many times you say “It should (or
shouldn’t) be”, it rarely changes the program
code or its functionality. It’s much better to
start looking at blocks of code and following the
flow of data. That is a great deal easier with a
little structure.

So, now we have a program that successfully
allows the program to establish login and a
remote site of UNIX01 or UNIX02 to your
session. It can be executed with different
parameters without changing the regular version
of the program. Then, it occurs to you; other
people in your section are also creating remote
sessions in their programs, plus four other
programs on your development schedule will
require the same type of code. You could cut-
and-paste it into other programs, and e-mail the
code to everyone; or create a reusable module.

Take the macro code, without the invocation,
and place it in a separate file called
LOGNODE.MAC. Add a block of comments to
the top, perhaps something like this:

/*------------------------
LOGNODE.MAC

This routine will permit
the user to pass a node
name as an argument and
log into that node as a
remote host.

------------------------ */

For purposes of this example, we’ll assume that
all reusable code modules are stored in a
centralized directory, and they are accessed via
our VAX Alpha logical called LIBRARY:. The
naming convention will of course change
depending on the platform; it might as easily be

/office/common/lib on UNIX, or C:\lib on the
PC. To include that code into the program, use
the %include macro, which reads the named
code into the body of the program, and runs it as
if it were part of the main program.

So now the program might look something like
this:

/* ------------------------
MERGERMT.SAS

This program will merge
a file on a remote node
into the master dataset
on the VAX Alpha.

------------------------ */

/* use options that place
the value of macro
variables, and the
macro code as it
executes, into your
LOG file. */

options mlogic mprint
symbolgen;

/* incorporate the macro
file to log into a remote
node into the program. */

%include ‘LIBRARY:LOGNODE.MAC’;

%LOGNODE(%upcase(&SYSPARM));

/* update the existing
dataset, located in
the master file
directory, with the one
from your remote host.

-------------------------*/

libname FILES
‘FILE_DEV:[MASTER]’;

data FILES.MASTER;
update FILES.MASTER

REMOTE.TRANS;
by ID CATEGORY;

run;

The final product takes advantage of the
modular nature of SAS, laying out each function
in a separate, testable module. The program is
easy to read, enhance, and maintain. Moreover,



if someone in your area needs to log into
UNIX99, VAX045, or UNISYS37, those can
easily be added to the LOGNODE.MAC macro
at no impact to the calling program. Everyone
wins.

For example, it could easily be enhanced to
read a file or dataset containing all available
nodes and their corresponding IP addresses, and
reduce the code overhead further.

More importantly for the immediate process, we
can now expand on what was started by putting
structured code in the macro. Now space and
time is reduced for multiple programs, not just
the originating one. Also, maintenance done in
the .MAC routine is immediately accessible to
any program using the module, without the
compile or relink required by other languages.

Now, let’s look at the same code without the
benefit of the lines we added for readability and
maintainability:

OPTIONS MLOGIC MPRINT SYMBOLGEN;

%LET ND=%UPCASE(&SYSPARM);
%IF &ND=UNIX01 %THEN %DO;
%LET UNIX01=184.131.137.13;
OPTIONS COMAMID=TCP
REMOTE=UNIX01; SIGNON; %END;
%ELSE %IF &ND=UNIX02 %THEN %DO;
%LET UNIX02=184.131.137.18;
OPTIONS COMAMID=TCP
REMOTE=UNIX02; SIGNON; %END;
%ELSE %DO;
%LET TEXT=INVALID UNIX ID
ENTERED. LOGIN TO UNIX
ABORTED.;
%PUT &TEXT; %PUT &ND;
DATA _NULL_; ABORT; RUN;
%END;
LIBNAME REMOTE ‘\SYS\UPDATE’
SERVER=&SYSPARM;
LIBNAME FILES
‘FILE_DEV:[MASTER]’;
DATA FILES.MASTER;
UPDATE FILES.MASTER
REMOTE.TRANS;
BY ID CATEGORY; RUN;

This program is precisely the same,
functionally, as the structured one above.

It’s fairly easy to see which would be the easier
one to debug and maintain. Or, to put in another
light; say you write this program, and it runs
fine for a year. Then, the decision is made to
add some new features. A programmer could
tell at a glance where the changes might be
required in the first program – and have to re-
analyze the second.

In fact, that alone is a good test of a program’s
structure. Minor requirements changes should
translate to minor changes to the program. If a
minor requirements change means an overhaul
of the program; then the program’s basic
structure should be examined. And there’s no
better time to do that, than when it’s first laid
out.

STRUCTURING FOR EFFICIENCY –
WITHOUT LOSING READABILITY

Sometimes, you can make existing code clearer
to read, and more effective at the same time.

Take this example. One of my programs was
using a DATA step to reduce the size of a
dataset prior to sorting. It seemed sensible to
sort only the data I actually needed. So, I wrote
a very simple DATA step prior to my sort:

data WORK.TEMP;
set DATA00.TRANSACT;
if TYPE=’1’ or TYPE=’2’;

run;

proc sort data=WORK.TEMP
out=WORK.SORTED;

by ID TYPE;
run;

Nice and simple. However, another member of
my group suggested something even cleaner and
easier to read;

proc sort
data=DATA00.TRANSACT
out=WORK.SORTED;

by ID TYPE;
where TYPE in (‘1’,’2’);

run;



Much better. The new version of the code (a)
eliminated the storage of one temporary dataset
(b) reduced the physical I/O of reading and
writing from the input dataset twice, and (c)
made more clear the intention of the routine. It
also makes the routine easier to update. One or
two IF statements aren’t hard to read or follow,
but if the new requirements call for 15 different
TYPE’s, the IN statement makes the intent of
the WHERE clause very clear.

CONCLUSIONS

Any code, regardless of the language used, can
be written for greater understanding. SAS tools
lend themselves well to modular programming,
permitting an ease in adding and changing
functions of the programs in the future.
Developing reusable modules saves coding time
at the start of a project, and maintenance time in
the future. Most importantly, building well-
structured programs is a source of justifiable
pride for the developer, because well-written
code endures – while poorly written code that is
difficult to maintain and use is inevitably
discarded.

REFERENCES

Aster, Rick, Professional SAS Programmer’s
Pocket Reference, 2nd Edition, 1998, Breakfast
Books.
SAS Companion for Microsoft Windows
Environment, Version 6, 2nd Edition, SAS
Institute Inc.
SAS/CONNECT Software, Usage and
Reference, Version 6, 2nd Edition, SAS Institute
Inc.

ACKNOWLEDGEMENTS

My thanks go to Ian Whitlock, for his insight
and support in the preparation of this paper.

CONTACT INFORMATION

Gary E. Schlegelmilch
U.S. Dept. of Commerce, Bureau of the Census,
ESMPD/MCDIB
Suitland Federal Center, Rm. 1200-4
4700 Silver Hill Road
Suitland MD 20746
Email Gary.E.Schlegelmilch@census.gov

SAS and all other SAS Institute Inc. product and
service names are registered trademarks or
trademarks of SAS Institute Inc. in the USA and
other countries.

UNIX® is a registered trademark of The Open
Group.



Taming the Chaos: Managing Large SAS/AF Applications Using Programming
Standards and the Source Control Manager of Version 8 of the SAS System

C. Michael Whitney, Motorola, Austin, TX

ABSTRACT
The use of programming teams offers both advantages and
disadvantages when compared with individual programming
efforts. The team approach allows a wide range of programming
skills and problem-solving perspectives to be applied to a project,
and may shorten development time. On the other hand, team-
developed projects are often marred by differences in
programming styles among developers, resulting in
inconsistencies in the use of variable names, levels of
documentation, and user interface design. Further, without some
form of code management, the risk of inadvertently overwriting
the work of other team members is always present. All of
potential problems can make development and maintenance a
chaotic and frustrating experience.

This paper will discuss how these problems can be minimized, if
not eliminated, by applying some basic programming standards,
and by making use of the new Source Code Management system
that has been released with SAS version 8.

SAS products discussed in this paper include SAS/AF, SCL, and
the Source Control Manager (SCM). The coding practices
discussed in this article are applicable to all versions of the SAS
System, on all platforms, and are aimed at developers with
moderate to advanced SAS/AF & SCL experience. The code
management portion is applicable only to the version of the
Source Control Manager (SCM) that was released with SAS
version 7. Earlier experimental versions of the SCM are not
covered.

INTRODUCTION
Programming standards are essential for producing high quality,
easily maintained software applications. The larger the
application, the more this holds true. Using a code management
system, such as the Source Control Manager provided with SAS
version 8, further enhances maintainability. Such a system
enables a programmer to check code modules in and out of a
software library during development, or when the code needs
updating, in much the same way a book is checked out from a
library. Modules that have been “checked out” cannot be
modified by others until they have been “checked in” by the
current programmer.

The purpose of this article is to provide a framework for high
quality, structured, and easily maintained SAS software.
Uniformity of software development is essential in creating and
maintaining computer systems that operate at peak efficiency.
Due to space constraints, only the Top Down development
approach is discussed. This is the method most applicable to
the programming practices employed at most organizations.
However, the principles discussed here are equally valid when
applied to the Object Oriented development.

Recently, the Motorola Semiconductor Products Sector (SPS)
unified its various Information Technology (IT) divisions into a
global unit, rather than each SPS factory having its own IT team
working independently of the others. One of the many benefits of
this has been a pooling of knowledge as programmers from
differing IT teams have been brought together. This has allowed
us to take the best programming techniques used at the formerly
independent sites, including standards, and come up with a good
unified set of programming practices for our teams.

The guidance presented here has been collected by the author
over the past eleven years, working for the US Air Force, a
consulting firm, and the Motorola SPS IT Engineering Analysis
Tools (EAT) team. It is applicable to any organization, be it
governmental, corporate, or educational.

To be effective, programming standards should apply to all
applications created in your organization. Applications created
without standards applied to them should be brought up to the
standard as maintenance is performed, if possible.

SOFTWARE DEVELOPMENT

SOFTWARE DEVELOPMENT LIFE CYCLE
The software development life cycle begins with a determination
that a software application is required for customer support and
ends with the cataloging of the application into the production
libraries. In the SPS Engineering Analysis section, most projects
begin when a device or product engineer at a factory requests a
new statistical analysis tool, or the addition of new features to
existing applications.

The development life cycle identifies important phases
associated with the process of developing software. When
completed, each phase should significantly reduce future
maintenance costs and minimize the chance for software errors
in the final product. The amount of detail required for each phase
should be directly related to the size and complexity of the
project. Large, complex projects require more extensive
documentation than do small projects.

OVERALL LIFE CYCLE
There are several major phases in the software development life
cycle. Figure 1 provides a summary of this cycle. The following is
a brief description of the major phases:

1. Gather and Define Requirements - The first task is to
determine if existing software can be used to fully or partially
meet the customer's requirements. Analysis and research
are the foundation on which the rest of the project lies.

2. Prepare Initial Design - If software development or
modifications are necessary, the programmer formulates the
initial requirements and designs documentation. The more
detail that can be provided, the more easily understood the
design will be. This design should be presented to the
customer for approval, ensuring that it meets the customer's
requirements.

3. Formal Design and Design Review - The detailed design
is an effort to construct a concise, logical solution to the
problem, which the programmer can easily translate into
code. The design should be approved before coding begins.

4. Test Plan, Coding, and Testing – The appropriate coding
standards should be followed for all production software.
The development and execution of a test plan is essential to
ensure that the customer receives a quality product (both
software and data). Testing should occur any time that
changes are made to the code. After testing is completed,



the software should undergo a review or walk-through prior
to production.

5. Final Code Inspection - This is an intense, line-by-line review
of the software prior to cataloging.

6. Cataloging - This process places approved software into the
Production Software Libraries. It is extremely advantageous to
place production code in libraries where only the software
librarian has write authority. This will prevent accidental
corruption of the source code and ensure that everyone is
running the same version for production.

Top-Down Structured Design
Software should be developed in a top-down structured manner.
Top-down design begins with formulating the solution in terms of
generalized statements. After the general algorithm is developed,
it can be refined by adding the details that are necessary to
perform the general actions. For a complicated problem, this
refinement process may be repeated several times, with each
version containing more detail than the last. The design proceeds
from the top (most general) to the bottom (most detailed), with
the resulting design reflecting the nature of the problem. Top-
down structure makes the program highly readable and easier to
follow.

Structured software consists of separate functional modules. A
module is a subportion of a program and is composed of a
bounded group of instructions with a single identifier. A module
may be a subroutine, function, or driver. In SCL terms, a module
could be a either an SCL program, or a labeled section within an
SCL program. Labeled subsections provide great modularity!
Modules may call other modules, and in many cases, several
modules may be required to complete a single function. Modules
are designed with control flowing from the top to the bottom.

Top-down structured software should adhere to the following
characteristics:

• Cohesion - All modules should perform single functions or
small, related functions that require common data and pass
information from one step to another.

• Coupling - Connections between modules must be obvious
and should be minimized as much as possible for simplicity.
Data will be passed as arguments between modules, when
applicable.

• Limited data exchange - A minimum amount of data
should be passed between modules. If only two variables
out of a 100 variable data set are needed by a particular
DATA step, use the DROP= or KEEP= data set option to
eliminate those variables not needed. Similarly, only those
SCL variables and list pointers that are required for a
particular method to perform its given function should be
passed between methods.

• Exit and entry points - Modules should have one entry
point and one exit point.

• Span of control - Never let a module (except the program
driver) directly control or call more than seven subordinates.

• Scope of effect - Subordinate modules are modules that
make decisions so that other modules can complete a
function. The scope of effect of any module includes all
subordinate modules that are necessary for the completion
of the module's function.

• Module size - Modules should consist of no more than four
pages (200 lines) of executable code, minus comments.
Modules should not perform more than one unrelated
function, but may handle more than one related function for
the program. If a module grows larger than 200 lines, check
to see if the module is accomplishing more than a single
function. If so, attempt to break it down into single-function

modules. However, do not cut a single-function routine into
multiple pieces simply for the sake of module size.

• Independence - The execution of the module is completely
independent and does not depend on anything that occurred
in previous invocations.

Top-down structured software is a direct result of the use of
structured techniques and tools such as data flow diagrams, flow
charts, pseudo code, structure charts, data dictionaries, and
organized documentation. It requires forethought and work from
everyone.

Top-down structured design has the following advantages:

• It allows for reusable modular coding, testing, and
implementation.

• Design problems are detected early, when they are cheaper
and easier to correct.

• Module development allows the programmer to concentrate
solely on individual modules while treating other modules as
black boxes.

• Fewer programming errors are likely to be made due to the
module's significantly reducing program complexity.

• Modularity makes debugging easier. Problems are quicker
to isolate in any particular module, shortening debug time.

• Modules are used more easily by other programs.

CODING STANDARDS

DOCUMENTATION
All program modules should be documented. The documentation
must be standardized to promote uniformity in the program
library.

At the top of each SCL or SAS program there should be a main
program documentation section, that contains the following
information in order to provide a complete reference of what’s
been done to the code in its lifecycle. Make sure that any
additional information in the documentation section is pertinent.

1. Program or Method Name - name of the module.
2. Support - who, or what organization, ‘owns’ this module.
3. Product - which application does this code belong to?
4. Purpose - a brief, one-sentence description of what the

module does.
5. Usage - how the module is called.
6. Parameters - what is passed into and out of the module.
7. History - details when the code was modified, who did it,

and what was changed. The history section is the key to
modifying or repairing the program properly. All entries in
the history section must be as complete as possible.

Each time the code is modified, an entry should be made in
the history section. History entries should be completed for
each re-cataloging of the program and should include the
following information:
• The date of the modification and project number. In the

IT section of Motorola SPS, we use Rational’s
ClearDDTS™ defect tracking system for documenting
bugs and enhancements requests. Each entry in that
system has a unique tracking number. If your
organization has a similar method of tracking requests,
that number should go here, as well as the name of the
person or persons who worked on the program.

• A complete description of why the program was
modified, what and where changes were made, and the
results of the changes. Also, include any differences
between the old and new versions.



• Additional information may be included in the
documentation as needed, but a good rule of thumb is
to limit the documentation to eight printed pages (400
lines). A general overview of the program is all that is
needed to fulfill documentation requirements.

8. Notes - helpful notes for future maintenance. Typically
you’ll see warnings, or comments about future changes that
should be made to this code. This is also a good place to
list any references used for making the program. Notes may
be entered anywhere in the documentation that is deemed
necessary, but a grouping of the notes is easier to follow.

9. Labeled Code Sections - each labeled section of the SCL
program should be listed here, in a logical order. Sections
should be listed in the order in which they occur in the
program. Whether it’s alphabetical, or broken down as
alphabetical for Frame widgets and non-widgets, or some
other method, is up to you.

10. Data Dictionary - an alphabetical listing of all variables
(including macro variables) used in a program is extremely
useful. The SCL LENGTH code statements can often
double for this purpose, if in-line comments are used after
each LENGTH entry.

Within the body of the program, individual sections of code
should be documented as well, describing the what and why of a
particular code segment. Be as precise as you can -- you may be
the one maintaining that code a year from now, when you've
forgotten just exactly what that segment was supposed to be
doing. Often, an explanation of why something was done is
much more important than what was done – the what may be
readily apparent from the code, but why a code section exists is
not.

Without good documentation, maintenance becomes much more
difficult. We have probably all heard the saying about not
documenting the code being good job security, but even the best
programmers cannot remember every detail about what they
themselves wrote just a few months before. Poor documentation
hurts everyone.

Please see Example 1: Sample Documentation Section

COMMENTING THE PROGRAM
Comments should precede the executable code and be set off in
a uniform manner. In-line comments should be right-justified for
readability. Each block of code should have a preceding block of
comments pertaining to the workings of the code. Blocked
comments ought to be set off with noticeable borders or blank
lines. A continuous line of asterisks is common practice and
provides unmistakable border. Single line comments should be
avoided because they are easy to overlook; however, if
necessary, they should also be set off with noticeable borders or
blank lines to prevent code and comment confusion. Comments
must be clear and concise with consideration for those who have
to maintain or use the program. Having too many comments in a
program is as bad as having too few. Use only enough
comments to make the program understandable.

Please see Example 2: Sample Comments

CODE INDENTION AND COLORING
The purpose of code indention is to improve the readability and
the logical structure of programs through a format that reflects the
logic of the program:

1. Each base SAS DATA and PROC statement, and SCL entry
labeled section should start in column 1.

2. Each subsequent line should be indented evenly.
3. Each DO group level should be indented, with DO

statements starting on a new line for easy visibility.

4. The END statement used to terminate a DO loop should be
indented at the same level as the starting DO statement.

5. Comments should not be indented to match corresponding
code, and must precede the relevant code.

Coloring the SCL code can also improve readability. Our EAT
team uses a gray background color, with code in black text,
comments in blue, and green text for code in submit blocks.
Comments in submit blocks are green as well. One of our
factories IT teams used a black background, yellow text, cyan
comments, and white submit blocks. Any set of contrasting
colors that your programmers can agree upon will work.

NAMING CONVENTIONS
Without a standard set of variable names, code reusability means
that each SCL program must often rename the variables or
parameters of the calling program or macro in order to meet the
naming convention of the calling program. It is much simpler to
use a standard set of names for all programs written in your
organization.

Further, it is useful to adopt a common naming convention for all
of the individual SCL and FRAME components that make up
each application. We’ve implemented the following naming
standards at Motorola SPS IT:
• Product Abbreviations – All major products are identified

by a unique two-character product identifier prefix. For
example, the Engineering Data Analysis System1 (EDAS)
product uses “ED”, while the Data Analysis Reporting Tool2

(DART) uses “DA”. Further, a few two-character codes are
used for non-product-related systems, such as “C_” for
common code, and “UT” for utilities.

• Library and Catalog Names - All libraries and catalogs
associated with a given product use that products prefix.
For instance, the EDAS project code library is “EDASLIB”,
while the EDAS beta code goes into the “ED_BETA” library,
and the EDAS data management library is “ED_MANAG”.
Catalog entries should have the product revision ID in them:
“EDAS50” for the 5.x release of EDAS.

• Entry Names – Use of the SCL SEARCH statement allows
an application to call SAS/AF entries stored in other
libraries, thus increasing the functionality of the application
by taking advantage of a modular design.

Entry names may be specified without specifying which
catalog they are in. By providing a search path, the
application will search a list of specified catalogs one-by-one
until it finds the first entry matching the name specified.
This feature aids greatly in development, since an
experimental entry may be substituted for testing by merely
adding a test catalog earlier in the SEARCH path for the
tester. (The SAS Source Control Manager takes advantage
of this ability).

The drawback is that if you having SCL entries with the
same name in the search path, regardless of the catalog
names, may result in one of the products failing to work
correctly.

For this reason, a portion of the entry needs to reflect the
product to which it belongs, using the same product
identifier as its parent application. For instance, the
FRAME entry and its associated SCL for the EDAS
scatterplot module are called “ED_SCATR.FRAME” and
“ED_SCATR.SCL”. Non-FRAME SCL is differentiated by
not having the underscore: “EDSCATR.SCL”. All of the

1 EDAS was presented at SUGI 16 by Leslie Fowler. (See
reference section)
2 DART is the successor of DevIS, presented at SUGI 21 by Larry
Worley. (See reference section)



EDAS product code is stored in the EDAS50 catalog, in the
EDASLIB library.

• Macro Names and Macro Variables –
• Run-Time and Pre-Compiled Macros - Macros or

macro variables which will exist for a user, such as run-
time or pre-compiled macros, should start with an
underline, followed by the two-character product
identifier. I.e., “_EDMACRO”. The underline makes it
easier to differentiate a macro variable from a normal
one. Since users may also create macros, it is
important that the application’s macros not interfere
with their macros, and vice versa. Most users are
warned not to begin their macros with an underline.
(This is an important point to add to user
documentation for most applications.)

• Compile-Time Macros - Macros or macro variables
which will exist only for the developer to aid in code
generation - but which will not exist in the user’s SAS
environment when the user runs the application -- may
follow any naming convention, since only the
developer’s environment will be affected. The
convention discussed above may be followed, of
course, if there is any doubt about the impact on the
user or other developers.

• Variable Names – Here are a few recommended guidelines
for variable names:
• Avoid using variable names that duplicate SAS

keyword or function names. Although SAS usually
deals with these correctly, it makes reading the code
very difficult.

• Because list manipulation is so important in SCL,
variables which are list identifiers stand out as such
when the last part of the variable is either ...list or ...lst.
These suffixes should be avoided, where possible, for
non-list ids.

• Dataset identifiers associated with a SAS dataset stand
out as such when the last part of the variable is either
...id or ...dsid. These suffixes should be avoided,
where possible, for non-dataset ids.

• Temporary or holder variables can easily be designated
as such by the use of temp, tmp, hold, or hld as part of
their names.

• Single-character variables such as i, j, k, etc., are fine
for loop counters. Try to use more mnemonic names
for important variables.

TESTING THE PROGRAM

CREATING AND TESTING THE TEST PLAN
Create an initial test plan based on the requirements and design
documentation. This plan is a list of the tests to be made to verify
the correctness of the results. The test plan identifies the test
data to be used. Update the test plan as necessary during testing
to reflect the actual testing done. All software requires testing by
both the programming team and the customer before it is run in
production or cataloged. Testing ensures that customer
requirements are met or exceeded as far as possible, that coding
and logic errors are discovered and corrected, and that each
routine does what it was designed to do.

Testing should follow the test plan. Update the test plan when
new or additional tests are required, or if tests described on the
test plan become unnecessary or too difficult or impractical to
perform. As a minimum, software should be tested as follows:

1. Test the program with both test and actual input data.
Testing should include stressing the program with data both
in and out of the testing parameters. This is done to ensure
the program either stops or rejects the bad data.

2. Test all modules to the maximum extent possible with valid
data. If possible, make sure each decision is executed at
least once. Do hand calculations, if necessary, to verify that
each module is functioning properly.

3. Have someone else test your program. Often, another
person can discover awkward or cumbersome procedures or
manage to break the program with erroneous data.

4. After modular testing, test the entire application as a whole
to ensure that all of the modules work together properly. Be
especially aware of the arguments and units being passed
between the subroutines. Often, different arguments are
required for different subroutines. Make sure the correct
arguments with the correct units are passed to each
subroutine.

5. Include an acceptance clause at the end of the test plan.
This should be signed by the customer and the programmer
at the conclusion of testing.

WALK-THROUGHS
A walk-through is a group evaluation of a product at various
stages of its life cycle. Walk-throughs should be formal, properly
structured, and well-documented. Proper structuring will make
the walk-through more beneficial. Walk-throughs allow you to
produce reliable, error free code. They can reduce the average
from three to five errors per 100 lines to as few as three to five
errors per 10,000 lines (Freedman 1990). They can help you
correct design flaws and improve program documentation, as well
as cut production time by as much as 50 percent. They also help
increase the quality of system software. There are several types
of walk-throughs:
• Design walk-throughs focus on the solution to the problem.

This is critical in that it sets the guidelines on how a project
is to be completed.

• Periodic walk-throughs are conducted whenever deemed
necessary. Periodic walk-throughs will tell you where a
project is.

• Final walk-throughs are necessary prior to submitting a
program for a final code inspection. This walk-through will
help find any discrepancies previously missed.

A minimum of three and a maximum of seven individuals should
be involved in any type of walk-through. The size and scope of
the project should determine the number of attendees. One
individual moderates the walk-through. A second individual
should record all pertinent information discussed during the walk-
through, such as recommended changes to the material being
presented. A third individual presents the material.

WALK-THROUGH STAGES
There are three stages in the walk-through process:
1. Review stage - This three to five day period prior to a

walkthrough is used to acquaint each attendee with the
product. Standards, checklists, material to be reviewed, and
any relevant document from prior reviews or walk-throughs
will be looked over during this stage.

2. Walk-through stage - In this stage, each detail of the
product is reviewed. The presenter or moderator guides the
meeting, which should last no longer than one to two hours.

3. Follow-up stage - This is where changes are implemented.
All involved parties are informed of the changes and must
agree to them.

HELPFUL HINTS
Here are a few very simple guidelines to remember while
conducting a walk-through:
• The author is not on trial.
• The product is guilty until proven innocent.



• Choose walk-through participants carefully. Avoid
personality conflicts if at all possible.

• Keep walk-throughs within the predetermined time limits.
Schedule well in advance to ensure that everyone needed
for the walk-through can attend.

• Create and follow a checklist of possible problems.

There are some people problems to watch out for in reviews and
walk-throughs. Egos can play a factor in that people naturally do
not like to be told they’ve made mistakes. Another problem area
is inexperience at giving and receiving criticism. (Misdirecting
comments at the creator rather than the code can turn the
meeting into a defensive war.) The final problem is apathy - not
trying hard to find errors. (Don't assume that others will find the
same errors that you find.)

The team only has three decisions to choose from at the
conclusion of a walk-through: accepting the product as is;
accepting the product with revisions, trusting the creator to make
the fixes; or determining that another walk-through is necessary
after the errors have been corrected and the comments for
improving the product have been implemented.

REVIEWS
A review is an informal check of a portion of a software program
that can be conducted at any point in the development or
maintenance processes. Very little documentation is needed, and
structure is of no concern. Two or three individuals are sufficient
for a review. Proper use of both reviews and walk-throughs will
result in better software products and reduce long-range
maintenance costs.

Program reviews may be made at any point in the program
development cycle. The best times to review a program are after
the design is developed, before any formal walk-through or code
inspection, and before cataloging and production. Periodic
reviews of all programs, either being developed or modified, are
essential to ensure adherence to programming standards, that
errors are detected (as undetected errors will haunt you later),
and that documentation is correct. Make entries in the project log
for each review. A properly kept log may help trace any problems
that may arise later on in the project.

SOURCE CONTROL MANAGER

FEATURES
With the release of SAS version 7, SAS Institute has provided a
new tool, the Source Control Manager (SCM), for managing the
SAS/AF source and data files that make up your applications.
Previously released as an experimental tool, the SCM is now fully
integrated with SAS/AF. It provides a robust environment for
developing and maintaining your SAS/AF applications, allowing
you to check code in and out of the library, test changes before
checking code modules back in, carry out revision control and
version labeling, and easily distribute your application. The SCM
environment contains a number of tools for generating reports on
the development library and comparing file differences. Among
these tools, the SCL Static Analyzer tool is especially notable for
its ability to provide a wealth of information about the SCL in a
given catalog.

The Source Control Manager (SCM) features a point-and-click
interface, with pull-down or pop-up menus through which you can
issue commands. The interface gives you the ability to browse
the software libraries associated with the SCM, and the various
catalogs and entries contained within them.

The SCM creates a control database that is associated with a
given SAS library. When a developer checks code out of the
SCM, the file is copied to his or her specified work area. The

SCM then updates the control database by placing a lock on the
file so that no one else using the SCM associated with that library
can check out the code until it has been checked back in, thus
preventing overwriting accidents.

By using the new CATNAME function in conjunction with the
SEARCHPATH function, the SCM allows most code modules to
be tested before it is checked back into the library.

Each time a file is checked back into the SCM, the previous
version is archived. This provides an easy method of backing
changes back out of the application if needed. The SCM
administrator determines the total number of archives kept.

Further, the SCM’s version labeling feature allows a ‘snapshot’ to
be taken of the revision numbers of all the modules that make up
an application. This way, if you need to rebuild an earlier release,
the SCM will pull the correct revisions out of the main library and
the archives to build a given release.

Once a version label has been created, you can copy that version
of your application to a central distribution point, or to remote
computers via SAS/CONNECT.

USING THE SCM
The SCM is located on the SOLUTIONS pull-down menu, in the
DEVELOPMENT AND PROGRAMMING sub-menu. Or, you can
type ‘SCM’ on a SAS command line. Optionally, you can specify
the location of the control database when using the command
line, as well by using ‘SCM SCMDATA=CDBLibref’.

The documentation for the SCM is provided in the form of online
help screens, from the SAS help menu. At the time of this
writing, no documentation was available via the SAS Online
Documentation CD, other than a brief mention of it.

When you start the SCM for the first time, you will need to
associate a software library with it. Once you have done so, the
SCM will create several datasets that make up the control
database in the library. In this database are stored the list of all
the files that are a part of the project, the location of the
preference files for each person, who has which files locked,
where the archives are to be stored, and more. Each developer
can set preferences as to where his or her work library is located
for each project library. The location of these preference files is
determined when the SCM control database is created, and
defaults to SASUSER. SAS Institute recommends that
SAS/SHARE be used to access the control database library.

More than one project library can be assigned to a given control
database. To do this, start the SCM with the control database
you want. Then, from the TOOLS pull-down menu, select
ADMINISTRATION UTILITIES. On the SOURCE DATA tab,
new libraries or catalogs can be registered. Select the library or
catalog, provide an archival location, and click the REGISTER
button. You can choose whether or not you want all development
libraries assigned to one SCM control database, or just those
used for a particular project. However, it would appear to be best
to include all libraries needed for a given application if you plan
on using the version labeling feature.

Once the control database has been set up and configured, it’s
ready to be used by the developers. The programmer will start
up the SCM, and tell it which control database library to use. The
project library associated with that control database will then be
displayed, and if any files have been checked out, those will
appear with an icon of a lock in front of them. Double clicking on
a file name will bring up that file in browse mode. The developer
will need to tell the system where to copy the checked out files
using the OPTIONS item from the pop-up menu, or TOOLS >
OPTIONS from the pull-down menu. This is at a library, rather



than a catalog, level. The SCM will also ask for the developer’s
name, so that it can assign checked out files to the developer.

SCL STATIC ANALYZER
Another formerly experimental tool, the SCL Static Analyzer is
now part of the SCM environment. It can tell you a great deal
about the SCL that goes into your application, and works on a
given catalog. When activated, it examines all the SCL in the
catalog, and provides the following statistics: total lines,
instructions, functions, attributes used, and the number of unique
entries, labels and methods, variables, functions, etc. Further, it
can detail the flow of your program, listing all the interrelations
between the various modules that make up your application. All
of the data the program collects is stored in datasets that can be
viewed from within the system by clicking on the VIEW DATA
button. All of the statistics and listings pop up in a compact
tabular view window. Also, the Static Analyzer will provide a list
of warning areas you should look at in your code…including
areas of dead code and uncompiled entries, as well as areas
where the Analyzer can’t find the source entry being called, etc.

SCM NOTES
Several notable items:
• When checking out files, be sure not to have the catalog

selected -- you can check out an entire catalog by accident.
• The current release of the SCM doesn’t support creating

copies of a version label if the version label contains multiple
library references.

CONCLUSION
Programming standards provide a means of ensuring that
software written at your organization is of high quality. But in
order for standards to be effective, everyone must follow them.

The SCM provides an elegant solution to the problem of having
program files accidentally overwritten, and provides additional
functionality to the already excellent SAS development
environment.

Unfortunately, due to size constraints, this article could offer only
a brief overview of the software life cycle and the SCM. For more
information on the life cycle and other aspects of programming
standards, you might turn to the Freedman and Dunn’s books
listed below. For more information on the SCM, see the SAS
Online Help files.

REFERENCES
Fowler, Leslie, et al (1991), Data Analysis Applications for the
Semiconductor Industry, Proceedings of the Sixteenth Annual
SAS User’s Group International Conference, pg. 658-662.

Worley, Larry and Nelson, Jim (1996), DevIS: Motorola’s Near-
Real-Time Device and Visualization System Using SAS/AF
Software and SCL, Proceedings of the Twenty-first Annual SAS
User’s Group International Conference, pg. 654-659.

Freedman, Daniel P. (1990), Handbook of Walkthroughs,
Inspections, and Technical Reviews, New York: Dorset House
Publishing.

Dunn, Robert (1982), Quality Assurance for Computer Software,
New York: McGraw-Hill Book Company.

USAFCCC (1995), Communications-Computer Systems
Automated Data System Standards and Procedures, Instructions
33-102, Volumes I-III, Scott AFB.

Motorola SPS IT Engineering Analysis Tools SAS Programming
Standards (1998).

SAS, SAS/AF, SAS/SHARE and SAS/CONNECT are registered
trademarks or trademarks of SAS Institute Inc. in the USA and
other countries.

ClearDDTS is a registered trademark of Rational Software
Corporation

Other brand and product names are registered trademarks or
trademarks of their respective companies.

ACKNOWLEDGMENTS
Thanks go out to Les Bortner for a superb reviewing job and
editing suggestions. Thanks also go to Chris Weyn, Leslie
Fowler and Robert Smith for their reviews of the paper, as well.

CONTACT INFORMATION
(In case a reader wants to get in touch with you, please put your
contact information at the end of the paper.)
Your comments and questions are valued and encouraged.
Contact the author at:

C. Michael Whitney
Motorola SPS
2150 Woodward St.
Austin, TX 78744
Work Phone: (512) 996-7151
Fax: (512) 996-7148
Email: ra6952@email.sps.mot.com



EXAMPLE 1 – SAMPLE DOCUMENTATION SECTION

/*----------------------------------------------------------------------*/
/* Method: EDASINIT */
/* Support: Mike Whitney, SPS IT Solutions - Engineering Analysis */
/* Product: EDAS */
/* Purpose: the method that starts EDAS50, site configuration */
/* Usage: call method(‘edasinit.scl’,’start’,’load_buffer’); */
/* Parameters: */
/* what_to_do $20: method called by init file that starts EDAS */
/* 'load_buffer' : method called when build code for batch job */
/* 'script' : method called when creating a script */
/* History: */
/* Sep 95 - M. Grover */
/* - Initial coding */
/* */
/* Feb 97 - J. Nelson */
/* - added simple debug listing */
/* */
/* Oct 97 - E. Stokes */
/* - Added code to determine OS and pathname */
/* Created _edstart macro. */
/* */
/* 20 Jan 98 - Mike Whitney - CIMcm0279 */
/* - modified OS pathname building routine, removed */
/* non-functioning SymPut calls. Modified VMS section. */
/* */
/* 23 Jun 98 - Mike Whitney - CIMcm0280 */
/* - tweaked usrtr assignment to correctly reflect the VMS */
/* user path. */
/*----------------------------------------------------------------------*/
/* Notes: */
/*----------------------------------------------------------------------*/
/* Labeled Code Sections: (listed in order of appearance) */
/* START – method that starts EDAS */
/* LET - Assign let statements for padas directories */
/* SYMBOLN – build the SAS symbol statements */
/*----------------------------------------------------------------------*/

length
ct $3 /* Session settings: graphic char type */
dsname $17 /* dataset name */
edasos $8 /* edas' name for the current os */
fullpath $80 /* physical path of 'padas' subdirectories */
grcat $17 /* Session settings: graphic catalog */
ht $3 /* Session settings: graphic text height */
let_libname $200 /* Libname statement for padas libraries */
let_statement $200 /* %let macro definition statement */
listid 8
ls $8 /* Session settings: line size */
msg $80 /* Generic Return Message */
OpSys $35 /* substr of sysccp global macro */
parmtab $17 /* parameter table name */
ps $8 /* Session settings: page size */
rdsname $17 /* raw dataset name */
sas_user $80 /* physical path of the sasuser directory */
screenme $17 /* single node dataset name */
sys_command $200 /* Operating System Command */
;

This is an older
SCL entry, which
wasn’t documented
as well as it could
have been. The
history was brought
up to date during
recent
modifications

Note the issue
tracking numbers.

Here the LENGTH
statement does
double duty as a
data dictionary.



EXAMPLE 2 – SAMPLE COMMENTS

control asis;

START: /* Start EDAS */

method
optional=what_to_do $20;

/*******************************************************************/
The following submit block is here to make sure that SAM recognizes
a new script from an older one. - 1/98 by Chris Weyn
********************************************************************/

EXAMPLE 3 – CODE INDENTATION
Indented code is easy to read and follow. Only one comment has been left to show how they should be indented.

START:
if symget('_eddebug')^='ON' then

submit;
options nosource nonotes nosource2;

endsubmit;

/* Get the physical path of the sasuser directory */

select (edasos);
when ('VMS') sas_user= scan(pathname('padas'),1,']');
when ('UNIX') sas_user= pathname('padas');
when ('WIN') sas_user= pathname('padas');
when ('MAC') sas_user= pathname('padas');
otherwise;

end;

sas_user=lowcase(sas_user);

if what_to_do ne ' ' then do;
if what_to_do = ‘START’ then do;

submit;
%let _eddsnm = &dsname ;
%let _edrdsnm= &rdsname ;
%let _edsrnme= &screenme ;
%let _edprmtb= &parmtab ;

endsubmit;

end;
end;
else do;

submit;
%let _eddsnm= ;
%let _edrdsnm= ;
%let _edsrnme= ;
%let _edprmtb= ;

endsubmit;
end;

return;

An in-line comment
used to briefly
describe the
purpose of the
labeled section.

Commenting the
code as to why
something was
done.

Having the label in
the first column,
and the rest of the
code indented,
makes the labels
more noticeable.

For the same
reason, comments
aren’t indented,
either.

Nested if-then-do
loops

Submit block
contents should be
indented, as well.



Debugging Made Easy
Andrew Ratcliffe, Ratcliffe Technical Services Limited

If we cannot eliminate human error we are unlikely to be able to eliminate
the creation of bugs in computer programs. However, the inevitability of
bugs in all but the smallest of programs should not deter us from
attempting to minimise the number of bugs; and those bugs that we do
produce should be easy to investigate and resolve.

This paper focuses on making the process of bug investigation easier. It
lists and discusses coding techniques, tools, and debugging techniques
that the author has found to be successful. The paper focuses on Base
SAS coding, but includes occasional mention of SAS/AF issues.

Introduction
All of my programs have bugs in them.
And even if my programs appear bug
free, you can be pretty sure that other
aspects of the system on which they
run have got bugs in them, i.e. SAS
software and the operating system. So
there’s a fair chance that even the
simplest of my programs will not run as
designed on certain days of certain
years under certain circumstances. It’s
a fact I have to live with!

Having come to terms with this fact, I
have accrued and developed a
number of tools and techniques for
getting to the root cause of problems
(potential bugs) as/when they occur.
These tools and techniques are for use
in a combination of situations and at a
mixture of occasions in the software
development life cycle. Most, however,
are for use during the programming
phase. If you accept the inevitability of
bugs then you can see the benefit of
making extra effort in the programming
phase to make the bugs easier to
investigate and resolve when they
occur.

Expect The Unexpected
In my childhood days I was a member
of the Boy Scouts. Their motto is “Be

prepared” and I’ve kept that motto with
me all these years. I try to write my
programs to expect the unexpected
and to handle that situation to a
reasonable degree.

Select instead of if

To help me with trapping unexpected
values, I generally use select
statements instead of if statements
when I am testing for specific values.
For instance, if I have a variable that
contains gender as ‘M’ or ‘F’, I might
be tempted to code:

if gender eq ‘M’ then ...do male things...
else ...do female things...

But a safer option is to use the select
statement:

select (gender);
  when (‘M’) ...do male things...
  when (‘F’) ...do female things...
end

The advantage of using the select
statement is two-fold. Firstly, you are
making the valid values of the gender
variable very clear; secondly, the
program will bomb if gender contains
an invalid value. Thus, you get the
earliest warning that something is
wrong. If I had used the if statement,
my program would have continued
with an incorrect belief that we were
dealing with a female observation.



I use the select statement's otherwise
clause to trap unexpected values, but
that presupposes that you can do
something in the event that an
unexpected value arises.

If it didn’t work, do something

There’s nothing worse than a program
that continues after a problem has
occurred. The program will inevitably
destroy evidence about the original
cause of the problem. It will do this by
over-writing variables and data sets,
etc. If you want to get to the root of a
problem, you need as much good
evidence as possible.

After doing something, check it
worked. You can use low-level
techniques such as the select
statement I discussed above, and you
can use the &syserr macro variable to
check the success of a PROC or
DATA step.

If it didn’t work, use ABORT or STOP
or ENDSAS, etc. to indicate failure,
You can use ERRORABEND in a
batch job.

The topic is discussed in great detail in
“Taking Control and Keeping It” by
Justina M Flavin et al, Proceedings of
SUGI 26. See
www2.sas.com/proceedings/sugi26/p0
74-26.pdf.

In the event of an error, you will want
to prevent subsequent steps from
being executed. A simple means of
doing this is to use the cancel option
on your run statements. run cancel
tells SAS to just perform a syntax
check on the step without executing it.
I code run &cancel for each of my
steps; I initialise &cancel to blank at
the beginning of my program; I set
&cancel to ‘cancel’ when I detect a
problem and don’t want subsequent
steps to run. Here’s an example.

178  options mprint;
179  %macro herbert;

180  %let cancel = ;
181
182  proc summary data=sashelp.class;
183    class sex;
184    var height wait;
185    output out=summ sum=;
186  run &cancel;
187
188  %if &syserr ne 0 %then
189    %let cancel = cancel;
190
191  data result;
192    set summ;
193    if height gt weight then put 'h>w';
194    else put 'w>h';
195  run &cancel;
196
197  %if &cancel ne %then
198    %put Program did not complete
successfully;
199  %mend herbert;
200
201  %herbert;
MPRINT(HERBERT):   proc summary
data=sashelp.class;
MPRINT(HERBERT):   class sex;
MPRINT(HERBERT):   var height wait;
ERROR: Variable WAIT not found.
MPRINT(HERBERT):   output out=summ sum=;
MPRINT(HERBERT):   run ;

NOTE: The SAS System stopped processing
this step because of errors.
WARNING: The data set WORK.SUMM may be
incomplete.  When this step was stopped
there were 0 observations and 0
         variables.
WARNING: Data set WORK.SUMM was not
replaced because this step was stopped.
NOTE: PROCEDURE SUMMARY used:
      real time           0.02 seconds
      cpu time            0.02 seconds

MPRINT(HERBERT):   data result;
MPRINT(HERBERT):   set summ;
MPRINT(HERBERT):   if height gt weight then
put 'h>w';
MPRINT(HERBERT):   else put 'w>h';
MPRINT(HERBERT):   run cancel;

NOTE: Data step not executed at user's
request.
NOTE: DATA statement used:
      real time           0.01 seconds
      cpu time            0.01 seconds

Program did not complete successfully

Notice how the data step did not run
because of the run cancel. The
execution of the %if means that the
code must be part of a macro, which
may not suit all purposes. The same
technique can be used if you are
calling base SAS code from SAS/AF
SCL code.



Conditional test code

I include a lot of conditional test code
in my work. For example, I include put
statements that are only executed if
the &debug macro variable has been
set to a non-zero value beforehand.
This is very useful for re-running code
that you know is failing but for which
you don’t have enough information to
figure-out the cause of the problem. I
discussed this technique in greater
detail in my SEUGI ’99 paper entitled
“Proactive Debugging”. You can get a
copy from
www.ratcliffe.co.uk/res_papers.htm.

Make It Understandable

It may not be you

It may not be you that has to debug
this program. So show some thought
for your poor co-worker. Make the
purpose of your program as clear as
possible. Even if it is you that has to
debug it later, you’ll be grateful for your
earlier consideration.

Neatness is a simple means of raising
the level of clarity of your work. Don’t
underestimate the value of neatness in
making your code more
understandable for you and others.

No macho coding

We’ve all seen it! Functions embedded
within functions embedded within
functions, with buckets of parentheses
thrown in for good measure; usage of
esoteric bits of SAS functionality that
were dropped from the documentation
years ago but are still in the product;
clever use of advanced mathematical
functions to save using a larger
number of basic mathematical
functions.

Don’t do it! Nobody will thank you
when they have to maintain your
program.

Write for clarity; don’t try to impress. If
you feel compelled to write complex
code in order to achieve significantly
better performance or some other
goal, make sure you document your
reasoning and the logic that you have
applied. Use comments copiously.

Coding standards

Adopt coding standards. It is the
simplest route to ensuring consistency
of code and ease of maintenance for
programmers. Gary E. Schlegelmilch’s
SUGI26 paper entitled “Structuring
Base SAS for Easy Maintenance” is a
good source of reference. You can get
a copy at
www2.sas.com/proceedings/sugi26/p2
20-26.pdf.

Make it explicit

I find it a tremendous help when I look
at somebody else’s program and I can
easily trace back the source of some
data. You can help to make data
traceable in many ways. I’ll discuss
just a few here.

Scope your macro variables with
%local, and by using methods in SCL.
The “scope” of a variable is the range
of sections within the program in which
the variable is valid. In the following
example, the macro variable named
jaguar is globally scoped, i.e. it is
accessible from any part of the SAS
environment:

%macro rover;
  %put #2- &jaguar;
  %let jaguar = top;
  %put #3- &jaguar;
%mend rover;

%let jaguar=1;
%put #1- &jaguar;

%rover;



%put #4- &jaguar;

So when we run the macro, jaguar’s
values are as follows:

#1- 1
#2- 1
#3- top
#4- top

But if we tell SAS that jaguar is locally-
scoped within the rover macro, the
results are different:

%macro rover;
  %local jaguar;
  %put #2- &jaguar;
  %let jaguar = top;
  %put #3- &jaguar;
%mend rover;

#1- 1
#2-
#3- top
#4- 1

The results differ because we have
two macro variables named jaguar in
the second example. Within the rover
macro we have a second variable who
exists only for the life of the macro.

By restricting the life of information in
this way, it becomes easier to trace the
origin of information. Clearly it’s not
good practice to have variables with
the same name in both the global and
local macro environment, but what the
examples demonstrate is that if we
have a problem with jaguar inside the
rover macro, the %local statement tells
us that the invalid value for jaguar can
only have been set within the macro.
So we don’t have to look too far for the
cause of the problem.

In class-based SCL code, do/end
blocks have their own scope too.

Another means of making it clear
where information has come from is to
make it clear what information is being
passed between sections of code. In
base, I never use _LAST_ (the last
created data set), I always code the
data set name.

I avoid using global macro variables
and the local/global SCL list.

Parameter lists (for macros and SCL
methods) should be treated as your
friends. Parameter lists form excellent
documentation of what is being passed
into and out of a sub-routine, i.e. a
macro or SCL method.

Make It Easy On
Yourself

Preserve evidence

If you have to investigate a problem,
you will want to follow the chain of
events backwards to find the original
cause. You won’t be able to do this if
some of the information in that chain is
missing.

I never overwrite intermediate
(temporary) data sets. Those data sets
may not be important in terms of your
final results, but they are important if
you are debugging. If you call your
intermediate data sets something like
“temp” then it’s preferable to create
temp1 from your input data set, and
create temp2 from temp1. If you create
temp and then over-write it then you
have lost the “paper trail”.

This approach can result in a large
number of TEMPnn data sets, so you
should delete these data sets when
they are no longer required, e.g. delete
temp1 after temp2 has been created
from it, otherwise your work library
may run our of space. But if you delete
these data sets you’ve lost your paper
trail! So, I make the deletion
conditional upon a macro variable that
indicates whether I am in
debug/development mode or in
production mode.



Good syntax

Make your syntax good: remove
warnings such as type-mismatches.
Consider removing messages like
uninitialised variables. Compare the
following two DATA steps.

1    data _null_;
2      numeggs = 12;
3      msg = 'Old Macdonald has '
4            !! compress(numeggs)
5            !! ' eggs' ;
6      put msg= never=;
7    run;

NOTE: Numeric values have been converted to
character values at the places given by:
(Line):(Column).
      4:21
NOTE: Variable never is uninitialized.
msg=Old Macdonald has 12 eggs never=.

8
9    data _null_;
10     numeggs = 12;
11     msg = 'Old Macdonald has '
12       !! compress(putn(numeggs,'BEST.'))
13       !! ' eggs' ;
14     never = .;
15     put msg= never=;
16   run;

msg=Old Macdonald has 12 eggs never=.

The second DATA step shows how to
remove the type mis-match and the
uninitialised variable message.

The V8 SAS/AF SCL compiler has
compile-time binding, thereby offering
more validation at compile time

Write Things Down

A specification

Write it down in words before you code
it. If you doubt yourself later (or lose
focus) you'll be able to judge if you're
doing what you were intended to do.

The simplest of specifications is better
than none at all. You may be grateful
for it if you loose track of things whilst
coding. And if anybody has to maintain
your code at a subsequent time, they
will certainly thank you for the
documentation.

Compile time

If I am distributing compiled code, I
have found it useful for some
documentation on compile dates/times
so that I can cross-reference the
distributed code that is causing trouble
with the version of the source that I
hold. I have a small macro that does
this for me in my SAS/AF SCL code.
The macro is described in my
aforementioned “Pro-Active
Debugging” paper.

The macro could be adapted to be
used in stored macros and stored data
steps in addition to its existing use with
SCL.

Build a Good
Foundation

Clean the environment

At the start of my programs I try to
clean the environment and to validate
it. This helps give me a predictable
environment in which to execute.

To clean the environment I begin by
clearing-out the work library. You can
do this with PROC DATASETS:

proc datasets lib=work kill;
run;

In addition, I often delete any
permanent data sets and/or files that I
expect my program to create.
However, it is not always appropriate
to do this. You have to consider
whether you would prefer to retain
those old data sets and files in the
event of the program crashing.

You can validate the environment in a
number of ways. Depending upon the
type of application that you’re
producing, you might want to make
sure you’re running on a platform that
your application supports; make sure
that the necessary SAS modules are
licensed; make sure you have enough



spare disk space for the work library
and/or permanent libraries.

You can check to see what platform
you’re running on by querying the
&sysscp or &sysscpl macro variables.
Use PROC SETINIT to see what
modules are licensed.

On Windows, you can find the amount
of free disk space using the
getDiskFreeSpaceA DLL routine as
follows:

libname samples 'C:\Program Files\SAS
Institute\SAS\V8\core\sample\';

filename sascbtbl catalog
'samples.pcsamp.sascbtbl.source';

data;
  success = modulen('*e'
                   ,'GetDiskFreeSpaceA'
                   ,"C:\"
                   ,numSectorsPerCluster
                   ,numBytesPerSector
                   ,numFreeClusters
                   ,numTotalClusters );
  freeSpace = numFreeClusters
              * numSectorsPerCluster
              * numBytesPerSector ;
  put success= freeSpace= comma16.;
run;

Incremental is best

I much prefer to develop incrementally.
It allows me to discover problems one
at a time. I can resolve problems as I
go. I know that other developers prefer
the big-bang approach where they do
a great tranche of coding and then try
to run and try to debug it. But to my
mind, having more than one bug to
resolve at the same time serves to
complicate the process.

Old is best

Re-use code. Leverage your
investment in earlier debugging. If I
were looking for an example and I
were to take this to an extreme, I
would say use PROC REPORT
instead of DATA _NULL_.

Sources of Information

The log is your best friend

If a problem occurs, the log could be
your best source of information. In fact
it may be your only source of
information!

In a batch situation, make sure you are
retaining the log file. And try to avoid
using one log file that is over-written
each time the program is run – if the
program is re-run after a problem has
occurred you may lose valuable
information about why the problem
occurred on the first occasion.

The log will be a crucial source of
information in your debugging session.
Write information to the log yourself,
don't just rely on SAS. Paul D
Sherman’s SUGI26 paper “Intelligent
SAS Log Manager” has a lot of good
information on this topic. See
www2.sas.com/proceedings/sugi26/p1
08-26.pdf.

Bug Mining
So maybe you’ve written a program,
and maybe you’ve followed some of
my recommendations. And now you
find you need to investigate a bug.
Frank DiIorio’s SUGI26 paper entitled
“The SAS Debugging Primer” is a very
good source of information and
guidance. You can find it at
www2.sas.com/proceedings/sugi26/p0
54-26.pdf.

Start at the very beginning

Start at the top of the log and look for
the first warning or error. Find the root
cause of your problem. After one
problem has occurred, subsequent
sections of code are likely to fail. But
don’t focus on those subsequent
sections, start back at the beginning
and focus on the first warning/error.



Fix the first problem and you’ll
probably find that your subsequent
problems disappear.

One step at a time

Don’t try to rush what you’re doing.
Take your time and think carefully.
Don’t jump to conclusions. Try to
remove one possible cause of the
problem at a time. Keep removing
possible causes until the code works.
At that point you know that the thing
you just removed is your culprit.

When you begin to drill-down into the
problem, if you find it difficult to pin-
down the problem, take into
consideration that it might not be the
fault of the SAS program. The fault
may lie with any of the other
components of your program, e.g. SAS
itself or the operating system.

Data step debugger

Be on intimate terms with the DATA
step debugger! To find out more, refer
to “How to Use the Data Step
Debugger”, a SUGI25 paper by S.
David Riba. See
www2.sas.com/proceedings/sugi25/25
/btu/25p052.pdf

Code generated by macros

If you have a problem with a macro
then things can get extra tricky
because the macro debugging tools
are so limited. I find it often helps to
remove the macro code from the
“equation” by copying the generated
Base SAS code from the log to the
editor (having set options mprint
before running the code).

However, if you have a lot of code
being generated it can be tiresome to
remove all those copied line numbers
and other paraphernalia from the log.
In this case you can use options mfile
(options reservedb1 in V6). Used in

conjunction with the mprint option and
an mprint filename statement, mfile
gives you a “clean” copy of the code
generated by your macro. See below:

options mfile mprint;

filename mprint
'c:\temp\mprint.txt';

%macro jimbo;
  data;
    length
  %do i=1 %to 10;
    fred&i
  %end;
  8;
  run;
%mend jimbo;

%jimbo;

In the log we see:

MPRINT(JIMBO):   data;
NOTE: The macro generated output from
MPRINT will also be written to external
file c:\temp\mprint.txt while OPTIONS
      MPRINT and MFILE are set.
MPRINT(JIMBO):   length fred1 fred2 fred3
fred4 fred5 fred6 fred7 fred8 fred9 fred10
8;
MPRINT(JIMBO):   run;

And in the external file we see:

data;
length fred1 fred2 fred3 fred4 fred5 fred6
fred7 fred8 fred9 fred10 8;
run;

Information sources

MSGLEVEL

Using options msglevel=i will offer you
additional information such as when
indexes are being used.

95   options msglevel=i;
96
97   data billy (index=(demo));
98     do demo=1 to 1e4;
99       output;
100    end;
101  run;

NOTE: The data set WORK.BILLY has 10000
observations and 1 variables.
NOTE: Simple index demo has been defined.
NOTE: DATA statement used:
      real time           0.13 seconds
      cpu time            0.10 seconds

102



103  data subset;
104    set billy;
105    where demo lt 20;
INFO: Index demo selected for WHERE clause
optimization.
106  run;

NOTE: There were 19 observations read from
the data set WORK.BILLY.
      WHERE demo<20;
NOTE: The data set WORK.SUBSET has 19
observations and 1 variables.

In the example shown above, the
msglevel=I option has caused two
extra informational messages to be
written to the log. The first tells us that
the simple index was created; the
second tells us that the index was
used.

SASTRACE

The SASTRACE option displays
detailed information about the
commands that SAS/ACCESS sends
to your DBMS. Use it in conjunction
with the SASTRACELOC option.

DEBUGLEVEL

The “internal” SAS start-up option –
debuglevel is something that offers
plenty. I’ve not had time to make use
of it yet! It has five potential values:
testing, normal, debug, fulldebug, and
demo. Invoking SAS with
debuglevel=fulldebug will result in
informational debugging dialog boxes.

More interesting tips like this can be
found in Phil Mason’s SUGI26 paper
entitled “SAS Tips I Learnt While At
Oxford”. See
www2.sas.com/proceedings/sugi26/p0
20-26.pdf.

Conclusion
Bugs are an inevitability of
contemporary programming. In this
paper I have tried to demonstrate
some “defensive” programming
techniques that I use in order to make
the debugging process as painless as
possible.

I encourage you to experiment with
these techniques and to develop your
own. In my experience it is an
investment worth making.

Biography
Andrew Ratcliffe is a freelance SAS
software consultant with over 15 years
experience of SAS software. He
specialises in object-oriented
application development. Through his
company (Ratcliffe Technical Services
Limited) he is able to offer services
including analysis and design,
consultancy, and mentoring. Andrew is
editor of the NOTE: free e-newsletter.

Email: andrew@ratcliffe.co.uk

Web: www.ratcliffe.co.uk

Newsletter subscription:
www.ratcliffe.co.uk/note_colon



SECTION CHAIRS                             

Maribeth Johnson
  Medical College of Georgia

Lita Rosario
Marquee Associates

   
   

 S
T

A
T

IS
T

IC
S

 &
 D

A
T

A
 A

N
A

L
Y

S
IS

STATISTICS & DATA
ANALYSIS





Modeling Data with Nonparametric Methods Using SAS Software

Robert Cohen , SAS
Dong Xiang, SAS

Abstract: Nonparametric analysis is widely used to model data for which knowledge of the
underlying model is limited. This workshop is intended for a broad audience of statisticians

and data analysts who are interested in nonparametric methods. The objectives are to
describe the use of new nonparametric tools in SAS software for feature identification, data

compression, curve fitting, and surface modeling. In the first part of this workshop, the
following methods and tools are described: fitting local regression models with the LOESS
procedures, fitting thin plate smoothing spline models with the TSPLINE procedure, fitting

generalized additive models with the GAM procedure, and performing wavelet analysis with
new SAS/IML subroutines. The second part of the workshop illustrates the use of these tools

with several examples. Topics include curve fitting and surface modeling including
smoothing parameter selection, prediction confidence limits, robustness to outliers, and

feature identification using wavelet tools.



Paper P-702

Individual Growth Analysis Using PROC MIXED
Maribeth Johnson, Medical College of Georgia, Augusta, GA

ABSTRACT
Individual growth models are designed for exploring longitudinal
data on individuals over time.  PROC MIXED allows the growth
parameters for each individual to be examined as random effects
in the model.  Individual-level covariates can be entered into the
model as fixed effects to determine their impact on the dependent
variable alone and in interaction with the growth parameters.  The
structure of the variance-covariance matrix of the repeated
measurements can also be examined and entered into the model.
A model building exercise will be demonstrated using up to eight
systolic blood pressure measurements of youths aged 7-22.

INTRODUCTION
Essential hypertension (EH) is a major risk factor for coronary
heart disease, which remains the leading cause of death in the
USA.  Prior to middle age, the prevalence of EH in African
Americans (AAs) is approximately twice as in European
Americans (EAs), and EH-related mortality rates are 10 times
higher in AAs compared to EAs.

The early natural progression of the development of high systolic
blood pressure (SBP) from childhood to adulthood within the
context of ethnicity and sex is not completely understood.  A
better understanding might contribute to a better identification of
people at risk and, in turn, lead to improved prevention of
hypertension.

This study evaluated the effect of sex and ethnicity upon the
development of SBP over an eight year period.  The ages of the
children over this eight years ranged from 7 to 22 years.  The
data consisted of 3187 records on 524 individuals (129 EA males,
128 EA females, 122 AA males, 273 AA females).  To be
included in the analysis an individual had to have at least 4 out of
8 possible SBP measurements denoted as WAVEs which are
measurements taken a year apart.  The frequency distribution of
the number of measurements is seen in Table 1.  Over half of the
individuals had 7 or 8 measurements and this was consistent
within the ethnicity-sex subgroups.

Table 1.  Measurement count distribution
Number of SBP
measurements

Frequency Percent

4 156 29.8
5 37 7.1
6 65 12.4
7 140 26.7
8 126 24.1

Plots of mean SBP across AGE for the four ethnicity-sex
subgroups can be seen in the Appendix along with the AGE by
WAVE frequency table.  WAVE is positively correlated with AGE
but they are not mutually exclusive.

THE MODEL
Individual growth models are used for exploring longitudinal data
on individuals over time.  Random effects or multilevel modeling
allows for investigation of two levels of variability of the response
variable, SBP: within and between subjects.  In longitudinal data,
observations taken over time are nested within subjects drawn
from some population of interest giving a two-level hierarchical
structure.  The variation of responses within subjects over time is
at the lowest level (level one) and the variation of the underlying

mean responses between subjects is at level two (Singer, 1998).
Measurements made on the same individual are correlated and it
is this dependency that leads to the inadequacy of simple
estimation procedures based on ordinary least squares.
Sometimes in longitudinal data the interest lies as much in the
covariance matrix estimates as in the average growth
parameters.  Using this technique allows us to examine both.

UNCONDITIONAL GROWTH
Unconditional growth for SBP was modeled as a function of age
as a deviation from 15.  Expressing age as a deviation from its
mean reduces the multicollinearity between linear and quadratic
regression coefficients if a quadratic model is shown to best fit
the data.  The intercept and slopes are fit as random effects
which vary across subjects.

Linear Growth
The following SAS code is used to fit an unconditional linear
growth model:

proc mixed noclprint covtest;
  class id;
  model sbp = age15 / solution ddfm=bw;
  random intercept age15 / sub=id type=un
gcorr;
run; quit;

The NOCLPRINT option on the PROC MIXED statement
prevents the printing of the CLASS level information giving the
number of children involved in the analysis.  THE COVTEST
option tells SAS that you would like hypothesis tests for the
variance and covariance components.

The MODEL statement is used to indicate the fixed effects and
the RANDOM statement is used to indicate the random effects.
The /SOLUTION option asks SAS to print the estimates for the
fixed effects.  The random effects, here the intercept and the
linear slope, are estimated within each subject and the variance
components estimate the variation of the underlying mean
responses between subjects (SUB=ID).  The structure of this 2X2
variance-covariance (V-C) matrix is unstructured (UN) and the
GCORR option tells SAS to print the estimated correlation matrix
amongst the random effects.

Quadratic Growth
Since the plots of mean SBP across AGE appeared to be
curvilinear a quadratic model was applied to the data.  The code
is as follows:

proc mixed noclprint covtest;
  class id;
  model sbp = age15 age15*age15 / solution
ddfm=bw;
  random intercept age15 age15*age15/sub=id
type=un gcorr;
run; quit;

The only addition is that of the quadratic age term both in the
model and as a random effect.  The dimension of the
unstructured V-C matrix is now 3X3.

Quadratic growth: V-C grouped by ethnic-sex subgroup
The pattern across age for SBP appears quite different for the
ethnicity-sex subgroups (see plots and tables in Appendix).  The



AA males show more increase in SBP and much more variation
in their SBP over time.  The V-C matrix of the random effects for
each individual quadratic growth curve was grouped by ethnicity
and sex to see if these differences are significant.  The similarity
of the V-C matrix among subgroups was examined.  Differences
in the variance between members of the same subgroup might
indicate sampling problems or an inherent difference between
groups.

The SAS code that groups the V-C matrix of the random effects
of the intercept and slopes follows:

proc mixed noclprint covtest;
  class id race sex;
  model sbp = age15 age15*age15 / solution
ddfm=bw;
  random intercept age15 age15*age15/sub=id
type=un gcorr group=race*sex;
run; quit;

RACE and SEX must be added to the CLASS statement and the
GROUP=RACE*SEX option is added to the RANDOM statement.

Unconditional Growth Model Comparisons
A likelihood ratio test (LRT) for the significance of a more general
model can be constructed if one model is a submodel of another
by computing -2 times the difference between their residual log
likelihoods (-2RLL).  Then this statistic is compared to the chi-
square distribution with degrees of freedom equal to the
difference in the number of parameters for the two models.
Models are preferred where the -2RLL is smaller.  Model
comparisons can also be made using Akaike’s Information
Criterion (AIC) or Schwarz’s Bayesian Criterion (SBC).  In both
cases, the model that has the largest value is the preferred
model.  SBC penalizes models with more covariance parameters
more than AIC so the two criteria may not agree when assessing
model fit.

Table 2 shows the estimates for the fixed effects of these three
models and Table 3 shows the comparisons between models for
unconditional growth.  A model with a random linear and
quadratic effect provided a significantly better fit than the model
with the random linear component alone based on all three model
comparison methods. Adding a cubic component did not
significantly improve the fit of the model (data not shown).

Table 2. Unconditional Growth Model: Fixed Effect Estimates
(SE)

Model Intercept Age15 Age152

Linear 109.9 (.35) .92 (.06) ---

Quadratic 110.3 (.37) .85 (.06) -.055 (.01)
Quadratic: V-C
grouped

109.8 (.36) .80 (.06) -.058 (.01)

The quadratic model that grouped the V-C matrix on ethnic-sex
subgroup provided a significantly better fit over the model where
the where the V-C matrix was ungrouped (Table 3) although the
estimates of the fixed effects were similar for the two models
(Table 2).

Table 3. Unconditional Growth Model: Model Comparisons
Model Param AIC SBC -2RLL Chi-

square /
df

Linear 3 -11014 -11022 22020 ----
Quadratic 6 -10998 -11013 21982 38 / 3 *
Quadratic:
V-C
grouped

24 -10994 -11048 21940 42/18 *

*p<.001

The variances for both quadratic models are shown in Table 4.
When broken out into groups it can be seen that the variation in
SBP growth between AA males, both in the average SBP at age
15 and in the linear rate of growth, is much larger than the other
subgroups.  The between subject variation for EA males and
females and for AA females appear similar.  The covariances
between the random effects are not shown but there is a
significant positive correlation between the intercept and the
linear slope showing that those with higher average SPB at age
15 are also increasing at a faster rate across age.  The
correlation between the linear and quadratic slope coefficients is
0.

There is variation in both the intercepts and the linear slopes that
potentially could be explained by a level 2 (subject-level)
covariate and this variation is different within ethnicity-sex
subgroups.  The unconditional growth model where the V-C
matrix of the random effects is grouped by ethnicity-sex is used to
investigate the effects of covariates on SBP changes over time.

Table 4.  Unconditional Quadratic Growth Model: Variance (SE)
of the Random Effects
Model Subgroup Intrcpt Age15 Age152 Resid
V-C
ungrouped

60.4
(4.5)

.47
(.12)

.010
(.004)

37.7
(1.2)

V-C
grouped

EA male 47.8
(7.4)

.40
(.21)

.005
(.007)

37.6
(1.1)

EA female 56.2
(9.0)

.37
(.23)

.001
(.008)

AA male 100.6
(15.2)

.79
(.29)

.020
(.011)

AA female 43.1
(6.3)

.30
(.22)

.020
(.010)

ADDITION OF SUBJECT-LEVEL COVARIATES
Models were considered that investigated the fixed effect of
different covariates on SBP as well as whether the variation in
intercepts and slopes of the individual growth curves was related
to these covariates.  When investigating different covariates it is
best not to group the V-C matrix due to computational and time
constraints.  Once a covariate is shown to have a significant
effect then the V-C matrix can be grouped to show which
subgroup, if any, was most effected by the addition.

Ethnicity
The code used to fit ethnicity in the model follows (AA is the
reference group in the solution vector):

proc mixed noclprint covtest;
  class id race sex;
  model sbp = age15 age15*age15 race
race*age15 race*age15*age15 / solution
ddfm=bw;
  random intercept age15 age15*age15/sub=id
type=un gcorr group=race*sex;
  lsmeans race / pdiff;
run; quit;

The results are presented in Table 5.  The interaction between
ethnicity and the quadratic term is not included since it was not a
significant effect.

Table 5. Addition of Ethnicity to the Quadratic Growth Model for
SBP

Ethnicity: AA is
reference group

Fixed Effect Estimates (SE)
Intercept 111.2 (.49)



Age15 .95 (.08)
Age152 -.055 (.012)

Covariate -3.1 (.66)
Covariate*Age15 -.34 (.11)

Random Effect Estimates (SE)
Intercept : EA male 56.3 (9.2)

EA female 44.9 (7.6)
AA male 88.2 (13.6)

AA female 45.6 (6.9)
Age15: EA male .51 (.24)

EA female .21 (.21)
AA male .65 (.28)

AA female .46 (.25)

There is a significant mean SBP difference due to ethnicity.  The
average SBP at age 15 is 108.1 for EA and is 111.2 for AA.
There is also a significant interaction between ethnicity and the
linear age coefficient where the rate of increase in SBP across
age is .61mmHg/year for EA and .95mmHg/year for AA.  The
variation in the intercepts and slopes was slightly reduced for EA
females (15%) and AA males (12%), slightly increased for EA
males (18%), and unchanged for AA females.  Adding ethnicity to
the quadratic growth model helped the estimation of the curves
for EA females and AA males.

Sex
The code used to fit sex in the model follows (Female is the
reference group in the solution vector):

proc mixed noclprint covtest;
  class id race sex;
  model sbp = age15 age15*age15 sex sex*age15
sex*age15*age15 / solution ddfm=bw;
  random intercept age15 age15*age15/sub=id
type=un gcorr group=race*sex;
  lsmeans sex / pdiff;
run; quit;

The results are presented in Table 6.  The interaction between
sex and the quadratic term is not included since it was not a
significant effect.

Table 6. Addition of Sex to the Quadratic Growth Model for SBP
Sex: Female is
reference group

Fixed Effects Estimates (SE)
Intercept 107.6 (.44)

Age15 .38 (.08)
Age152 -.053 (.011)

Covariate 5.1 (.64)
Covariate*Age15 .90 (.10)

Random Effects Estimates (SE)
Intercept : EA male 46.5 (7.3)

EA female 42.6 (6.9)
AA male 79.0 (12.0)

AA female 47.2 (7.0)
Age15: EA male .36 (.21)

EA female .09 (.18)
AA male .46 (.23)

AA female .18 (.21)

There is significance due to the main effect of sex where the
average SBP at age 15 for males is 112.7 and for females is
107.6.  There is also a significant difference in the rate of SBP
change across age where males increase at 1.28mmHg/year and
females at .38mmHg/year.  The addition of sex to the model
resulted in a reduction in the intercept variance for EA females

(24%) and AA males (20%) while this variance was unchanged
for EA males and AA females.  The variation in slopes was
greatly reduced between EA females (76%), AA males (42%) and
AA females (40%) and relatively unchanged between EA males.
The addition of sex to the quadratic growth model helped the
estimation of the curves for all subgroups except EA males.

Maximum Household Education
The maximum education level attained by either the mother or
the father of the child was used to try to assess socioeconomic
status.  This variable was coded as LOW for those whose
parents had a high school or less education and HIGH otherwise.

The code used to fit education level in the model follows (Low
parental education is the reference group in the solution vector):

proc mixed noclprint covtest;
  class id race sex ed;
  model sbp = age15 age15*age15 ed ed*age15
ed*age15*age15 / solution ddfm=bw;
  random intercept age15 age15*age15/sub=id
type=un gcorr group=race*sex;
  lsmeans ed / pdiff;
run; quit;

The results are presented in Table 7.  The interaction between
education and the quadratic term is not included since it was not
a significant effect.

Table 7. Addition of Maximum Household Education to the
Quadratic Growth Model for SBP

Education: LOW is
reference group

Fixed Effects Estimates (SE)
Intercept 110.9 (.62)

Age15 1.08 (.10)
Age152 -.056 (.011)

Covariate -1.5 (.72)
Covariate*Age15 -.40 (.12)

Random Effects Estimates (SE)
Intercept : EA male 47.4 (7.4)

EA female 55.9 (9.0)
AA male 98.7 (15.0)

AA female 43.1 (6.4)
Age15: EA male .39 (.21)

EA female .39 (.22)
AA male .69 (.28)

AA female .31 (.22)

Those subjects whose parents had achieved a level of education
beyond high school had a slightly lower average SBP at age 15
(109.4) and lower rate of SBP increase across age
(.68mmHg/year) than those whose parents had a lower level of
education (110.9 and 1.08mmHg/year, respectively).  The
variation in intercepts was unchanged for all groups by the
addition of maximum household education.  The linear slope
variation was unchanged for EA and AA females but was slightly
reduced, and therefore aided the slope estimation, for EA (17%)
and AA (13%) males.

Full Model
We then looked at the effect of ethnicity, sex and education
together on SBP growth.  Height in centimeters centered at the
mean of 150 (HTCM150) and BMI centered at its mean of 30
(BMI30) were included in the model to control for differences in
growth and adiposity.  It was thought that some of the ethnicity
and sex differences might be due to these factors. The parameter



estimates and the random effect variances are shown in Table 8.

Table 8.  Full model
Fixed Effect

Estimates (SE)
Type III test

p-value
Intercept 109.3 (.81) -

Age15 .29 (.13) .37
Age152 .034 (.016) .03

Ethnicity * -3.2 (.60) <.0001
Sex ** 2.4 (.55) <.0001

Education *** -1.1 (.64) .10
Ethnicity*Age15 -.41 (.10) <.0001

Education*Age15 -.35 (.11) .0013
HTCM150 .16 (.03) <.0001

Sex*HTCM150 .14 (.02) <.0001
BMI30 .30 (.04) <.0001

Random Effects
Estimates (SE)

Intercept: EA male 33.6 (5.5)
EA female 33.5 (5.5)

AA male 65.2 (9.9)
AA female 44.6 (6.6)

Age15: EA male .16 (.18)
EA female .10 (.17)

AA male .55 (.25)
AA female .22 (.20)

*AA is the reference group
**Female is the reference group
***Low parental education is the reference group

HTCM150 and BMI30 are both time dependent covariates that
are highly correlated with age.  The linear effect of age is no
longer significant in this model since HTCM150 and BMI30 have
entered the model as significant effects.  There is still a
significant quadratic age effect.  EA have significantly lower
average SBP at age 15 (106.1) and males have higher average
SBP at age 15 (111.7) than AA or females (109.3).  There was
not a significant interaction between ethnicity and sex for means
or linear slopes.  The rate of increase across age in SBP,
adjusted for differences in growth and adiposity, was significantly
less for EA and for those whose parents achieved a level of
education beyond high school. As all subjects grew taller their
SBP increased, although males increased at a significantly faster
rate than females.  Increases in body mass were also related to
increases in SBP for all subjects.
This model provides a 30-40% reduction in the variation of the
intercepts (average SBP at age 15) for EA males and females
and AA males.  The variance of the intercepts remained
unchanged from the unconditional growth model for AA females.

The between subject variance in the linear slopes has been
reduced from 30-70% by this model.  The estimate of the
variance does not exceed its standard error for EA males and
females and AA females.  There is still significant variation in the
slope estimates for AA males that is not explained by this model.

WITHIN-SUBJECT COVARIANCE STRUCTURE
One of the strengths of PROC MIXED is that it allows the
comparison of different structures for the within subject, or error,
covariance matrix.  So far we have been concerned with the
between-subject variances of the intercepts and slopes of the
growth model but have not been concerned about the within-
subject variances for the up to eight SBP measurements
(WAVEs).  In this context, the intercepts and growth rates are
assumed to be constant across individuals but the model
introduces a different type of complexity: the residual
observations within subjects (after controlling for the linear and
quadratic effects of AGE) are correlated through the within-
subject error V-C matrix.  This error matrix is called the R matrix
and is modeled using the REPEATED statement.

proc mixed noclprint covtest;
  class id wave;
  model sbp = age15 age15*age15 / s notest;
  repeated wave /sub=id r rcorr type=cov-
structure;
 run; quit;

WAVE has been added as a CLASS variable to indicate the time
structured nature of the data within subjects and WAVE is also
used on the REPEATED statement.  The SUB=ID option is the
mechanism for block diagonalizing R since subjects are
considered independent.  The R option of the REPEATED
statement requests that the first block of the R matrix be printed,
the RCORR option prints the correlation matrix corresponding to
R.  If the first subject does not have all of the measurements
(WAVEs) then you will need to specify a subject who does.

The TYPE= option is what determines the V-C structure.  Five
different cov-structures were considered, these are:

1) Compound symmetric (CS): This is the most specific
structure, the variance within waves is constant and there is
a common correlation between waves. This is the
assumption if only the intercepts vary across individuals.
There are two parameters estimated.

2) Heterogeneous compound symmetric (CSH): This structure
assumes a common correlation between waves but allows
for different variances along the diagonal.  For these data
there are 9 parameters estimated.

3) Toeplitz (TOEP): This structure assumes a common
variance across waves but produces a banded covariance
structure such that the correlations between waves
separated by the same amount of time are equal. There are
8 parameters estimated.

4) Heterogeneous Toeplitz (TOEPH): This structure allows for
different variance parameters and produces a banded
covariance structure such that the correlations between
waves separated by the same amount of time are equal.
There are 15 parameters estimated.

5) Unstructured (UN): This structure produces estimates of all
eight variances and 28 covariances in each subject block of
R. Therefore, all of the correlations between waves may be
different.

Table 9 shows the comparisons between these models. Since the
same fixed effects were included in all models a likelihood ratio
test (LRT) was used to compare models for which one is a
special case of the other.  CSH and TOEP were compared to CS,
TOEPH was compared to TOEP, and UN was compared to
TOEPH.

Table 9. Within-Subject Model Comparisons
Type Parameters AIC SBC -2RLL Chi-

square /
df

CS 2 -11053 -11057 22102 ---
CSH 9 -11042 -11061 22066 36 / 7 *
TOEP 8 -11022 -11039 22028 74 / 6 *
TOEPH 15 -11015 -11045 22000 28 / 7 *
TOEPH:
grouped

60 -11001 -11128 21881 119/45 *

UN 36 -11015 -11092 21959 41 / 21
*p<.001

Recall that we prefer models in which the AIC and SBC are larger
and the -2RLL is smaller.  Allowing for heterogeneous variances
for each wave along the diagonal provides a significantly better fit
for both the CS and the TOEP models.  Allowing for a banded
covariance structure (TOEP) provides a better fit than the
assumption that all of the correlations between waves are equal



(CS).  The LRT between UN and TOEPH did not show a
significant difference in fit so the preferred model for these data is
one where the error matrix has a TOEPH structure.

Since the variances of the intercepts and the slopes were
significantly different within the AA male subgroup, a model was
constructed that looked into possible subgroup differences in the
R matrix using the TOEPH structure.

proc mixed noclprint covtest;
  class id wave race sex;
  model sbp = age15 age15*age15 / s notest;
  repeated wave /sub=id r rcorr toeph
group=race*sex;
 run; quit;

The model comparison results of the TOEPH model grouped by
ethnicity and sex are also shown in Table 9.  The grouping
provides a significantly better fit over not grouping, even though
there are 45 more parameters to estimate.

The variance and correlation estimates for each subgroup are
listed in Table 10.  The TOEPH(X) values are the correlation
between values that are X waves apart, so TOEPH(1) is the
estimated correlation between waves 1 and 2, 2 and 3, 3 and 4, 4
and 5, 5 and 6, 6 and 7, and 7 and 8.

Table 10.  V-C Parameter estimates (SE) from the TOEPH
model: Grouped by Ethnicity and Sex

EA Male EA
Female

AA Male AA
Female

Var (1) 58 (9) 75 (12) 120 (18) 103 (15)
Var (2) 88 (13) 89 (14) 128 (18) 83 (12)
Var (3) 79 (12) 82 (12) 130 (18) 55 (7)
Var (4) 59 (8) 68 (9) 147 (21) 72 (9)
Var (5) 80 (10) 83 (11) 161 (21) 86 (10)
Var (6) 86 (11) 70 (9) 172 (23) 84 (10)
Var (7) 94 (12) 75 (10) 170 (23) 101 (12)
Var (8) 93 (16) 92 (16) 170 (27) 139 (21)
TOEPH(1) .59 (.04) .66 (.04) .72 (.03) .49 (.04)
TOEPH(2) .54 (.04) .63 (.04) .68 (.04) .48 (.04)
TOEPH(3) .51 (.05) .59 (.04) .67 (.04) .46 (.04)
TOEPH(4) .47 (.06) .59 (.05) .62 (.05) .43 (.05)
TOEPH(5) .42 (.07) .46 (.07) .64 (.05) .38 (.06)
TOEPH(6) .38 (.08) .48 (.07) .62 (.06) .39 (.07)
TOEPH(7) .48 (.10) .52 (.10) .71 (.07) .55 (.08)

The AA Male group also shows much larger within WAVE
variation in SBP than do the other groups.  Their values also
seem to track slightly better across WAVE but these correlations
are only marginally higher when compared to the other the other
groups.  The major difference in subgroups appears to be within-
WAVE variation in SBP.

COMBINED MODEL
When the within-subject error covariance matrix specification was
combined with the model where the intercepts and slopes were
considered as random effects the new model did not converge.
This occurred even when neither V-C matrix was grouped by
ethnicity and sex.

This new model is probably over specified.  The error covariance
structure within subjects describes the behavior of the errors -
what remains after removing other fixed and random effects in
the model.  The specification of the TOEPH error matrix may no
longer be needed after the intercepts and slopes are considered
as random effects and additional covariates are added to the
model.

CONCLUSION
PROC MIXED allows for the investigation of the changes over
time within and between individuals.  The intercepts and slopes of
the individual growth curves can be considered as random effects
and the effects of adding covariates to the model can be
evaluated as changes in variances as well as the fixed effects
estimates of those growth parameters and covariates.

Many different models can be considered and comparisons made
in order to try to determine the best fit for the data. A limitation of
this analysis technique for these data is that no one subject has
measurements across the entire AGE spectrum.  The change in
SBP across AGE is derived from up to 8-year accumulations from
many individuals.

REFERENCES
Littel, RC, Milliken, GA, Stroup, WW and Wolfinger, RD (1996)
SAS System for Mixed Models, Cary, NC: SAS Institute, Inc.

SAS Institute Inc. (1989), SAS/STAT User’s Guide: Version 6,
Fourth Edition, Volume 2, Cary, NC: SAS Institute Inc.

SAS Institute Inc. (1992), SAS Technical Report P-229,
SAS/STAT Software: Changes and Enhancements, Release
6.07, Cary, NC: SAS Institute Inc.

SAS Institute Inc. (1994), SAS/STAT Software: Changes and
Enhancements, Release 6.10, Cary, NC: SAS Institute Inc.

Singer, JD (1998), Using SAS PROC MIXED to Fit Multilevel
Models, Hierarchical Models, and Individual Growth Models, J
Educational and Behavioral Statistics, 24(4): 323-355.
(Also found at http://gseweb.harvard.edu/~faculty/singer/)

Wolfinger, RD (1992), “A tutorial on mixed models”, Cary, NC:
SAS Institute, Inc.

SAS and SAS/STAT are registered trademarks or trademarks of
SAS Institute Inc. in the USA and other countries. ® indicates
USA registration.

CONTACT INFORMATION
Your comments and questions are valued and encouraged.
Contact the author at:

Maribeth Johnson
Office of Biostatistics AE-3035
Medical College of Georgia
Augusta, GA 30912-4900
Work Phone: (706) 721-3785
Fax: (706) 721-6294
Email: maribeth@stat.mcg.edu



APPENDIX

     Subgroup Means Across Age: SBP
EA Male EA Female AA Male AA Female

AGE N Mean (SD) N Mean (SD) N Mean (SD) N Mean (SD)
7 12 102 (7) 12 100 (7) 0 --- 0 ---
8 25 103 (7) 31 103 (7) 18 103 (7) 23 103 (13)
9 23 102 (6) 22 103 (7) 23 105 (8) 30 103 (8)

10 45 103 (7) 37 102 (7) 37 104 (7) 39 104 (9)
11 52 106 (9) 53 103 (7) 45 105 (8) 50 107 (8)
12 64 105 (7) 65 105 (8) 56 108 (9) 67 108 (8)
13 78 109 (9) 83 106 (7) 67 111 (10) 84 107 (8)
14 97 112 (9) 93 104 (8) 72 113 (10) 113 108 (9)
15 105 112 (9) 102 105 (9) 85 114 (10) 122 110 (9)
16 84 113 (9) 90 104 (8) 87 116(10) 111 111(9)
17 65 113 (8) 72 106 (9) 87 119 (11) 84 112 (12)
18 49 115 (10) 39 105 (8) 70 121 (13) 62 109 (9)
19 22 115 (11) 34 107(8) 46 122 (13) 42 111 (10)
20 22 114 (9) 24 108 (9) 32 121 (12) 31 111 (9)
21 16 115 (11) 12 109 (14) 19 122 (13) 21 116 (10)
22 14 117 (13) 0 --- 11 127 (14) 11 113 (15)



The FREQ Procedure

Table of AGE by WAVE

AGE     WAVE

   Frequency‚       1‚       2‚       3‚       4‚       5‚       6‚       7‚       8‚  Total
   ƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆ
          7 ‚     23 ‚      1 ‚      0 ‚      0 ‚      0 ‚      0 ‚      0 ‚      0 ‚     24
   ƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆ
          8 ‚     85 ‚     12 ‚      0 ‚      0 ‚      0 ‚      0 ‚      0 ‚      0 ‚     97
   ƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆ
          9 ‚     53 ‚     36 ‚      8 ‚      1 ‚      0 ‚      0 ‚      0 ‚      0 ‚     98
   ƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆ
         10 ‚     44 ‚     75 ‚     35 ‚      3 ‚      1 ‚      0 ‚      0 ‚      0 ‚    158
   ƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆ
         11 ‚     36 ‚     78 ‚     60 ‚     21 ‚      4 ‚      1 ‚      0 ‚      0 ‚    200
   ƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆ
         12 ‚     28 ‚     37 ‚     83 ‚     65 ‚     33 ‚      4 ‚      1 ‚      1 ‚    252
   ƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆ
         13 ‚     25 ‚     26 ‚     37 ‚    109 ‚     76 ‚     35 ‚      3 ‚      1 ‚    312
   ƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆ
         14 ‚     25 ‚     25 ‚     24 ‚     67 ‚    121 ‚     76 ‚     33 ‚      4 ‚    375
   ƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆ
         15 ‚     17 ‚     23 ‚     35 ‚     49 ‚     76 ‚    116 ‚     76 ‚     22 ‚    414
   ƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆ
         16 ‚     11 ‚     15 ‚     21 ‚     34 ‚     63 ‚     80 ‚    113 ‚     35 ‚    372
   ƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆ
         17 ‚      3 ‚     11 ‚     23 ‚     38 ‚     45 ‚     64 ‚     81 ‚     43 ‚    308
   ƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆ
         18 ‚      0 ‚      4 ‚     16 ‚     18 ‚     39 ‚     40 ‚     63 ‚     40 ‚    220
   ƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆ
         19 ‚      0 ‚      0 ‚      3 ‚     13 ‚     17 ‚     41 ‚     41 ‚     29 ‚    144
   ƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆ
         20 ‚      0 ‚      0 ‚      1 ‚      4 ‚     15 ‚     23 ‚     36 ‚     30 ‚    109
   ƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆ
         21 ‚      0 ‚      0 ‚      0 ‚      2 ‚      3 ‚     12 ‚     23 ‚     28 ‚     68
   ƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆ
         22 ‚      0 ‚      0 ‚      0 ‚      1 ‚      2 ‚      3 ‚     12 ‚     18 ‚     36
   ƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆ
   Total         350      343      346      425      495      495      482      251     3187



Power and Sample Size Determination for Linear Models

John M. Castelloe, SAS Institute Inc., Cary, NC
Ralph G. O’Brien, Cleveland Clinic Foundation, Cleveland, OH

Abstract

This presentation describes the steps involved in per-
forming sample size analyses for a variety of linear
models, both univariate and multivariate. As an an-
alyst you must gather and synthesize the information
needed, but you should be able to rely on the ana-
lytical tools to accommodate the numerous ways in
which you can characterize and solve problems. Ex-
amples illustrate these principles and review relevant
methods. User-written, SAS  software-based pro-
grams already handle a wide variety of problems in
linear models. Now, SAS Institute itself is developing
software that will handle a rich array of sample size
analyses, including all those discussed in this paper.

Introduction

Power and sample size computations for linear mod-
els present a level of complexity greater than that re-
quired for simple hypothesis tests. A number of steps
are involved to gather the required information to per-
form these computations. After settling on a clear re-
search question, the analyst must (1) define the study
design, (2) posit a scenario model, a mathematical
model proposing a general explanation for the nature
of the data to be collected, and (3) make specific con-
jectures about the parameters of that model, the mag-
nitudes of the effects and variability. Because devel-
oping the scenario model is typically a technically dif-
ficult and subjective process, various strategies and
simplifying formulas exist to make matters more feasi-
ble, and software for sample size analysis should ex-
ploit them. Once the scenario modeling is done, you
must still (4) delineate the primary statistical methods
that will best address the research question. Finally,
the (5) aim of assessment must be clearly expressed
to ensure that the power and sample size computa-
tions accomplish the intended goal in study planning.
In hypothesis testing, you typically want to compute
the powers for a range of sample sizes or vice-versa.
All of this work has strong parallels to ordinary data
analysis. The section “Components of a Sample Size
Analysis” explains these steps in more detail.

User-developed SAS-based applications, such as
UnifyPow (O’Brien 1998) and the SAS/IML program

of Keyes and Muller (1992), already handle a wide
variety of problems in linear models. SAS Institute is
developing new software for power and sample size
analyses to cover the methods discussed in this pa-
per, along with a variety of other models discussed in
Castelloe (2000).

This paper describes different strategies for power
and sample size analysis for linear models in a series
of examples, starting with the t-test and progressing
through one-way analysis of variance (ANOVA), mul-
tiple regression, and multi-way ANOVA. In each ex-
ample, you will first learn about the specific ingredi-
ents required for the power or sample size computa-
tion for the linear model being considered. Then the
example will proceed to illustrate the implementation
of a power or sample size analysis following the five-
component strategy. Later sections describe unified
approaches for multivariate models with fixed effects
and suggest guidelines for extensions such as mul-
tiple comparisons, mixed models, and retrospective
analyses.

A Review of Power Concepts

Before explaining more about the five components of
a sample size analysis and proceeding through ex-
amples in linear models, a brief review of terminology
used in power and sample size analysis is in order.
Refer to Castelloe (2000) for a more thorough treat-
ment of these concepts.

In statistical hypothesis testing, you typically express
the belief that some effect exists in a population by
specifying an alternative hypothesis H1. You state
a null hypothesis H0 as the assertion that the effect
does not exist and attempt to gather evidence to re-
ject H0 in favor of H1. Evidence is gathered in the
form of sample data, and a statistical test is used to
assess H0. If H0 is rejected but there really is no ef-
fect, this is called a Type I error. The probability of
a Type I error is usually designated “alpha” or �, and
statistical tests are designed to ensure that � is suit-
ably small (for example, less than 0.05).

If there really is an effect in the population but H0 is
not rejected in the statistical test, then a Type II er-
ror has been made. The probability of a Type II er-



ror is usually designated “beta” or �. The probabil-
ity 1 � � of avoiding a Type II error, that is, correctly
rejecting H0 and achieving statistical significance, is
called the power. An important goal in study planning
is to ensure an acceptably high level of power. Sam-
ple size plays a prominent role in power computations
because the focus is often on determining a sufficient
sample size to achieve a certain power, or assessing
the power for a range of different sample sizes. Be-
cause of this, terms like power analysis, sample size
analysis, and power computations are often used in-
terchangeably to refer to the investigation of relation-
ships among power, sample size, and other factors
involved in study planning.

Components of a Sample Size Analysis

Even when the research questions and study design
seem straightforward, the ensuing sample size analy-
sis can seem technically daunting. It is often helpful
to break the process down into five components:

Study Design: What is the structure of the planned
design? This must be clearly and completely spec-
ified. What groups and treatments (“cells” and “fac-
tors” of the design) are going to be assessed, and
what will be the relative sizes of those cells? How
is each case going to be studied, i.e., what are the
primary outcome measures (“dependent variables”),
and when will they be measured? Will covariates be
measured and included in the statistical model?

Scenario Model: What are your beliefs about pat-
terns in the data? Imagine that you had unlimited time
and resources to execute the study design, so that
you could gather an “infinite data set.” Characterize
that infinite data set as best you can using a mathe-
matical model, realizing that it will be a simplification
of reality. Alternatively, you may decide to construct
an “exemplary” data set that mimics the infinite data
set. However you do this, your scenario model should
capture the key features of the study design and the
main relationships among the primary outcome vari-
ables and study factors.

Effects & Variability: What exactly are the “signals
and noises” in the patterns you suspect? Set spe-
cific values for the parameters of your scenario model,
keeping at most one unspecified. It is often enlighten-
ing to consider a variety of realistic possibilities for the
key values by performing a sensitivity analysis. Alter-
natively, construct two or three exemplary data sets
that capture the competing views on what the infinite
data set might look like. For linear models and their
extensions an important component is the “residual”
term that captures unexplained variation. The stan-
dard deviation (SD) of this term plays a critical role in

sample size analysis. What is this value? A sensitivity
analysis is usually called for in positing SD.

Statistical Method: How will you cast your model in
statistical terms and conduct the eventual data anal-
ysis? Define the statistical models and procedures
that will be used to embody the study design and esti-
mate/test the effects central to the research question.
What tests will be done? What significance levels will
be used? Will one- or two-tailed tests be used?

Aim of Assessment: Finally, what needs to be de-
termined in the sample size analysis? Most often
you want to examine the statistical powers obtained
across the various scenarios for the effects, the sta-
tistical procedures (tests) to be used, and the feasible
total sample sizes. Some analysts find sample size
values that provide given levels of power, say 80%,
90%, or 95%. Other analysts compute the value for
some key effect parameter (e.g., a given treatment
mean) that will provide a given level of power at a
given sample size. You might even want to find the
�-level that will provide a given power at a given sam-
ple size for a given effect scenario.

The following examples illustrate how these compo-
nents can provide a guiding structure to facilitate more
rigorous planning of studies involving linear models.

Preview of Examples

The examples are organized by different types of lin-
ear models. The main distinction is in the type of pre-
dictors (or independent variables) in the model. All ex-
amples are univariate, involving only one continuous
response variable. The first two examples are simple
cases involving only categorical predictors, the t-test
and one-way ANOVA. Multiple regression involves
predictors treated as continuous variables, although
some may be dummy (0/1) variables representing cat-
egories. The multi-way ANOVA with covariates con-
tains categorical predictors of interest and additional
continuous predictors used as covariates to reduce
excess variability. Finally, power computations for
the multivariate general linear model (GLM) are dis-
cussed, without a detailed example, and guidelines
are given for some common linear models extensions
not covered by examples.

The format of each example is as follows. First the
type of linear model is briefly explained, and the prob-
lem situation of the study planner is revealed. The
five-component strategy explained in the “Compo-
nents of a Sample Size Analysis” section is applied
to solve the problem, and then the power computa-
tion details are explained, including relevant equa-
tions and references. The equations are used to solve
the problem at hand, but they are sufficiently general



for the variety of different possible goals (e.g., solving
for power, sample size, etc.).

Ordinary Two-Sample t -test

The two-sample (pooled) t-test is equivalent to an
ANOVA with two groups and thus is a special case
of a linear model. Although power computations for
t-tests are widely understood and implemented, a
characterization following the five-component strat-
egy provides a useful framework for more complicated
examples. In addition, the last part of the example il-
lustrates the consideration of unbalanced designs and
costs.

Suppose an industrial chemist is researching whether
her firm should switch to a new grade of ammo-
nium chloride when producing an organic compound,
SHHS-01. A more expensive, finely ground grade is
touted to give a higher yield than the standard coarse
grade, but this needs to be tested. A 5% increase in
yield would offset the extra cost. The chemist’s goal is
to determine an appropriate sample size to have ade-
quate power in a comparison of the two grades using
a t-test.

Study Design: Under laboratory conditions de-
signed to mimic production conditions, equal numbers
of mini-batches of SHHS-01 will be made using either
the coarse or fine grade of ammonium chloride. The
primary outcome measure will be the yield, measured
simply as weight in grams.

Scenario Model: The conjectured “infinite data set”
has two groups of yields, each containing indepen-
dent and normally distributed data. The mean for the
fine group exceeds the mean for the coarse group.
There is no reason to suspect that the variability dif-
fers between groups.

Effects & Variability: Based on numerous previous
laboratory studies with the coarse ammonium chlo-
ride, the chemist knows that this yield averages about
160g/batch. Because this is an organic process, there
is significant variability as well, with a standard devia-
tion of 20g. For the fine ammonium chloride, biolog-
ical modeling predicts that the yield could be at least
10% greater, at 176g. The 20g standard deviation
should apply. This scenario is illustrated in Figure 1.

Statistical Method: The statistical question is
whether the fine grade ammonium chloride will pro-
duce at least 5% (8g) more SHHS-01 than the coarse
grade (to offset the extra cost). This situation con-
forms to an ordinary, one-tailed t-test, with hypothe-
ses H0 : �2��1 = �di� < 8 and H1 : �2��1 = �di� �
8. Making the mini-batches in the lab is inexpensive,
but making a Type I error could lead to establishing

a production process that is substantially more costly.
Hence, alpha will be set at 0.001 or, at most, 0.005.

}
125

175

200

150

(b
et

te
r)

yi
el

d 
(g

)

(w
or

se
)

coarse

225

}
fine

σ = 20

±2σ:
95%

±σ:
68%µ1 = 160

µ2 = 176

 

sdsd

Figure 1. Conjectured Scenario for Coarse and
Fine Grades

Aim of Assessment: If the fine grade is really
10% more effective, as believed, then it will save the
company a lot of money. Thus, failing to discover
this would be so costly that the chemist decides to
produce enough mini-batches to achieve a statistical
power of 99%. Remember, making and weighing the
mini-batches is relatively inexpensive. So the chemist
wants to determine the required sample size to pro-
vide 99% power.

This required sample size is determined by solving
the following equation for n:

power = P (t(2n� 2; Æ) � t1��;2n�2)

where t(u; Æ) is distributed as noncentral t with u d.f.
and noncentrality Æ =

p
n=2(�di� � �0)=�, and tp;u is

the pth quantile of the central t distribution with u d.f.

With 99% power, the required sample size per group
is n = 303 for � = 0.005 and n = 370 for � = 0.001.
Hence, using N = 740 total will achieve outstanding
control of Type I and Type II errors. N = 606 is also
feasible.

Unbalanced Designs and Cost Suppose that in the
lab it costs 75% more to produce a mini-batch using
the experimental fine grade of ammonium chloride.
The chemist wonders if an unbalanced design with
fewer fine mini-batches than coarse ones would pro-
duce as much power but at less cost. Consider a 3:2
sampling ratio, i.e., cell weights of w1 = 3/5 and w2 =
2/5.

Power computations can be performed in terms of



group weights and total sample size:

power = P (t(N � 2; Æ) � t1��;N�2)

where Æ =
p
Nw1w2(�di� � �0)=�.

To achieve 99% power using � = 0.001 requires 462
+ 308 = 770 cases versus 370 + 370 = 740 cases for
the balanced design. The unbalanced study design is
4.1% larger, but it would cost about 1.6% less to run.
While the ordinary two-group t-test has optimum sta-
tistical efficiency with a balanced design, it can have
sub-optimum budgetary efficiency if the cost per sam-
pling unit differs between the groups.

Note that two-tailed versions of the above formulas
are available, using the noncentral F = t2 distribution
(with noncentrality � = Æ2).

One-Way ANOVA with One-d.f. Contrast

This example extends the previous one by increasing
the number of groups from two to three. An appropri-
ate sample size will be determined for a comparison
(represented this time as a linear contrast) between
one group and the average of the other two.

Suppose the chemist introduced in the previous sec-
tion implements the comparison between the fine and
coarse grades of ammonium chloride and concludes
that the fine grade is advantageous, giving a yield
of about 176g as predicted. Plans to purchase the
fine grade chemical from Producer A are interrupted
when Producer B offers a package deal of “special-
fine” bundled with “super-fine” in a 1:1 ratio, for about
the same cost. Engineers at Producer B claim that
the special-fine grade yields 172g of SHHS-01, while
the super-fine yields 190g, with the same variability
as the fine grade from Producer A (SD = 20g). The
chemist is asked to compare the yield using Producer
A’s fine grade to the average yield of special fine and
super fine (used separately) supplied by Producer B,
with enough mini-batches to achieve 90% power if the
engineers are correct.

Study Design: The chemist will conduct experi-
ments using the three different grades of ammonium
chloride, with the two varieties from Producer B used
equally often and each twice as often as the Producer
A variety. In other words, the weights are 2 special-
fine : 2 super-fine : 1 fine (w1 = 0.4, w2 = 0.4, w3 =
0.2). The dependent variable is the yield in grams.

Scenario Model: The chemist will assume that the
chemicals from the two producers will produce mean
yields as previously surmised for Producer A and
claimed by engineers for Producer B.

Effects & Variability: The mean yields are conjec-

tured to be �1=172g (special-fine), �2=190g (super-
fine), and �3=176g (fine). The standard deviation is
assumed to be about 20g for each grade.

Statistical Method: A 1-way ANOVA will be con-
ducted to test a contrast of fine with average over
special-fine and super-fine, using the usual F statis-
tic with � = 0:05. The contrast can be written as a
CONTRAST statement for PROC GLM, for example,
as

contrast grade -1 -1 2

Aim of Assessment: The chemist wishes to calcu-
late the required sample size to achieve 90% power.

The required total sample size N can be calculated
from the following equation:

power = P (F (1; N �G; �) � F1��;1;N�G)

where

� = N

�PG

i=1 ci�i � c0

�2

�2
PG

i=1
c2
i

wi

and fcig are the contrast coefficients. The required
sample size is found to be 735 (rounded up from 732
to avoid fractional group sizes).

Multiple Linear Regression

Instead of categorical predictors as in the t-test and
1-way ANOVA, multiple regression involves continu-
ous and dummy independent variables. Although as
a special case multiple regression could be used with
dummy variables to conduct an ANOVA, the inten-
tion here is to demonstrate the more typical usage
focusing on tests of individual predictors controlling
for other predictors. Such a test is planned in this ex-
ample, and the goal is to compute the power.

One of the important considerations in multiple re-
gression and correlation analysis is whether to treat
the predictors as fixed or random. There are also
many alternative ways to characterize the effects, us-
ing various forms of correlations and regression co-
efficients. The example uses fixed predictors and in-
volves an effect specification in terms of partial cor-
relation. Following the example is a discussion of the
ramifications of the distinction between fixed and ran-
dom predictors and a collection of equations showing
the alternative ways to specify effects.

A team of preventive cardiologists is investigating
whether elevated serum homocysteine levels are



linked to atherosclerosis (plaque build-up in coronary
arteries). The analysis will use ordinary least squares
regression to assess the relationship between total
homocysteine level (tHcy) and a plaque burden in-
dex (PBI), adjusting for six other variables: age, gen-
der, and plasma levels of folate, vitamins B6 and B12,
and a serum cholesterol index. The group wonders
whether 100 subjects will provide adequate statistical
power.

Using the five components, the power analysis breaks
down as follows:

Study Design: This is a correlational study at a sin-
gle time. Subjects will be screened so that about half
will have had a heart problem. All eight variables will
be measured during one visit.

Scenario Model: Most clinicians are familiar with
simple correlations between two variables, so the col-
laborating statistician decides to pose the statistical
problem in terms of estimating and testing the partial
correlation between X1 = tHcy and Y = PBI, control-
ling for the six other predictor variables (RY X1jX�1).
This greatly simplifies matters, especially the elicita-
tion of the conjectured effect.

The statistician uses partial regression plots like that
shown in Figure 2 to teach the team that the partial
correlation between PBI and tHcy is the correlation of
two sets of residuals obtained from ordinary regres-
sion models, one from regressing PBI on the six co-
variates and the other from regressing tHcy on the
same covariates. Thus each subject has “expected”
tHcy and PBI values based on the six covariates. The
cardiologists believe that subjects who are relatively
higher than expected on tHcy will also be relatively
higher than expected on PBI. The partial correlation
quantifies that adjusted association just like a stan-
dard simple correlation does with the unadjusted lin-
ear association between two variables.

Effects & Variability: Based on previously pub-
lished studies of various coronary risk factors and af-
ter viewing a set of scatterplots showing various cor-
relations, the team surmises that the true partial cor-
relation is likely to be at least 0.35.

Statistical Method: Regress PBI on tHcy and the six
other predictors, plus the intercept. Use an ordinary F
test to assess whether tHcy is a significant predictor in
this model with seven predictors. The test presumes
that the residuals come from a normal distribution.

Aim of Assessment: Compute the statistical pow-
ers associated with N = 80 and 100, using � = 0.05
and 0.01.

X, adjusted for common set of 6 covariates

Y,
 a

dj
us

te
d 

fo
r 

co
m

m
on

 s
et

 o
f 6

 c
ov

ar
ia

te
s ρ = 0.35

Figure 2. Partial Correlation Plot

The exact power can be computed from the equation

power = P (F (p1; N � p� 1; �) � F1��;p1;N�p�1) (1)

where p is the total number of predictors in the model
(including the predictor of interest, but not the inter-
cept), p1 is the number of predictors being tested si-
multaneously (here, p1 = 1), and

� = N
R2
Y X1jX�1

1�R2
Y X1jX�1

(2)

The calculated powers range from 75% (N = 80, � =
0.01) to 96% (N = 100, � = 0.05). The latter result
is almost balanced with respect to Type I and Type II
error rates. The study seems well designed at N =
100.

Fixed vs. Random Predictors The computations
in the example assume a conditional model, as typ-
ically used in multiple linear regression. The predic-
tors (represented collectively as X) are assumed to
be fixed, and the responses Y are assumed to be
independently normally distributed conditional on X .
The usual test statistic considered is the Type III F
test where the null hypothesis states that all coeffi-
cients of the p1 predictors of interest are zero.

A related approach is the unconditional model, typ-
ically used in multiple correlation analysis, in which
predictors are assumed to be random. The variables
in Y and X are taken to have a joint multivariate nor-
mal distribution. Power computations differ for the
conditional and unconditional models. Gatsonis and
Sampson (1989) outline an exact power computa-



tion method for the unconditional model due to Lee
(1972).

It is important to note, however, that the usual test
statistics for conditional and unconditional models are
equivalent, having exactly the same null distribution.
“The conceptual difference between them is primarily
one of interpretation and generalizability of the con-
clusions” (Gatsonis and Sampson 1989, p. 516).
Thus the strategies for describing effects in each of
the two approaches can be used interchangeably in
sample size analysis. For example, the cardiologists
conjectured effects in terms of partial correlation but
planned to use multiple regression.

Alternative Effect Specifications The remainder
of this section describes the various ways you can
describe effects using different types of correlations
and regression coefficients. You can use the same
parameterizations for either conditional or uncondi-
tional models in power computations. The well-known
method for the conditional framework is outlined ex-
plicitly here, and you can refer to Gatsonis and Samp-
son (1989) for analogous computations in the uncon-
ditional framework.

Consider the general situation in which you are inter-
ested in testing that the coefficients of p1 � 1 pre-
dictors in a set Xj are zero, controlling for all of the
other predictors X�j (comprised of p � p1 � 0 vari-
ables). For the conditional model, the power can be
computed using equation (1), where the noncentrality
� is defined differently for various alternative specifi-
cations of the effects. You can choose whichever one
is most convenient for expressing the conjectured ef-
fects in your situation.

One such specification involves the multiple partial
correlation RY Xj jX�j

:

� = N
R2
Y Xj jX�j

1�R2
Y Xj jX�j

You can also express the effects in terms of the mul-
tiple correlations in full (RY j(Xj ;X�j )) and reduced
(RY jX

�j
) nested models:

� = N
R2
Y j(Xj ;X�j)

�R2
Y jX

�j

1�R2
Y j(Xj ;X�j )

(3)

The numerator of (3) is equivalent to the squared mul-
tiple semipartial correlation R2

Y j(Xj jX�j)
. Thus

� = N
R2
Y j(Xj jX�j )

1�R2
Y j(Xj ;X�j)

(4)

You may find it easier to work in terms of standard
(zero-order) correlations, even though there are more
parameter values to specify. A form of � involving
the correlations between Y and variables in X =
fXj ; X�jg (labeled as vectors �XY and �X

�jY ), and
between pairs of variables in X (labeled as correlation
matrices SXX and SX

�jX�j
), is given by the following:

� = N
�0XY S

�1
XX�XY � �0X

�jY
S�1
X
�jX�j

�X
�jY

1� �0XY S
�1
XX�XY

(5)

The remaining specifications apply only to cases in
which Xj consists of a single predictor.

You can express � in terms of the standardized re-
gression coefficient ( ~�j) of Xj ; the tolerance of Xj ,
computed as 1 � R2

Xj jX�j
in a regression of Xj

on the other predictors; and the multiple correlation
RY j(Xj ;X�j ) for the full model:

� = N
~�2j (1�R2

Xj jX�j
)

1�R2
Y j(Xj ;X�j)

(6)

Or, you can posit the unstandardized coefficient �j
along with the tolerance of Xj , SD of Xj (�Xj

), and
SD of residual (�):

� = N
�2j (1�R2

Xj jX�j
)�2Xj

�2

If an exchangeable correlation structure is deemed
reasonable, equation (5) can be simplified to include
only the common correlation between Y and each
predictor (�XY ) and the common pairwise correlations
between predictors (�XX):

� = N
�2XY (1� �XX)

[1 + (p� 1)�XX � p�2XY ][1 + (p� 2)�XX ]

A useful compromise between the exchangeable cor-
relation structure and the necessity of specifying all
correlations is a relaxed exchangeable correlation
structure (Maxwell 2000), which allows different cor-
relations �XjY between Y and Xj , and �XjX�j

be-
tween Xj and the other predictors, in addition to com-
mon correlations �X

�jY between Y and components
of X�j , and �X

�jX�j
between elements of X�j :

� = N
R2
Y j(Xj ;X�j)

�R2
Y jX

�j

1�R2
Y j(Xj ;X�j )

where

R2
Y j(Xj ;X�j)

=
n
�2XjY

[1 + (p� 2)�X
�jX�j

]+



(p� 1)�2X
�jY

� 2(p� 1)�XjY �X�jY �XjX�j

o
�

n
1� �X

�jX�j
+ (p� 1)�X

�jX�j
� �2XjX�j

o�1

and

R2
Y jX

�j
=

(p� 1)�2X
�jY

1 + (p� 2)�X
�jX�j

If you want to test contrasts of the regression coeffi-
cients, you can use the more general formulation dis-
cussed in the section “The Univariate GLM with Fixed
Effects.”

Multi-Way ANOVA with Fixed Effects and
Covariates

This next example features an ANOVA model that is
an extension of the kind of model considered in the
section “One-Way ANOVA with One-d.f. Contrast”
in the sense of having two factors (instead of one)
and additionally a continuous covariate. The planned
tests are also more complicated, involving several
contrasts. The goal of the scientists in the example is
to assess whether their largest possible sample size
will provide adequate (possibly excessive) power for
these tests.

The discussion in this section follows the five-
component layout as used in the previous examples.
Details regarding the mathematical power computa-
tions, and other alternative ways of describing the
components, are covered in the following section,
“The Univariate GLM with Fixed Effects.”

Suppose a team of animal scientists hypothesizes
that dietary supplements of the trace element sugian-
imum (fictitious) increase the growth rate in female
newborn rabbits. Standard rabbit chow contains 5
ppm sugianimum. The scientists want to study four
other supplemental formulations, +10, +20, +40, and
+80 ppm (with the standard chow designated as +0).
This will allow them to conduct an ANOVA to test
models with thresholds, ceiling effects, and/or dose-
response effects. They have sufficient facilities and
funding to study at most 240 rabbits but would be
pleased if fewer would seem to suffice.

Rabbits are eight to nine weeks old when they arrive
from the commercial breeder, and their body weight
is 1.5 � 0.25 kg (mean � SD). After eating only stan-
dard chow for the next 24 weeks, female rabbits of this
breed have a body weight of about 4.2 kg � 0.56 kg.

Study Design: The primary outcome measure will
be each rabbit’s body weight after 24 weeks on the
study.

Sugianimum level is represented by a factor called
Sugianimum Supplementation Level or SugiSupp,
with five levels (+0, +10, +20, +40, and +80 ppm).
The scientists will include rabbit feed from all five of
the major U.S. manufacturers (Gamma, Epsilon, Zeta,
Eta, and Theta) to enable greater generalizability of
the results. Call this factor Company. Thus, if all man-
ufacturers supplied all formulations, the design would
be a 5 � 5 factorial, Company � SugiSupp.

Suppose each company produces only two formula-
tions besides the standard one (+0 ppm), thus making
a complete factorial design impossible. The scientists
will use a randomized design with cell weights as dis-
played in Table 1. Thus, they are planning a 2:1:1
ratio for the standard and two supplemental formula-
tions for each company.

SugiSupp
Company +0 +10 +20 +40 +80

<1> Gamma 2 1 1 0 0
<2> Epsilon 2 1 0 1 0
<3> Zeta 2 0 1 0 1
<4> Eta 2 0 0 1 1
<5> Theta 2 1 0 0 1

Table 1. Cell Weights for Design

Rabbits that are larger at baseline tend to gain more
body weight during the study period. Because of
this correlation, the rabbits’ initial body weight Rab-
bitWgt00 could serve as a useful covariate by ac-
counting for extra variation in body weight at 24
weeks. So the scientists plan to include the measure-
ment of RabbitWgt00 in the study protocol.

Scenario Model: The scientists envision two differ-
ent scenarios for the means of body weights at 24
weeks across SugiSupp and Company. Both scenar-
ios assert a monotonically increasing dose-response
relationship until 40 ppm but a ceiling effect after
that, and the average weight gains differ by company.
“Scenario 1” conjectures that the pattern of sugiani-
mum effects is the same across companies, i.e., the
Company � SugiSupp interaction is null. “Scenario 2”
involves essentially the same main effects but reflects
the suspicion that Gamma’s +10 formulation is less ef-
fective than its own +0, and Epsilon’s +10 formulation
is unusually effective compared to its own +0.

Effects & Variability: For scenario 1, the scientists
conjecture means for the 5 � 5 factorial as shown in
Table 2. The means are displayed graphically in Fig-
ure 3.

One can confirm that these means conform perfectly



to the main-effects-only linear model,

�fCompany;SugiSuppg = 4:2 +AfCompanyg +BfSugiSuppg

where Af1g = 0.0, Af2g = -0.2, Af3g = 0.2, Af4g = -0.1,
Af5g = 0.1; and Bf+0g = 0, Bf+10g = 0.1, Bf+20g = 0.4,
Bf+40g = 0.5, Bf+80g = 0.5.

SugiSupp
Company +0 +10 +20 +40 +80

<1> Gamma 4.2 4.3 4.6 4.7 4.7
<2> Epsilon 4.0 4.1 4.4 4.5 4.5
<3> Zeta 4.4 4.5 4.8 4.9 4.9
<4> Eta 4.1 4.2 4.5 4.6 4.6
<5> Theta 4.3 4.4 4.7 4.8 4.8

Table 2. Conjectured Means for Scenario 1

3.8

4.0

4.2

4.4

4.6

4.8

5.0

w
ei

gh
t a

fte
r 

24
 w

ee
ks

 (
kg

)

+0 +10 +20 +40 +80
Sugianimum Supplementation Level (ppm)

Zeta

Eta
Epsilon

Theta
Gamma

Figure 3. Conjectured Means for Scenario 1

In scenario 2, the scientists consider the same main
effects but also a small interaction involving only the 2
� 2 cells in the top left corner of the table:

�f1;+0g = 4:3; �f1;+10g = 4:2;

�f2;+0g = 3:9; �f2;+10g = 4:2

All of the specifications for this problem can be incor-
porated into a single SAS data set, as follows.

proc plan ordered;
factors Company=5 SugiSupp=5 / noprint;
output out=Design Company cvals=(’Gamma’

’Epsilon’ ’Zeta’ ’Eta’ ’Theta’)
SugiSupp nvals=(0 10 20 40 80);

run;

data CellWeights;
input CellWgt @@;

datalines;

2 1 1 0 0
2 1 0 1 0
2 0 1 0 1
2 0 0 1 1
2 1 0 0 1
;

data CellMeans; keep Scenario1 Scenario2;
array A{5} (0.0 -0.2 0.2 -0.1 0.1);
array B{5} (0.0 0.1 0.4 0.5 0.5);
do i = 1 to 5; do j = 1 to 5;

Scenario1 = 4.2 + A{i} + B{j};
Scenario2 = Scenario1;
if ((i=1)&(j=1))

then Scenario2 = Scenario2 + 0.1;
else if ((i=1)&(j=2))

then Scenario2 = Scenario2 - 0.1;
else if ((i=2)&(j=1))

then Scenario2 = Scenario2 - 0.1;
else if ((i=2)&(j=2))

then Scenario2 = Scenario2 + 0.1;
output;

end; end;
run;
data rabbits5x5;

merge Design CellWeights CellMeans;
run;

The scientists consider 0.56 to be a reasonable guess
of the error SD, but they would also like to assess the
power assuming this SD is as high as 0.73. They be-
lieve there is a correlation of about �=0.45 between
baseline body weight and body weight after 24 weeks.
The design is randomized, and so there is no un-
derlying relationship between RabbitWgt00 and the
design factors, Company and SugiSupp. The team
also presumes that the Company and SugiSupp ef-
fects are not moderated by RabbitWgt00, i.e., there
is no RabbitWgt00 � Company or RabbitWgt00 �
SugiSupp interaction. Accordingly, the only effect of
adding RabbitWgt00 to the linear model will be to re-
duce the error standard deviation to (1 � �2)

1

2 of its
original value. Thus, � = 0.45 reduces the SD values

by 100
h
1� (1� �2)

1

2

i
% = 10.7%. So the conjectured

values for error SD (originally 0.56 and 0.73) become
0.5 and 0.65.

Statistical Method: The team assumes normality
for the distribution of rabbits’ body weights (condi-
tional on the explanatory variables). Variables such
as body weight tend to be positively skewed and may
need to be transformed prior to analysis. In addi-
tion, without such a transform, the SDs for the two
groups may not be equal, because there tends to be a
positive relationship between groups’ means and their
SDs. Both problems are often greatly mitigated by us-
ing a log transform, i.e., by assuming that the original
data is lognormal in distributional form. But for the
purposes of this example, assume that the normality
assumption for the body weights is reasonable.

This study could be analyzed in numerous ways. The



strategy chosen should be incorporated into a sample
size analysis that conforms to the data analysis plan.
The scientists decide to compare each of the four sup-
plemental formulations with the control in an ANOVA,
using a Bonferroni correction for multiple testing with
overall � = 0.05, or � = 0.05/4 = 0.0125 per test. Alter-
natively, they could use Dunnett’s test. They will also
test for a dose-response relationship, assuming that
the essential component of that relationship is cap-
tured using just the linear trend across the five levels
of SugiSupp. Formally, this assumes that +0, +10,
+20, +40, and +80 ppm of sugianimum are equally
spaced in terms of the potential effect on body weight.
The appropriate contrast is

contrast "linear trend" SugiSupp -2 -1 0 1 2

The model is a two-way ANOVA with main effects only
and a covariate, which can typically be specified with
SAS code as

freq CellWgt;
class Company SugiSupp;
model Scenario1 Scenario2 = Company SugiSupp

RabbitWgt00;

Note that scenario 2, with its small interaction effect,
does not satisfy this statistical model. But power com-
putations are still perfectly valid. It may be of inter-
est to investigate how a model misspecification affects
power.

Contrasts between the standard formulation and each
of the alternatives can typically be specified with SAS
code as

contrast "+0 vs +10" SugiSupp 1 -1;
contrast "+0 vs +20" SugiSupp 1 0 -1;
contrast "+0 vs +40" SugiSupp 1 0 0 -1;
contrast "+0 vs +80" SugiSupp 1 0 0 0 -1;
contrast "linear trend" SugiSupp -2 -1 0 1 2;

Significance will be judged at � = 0.0125 for the pair-
wise comparisons and � = 0.05 for the test of a linear
trend in dose response.

Aim of Assessment: The scientists want to ascer-
tain whether 240 rabbits are sufficient to provide ade-
quate power for their planned tests, according to their
two scenario models. They wonder whether fewer
rabbits might suffice. To investigate the effect of sam-
ple size on power, they will also consider a design with
only 160 rabbits.

The approach used to calculate power for this situa-
tion is explained in the next section, “The Univariate
GLM with Fixed Effects.” The results computed using
UnifyPow (O’Brien 1998) are displayed in Table 3.

� = .0125 for Standard Deviation
comparisons and .05 0.5 0.65

for linear trend Total N Total N
Scenario Test 160 240 160 240

1 +0 vs +10 .047 .067 .032 .043
2 +0 vs +10 .047 .067 .032 .043
1 +0 vs +20 .573 .788 .332 .515
2 +0 vs +20 .529 .746 .301 .473
1 +0 vs +40 .804 .948 .532 .749
2 +0 vs +40 .833 .961 .566 .782
1 +0 vs +80 .942 .994 .737 .912
2 +0 vs +80 .942 .994 .737 .912
1 linear trend .996 .999 .941 .991
2 linear trend .996 .999 .946 .992

Table 3. Power Values

So, the small degree of interaction (in scenario 2)
barely affects the power. Assuming these scenarios
are reasonable, a main-effects-only model should suf-
fice. The study is likely to find significance for the
linear trend in dose/respose and the higher formula-
tions of SugiSupp, but it is also very likely that +10 will
be deemed “below threshold.” The scientists should
be conservative in reporting non-significant results for
the threshold comparisons, since the power is quite
low until +40. If the SD is 0.65, then perhaps only
+80 would see a threshold effect. Given the medi-
ocrity of the power values, the scientists realize that
they should use all 240 rabbits.

As a side note, a power analysis ignoring the covari-
ate RabbitWgt00 reveals that the maximum possible
power with SD = 0.73, for tests other than the lin-
ear trend contrast (which has very high power in all
cases), is 82.4% for the contrast between +0 and +80
with N = 240.

The next two sections outline power computations for
the general framework of linear models with fixed ef-
fects (univariate and then multivariate) and alternative
strategies for specifying the relevant components.

The Univariate GLM with Fixed Effects

The example in the previous section involves an
ANOVA with two factors and a covariate, a special
case of the univariate GLM with fixed effects.

Methods for computing power for the general linear
model with fixed effects have been developed in a
series of papers, providing exact results for univari-
ate models, as well as good approximations for both
multivariate models and univariate approaches to re-
peated measures. Muller et al. (1992) summarize
results for these situations, and O’Brien and Shieh



(1992) develop a slightly improved power formula for
multivariate models.

The univariate GLM is discussed in this section, with
special emphasis on the alternative ways in which you
can specify the quantities involved in power computa-
tions. These quantities are encompassed by the five-
component layout as demonstrated in the examples
in this paper.

The multivariate GLM is discussed in the next sec-
tion. Computations for the univariate approach to re-
peated measures (with sphericity or without, using
Greenhouse-Geisser or Huynh-Feldt corrections) are
not discussed here but are similar in spirit to the ones
outlined in this section; details can be found in Muller
and Barton (1989) and Muller et al. (1992).

The univariate GLM is represented as follows:

Y = XB + � where � � N(0; �2)

where Y is the vector of responses, X is the design
matrix, B is the vector of effect coefficients, and � is
the vector of errors.

The independent variables represented in X may be
either categorical or continuous. Consequently, the
univariate GLM covers t-tests, fixed-effects ANOVA
and ANCOVA, and multiple linear regression, which
have been discussed along with examples in previous
sections. This section outlines a more general frame-
work and expounds on the various ways of expressing
the components required for a sample size analysis.

Typically, hypotheses of interest in these models have
the general form of a linear contrast

H0 : CB = �0

where C is a matrix of contrast coefficients and �0
is the null contrast value. Note that this formulation
covers the overall test and tests of individual effects
as special cases.

The components involved in power computations can
be broken down as follows, showing alternative for-
mats for how some of the quantities can be specified:

Study Design:
� design profiles: {essence design matrix} or

{exemplary X} or {empirical mean and co-
variance of X rows}

� sample size: {total sample size and
weights of design profiles} or {number of
replications of design profiles}

Effects & Variability:

� model parameters: {cell means} or {model
parameters using another coding scheme}
or {exemplary X and Y }

� error variance: {error standard deviation
(root MSE)} or {exemplary X and Y }

� multiple correlation between Y and contin-
uous covariates (if applicable)

Statistical Method:
� model equation

� contrast coefficients

� test statistic (including multiple comparison
information, if applicable)

� null contrast value

� significance level

Aim of Assessment:
� various (compute power, sample size, etc.)

The (exact) computation of power is intuitive in the
sense that it involves the noncentral F distribution
whose noncentrality is computed in exactly the same
way as the F test statistic except with estimates (B̂
and �̂) replaced by conjectured true values. For
the equations and other computational details, see
O’Brien and Shieh (1992). Although the equations
express power as a function of the other components,
solutions for sample size and other quantities can be
obtained via iteration.

There are several different ways in which you can
specify the components required to compute power.
You may choose to specify some or all quantities di-
rectly, such as the design matrix (X), error standard
deviation (�), and model parameters (B). Recall that
in the rabbit example in the previous section, SD was
posited directly.

Instead of the full design matrix, you can provide the
essence design matrix (the collection of unique rows
in X) along with the weights or frequencies of each
row. This has the benefit of expressing the design pro-
files and sample sizes independently of each other,
since the number of rows in the full design matrix X
varies with sample size.

Even if you don’t code the X matrix as a cell-means
model, you can express the model parameters B as
cell means, the collection of mean response values at
each factor-level combination. This is often the most
familiar coding scheme.

The CONTRAST statement in GLM and other
SAS/STAT procedures can be a handy shorthand
way for specifying contrasts of interest in complicated
models.



As an alternative to specifying quantities directly, you
can formulate an exemplary data set, a hypothetical
data set having the same format as the one that will
eventually be used in the data analysis. Instead of
gathering real data, however, you fill the exemplary
data set with “pretend” observations that are repre-
sentative of the scenario for which you want to per-
form power computations. It summarizes the mean
scenarios and cell weights under consideration. Often
this approach is easier (than direct parameter specifi-
cation) for inferring the design, effect values, and (op-
tionally) error standard deviation. Recall that in the
rabbit example in the previous section, an exemplary
data set was used to specify the design and means.

To provide a minimally useful amount of information,
an exemplary data set must contain each design pro-
file that will be used, and the response values must be
indicative of conjectured effects. This allows the de-
sign structure and effect values to be inferred. If the
design profiles occur in the same proportion as they
will in the actual study, then the profile weights and
error standard deviation can also be inferred. Since
the model and statistical test cannot be inferred from
exemplary data, they must be specified separately.

Special considerations apply in the presence of con-
tinuous independent variables (“covariates”), depend-
ing on whether they are involved in the statistical
tests. In a randomized design where the covariates
Xc are measured at baseline (before randomization)
and are not included in the contrast, you can com-
pute an approximate power as demonstrated in the
rabbit example in the previous section. Conjecture
the (multiple) correlation R2

Y jXc
between Y and Xc.

Reduce the standard deviation of the residual term to
�(1�R2

Y jXc
)
1

2 . Proceed as if the covariates are not in
the model, except that the degrees of freedom for the
residual is reduced by the number of covariates. This
simplification holds only if Xc is uncorrelated with the
variables already in the model.

If the covariate distribution differs across groups,
then the contrasts apply to the least square means
(LSMEANS) rather than to the simple means.

If covariates are included in the statistical tests, then
you have two feasible (albeit complicated) strategies
to choose from. For contrasts amounting to tests of
individual effects, you can re-cast the contrast and
effects in terms of correlations and use one of the
approaches described in the “Multiple Linear Regres-
sion” section. Or for any contrast, you can specify X
in its full form or in terms of its empirical mean and
covariance.

The Multivariate GLM with Fixed Effects

The multivariate GLM is an extension of the univari-
ate GLM in the sense of having more than one re-
sponse variable, i.e., Y is a matrix instead of a vec-
tor. Important special cases include repeated mea-
sures and MANOVA. Although exact power computa-
tions are not availiable except in the case of one-d.f.
contrasts, O’Brien and Shieh (1992) develop good ap-
proximate formulas.

As an example, the model used for the rabbits in the
“Multi-Way ANOVA with Fixed Effects and Covariates”
section could be extended to a multivariate model by
including body weight measurements at a number of
different times, say, 12, 24, and 36 weeks.

The multivariate GLM is represented as follows:

Y = XB + � where �i � N(0;�)

where Y is the matrix of responses, X is the design
matrix, B is the matrix of effect coefficients, � is the
matrix of errors (with rows f�ig), and � is the covari-
ance matrix of the Y columns (varying over “within”
factor levels). The matrix � is often referred to as the
covariance of repeated measures.

The hypothesis under consideration is the contrast

H0 : CBA = �0

where C is a “between” contrast matrix (involving ef-
fects specified by X), and A is a “within” contrast ma-
trix (involving the columns of Y ).

All of the sample size analysis components discussed
for the univariate GLM also apply for the multivariate
model. In addition, you must specify the test statistic,
the covariance of repeated measures, and the within
contrast matrix. Special forms of the within contrast
matrix give rise to special cases such as classical
MANOVA, growth profile analysis with time polynomi-
als, and between-trend analysis. Here is a summary
of the additional required components in a multivari-
ate GLM sample size analysis:

Study Design:
� number of repeated measurements (i.e.,

number of columns in Y )

Effects & Variability:
� covariance of repeated measures: {covari-

ance matrix} or {type of covariance ma-
trix and relevant parameters (for example,
compound symmetry or AR(1))} or {exem-
plary X and Y }

Statistical Method:



� “within” contrast coefficients

� test statistic: Wilk’s likelihood ratio,
Hotelling-Lawley trace, Pillai trace, etc.

A Survey of Other Situations

There are many types of linear models, and other ap-
proaches to the multivariate models with fixed effects,
not covered in the previous sections. This section
presents a brief summary for sample size analysis
with other popular types of linear models.

Lognormal Data When the data are lognormally
distributed in an ANOVA, you can specify effects in
terms of mean ratios, supply a conjecture for the co-
efficient of variation (assumed common across design
profiles), and proceed with the same approaches al-
ready developed for standard ANOVA models. Log-
normal outcomes occur in many situations, such as
when the response variable is a probability or growth
measurement. Often you can express cell means
conveniently in this paradigm, as a fraction of the ref-
erence or baseline level.

Multiple Comparisons When a study involves
multiple inferences or multiple comparisons, power
considerations require specifying precisely which in-
ferences you want power for. Westfall et al. (1999)
discuss the issue and give some computational tools.

Mixed Models Currently there is no accepted gen-
eral standard for power computations in mixed lin-
ear models, with both fixed and random effects, al-
though methods have been developed for some spe-
cial cases. It is an active area of research, and
currently simulation remains the recommended ap-
proach.

Some classes of models with random effects (for ex-
ample, simple split-plot designs) can be re-cast as
multivariate linear models, with the random effect
modeled instead as multiple response values. Power
analysis can thus be performed using the methods
discussed in this paper.

O’Brien and Muller (1993, section 8.5.2) show an ex-
act power computation for a one-way random-effects
ANOVA using a multiple of a central F distribution.
Lenth (2000) computes approximate power for a wide
variety of balanced ANOVA designs with fixed and
random effects (where all of the random effects are
mutually independent, inducing a compound symme-
try correlation structure) by constructing F tests as
ratios of expected mean squares and applying Sat-
terthwaite corrections for degrees of freedom. Effects
are specified as variance components for random fac-
tors and sums of squares for fixed factors.

Power analysis is particularly complicated for mixed
models, due to the wide variety of statistical tests that
are available. Helms (1992) develops a method for
computing approximate power for contrasts of fixed
effects, for the approximate F test involving REML
estimators of the model coefficients and covariance.
The non-null distribution is approximated by a non-
central F with noncentrality estimated much in the
same way as O’Brien and Shieh (1992) do for the
multivariate GLM, by replacing estimates with conjec-
tured true values.

Simulation Regardless of the availablility of ex-
act or approximate formulas for power computations,
simulation remains a viable approach for conducting a
sample size analysis for any linear model (indeed, any
statistical model). You must be able to simulate real-
izations of the model (in other words, data sets gener-
ated according to the conjectured model, design, ef-
fects, and variability), compute the test statistic, and
determine when the null hypothesis is rejected. You
can repeat this process and estimate power as the
percentage of rejections.

Retrospective Analysis This paper has focused
on prospective power calculations, performed as part
of study planning and not based directly on actual
data. Retrospective calculations attempt to infer the
power of a study already performed or estimate power
from pilot data. Bias corrections should be used in
such retrospective analyses. In addition, since the
variability in the observed data can be characterized
and propagated through the power analysis, confi-
dence intervals for power can be constructed. These
issues are discussed thoroughly in Muller and Pasour
(1997), Taylor and Muller (1996), and O’Brien and
Muller (1993).

Conclusion

Power and sample size determination has been illus-
trated for several varieties of linear models, ranging
from simple t-tests to multivariate models. For any of
these situations, you can gather the information re-
quired for power computations by considering five as-
pects of study planning: the design, scenario models
representing beliefs about the data, specific conjec-
tures about the effects and variability, the statistical
method to be used in data analysis, and the aim of
the assessment. The ensuing power computations re-
veal important aspects about the planned study, such
as adequate choices for sample sizes or the likeli-
hood of significant results. Future SAS software will
provide analytical tools to help you characterize and
solve such problems in power and sample size analy-



sis.

Acknowledgments

We are grateful to Virginia Clark, Keith Muller, Bob
Rodriguez, Maura Stokes, and Randy Tobias for valu-
able assistance in the preparation of this paper.

References

Castelloe, J.M. (2000), “Sample Size Computations
and Power Analysis with the SAS System,” Pro-
ceedings of the Twenty-Fifth Annual SAS Users
Group International Conference, Paper 265-25,
Cary, NC: SAS Institute Inc.

Gatsonis, C. and Sampson, A.R. (1989), “Multiple
Correlation: Exact Power and Sample Size Cal-
culations,” Psychological Bulletin, 106, 516–524.

Helms, R.W. (1992), “Intentionally Incomplete Lon-
gitudinal Designs: I. Methodology and Compar-
ison of Some Full Span Designs,” Statistics in
Medicine, 11, 1889–1913.

Keyes L.L. and Muller, K.E. (1992), “IML Power Pro-
gram,” available at ftp.bios.unc.edu/ pub/ faculty/
muller/power01/distrib/.

Lee, Y.S. (1972), “Tables of the Upper Percentage
Points of the Multiple Correlation,” Biometrika, 59,
175–189.

Lenth, R.V. (2000), “Java Applets for Power and Sam-
ple Size,” www.stat.uiowa.edu/ ~rlenth/Power/.

Maxwell, S.E. (2000), “Sample Size and Multiple
Regression Analysis,” Psychological Methods, 5,
434–458.

Muller, K.E. and Barton, C.N. (1989), “Approximate
Power for Repeated Measures ANOVA Lacking
Sphericity,” Journal of the American Statistical
Association, 84, 549–555 (with correction in vol-
ume 86 (1991), 255–256).

Muller, K.E., LaVange, L.M., Ramey, S.L., and Ramey,
C.T. (1992), “Power Calculations for General Lin-
ear Multivariate Models Including Repeated Mea-
sures Applications,” Journal of the American Sta-
tistical Association, 87, 1209–1226.

Muller, K.E. and Pasour, V.B. (1997), “Bias in Linear
Model Power and Sample Size Due to Estimating
Variance,” Communications in Statistics – Theory
and Methods, 26, 839–851.

Muller, K.E. and Peterson, B.L. (1984), “Practical
Methods for Computing Power in Testing the Mul-
tivariate General Linear Hypothesis,” Computa-
tional Statistics and Data Analysis, 2, 143–158.

O’Brien, R.G. (1998), “A Tour of UnifyPow: A SAS
Module/Macro for Sample-Size Analysis,” Pro-
ceedings of the Twenty-Third Annual SAS Users
Group International Conference, Cary, NC: SAS
Institute Inc., 1346–1355. Software and updates
to this article can be found at www.bio.ri.ccf.org/
UnifyPow/.

O’Brien, R.G. and Muller, K.E. (1993), “Unified Power
Analysis for t-Tests Through Multivariate Hy-
potheses,” In Edwards, L.K., ed. (1993), Applied
Analysis of Variance in Behavioral Science, New
York: Marcel Dekker, Chapter 8, 297–344.

O’Brien, R.G. and Shieh, G. (1992). “Pragmatic,
Unifying Algorithm Gives Power Probabilities
for Common F Tests of the Multivariate Gen-
eral Linear Hypothesis.” Poster presented at
the American Statistical Association Meetings,
Boston, Statistical Computing Section. Also, pa-
per in review, downloadable in PDF form from
www.bio.ri.ccf.org/UnifyPow.

SAS Institute Inc. (1999a). SAS/IML User’s Guide,
Version 8, Cary, NC: SAS Institute Inc.

SAS Institute Inc. (1999b). SAS/STAT User’s Guide,
Version 8, Cary, NC: SAS Institute Inc.

Taylor, D.J. and Muller, K.E. (1996), “Bias in Linear
Model Power and Sample Size Calculation Due
to Estimating Noncentrality,” Communications in
Statistics –Theory and Methods, 25, 1595–1610.

Westfall, P.H., Tobias, R.D., Rom, D. Wolfinger, R.D.
and Hochberg, Y. (1999), Multiple Comparisons
and Multiple Tests Using the SAS System, Cary,
NC: SAS Institute Inc.

SAS and all other SAS Institute Inc. product or ser-
vice names are registered trademarks or trademarks
of SAS Institute Inc. in the USA and other countries.
 indicates USA registration.

Other brand and product names are registered trade-
marks or trademarks of their respective companies.

Contact Information

John M. Castelloe, SAS Institute Inc., SAS Campus
Drive, Cary, NC 27513. Phone (919) 531-5728, FAX
(919) 677-4444, Email John.Castelloe@sas.com.

Ralph G. O’Brien, Department of Biostatistics and
Epidemiology/Wb4, 9500 Euclid Avenue, Cleveland,
Ohio, 44195. Phone (216) 445-9451, FAX (216) 444-
8023, Email robrien@bio.ri.ccf.org.

Version 1.2



Paper P704

Using the SAS® System to Estimate Sample Size Requirements for Small Sample
Confidence Intervals

Jim Penny, Center for Creative Leadership, Greensboro, NC

ABSTRACT
This paper presents an iterative procedure to compute the
minimum sample size required for the construction of small
sample confidence intervals. The explanation of the process
uses the context of computing confidence intervals around the
means of item ratings from 360-surveys. The results suggest
that the common number of 3 to 5 raters in a group may not
provide stable item means, and that the resulting feedback may
lack sufficient stability for making valid developmental decisions
using item-level feedback.

INTRODUCTION
The use of 360-assessments for developmental purposes has
become increasingly popular in the past several years, and the
question occasionally arises about the number of raters needed
for reliable feedback in 360-assessments. However, to speak to
the question about the number of raters, we must first decide
what we mean by “reliable.” There are many indices of reliability,
and they all use, more or less, the idea of replication (Feldt &
Brennan, 1989). That is, if we repeat the process, would we
achieve the same result? Using the context of replication, the
reliability of a 360-assessment is particularly important because
people receiving 360-feedback are likely to make behavioral
changes in an effort to improve their performance on the job.
(London & Beatty, 1993; London & Smither, 1995; Van Velsor &
Leslie, 1991)

Much of the information in many 360-feedback reports is rater
group means of items and scales. Using the context of
replication, we can phrase the question of reliability as “If we
repeat the process, will we achieve the same group means?”
Unfortunately, if there is one constant in this universe, it is
sampling variability, and, even if we repeat the process with the
same raters, not just similar raters, we are likely to receive
slightly different ratings because the context in which the raters
are thinking has likely changed.

However, barring a large contextual shift, it is reasonable to
expect that the raters would produce similar ratings at two
different times, and the degree of internal consistency that we
have seen in the many 360 surveys tends to support this
expectation. One could argue further, then, that the question of
how many raters we need for reliable feedback is a question of
sampling variability, and, given that the 360-feedback often
consists of item and scale means broken down by rater groups,
that question becomes “How many raters do we need to produce
stable means?” That is, how many raters do we need before the
random effect of sampling variability begins to negate itself?

We can rephrase this question in terms of the confidence interval;
however, to do so changes the question from simply one of “how
many raters do I need” because whenever two or more raters are
gathered one can always compute a confidence interval around
the sample mean. Rather, the question becomes one of
interpreting the confidence interval and of how the width of that
interval is indicative of the stability of the mean. The resultant
question is more intriguing, though less tractable. That question
is “How narrow do we need the confidence interval for the range
to be practical?” where “practical” is defined in the context of
narrow enough to be important though wide enough to be
obtainable.

THEORETICAL FRAMEWORK
The confidence interval gives us a numerical range around a

parameter estimate, where the confidence represents the
likelihood that a repeated estimation of that parameter would
produce a result within that range (Neter, Wasserman, & Kutner,
1985, p. 71). Alternatively, we can say that we know the
likelihood that this interval captures the population value of the
parameter (Glass & Hopkins, 1984, p. 183). Using the mean as
the statistic of interest, we call the sample mean a point
estimator, and refer to it as our one best guess at the true mean.
However, the one thing that we can say for sure is that the point
estimator is wrong; it may be close to the true value, but it is not
the true value, and this is where the confidence interval enters
this discussion, providing a margin of error for the point estimator.

The first step, then, in computing a confidence interval is to
compute the mean. The next step is to choose the confidence of
the interval, where confidence represents the likelihood that the
interval contains the true value. A common value is 95%, which
is analogous to the statistical significance level of .05. In addition
to the selection of the probability, the computation of the
confidence interval also requires the sample standard deviation
and the sample size.

We can write the 95% confidence interval with the following
equation (Neter, Wasserman, & Kutner, 1985, p. 11)

95% 975CI x t
s

ndf
x= ±

�

�
�

�

�
�,.

where t is the t-statistic. The df in the equation refers to the
degrees of freedom and is equal to n-1 where n is the number of
subjects. We call the x with the bar overhead “x-bar,” and it
represents the sample mean. The symbol sx represents the
sample standard deviation, and the symbol n represents the
sample size.

We sometimes call the value after the plus-and-minus in the
above equation the “margin of error,” and we use it as an
indicator of precision in the point estimator. The smaller the
margin of error, the more certainty we have in the precision of the
point estimator, where precision suggests that the point estimator
is close to the true value. Using the notation from the last
equation, we can write an expression for the margin of error,
using the symbol MOE to represent the value.

MOE t
s

ndf
x=

�

�
�

�

�
�,.975

If we ignore the dependency of t on the value of n, we can
rearrange this equation and solve it for n.

n
MOE

t sdf x

=
�

�
��

�

�
��

,.975

2

Now, all that we need to estimate the sample size is an
acceptable margin of error, a value for t, which unfortunately
depends on n, and the sample standard deviation.

ESTIMATING THE SAMPLE STANDARD
DEVIATION
The problem here, and the reason for the word “estimating” in the
section heading, is that we often do not have a sample from
which to compute the standard deviation, and we do not have it
because we have not yet decided how many people go into that
sample. We could compute the standard deviation using data we
have already collected, and use that value to estimate the value
that we might expect in the sample that we do not yet have.
However, it is likely that 360-assessment participants are going to
select small numbers of raters, perhaps in groups as small as
three to five, and we know that the means and standard



deviations in such small samples can be unstable, rendering any
estimation based on extant data questionable, so we will likely
benefit from a bit of theoretical reasoning.

It is nearly common knowledge that the standard deviation of
Likert-type items such as appear on many 360-surveys is more-
or-less one point (Church & Bracken, 1997; Gregarus & Robie,
1998; Rothstein, 1990). This phenomenon is the direct result of
assuming a normal distribution underlies the discrete rating scale.
For example, if you assume that a normal distribution centrally
underlies a 5-point Likert-type rating scale, then the central six
standard deviations of the distribution which subtend
approximately 99% of the data have a range from 1 to 5,
suggesting an approximate standard deviation of four-sixths of a
point.

Unfortunately, many factors can influence the distribution of
ratings produced by the use of Likert-type items. For example, a
scale that does not have symmetrical anchors may produce
distributions that differ from those produced by scales with
symmetrical anchors (Penny & Johnson, 1999). In addition, one
could anticipate that different groups of raters could produce
different distributions. For example, the raters of one group may
have more contact with the person they are rating than do the
members of another group who have less opportunity to observe
(Rothstein, 1990). Moreover, the ratings from supervisors are
likely to exhibit less variability than the ratings of direct reports
and peers (Conway & Huffcutt, 1997). If the targets of the survey
function toward one end of the scale, then it is likely that the
ratings will not span the entire scale Penny & Johnson, 1999).
For instance, it is unlikely that a high performing executive is
going to receive low ratings on items having to do with being a
successful executive. Lastly, the purpose of the survey is likely
to have an effect on the distribution of the ratings (Zedeck &
Cascio, 1982).

Hence, there are many reasons why some items may elicit a
tighter distribution of responses from raters while others may
elicit a looser distribution. However, the point remains that the
usual range of standard deviations of Likert-type items is about .5
point to about 1.5 points and usually rounds to 1 point. Hence,
when existing data do not exist to guide one’s selection of a
standard deviation, or when it seems dubious to use existing
data, it may be reasonable to expect a value of about 1 point for
the standard deviation of item ratings. For this research, we
chose to consider five values of the rating standard deviation.
There values were .50, .75, 1.0, 1.25, and 1.5 points.

ESTIMATING THE MARGIN OF ERROR
What span of points on a 5-point Likert-type scale constitutes a
sufficiently narrow range for an average? If one receives an
average rating of 3.0 from a group of raters, then would an
interval of 3.0 plus or minus 1.0 be sufficient? To answer that
question, we might ponder for a moment just what that interval
suggests. Recall that one interpretation of the 95% confidence
interval is that there is a 95% probability that the interval contains
the true mean. This interpretation then suggests that the true
mean could be any number between the ratings 2 and 4 on this
scale, and given 2 to 4 spans 50% of the rating scale, it is not
difficult to argue that such a range is nearly meaningless.

What we need, then, is some idea for how small the margin of
error needs to be, and it is likely that different distributions of
ratings will suggest different margins of error. The expected
distribution of the ratings will surely influence the choice of the
margin of error, but it may be that the purpose of the survey has a
greater effect on this choice. For instance, a survey used for
selection may require smaller margins of error than would a
survey used for developmental purposes. The explicit choice of a
margin of error seemed beyond the scope of this discussion, so
we examined four values of the margin of error. These values
were .25, .5, .75, and 1 point.

COMPUTATIONAL METHODOLOGY

We have values, now, for the standard deviation of the rating and
the margin of error. We could use the prior equation to compute
the sample size if we knew the value of t. The difficulty is that t is
dependent on the sample size, and, because we are computing
the sample size, we cannot look up the appropriate value of t.
Moreover, we cannot readily solve t for n. We have to use
numerical methods to estimate the value of n for the chosen
values of the standard deviation and the margin of error.

One iterative numerical procedure that we can consider with this
problem begins with an initial value of t corresponding to the
smallest value of n that is possible. For a 95% confidence
interval with n=2, t=12.71, and we can use this value of t to
estimate the next value of n. Obviously, this new value of n will
be incorrect, but we can call it our first best guess. We then use
this best guess for n to update the value of t, and that update
enables our re-estimation of n. We continue this process until
the values of n are not changing substantially. Acton (1970, pp.
41-86) and Press, Flannery, Teukolsky, & Vetterling (1989, pp.
270-308) describe such an iterative procedure for finding the
roots of transcendental equations. Appendix 1 presents the code
to implement this procedure using the SAS® System.

RESULTS
Table 1 provides a list of minimum sample sizes for both 90%
and 95% confidence intervals using the five values of the
standard deviation and the four values of the margin of error
presented in the preceding text. We rounded the values of n to
the nearest greater integer. The numerical procedure generally
converged in about 5 to 6 iterations; it did not converge when the
margin of error exceeded the standard deviation of the ratings.
The time required for the program to reach convergence was
negligible, and we allowed the program to write its few lines of
output to the SAS log file from which we could copy the final
value of the sample size. Additional code to route the output
from the log to an external file would be easy to incorporate, and
would provide the ability to collect the output from several
programs executions in a single file.

DISCUSSION
The sample sizes given in Table 1 are a bit larger than those
frequently encountered in many 360 surveys where one generally
finds 3 to 5 raters in a group. Moreover, Greguras & Robie
(1998) and London & Smither (1995) suggested that the usual
number of raters selected for 360-surveys may be too small for
the estimation of stable means of most items and some scales.
In addition, Bozeman (1995) suggested that feedback based on
small samples might not be useful, and Kluger & DeNisi (1996)
presented evidence to suggest that perhaps as many as one-third
of those who made behavioral changes after reviewing 360-
feedback actually experienced decreased performance.
However, Van Velsor & Leslie (1991) suggested that some
circumstances exist in which such ratings may be sufficiently
stable for use in feedback reports.

Our study, the context of which was the presentation of means
based on responses to single items, appeared to agree more with
the suggestion of Greguras & Robie (1998). It is without doubt
that the use of more raters will generally produce distributions
with smaller standard errors due to the increase in sample size.
However, using more raters adds to the resource required to
complete the 360-survey, and, given the growth in the use of 360-
assessment, some managers may feel the need to use fewer
raters. That response is understandable. However, doing so
may produce means that lack sufficient stability, or accuracy, for
use in making useful developmental decisions.

One might suggest there are other means by which we can
reduce the standard errors of the rating means. For example, the
computerized administration of the survey might decrease the
time required to complete the items, suggesting the possibility of
more raters for the same amount of resource currently used. The
techniques of computer adaptive testing (CAT) could substantially
reduce the time required to complete a survey by presenting only



as many items as we need to estimate a scale score (Thissen,
1990). However, the use of CAT not only presumes large
samples for the estimation of item characteristics but also likely
precludes, or at least makes difficult, the presentation of item
level feedback owing to the nature of CAT to use different items
with different raters while estimating the latent trait represented
by the items (Wainer & Mislevy, 1990).

Alternative methods may exist to reduce the standard errors of
the rating means. For instance, the selection of raters can
influence the standard deviation of the ratings, and raters who
have additional opportunity to observe the behaviors assessed by
the survey will likely respond with reduced measurement error
(Rothstein, 1990). Hence, if circumstances necessitate a small
number of raters, then the selection of raters who have more
opportunity to observe the person they are rating is likely to
reduce the magnitude of the standard errors of the rating means.
Moreover, coaching raters on the behaviors assessed by the
survey seems likely to heighten the awareness of the raters, to
make them efficient observers, and, subsequently, to reduce the
measurement error in their ratings. However, coaching requires
time, and the more sophisticated ratings that coached raters may
provide likely will require more time on the part of the raters.

The importance of performance and behavioral information from
the people with whom one works is without question. However,
the manner in which we gather that information may influence the
reliability of the interpretation of the feedback report, which, in
turn, limits the validity of that interpretation, resulting in some
developmental decisions that could be sub-optimal.

REFERENCES
Acton, F. S. (1970). Numerical methods that work.

New York: Harper & Row.
Bozeman, D. P. (1995). Interrater agreement in multi-

source performance appraisal: A commentary. Journal of
Organizational Behavior, 18, 313-316.

Church, A. H., & Bracken, D. W. (1997). Advancing
the state of the art of 360-degree feedback. Group and
Organizational Management, 22, 149-161.

Conway, J. M., & Huffcutt, A. I. (1997). Psychometric
properties of multisource performance ratings: A meta-analysis
of subordinate, supervisor, peer, and self-ratings. Human
Performance, 10, 331-360.

Feldt, L. S., & Brennan, R. L. (1989). Reliability. In
Linn, R. l. (Ed.) Educational measurement, 3rd Edition. New
York: Macmillan.

Greguras, G. J., & Robie, C. (1998). A new look at

within-source interrater reliability of 360-degree feedback ratings.
Journal of Applied Psychology, 83, 960-968.

Glass, V. G., & Hopkins, K. D. (1984). Statistical
methods in education and psychology, 2nd edition. Needham
Heights, MA: Allyn and Bacon.

Kluger, A. N., & DeNisi, A. (1996). The effects of
feedback interventions on performance: A historical review, a
meta-analysis, and a preliminary feedback intervention theory.
Psychological Bulletin, 119, 254-284.

London, M., & Beatty, R. W. (1993). 360 degree
feedback as competitive advantage. Human Resource
Management, 32, 353-373.

London, M., & Smither, J. W. (1995). Can multi-
source feedback change perceptions of goal accomplishment,
self-evaluation, and performance-related outcomes? Theory-
based applications and directions for research. Personnel
Psychology, 48, 803-839.

Neter, J., Wasserman, W., & Kutner, M. H. (1985).
Applied linear statistical models: Regression, Analysis of
variance, and experimental designs. Homewood, IL: Richard D.
Irwin.

Penny, J., & Johnson, R. L. (Nov. 1999). The Effect of
Rating Augmentation on Likert-type Responses: An Exploratory
Empirical Study. Paper presented at the annual meeting of AEA,
Orlando, Florida.

Press, W. H., Flannery, B. P., Teukolsky, S. A., &
Vetterling, W. T. (1989). Numerical recipes in Pascal.
Cambridge, MA: Cambridge University Press.

Rothstein, H. R. (1990). Interrater reliability of job
performance ratings: Growth to asymptote level with increasing
opportunity to observe. Journal of Applied Psychology, 75, 322-
327.

Thissen, H. (1990). Reliability and measurement
precision. In Wainer, H. (Ed.) Computerized adaptive testing: A
primer. Hillsdale, NJ: Lawrence Erlbaum.

Thissen, H., & Mislevy, R. J. (1990). Item response
theory, item calibration, and proficiency estimation. In Wainer, H.
(Ed.) Computerized adaptive testing: A primer. Hillsdale, NJ:
Lawrence Erlbaum.

Van Velsor, E., & Leslie, J. B. (1991). Feedback to
managers: Vol 1. A guide to evaluating multi-rater feedback
instruments. Greensboro, NC: Center for Creative Leadership.

Zedeck, S., & Cascio, W. F. (1982). Performance
appraisal decisions as a function of rater training and purpose of
appraisal. Journal of Applied Psychology, 67, 752-758.



Table 1: Minimum sample sizes for 90% and 95% confidence intervals

Margin of

Error

Standard

Deviation

Sample Size if

Confidence=.90

Sample Size if

Confidence=.95

0.25 1.50 100 141

0.50 1.50 27 38

0.75 1.50 13 18

1.00 1.50 9 12

0.25 1.25 70 99

0.50 1.25 19 27

0.75 1.25 10 14

1.00 1.25 7 9

0.25 1.00 46 64

0.50 1.00 13 18

0.75 1.00 7 10

1.00 1.00 5 7

0.25 0.75 27 38

0.50 0.75 9 12

0.75 0.75 5 7

1.00 0.75 - -

0.25 0.50 13 18

0.50 0.50 5 7

0.75 0.50 - -

1.00 0.50 - -

Note: The numerical procedure used in this analysis does not converge if the margin of error exceeds the standard deviation of the ratings.



Appendix 1: SAS code to estimate minimum samples sizes for small confidence intervals

/* This program estimates the number of raters necessary to achieve
a 95% confidence of a minimum width

confi = confidence
sx = standard deviation of ratings
moe = acceptable margin of error
n_hat = current estimate of minimum sample size
t_hat = t-statistic corresponding df=n_hat-1 and p=1-alpha/2
n_prev = value of n_hat in prior iteration

Note: The TINV function returns the t associated with the
probability in the left tail. This code contains an adjustment
to produce the positive t needed for the confidence interval. For
example, if CONFI=.95 and n=2, then the program passes the value
.975 to TINV, which then returns 12.71

*/

data _null_;

confi = .90;
sx = .75;
moe = .25;

/* begin iterations with n=2 raters */
n_hat = 2;
t_hat = tinv(confi+(1-confi)/2, n_hat-1);

put 'Beginning estimation procedure';
do until ((n_hat - n_prev) = 0);

put 'Current estimate =' n_hat;
n_prev = n_hat; /* retain prior estimate of n */
n_hat = ((t_hat*sx)/moe)**2; /* compute new estimate of n */
t_hat = tinv(confi+(1-confi)/2,n_hat-1); /* compute t for ne n */
n_hat = int(n_hat) + 1; /* truncate decimals and round up by 1 */

end;
put 'Convergence achieved at n =' n_hat;

run;

Contact Information
Your comments and questions are valued and encouraged. Contact the author at:

Jim Penny
Center for Creative Leadership
One Leadership Place
Greensboro, NC 27438-06300
Work Phone: 336-286-4442
Fax: 336-286-4434
Email: pennyj@leaders.ccl.org
Web: www.ccl.org



Optimal Solution of Discrete Resource Allocation Problems with SAS/OR Software 
by LTC Doug McAllaster, US Army Logistics Management College, Fort Lee, VA 

 
 

ABSTRACT  
 
This paper is a tutorial on how to use SAS/OR PROC LP to 
solve integer programming problems.  SAS/OR (operations 
research) software includes PROC LP which solves linear 
programming (LP) problems.  This same procedure also 
includes the capability to solve integer programming (IP) 
problems, a very important class of problems which models 
discrete (binary: yes or no) decisions.  This paper describes 
some classic integer programming models, all of which PROC 
LP can solve.  Although the paper is primarily a verbal 
description of classic LP & IP models (and includes their 
algebraic formulations in the appendix), my presentation of this 
paper will focus on graphical representations (which are much 
more readily intelligible) like those in the appendix. 
 
OVERVIEW 
 
We begin with easier problems and work our way up to the more 
difficult ones.  First, we describe three foundational LP models 
which are classic network flow problems: (1) assignment model, 
(2) transportation model, & (3) transshipment model.  These 
problems have a special structure and are easier to solve using 
PROC NETFLOW rather than with the more general PROC LP.  
Then we examine three important and special applications of the 
transshipment model: (1) shortest path, (2) maximal flow, (3) 
maximal matching.   
 
Second (having warmed up), we describe some pure integer 
programming models which are classic location models.  These 
models are concerned with optimal placement of facilities to 
serve customers.  We describe three classic models: (1) 
complete cover, (2) maximum cover, and (3) median placement. 
 
CLASSIC NETFLOW MODELS 
 
The assignment model gives an optimal assignment of people to 
jobs.  Here we have N people and N jobs.  There is some cost 
associated with a person performing a job.  The model will 
assign a person to each job at minimal cost.  We represent this 
model using a network where each node on the left represents 
one person and each node on the right represents one job. See 
the assignment model panel. 
 
The transportation model has a very similar structure and 
network.  This model is concerned with shipping goods from 
supply nodes (plants or warehouses) to demand nodes 
(customers) in order to minimize the transportation cost of 
meeting all the demand.  Left hand nodes are plants, right hand 
nodes are customers.  The numbers represent the supply of 
"widgets" at each plant and the demand for "widgets" at each 
customer.  See the transport model panel. 
 
Finally, the transshipment model is the most general network 
flow model.  It permits a more general structure for the network.  
These networks can include intermediate nodes.  Furthermore, 
the intermediate nodes may be supply, demand, or transshipment 
nodes.  The latter is a node which simply sends out whatever 
comes in, i.e., it's neither a supply nor a demand, it's just a node 

at which branching takes place, a "middleman," if you will.  See 
the transship model panel. 
 
The obvious application of the transshipment model is to meet 
customer demands from supplies at minimum cost.  Thus, this is 
often called the minimum cost network flow problem (MCNFP).  
Less obvious, however, is that the MCNFP has very wide 
applicability.  In fact, Glover, Klingman, & Phillips (see 
references) wrote an entire book describing the practical 
application of these models.  For example, optimization analysts 
often use it to solve multiperiod production and inventory 
planning problems. 
 
INPUT TABLES 
 
PROC NETFLOW requires two data tables to solve this model, 
nodedata and arcdata.  The nodedata table requires two columns: 
node and supdem.  Node is character, supdem is numeric, where 
positive integers are the supply at a node and negative integers 
are demands.  The arcdata table requires three columns: from, 
to, and cost.  Columns from and to are character and are the 
beginning and ending nodes of the arc, respectively. (Naturally, 
each from and to value in arcdata must match a node value in 
nodedata.)  The cost column gives the cost to ship a unit along 
the arc.   
 
From these two tables, PROC NETFLOW internally generates a 
single equation (or constraint) for each node.  Each node's 
equation requires: (the sum of flows out of it) minus (the sum of 
flows into it) equal to (its supdem).  The appendix has the 
algebraic formulation of the transshipment model.  Both the 
assignment and transportation models are special cases of the 
transshipment model. 
 
The output table is a listing of the flow on each arc.  This flow 
minimizes total cost while meeting all of the nodal (supply and 
demand) constraints. 
 
SEMINAL APPLICATIONS 
 
We now consider two seminal applications of the MCNFP.  The 
shortest path problem solves the problem of finding the shortest 
path from some source node to some demand node, through a 
set of intermediate transshipment nodes.  We model this 
problem using the MCNFP with a supply of unity at the source 
node and a demand of unity at the sink node.  Note that the 
solution to this problem is a single continuous path through the 
network from source to sink. 
 
The maximal flow problem is similar, except that now our 
problem is to find out how many "widgets" we can get through 
our network from the source to the sink.  This requires a simple 
(but not obvious) modification to the network. We add a new 
"return" arc from the sink back to the source and simply tell the 
model to maximize the flow along it.  Note that all of the nodes 
are transshipment nodes, that is whatever flows in also flows 
out.  One can think of the model as increasing the flow along the 
return arc until we achieve the maximum  capacity of the 
network. 



 
We conclude with a special and important application of the 
maximal flow problem to solve the maximal (bipartite) matching 
problem.  In this situation, we have two disjoint sets, e.g., men 
and women.  We indicate compatibility of man to woman with 
the existence of an arc between them.  We introduce the return 
arc and simply maximize its flow to give us the matching which 
maximizes the number of couplings. 
 
NETWORK ADVANTAGES 
 
Network flow models have some great advantages over the more 
general linear programming models.  These models are easy to 
comprehend, largely because they have a readily intelligible, 
graphical representation.  Furthermore, these models are quite 
easy to code using SAS.  The programmer simply provides a 
table of nodes and a table of arcs. 
 
Next, these models enjoy a special internal structure which 
makes the solution times very fast (computationally easy).  This 
structure also insures that the optimal flow values are integer.  
We get integer answers naturally; that is, without specifically 
constraining the optimizer to use much more complicated and 
potentially intractable integer programming solution (branch and 
bound) methods .  That is, we get integer answers for free. 
 
Finally, these models are very widely applicable to many 
business situations.  Analysts often model a physical situation in 
which the main constraint is simply that "widgets" do not 
disappear.  This "conservation of flow" is a fundamental fact in 
much of the physical universe. 
 
CLASSIC LOCATION MODELS 
 
We now describe some pure integer programming models which 
are classic location models.  Location models enable us to 
determine the optimal placement of facilities to service some 
customers.  Again, these models are quite easy to comprehend 
due to their physical and visual representation on the Euclidian 
plane.  We consider three classics: complete cover, maximum 
cover, and median placement. 
 
COMPLETE COVER 
 
Consider the problem of locating fire stations to service cities.  
Here we obviously require a complete cover of all cities.  We 
have a list of candidate sites for fire stations, a list of cities we 
must cover, distances between sites and cities, and some critical 
distance within which each city must have a fire station.  We 
need to minimize the number of fire stations while providing 
complete coverage of the cities.  This problem is a discrete one.  
That is, our solution must tell us whether or not to place a fire 
station at a candidate site.  Also, note that we need to know both 
how many and where to put the fire stations. 
 
We model this situation with a bipartite network.  One side has 
the candidate fire station locations and the other has the cities 
we must cover.  We derive the existence of an arc between a site 
and city from the distance table and the critical distance.  See the 
complete cover panel in the appendix. 
 
In this model we have several binary unknowns to consider 
simultaneously.  That is, we first must consider the sites as being 
either "on" or "off."  Then, we consider that turning a site node 

"on" enables all the arcs which emanate from it, thus covering 
the respective cities. 
 
An example of a covering problem on a map of the US is in the 
appendix.  This example has 24 customer cities which must be 
covered by up to 8 candidate sites.  Sites can cover cities which 
are within 999 miles.  The solution shows that we can cover all 
24 cities using only three sites.  Also note that five cities are 
covered twice. 
 
There are a few important differences between the former 
network flow models and this covering model.  Here the fire 
stations do not exist yet!  Furthermore, we are not flowing 
known quantities through the network.  For example, one fire 
station can cover multiple cities.  Likewise, a city may be 
covered by multiple fire stations.  We cannot us network flow 
methods since we do not have fixed supplies and demands.  
Thus, we cannot use PROC NETFLOW. 
 
The algebraic version of the model is in the appendix.  It is 
fairly straightforward.  Our binary analysis decision variable, Xi, 
is whether or not we place a facility at a candidate site.  Our 
objective is to minimize the total number of facilities and our 
constraint is to cover each city at least once. 
 
MAXIMUM COVER 
 
Now we consider the less critical situation of locating libraries 
to provide service to cities.  Here we still have candidate sites 
and cities to service.  However, we do not have to completely 
cover each and every city (nobody burns without books).  
Rather, we consider the number of citizens in a city as the 
measure of importance for covering it.  Our payoff is pleasing 
the most patrons.  Another difference here is that we have some 
fixed number of libraries we will place.  We still have the 
distance matrix between sites and cities as well as the some 
cutoff distance within which we consider a city covered. Thus, 
the only addition to our basic sites to cities graph is that we now 
have payoff values associated with the city nodes.  See the 
maximum cover panel in the appendix. 
 
The algebraic version of the model is also in the appendix.  This 
model is more complicated in that we have an additional set of 
binary decision variables, Zi, indicating whether a city is 
covered by some site.  The objective is to maximize the grand 
total sum of covered patrons.  The simple constraint is to place 
no more than the given (P) number of libraries.  The other 
linking constraint insures that we only get credit for covering a 
city if it is within the cutoff distance of some site. 
 
MEDIAN PLACEMENT 
 
Our third classic location problem is concerned with minimizing 
the distance traveled from service sites to customer cities.  Thus, 
the major difference is our method for handling distance.  In the 
previous models, there was a critical or cutoff distance within 
which a city was covered, outside of which it was naked.  Now, 
we consider distance in a linear (not binary) fashion, i.e., any 
service site can cover any city, but our objective is now to place 
our given (P) sites in the "weighted middle" of the cities.  Thus, 
we are back to meeting the demand at every customer city, it's 
just that some folks have to make a long trip for service. 
 



Of course, we know this is true in practice; for example, that 
medical facilities are located near population centers, small 
towns don't have retail super-centers.  There are a plethora of 
applications of this model: for locating health clinics, post 
offices, grocery stores, et cetera. 
 
Our basic network requires only slight modifications.  We still 
have candidate sites on the left and cities (customers) on the 
right.  Furthermore, we retain the demand weight (population) 
for each city as in the maximum cover problem.  The major 
difference is that our network has more arcs since every site can 
service every city.  (That is, our we cannot reduce our original 
dense distance matrix to a sparse binary one, as in the covering 
problems.)  See the median placement panel in the appendix. 
 
The algebraic model for this problem is also in the appendix.  
The algebraic model is significantly different from covering 
problems in that we now have a set of Yij binary decision 
variables for the assignment of sites to cities.  We require this 
more extensive set of variables since we now must keep track of 
who goes where for service in order to accurately account for 
the total travel distance of customers.  The objective minimizes 
the population weighted distance from cities to sites.  The first 
constraints simply insures we build P sites.  The second 
constraints insures that each city (customer) has a (service) site. 
The third linking constraint ensures that if a site doesn't exist, 
then no customer can go there for service. 
 
NATIONAL GUARD 
 
The Army National Guard (ARNG) annually faces a discrete 
location problem.  I have simplified both the scope and details 
of the problem for this presentation.  See Murty and Djang for a 
complete description.  Each spring ARNG places a half-dozen 
mobile combat trainers at armories for the coming summer 
training cycle.  The is the median placement problem; we we 
have a given number of trainers (P), candidate sites (large 
ARNG centers capable of housing incoming troops and 
supporting the training), and customer cities (consider each 
state's centroid, weighted by its ARNG population).  See the 
appendix for a SAS/GRAPH map of this problem and its 
solution. 
 
PROC LP 
 
Although we were able to display the above pure integer 
programming problems on a network, these are not network 
flow models since we cannot fix the supply & demands a priori.  
As mentioned above, this is unfortunate since PROC 
NETFLOW is amenable to very easy coding. 
 
Rather, we have to solve these IP models with PROC LP. Now, 
PROC LP can solve any general linear and integer programming 
problem.  However, as a result of its general problem solving 
capability, the analyst must specify the objective and constraint 
equations explicitly.  This is not a trivial task.  But, of course, 
DATA STEP or PROC SQL programming provides adequate 
capability to generate the input table. 
 
INPUT TABLE 
 
PROC LP can accept the input table in either dense or sparse 
format. The appendix has both formats for our complete cover 
model.  The dense format has a row for each equation in the 

model.  Each variable (column) is an analysis decision variable.  
This format directly reflects the algebraic equations.  However, 
since an LP may have hundreds of decision variables, the more 
common format is the sparse (or coefficient) format.  Here we 
have an observation for each non-zero coefficient and identify 
the coefficient's location in the model equations with a row and 
col variable.  The type variable identifies the type of equation. 
 
CONCLUSION 
 
SAS/OR software can solve integer programming problems.  
This paper describes some classic integer programming 
applications, their formulations, graphical representations, and  
the input data required for PROC LP to solve a problem. 
 
REFERENCES 
 
The Wiley-Interscience Series in Discrete Mathematics and 
Optimization includes two excellent books which are readily 
intelligible to the interested reader. 
 
Glover F., Klingman D., and Phillips N., Network Models in 
Optimization and their Applications in Practice, 1992, John 
Wiley and Sons. 
 
Daskin, Mark. Network and Discrete Location: Models, 
Algorithms, and Applications, 1995, John Wiley and Sons. 
 
SAS Institute Inc. SAS/OR User's Guide Version 6 First Edition, 
Cary, NC: SAS Institute Inc. 1989. 479pp. 
 
Murty, K. and Djang, P.,  1999. The US Army National Guard's 
Mobile Training Simulators Location and Routing Problem. 
Operations Research 47(2) March- April, 175-182. 
 
TRADEMARK 
 
SAS is a registered trademark or trademark of SAS Institute Inc. 
in the USA and other countries.  indicates USA registration.  
 
Other brand and product names are registered trademarks or 
trademarks of their respective companies. 
 
AUTHOR CONTACT 
 
You may contact me at: McAllasterD@Lee.Army.Mil  
 



TRANSSHIPMENT MODEL determine flows thru network to meet demands but
not exceed supplies

analysis decision variables and input data

Xij − advar −# units to flow from node i to node j thru arc(i,j)
Bi − input − net supply or ’balance’ at node i
Cij − input − cost per unit flow thru arc (i,j)

objective minimize grand sum of all flows*costs∑
ij

CijXij

subject to at every node i :

SumFlowOut− SumFlowIn = Balance − for every node i∑
j

Xij −
∑
k

Xki = B
i

− for every node i

COMPLETE COVER locate minimum # of sites to cover every customer node

analysis decision variables and input data

Xj − advar − whether (binary) we place facility at candidate site j
Aij − input − whether (binary matrix) site j can cover node i

derive binary matrix Aij from a table of site to city distances
and a critical distance Dc which defines possible coverage

objective minimize number of facilities at candidate sites

minimize
∑
j

Xj

subject to cover every customer node i at least once∑
j

AijXj ≥ 1 − for every customer node i

MAXIMUM COVER locate P facilities to maximize covered demand
(without necessarily covering every demand node)
vice covering all nodes with minimum # of sites



analysis decision variables and input data

Xj − advar − whether (binary) we place facility at site j
Zi − advar − whether (binary) node i is covered by some site j
Aij − input − whether (binary matrix) site j covers node i
Hi − input − demand at node i
P − input − number of facilities to place

objective maximize covered demand

maximize
∑
i

HiZi

subject to∑
j

AijXj ≥ Zi − for every customer node i

∑
j

Xj ≤ P

MEDIAN PLACEMENT locate P facilities to minimize weighted distance between
customers & facilites

analysis decision variables and input data

Hi − input − demand load at customer node i
Dij − input − distance from customer node i to candidate site j
P − input − number of facilities to place
Xj − advar − whether (binary) we locate a facility at candidate site j
Yij − advar − whether (binary) facility at site j serves entire demand at node i

objective minimize demand weighted distance from customers to facilities

minimize
∑
ij

HiDijYij

subject to∑
j

Xj = P

∑
j

Yij = 1 − for every customer node i

Yij ≤ Xj − for every ij pair



A s s i g n

T r a n s p o r t T r a n s s h i p

1

1

1

1

- 1

- 1

- 1

- 1

5

1 0

1 5

2 0

- 1 2

- 1 2

- 1 2

- 1 2

- 2

5 0

6 0

0

0

0

- 3 0

- 1 5

- 1 5

- 2 0

- 3 0



C o m _ C o v e r

M a x _ C o v e r M e d _ P l a c e

F 1

F 2

F 3

F 4

F 5

C 1

C 2

C 3

C 4

C 5

C 6

L 1

L 2

L 3

L 4

L 5

1 0 0

2 0 0

3 0 0

4 0 0

5 0 0

6 0 0

L 3

L 2

L 4

L 1

L 5

1 0 0

2 0 0

6 0 0

3 0 0

5 0 0

4 0 0



- -

- -



- -

- -

 9 5

 7 3

 2 6

 7 4

 5 5
 7 4
 3 9

 7 7

1 0 5

1 6 8

1 5 5

1 2 7

 4 7

 1 2

 3 2

 2 2

1 0 5

  2

 6 3 6 5

 7 8
 7 3
1 8 5

 3 9



  P R O C  L P ,  I N P U T  T A B L E ,  S P A R S E  F O R M A T

                    C                        C                        C                        C
                    O                        O                        O                        O
                    E                        E                        E                        E
  R O W   C O L     T Y P E   F      R O W   C O L     T Y P E   F      R O W   C O L     T Y P E   F      R O W   C O L     T Y P E   F

  A L    G A      G E     1      D E    V A      G E     1      K S    V A      G E     1      M O    L A      G E     1
  A L    L A      G E     1      D E    _ R H S _   G E     1      K S    _ R H S _   G E     1      M O    N C      G E     1
  A L    N C      G E     1      F L    G A      G E     1      K Y    G A      G E     1      M O    T X      G E     1
  A L    N Y      G E     1      F L    L A      G E     1      K Y    L A      G E     1      M O    V A      G E     1
  A L    T X      G E     1      F L    N C      G E     1      K Y    N C      G E     1      M O    _ R H S _   G E     1
  A L    V A      G E     1      F L    T X      G E     1      K Y    N Y      G E     1      M S    G A      G E     1
  A L    _ R H S _   G E     1      F L    V A      G E     1      K Y    T X      G E     1      M S    L A      G E     1
  A R    G A      G E     1      F L    _ R H S _   G E     1      K Y    V A      G E     1      M S    N C      G E     1
  A R    L A      G E     1      I A    G A      G E     1      K Y    _ R H S _   G E     1      M S    T X      G E     1
  A R    N C      G E     1      I A    L A      G E     1      M A    G A      G E     1      M S    V A      G E     1
  A R    T X      G E     1      I A    N C      G E     1      M A    N C      G E     1      M S    _ R H S _   G E     1
  A R    V A      G E     1      I A    T X      G E     1      M A    N Y      G E     1      M T    C A      G E     1
  A R    _ R H S _   G E     1      I A    V A      G E     1      M A    V A      G E     1      M T    W A      G E     1
  A Z    C A      G E     1      I A    _ R H S _   G E     1      M A    _ R H S _   G E     1      M T    _ R H S _   G E     1
  A Z    T X      G E     1      I D    C A      G E     1      M D    G A      G E     1      N E    G A      G E     1
  A Z    _ R H S _   G E     1      I D    W A      G E     1      M D    N C      G E     1      N E    L A      G E     1
  B I N   C A      B I N A   1      I D    _ R H S _   G E     1      M D    N Y      G E     1      N E    T X      G E     1
  B I N   G A      B I N A   1      I L    G A      G E     1      M D    V A      G E     1      N E    _ R H S _   G E     1
  B I N   L A      B I N A   1      I L    L A      G E     1      M D    _ R H S _   G E     1      N H    G A      G E     1
  B I N   N C      B I N A   1      I L    N C      G E     1      M E    N C      G E     1      N H    N C      G E     1
  B I N   N Y      B I N A   1      I L    N Y      G E     1      M E    N Y      G E     1      N H    N Y      G E     1
  B I N   T X      B I N A   1      I L    T X      G E     1      M E    V A      G E     1      N H    V A      G E     1
  B I N   V A      B I N A   1      I L    V A      G E     1      M E    _ R H S _   G E     1      N H    _ R H S _   G E     1
  B I N   W A      B I N A   1      I L    _ R H S _   G E     1      M I    G A      G E     1      N V    C A      G E     1
  C O    C A      G E     1      I N    G A      G E     1      M I    L A      G E     1      N V    W A      G E     1
  C O    T X      G E     1      I N    L A      G E     1      M I    N C      G E     1      N V    _ R H S _   G E     1
  C O    _ R H S _   G E     1      I N    N C      G E     1      M I    N Y      G E     1      O B J   C A      M I N    1
  C T    G A      G E     1      I N    N Y      G E     1      M I    V A      G E     1      O B J   G A      M I N    1
  C T    N C      G E     1      I N    T X      G E     1      M I    _ R H S _   G E     1      O B J   L A      M I N    1
  C T    N Y      G E     1      I N    V A      G E     1      M N    G A      G E     1      O B J   N C      M I N    1
  C T    V A      G E     1      I N    _ R H S _   G E     1      M N    N C      G E     1      O B J   N Y      M I N    1
  C T    _ R H S _   G E     1      K S    G A      G E     1      M N    N Y      G E     1      O B J   T X      M I N    1
  D E    G A      G E     1      K S    L A      G E     1      M N    V A      G E     1      O B J   V A      M I N    1
  D E    N C      G E     1      K S    N C      G E     1      M N    _ R H S _   G E     1      O B J   W A      M I N    1
  D E    N Y      G E     1      K S    T X      G E     1      M O    G A      G E     1

     P R O C  L P ,  I N P U T  T A B L E ,  D E N S E  F O R M A T

     r o w    C A    G A    L A    N C    N Y    T X    V A    W A    t y p e    r h s

     O B J     1     1     1     1     1     1     1     1    M I N      .
     B I N     1     1     1     1     1     1     1     1    B I N      .
     A L      0     1     1     1     1     1     1     0    G E       1
     A R      0     1     1     1     0     1     1     0    G E       1
     A Z      1     0     0     0     0     1     0     0    G E       1
     C O      1     0     0     0     0     1     0     0    G E       1
     C T      0     1     0     1     1     0     1     0    G E       1
     D E      0     1     0     1     1     0     1     0    G E       1
     F L      0     1     1     1     0     1     1     0    G E       1
     I A      0     1     1     1     0     1     1     0    G E       1
     I D      1     0     0     0     0     0     0     1    G E       1
     I L      0     1     1     1     1     1     1     0    G E       1
     I N      0     1     1     1     1     1     1     0    G E       1
     K S      0     1     1     1     0     1     1     0    G E       1
     K Y      0     1     1     1     1     1     1     0    G E       1
     M A      0     1     0     1     1     0     1     0    G E       1
     M D      0     1     0     1     1     0     1     0    G E       1
     M E      0     0     0     1     1     0     1     0    G E       1
     M I      0     1     1     1     1     0     1     0    G E       1
     M N      0     1     0     1     1     0     1     0    G E       1
     M O      0     1     1     1     0     1     1     0    G E       1
     M S      0     1     1     1     0     1     1     0    G E       1
     M T      1     0     0     0     0     0     0     1    G E       1
     N E      0     1     1     0     0     1     0     0    G E       1
     N H      0     1     0     1     1     0     1     0    G E       1
     N V      1     0     0     0     0     0     0     1    G E       1



A Confidence Interval Approach to Gene Chip Analysis
Jennifer L. Waller, Medical College of Georgia, Augusta, GA
Mark G. Anderson, Medical College of Georgia, Augusta, GA

ABSTRACT
Recently, gene chip technology and data generated from this
technology have given statisticians a new realm in which to
develop statistical methodology.  In gene chip analysis, mRNA
from a tissue sample for a disease of interest is isolated and
placed on the chip.  From expression data generated from the
chip, we then determine what genes are highly expressed for the
particular disease of interest.  The challenge is to find
approximately 100 genes from 12,000 that warrant further
investigation.  To further complicate matters, gene chips are very
expensive (~$1000 each) and sample sizes tend to be very small,
with n<5 chips typically used.

Using SAS 8.0 � under Windows 2000 � and programmed
mostly within a DATA step, a confidence interval approach was
developed that examines various thresholds for gene expression.
mRNA from 8 normal and 8 apolipoprotine AI (apo AI, a gene
known to play a pivotal role in HDL metabolism) knocked out
mice were isolated and 16 gene chips were analyzed.
Expression ratios (red/green) for each gene were determined
within a gene chip (mouse) and 99% confidence intervals
calculated for the mean expression ratio across the 8 mice within
a treatment group (normal and apo AI).  The lower limit of each
confidence interval is compared to a series of expression ratio
thresholds and those genes whose lower limit is greater than the
threshold are flagged in both groups.  The total number of genes
flagged for each threshold is calculated for each group and
plotted using SAS/GRAPH �.  Additionally, the genes flagged are
compared between groups to determine how the genes are
differentially expressed.

INTRODUCTION
cDNA microarrays, or gene chips, is a technology that enables a
researcher to examine gene expression levels for thousands of
genes simultaneously.  The goal with most microarray
experiments is to identify a number of genes that are differentially
expressed in a diseased sample versus a referent sample.  Gene
identification is not the end of the investigation, however, but it is
just the tip of the iceberg.  From the identification of a subset of
genes, a microbiologist, cellular biologist, physiologist or other
basic science researcher can then further explore the functions of
the subset of genes rather than having to sift through thousands.
Thus the goal is to narrow down the possibilities, so that the more
intensive and time consuming proteomics work can begin.

While opening up doors for clinical research, this microarray
technology has also introduced a host of analytic opportunities for
statisticians.  This paper describes a relatively simple confidence
interval approach to determining specific genes that are over or
under expressed when there are two groups with replicate gene
chips.  This paper will give a brief overview of microarrays,
describe the microarray data used, describe the confidence
interval approach, and finally give further analytic issues which
are currently being investigated.

OVERVIEW OF CDNA MICROARRAYS
Wildsmith and Elcock (2001), Hedenfalk et al. (2001), and
Hamadeh and Afshari (2000) give good descriptions of
microarrays and microarray processing.  There are essentially
two types of arrays, microarrays and oligonucleotide arrays.
Microarrays are created by depositing a large number of genes
onto a glass slide.  cDNA clones are spotted in an array
arrangement onto a glass slide or nylon membrane using a
robotic spotting printer.  mRNA from a reference sample and from
a disease sample are reverse transcribed with different

fluorescent dyes, green and red.  Usually, green is used for the
referent sample and red is used for the disease sample.

Following the reverse transcriptions with the dyes, the mRNA
samples are hybridized to a cDNA microarray containing the
robotically printed cDNA clones.  The microarrays are then
washed several times to remove unbound mRNA.  Following the
washes, the microarrays are scanned with a laser scanning
microscope to obtain color images of the hybridization mRNA
from the diseased and referent cells.  Two images are then sent
to a computer which generates the location and intensity of spots,
one image for the green and one image for the red.  These
images are then overlaid.  Genes which are over expressed in the
diseased sample appear as red dots on the microarray image,
those which have decreased expression appear as green dots,
and those which are not differentially expressed in either the
diseased sample or the referent sample appear as yellow dots.
Because of the limitation of analyzing an image, each spot is
assigned an expression value for red and an expression value for
green.  These two values are then used to create a red to green
expression ratio and this ratio is used in analyses.

APOLIPOPROTIEN AI AND CONTROL GROUP MICROARRAY
DATA
Callow et al. (2000) studied two lines of mice with very low HDL
cholesterol levels compared to inbred control mice.  Data for this
paper consisted on one of the two studied mouse lines,
theapolipoprotien AI (or apo AI) knock-out line.  Of interest in this
study was to determine genes with differential expression for low
HDL.  Tissue samples were taken from the livers of the mice.

The treatment group consisted of 8 mice with the apo AI gene
knocked out.  The control group consisted of 8 control C57B1/6
mice.  Target cDNA was obtained from mRNA by reverse
transcription and labeled using red fluorescent dye, Cy5 from
each of the 16 mice.  The referent sample cDNA was prepared by
combining the cDNA from the 8 control mice and was labeled
using green fluorescent dye, Cy3.  Each microarray consisted of
the cDNA for one mouse (i.e. the “diseased” sample representing
the red dye) and the combined cDNA of the 8 control mice (i.e.
the referent sample representing the green dye).

The cDNA was hybridized to a microarray that contained 5,548
cDNA probes, including 200 probes that were related to lipid
metabolism.  The microarrys were then imaged and red and
green fluorescence intensities were generated for each cDNA
probe.

THE IMPORTANCE OF REPLICATION
Due to the cost (approximately $1,000) and the vastness of the
data that is produced by a single microarray, many researchers
choose to perform only a single replicate or to pool data from
several diseased samples and several referent samples and use
these pooled data on a single chip.  While cost effective, this is
not an ideal approach.  Lee et al. (2000) examined the variability
between replicated microarrays and showed that a single
microarray experiment has substantial variability from a variety of
sources.  In their paper, three replicates were used and one
replicate gave different results than the other two indicating that
“replication does not ensure duplication of results, a fact that
cannot be quantified when replication is not used.” (Lee et al.,
2000).  Thus, when working with researchers on microarray data
it is necessary to educate them about replication and how
replication can help them get a handle on the different sources of
variability.



CONFIDENCE INTERVAL APPROACH TO GENE
IDENTIFICATION
The confidence interval approach taken to examine genes and
determine which are differentially expressed in the diseased
samples versus the control samples is a relatively simple one.
The first step in construction of a confidence interval is to
examine the skewness of the ratio statistic, R/G, calculated for
each replicate within each gene.  Transformations of the ratio
statistic may be necessary before the confidence intervals are
constructed.  In this case, a family of transformations was
examined and the transformation that produced the lowest mean
skewness across genes was used.  The family of transformations
(Box and Tiao, 1992, pg. 530) used was

0         
)0(           )log(

)0(           1
)( �

�
�

�
�

�

�

�
�

� y
y

y
y

�

�
�

�

�

where y=R/G and –2 < � < 2.  After examining the skewness of
the transformed ratio statistic, it was determined that the log(R/G)
was the least skewed.  Because many researchers are interested
in at least 2-fold increases, � �GR rr2log , r=the replicate, was
used.  SAS code for examining the skewness of different
transformations is included with comments indicating code for
various steps.

For each gene, a 100(1-�)% confidence interval for the mean
ratio of R/G using the number of replicates within a group was
calculated by the following:

)()2/1,1( xsetx grg ���
�

where g is the group, diseased or control, r is the number of
replicates in each group, and x  is calculated as the mean of

� �GR rr2log .

After calculating the confidence interval for each group, diseased
or control, the lower and upper limits are compared to various
expression ratio thresholds.  If the lower limit is greater than the
threshold, then the gene is considered to be over expressed for
that particular group.  If the upper limit is lower than the inverse of
the threshold then the gene is considered to be under expressed
for that particular group.

While knowing that a gene is differentially expressed within the
diseased group or the control group of interest, it is also
necessary to determine whether the gene was differentially
expressed in both groups, only in the diseased group, only in the
control group, or in neither group.  This additional information is
helpful is assessing which genes to concentrate further laboratory
research on in the future.  Newton et al. (2000) indicate that the
ratio of the expression genes within a microarray vary greatly, i.e.
some may have high expression for any sample and some may
have very low expression.  Thus knowing whether the gene is
expressed in both, neither, or only in one group is necessary.

SAS code is given for the calculation of 99% confidence intervals
and commonality of expression with comments indicating the
steps taken.

RESULTS
The confidence interval method identified 7 genes which were
under expressed in the diseased group of microarrays.  Dudoit
and Yang et al. (2000) used the same apo AI data in the
investigation of their methodology.  For the apo AI experiments
they identified 8 genes which were differentially expressed in the
apo AI knocked out mice as compared to the control mice.  The
confidence interval method identified 7 genes which were under
expressed at the 2-fold level, six of which were the same genes
identified by Dudoit and Yang.  The different results between the
CI approach and that taken by Dudoit and Yang is probably due
to the different alpha levels used, here 0.01 and Dudoit and Yang

0.05.

The output of the number of genes identified at each threshold
are given, the commonality of the genes expressed at each
threshold in the apo AI mice and the control mice, and the plots
of differentially (either over or under) expressed genes identified
at the 2-fold level are shown following the SAS code.  Output is
shown only when genes were identified as over or under
expressed.

FUTURE INVESTIGATIONS
Newton et al. (2001) indicate that when considering fold changes
(e.g. 1.5-fold or 2-fold) in gene expression utilizing a ratio
measure ignores the variation of the ratio across genes.  In
essences their argument is that a 1.5-fold change for one gene
may be perfectly adequate to show that the specific gene is
differentially expressed, but that a 3-fold change in another gene
may be required  to show differential expression.  While the
methodology he describes deals with a single microarray, he
indicates that combining the information from replicates may aid
in identifying the contribution of different sources of variation.
Thus one possibility to investigate is the variability between
genes in their expression and consider using different ratio
threshold levels for each gene based on their individual
distribution.

Second, Yang and Dudoit et al. (2000) and Chen et al. (1997)
describe different normalization techniques for cDNA microarray
data.  These include within slide location normalizations (global,
intensity dependent, and within print-tip-group), within slide scale
normalizations, paired slide dye-swap normalizations, and
multiple slide normalizations.  Implementing these various
normalizations within SAS before analysis is another area for
further investigation.

Third, the number of confidence intervals which are generated is
extremely large and the potential of misidentification of
differentially expressed genes is large.  Dudoit and Yang et al.
(2000) investigated a two-sample t-statistic for determining
differential expression, performed permutation tests on this test
statistic, and calculated adjusted p-values using a variety of
different methods.  Implementing Dudoit and Yang et al.’s
methodology in SAS is currently underway.

CONCLUSION
The relatively simple confidence interval method presented here
provides similar results to others who have utilized the data from
the apo AI experiments conducted by Callow et al. (2000).
Improvements in normalization and implementation of
permutation tests within SAS will provide additional tools for the
analysis of microarray data.

Analysis of microarray data is of great interest and new
methodologies and utilization of and improvements in old
methodologies emerge every day.  Additionally, many new
software programs are currently on the market which aid a
researcher in analyzing microarray data using both old and new
methodologies.  However, researchers must be aware of the
pitfalls of just pointing and clicking without understanding their
data and the methods they have used for analysis in these new
programs.  Rather than investing in new software, which can be
quite costly, investing the time to learn the new package and
verifying that the software is performing an analysis as it should,
implementing current and new methodologies and investigating
the capabilities in SAS is desirable.  SAS is a powerful tool, we
just need to educate the people we work with as to how powerful
it is!

REFERENCES
Box, GEP, Tiao, GC.  (1992)  Bayesian Inference in Statistical
Analysis.  New York, NY:  John Wiley and Sons.



Callow, MJ, Dudoit, S, Gong, EL, Speed TP, and Rubin EM.
Microarray expression profiling identifies genes iwht altered
expression in hdl deficient mice.  Genome Research
10(12):2022-9, 2000.

Chen, Y, Dougherty, ER, Bittner, ML.  Ratio-based decision and
the quantitative analysis of cDNA microarray images.  Journal of
Biomedical Optics 2:364-374, 1997.

Dudoit, S, Yang, YH, Callow, MJ, Speed, TP.  Statistical methods
for identifying differentially expressed genes in replicated cDNA
microarray experiments.  (Technical report #578) Submitted,
Journal of the American Statistical Association, 2000.

Hamadeh, H, and Afshari, CA.  Gene chips and functional
genomics.  American Scientist 88:508-515.

Hedenfalk, I, Duggan, D, Chen, Y, Radmacher, M, Bittner, M,
Simon, R, Meltzer, P, Busterson, B, Esteller, M, Kallioniemi, OP,
Wilfond, B, Borg, A, Trent J.  Gene expression profiles in
hereditary breast cancer.  The New England Journal of Medicine
344(8):539-548, 2001.

Lee, MLT, Kuo, FC, Whitmore, GA, Sklar, J.  Importance of
replication in microarray gene expression studies: Statistical
methods and evidence from repetitive cDNA hybridizations.
Proceedings of the National Academy of Science, 97(18):9834-
9839, 2000.

Newton, MA, Kendziorski, CM, Richmond, CS, Blattner, FR, Tsui,
KW.  On differential variability of expression ratios: Improving
statistical inference about gene expression changes from
microarray data.  Journal of Computational Biology 8(1): 37-52,
2001.

Wildsmith, SE, Elcock, FJ.  Microarrays under the microscope.
Molecular Pathology, 54(1):8-16, 2001.

Yang, YH, Dudoit, S, Luu, P, Speed, T.  Normalization for cDNA
microarray data.  Technical Report #589, submitted, 2001.

CONTACT INFORMATION
Your comments and questions are valued and encouraged.
Contact the author at:

Jennifer L. Waller
Medical College of Georgia
Office of Biostatistics and Bioinformatics (AE-3031)
Augusta, GA 30912-4900
Work Phone: (706) 721-3785
Fax: (706) 721-6294
Email: jennifer@stat.mcg.edu

SAS, SAS/GRAPH and all other SAS products or services are
registered trademarks of SAS Institute Inc. in the USA and other
countries.  � indicates USA registration, � indicates copyright.

Other brand and product names are registered trademarks or
trademarks of their respective companies.

TRANSFORMATION SAS PROGRAM
******************************************
** This program examines different      **
** transformations of R/G to determine  **
** which has the lowest mean skewness   **
** across genes.                        **
*****************************************;
data apoa1;
  set in.apoa1;

  *********************************************
  ** Creates 8 observations per gene. Creates**
  ** ratio of R/G for each gene for each     **
  ** group, disease (t) and control (c).     **
  *********************************************;
  array cg {8} c1g c2g c3g c4g c5g c6g c7g c8g;
  array cr {8} c1r c2r c3r c4r c5r c6r c7r c8r;
  array tg {8} k1g k2g k3g k4g k5g k6g k7g k8g;
  array tr {8} k1r k2r k3r k4r k5r k6r k7r k8r;
  do i=1 to 8;
    gene=genenum;

cgexp=cg{i};
crexp=cr{i};
tgexp=tg{i};
trexp=tr{i};
crg=cr{i}/cg{i};
trg=tr{i}/tg{i};
output;

  end;
  keep gene cgexp crexp tgexp trexp crg trg;
  ****************************************
  ** Create transformations with lambda **
  ** in the interval –2 to 2, by 0.5.   **
  ***************************************;
data new;
  set apoa1;
  array cln {4} cl_n05 cl_n1 cl_n15 cl_n2;
  array cl  {4} cl_05 cl_1 cl_15 cl_2;
  array tln {4} tl_n05 tl_n1 tl_n15 tl_n2;
  array tl  {4} tl_05 tl_1 tl_15 tl_2;
  do i=1 to 4;
    cln{i}=((crg)**(-(i/2))-1)/(-i/2);
    cl{i}=((crg)**((i/2))-1)/(i/2);
    tln{i}=((trg)**(-(i/2))-1)/(-i/2);
    tl{i}=((trg)**((i/2))-1)/(i/2);
  end;
  cl_0=log(crg);
  tl_0=log(trg);

proc sort data=new; by gene;
*********************************************
** Calcualte skewness measure for the ratio**
** and transformations of R/G in each group**
** for each gene.                          **
********************************************;
proc means data=new skew noprint;
  var trg tl_n2 tl_n15 tl_n1 tl_n05 tl_0 tl_05
     tl_1 tl_15 tl_2 crg cl_n2 cl_n15 cl_n1
     cl_n05 cl_0 cl_05 cl_1 cl_15 cl_2;
  output out=vs skew=strg stl_n2 stl_n15
      stl_n1 stl_n05 stl_0 stl_05 stl_1
      stl_15 stl_2 scrg scl_n2 scl_n15
      scl_n1 scl_n05 scl_0 scl_05 scl_1
     scl_15 scl_2;
  by gene;
***********************************************
** Calculate the mean skewness of R/G        **
** transformations across genes to determine **
** which gives a mean skewness nearest zero. **
***********************************************;
proc means data=vs n mean std median;
  var strg stl_n2 stl_n15 stl_n1 stl_n05
      stl_0 stl_05 stl_1 stl_15 stl_2;
title 'Diseased Group Mean Skewness Across
       Genes';

proc means data=vs n mean std median;
  var scrg scl_n2 scl_n15 scl_n1 scl_n05
      scl_0 scl_05 scl_1 scl_15 scl_2;
title 'Control Group Mean Skewness Across
Genes';
run;



CONFIDENCE INTERVAL SAS PROGRAM
************************************************
** This program calculates a CIfor each gene  **
** within each group, disease (t) or control  **
** (c ).  The lower and upper limits are      **
** compared to  different thresholds to       **
** determine the number of differentially     **
** expressed genes in each group. A           **
** commonality variable is created to show    **
** whether the gene expressed in both, only   **
** one, or neither the disease or control     **
** group. Finally graphs are produced which   **
** show the lower limit, mean, and upper limit**
** of the log2(R/G) expression for each group.**
***********************************************;
proc format;
  value oexp 1='Over Expressed'
             0='Not Expressed';
  value uexp 1='Under Expressed'
             0='Not Expressed';
  value common 1='Both Exp'
               2='Cntl Exp'
               3='Trt Exp'
               4='Neither Exp';

data apoa1;
******************************************
** Create ratios of log2(r/g) for each  **
** sample. Also create                  **
** log2(r/g)_trt/log2(r/g)_ctl.         **
*****************************************;
  array cg c1g c2g c3g c4g c5g c6g c7g c8g;
  array cr c1r c2r c3r c4r c5r c6r c7r c8r;
  array tg k1g k2g k3g k4g k5g k6g k7g k8g;
  array tr k1r k2r k3r k4r k5r k6r k7r k8r;
  array cratio cratio1-cratio8;
  array tratio tratio1-tratio8;
  do over cg;
    cratio=log2(cr/cg);
    tratio=log2(tr/tg);
  end;
******************************************
** Calculate the mean, standard error   **
** and effective sample size across     **
** samples within the groups.           **
*****************************************;
  /* Normal - Control Group */
  m_cratio=mean(of cratio1-cratio8);
  se_cratio=stderr(of cratio1-cratio8);
  n_cratio=n(of cratio1-cratio8);
  /* Disease - Treatment Group */
  m_tratio=mean(of tratio1-tratio8);
  se_tratio=stderr(of tratio1-tratio8);
  n_tratio=n(of tratio1-tratio8);
******************************************
** Set alpha, degrees of freedom, and   **
** reliability coefficient for each     **
** group.                               **
*****************************************;
  alpha=0.995;
  cdf=n(of cratio1-cratio8)-1;
  tdf=n(of tratio1-tratio8)-1;
  ctcoeff=tinv(alpha,cdf);
  ttcoeff=tinv(alpha,tdf);
******************************************
** Calculate upper and lower confidence **
** intervals   for each group.          **
*****************************************;
  cucl=m_cratio+ctcoeff*se_cratio;
  clcl=m_cratio-ctcoeff*se_cratio;
  tucl=m_tratio+ttcoeff*se_tratio;
  tlcl=m_tratio-ttcoeff*se_tratio;

******************************************
** Determine if lower confidence limit  **
** is greater than a threshold value.   **
** Determine if upper confidence limit  **
** is less than a threshold value.      **
** Determine the commonality of         **
** expression.                          **
*****************************************;
  /* R greater than G */
  array cthresh {9} cthresh1 cthresh1_25
                   cthresh1_5 cthresh1_75
                   cthresh2 cthresh2_25
                   cthresh2_5 cthresh2_75
                   cthresh3;
  array tthresh {9} tthresh1 tthresh1_25
                    tthresh1_5 tthresh1_75
                    tthresh2 tthresh2_25
                    tthresh2_5 tthresh2_75
                    tthresh3;
  array commona {9} common1 common1_25
                    common1_5 common1_75
                    common2 common2_25
                    common2_5 common2_75
                    common3;
  do k=1 to 9;
    cthresh{k}=0;
    tthresh{k}=0;
    if clcl>((k+1)-((3*k)/4)) then cthresh{k}=1;
    if tlcl>((k+1)-((3*k)/4)) then tthresh{k}=1;
    if cthresh{k}=tthresh{k}=1 then
      commona{k}=1;
      else if cthresh{k}=1 and tthresh{k}=0 then
        commona{k}=2;
      else if cthresh{k}=0 and tthresh{k}=1 then
        commona{k}=3;
      else if cthresh{k}=tthresh{k}=0 then
        commona{k}=4;
  end;
  /* G greater than R */
  array cthresha {9} cthreshn1 cthreshn1_25
                     cthreshn1_5 cthreshn1_75
                     cthreshn2 cthreshn2_25
                     cthreshn2_5 cthreshn2_75
                     cthreshn3;
  array tthresha {9} tthreshn1 tthreshn1_25
                     tthreshn1_5 tthreshn1_75
                     tthreshn2 tthreshn2_25
                     tthreshn2_5 tthreshn2_75
                     tthreshn3;
  array commonaa {9} commonn1 commonn1_25
                     commonn1_5 commonn1_75
                     commonn2 commonn2_25
                     commonn2_5 commonn2_75
                     commonn3;
  do j=1 to 9;
    cthresha{j}=0;
    tthresha{j}=0;
    if cucl<-((j+1)-((3*j)/4)) then
      cthresha{j}=1;
    if tucl<-((j+1)-((3*j)/4)) then

   tthresha{j}=1;
 if cthresha{j}=tthresha{j}=1 then
   commonaa{j}=1;
   else if cthresha{j}=1 and tthresha{j}=0
     then commonaa{j}=2;
   else if cthresha{j}=0 and tthresha{j}=1
     then commonaa{j}=3;
   else if cthresha{j}=tthresha{j}=0 then
     commonaa{j}=4;
  end;



*********************************************
** Format threshold variables and common   **
** gene variables.                         **
********************************************;
  format cthresh1 cthresh1_25 cthresh1_5
         cthresh1_75 cthresh2 cthresh2_25
         cthresh2_5 cthresh2_75 cthresh3
         tthresh1 tthresh1_25 tthresh1_5
         tthresh1_75 tthresh2 tthresh2_25
         tthresh2_5 tthresh2_75 tthresh3 oexp.
         cthreshn1 cthreshn1_25 cthreshn1_5
         cthreshn1_75 cthreshn2 cthreshn2_25
         cthreshn2_5 cthreshn2_75 cthreshn3
         tthreshn1 tthreshn1_25 tthreshn1_5
         tthreshn1_75 tthreshn2 tthreshn2_25
         tthreshn2_5 tthreshn2_75 tthreshn3
         uexp.
         common1 common1_25 common1_5 common1_75
         common2 common2_25 common2_5 common2_75
         common3 commonn1 commonn1_25 commonn1_5
         commonn1_75 commonn2 commonn2_25
         commonn2_5 commonn2_75 commonn3
         common.;
***********************************************
** Get frequency distribution of threshold   **
** variables for control and disease groups. **
***********************************************;
proc freq data=apoa1;
  tables cthresh1 cthresh1_25 cthresh1_5
         cthresh1_75 cthresh2 cthresh2_25
         cthresh2_5 cthresh2_75 cthresh3;
title 'Number of Genes with Lower CL';
title2 'Above the Threshold for Control Group';

proc freq data=apoa1;
  tables cthreshn1 cthreshn1_25
         cthreshn1_5 cthreshn1_75
         cthreshn2 cthreshn2_25
         cthreshn2_5 cthreshn2_75
         cthreshn3;
title 'Number of Genes with Upper CL Below';
title2 '1/Threshold for Control Group';

proc freq data=apoa1;
  tables tthresh1 tthresh1_25 tthresh1_5
         tthresh1_75 tthresh2 tthresh2_25
         tthresh2_5 tthresh2_75 tthresh3;
title 'Number of Genes with Lower CL';
title2 'Above the Threshold for Disease Group';

proc freq data=apoa1;
  tables tthreshn1 tthreshn1_25
         tthreshn1_5 tthreshn1_75
         tthreshn2 tthreshn2_25
         tthreshn2_5 tthreshn2_75
         tthreshn3;
title 'Number of Genes with Upper CL Below';
title2 '1/Threshold for Disease Group';

proc freq data=apoa1;
  tables common1 common1_25 common1_5
         common1_75 common2 common2_25
         common2_5 common2_75 common3
         commonn1 commonn1_25 commonn1_5
         commonn1_75 commonn2 commonn2_25
         commonn2_5 commonn2_75 commonn3;
title 'Number of Common Expressions Control vs
       Disease';

******************************************
** Plot genes with lower limit greater  **
** than 2-fold expression ratio or upper**
** limit less than ½-fold expression.   **
*****************************************;
goptions reset=(axis, legend, pattern,
                symbol, title, footnote)
         norotate hpos=0 vpos=0 htext=
         ftext= ctext= target= gaccess=
         gsfmode= ;
goptions device=WIN  ctext=blue graphrc
         interpol=join;

symbol1 c=DEFAULT i=none ci=black v=dot;
symbol2 c=DEFAULT i=none ci=black v=x;
symbol3 c=DEFAULT i=none ci=black v=dot;

axis1 order=(-0 to 6 by 0.50) color=blue
      width=2.0 offset=(1 cm)
      label=('Log 2(LCL) Threshold');
axis2 color=blue width=2.0 offset=(1 cm)
      label=('Gene Number');
axis3 order=(-6 to 0 by 0.50) color=blue
      width=2.0 offset=(1 cm)
      label=('Log 2(UCL) Threshold');

proc gplot data=apoa1;
  plot genenum*clcl
       genenum*m_cratio
       genenum*cucl / overlay haxis=axis1
                      vaxis=axis2 frame;
  where cthresh1=1;
  title 'Control Expressions with LCL > 1
         – 2-fold';

  proc gplot data=apoa1;
  plot genenum*tlcl
       genenum*m_tratio
       genenum*tucl / overlay haxis=axis1
                      vaxis=axis2 frame;
  where tthresh1=1;
  title 'Disease Expressions with LCL > 1
         - 2 fold';

proc gplot data=apoa1;
  plot genenum*clcl
       genenum*m_cratio
       genenum*cucl / overlay haxis=axis3
                      vaxis=axis2 frame;
  where cthreshn1=1;
  title 'Control Expressions with UCL < -1
         - ½-fold';

proc gplot data=apoa1;
  plot genenum*tlcl
       genenum*m_tratio
       genenum*tucl / overlay haxis=axis3
                      vaxis=axis2 frame;
  where tthreshn1=1;
  title 'Treatment Expressions with UCL < -1
         - ½-fold';

run;
quit;
run;



Number of Genes with Upper CL Below
1/Threshold for Disease Group

The FREQ Procedure

tthreshn1     Frequency     Percent
---------------------------------------
Not Expressed          6377       99.89
Under Expressed           7        0.11

tthreshn1_25     Frequency     Percent
---------------------------------------
Not Expressed          6379       99.92
Under Expressed           5        0.08

tthreshn1_5     Frequency     Percent
---------------------------------------
Not Expressed          6381       99.95
Under Expressed           3        0.05

tthreshn1_75     Frequency     Percent
---------------------------------------
Not Expressed          6382       99.97
Under Expressed           2        0.03

tthreshn2     Frequency     Percent
---------------------------------------
Not Expressed          6382       99.97
Under Expressed           2        0.03

tthreshn2_25     Frequency     Percent
---------------------------------------
Not Expressed          6383       99.98
Under Expressed           1        0.02

tthreshn2_5     Frequency     Percent
---------------------------------------
Not Expressed          6383       99.98
Under Expressed           1        0.02

tthreshn2_75     Frequency     Percent
---------------------------------------
Not Expressed          6383       99.98
Under Expressed           1        0.02

tthreshn3     Frequency     Percent
---------------------------------------
Not Expressed          6383       99.98
Under Expressed           1        0.02

Number of Common Expressions Control vs Disease

commonn1     Frequency     Percent
---------------------------------------
Trt Exp               7        0.11
Neither Exp        6377       99.89

commonn1_25     Frequency     Percent
---------------------------------------
Trt Exp               5        0.08
Neither Exp        6379       99.92

commonn1_5     Frequency     Percent
---------------------------------------
Trt Exp               3        0.05
Neither Exp        6381       99.95

commonn1_75     Frequency     Percent
---------------------------------------
Trt Exp               2        0.03
Neither Exp        6382       99.97

commonn2     Frequency     Percent
---------------------------------------
Trt Exp               2        0.03
Neither Exp        6382       99.97

commonn2_25     Frequency     Percent
---------------------------------------
Trt Exp               1        0.02
Neither Exp        6383       99.98

commonn2_5     Frequency     Percent
---------------------------------------
Trt Exp               1        0.02
Neither Exp        6383       99.98

commonn2_75     Frequency     Percent
---------------------------------------
Trt Exp               1        0.02
Neither Exp        6383       99.98

commonn3        Frequency     Percent
---------------------------------------
Trt Exp               1        0.02
Neither Exp        6383       99.98



The Output Delivery System for Data Analysis

Randy Tobias , SAS

Abstract: Beginning with Version 7 of SAS software, all procedures use the Output Delivery
System (ODS) to produce their results. ODS gives you tremendous control over the
appearance of your results. Using ODS, you can create SAS output data sets from every
table in the output, rearrange columns, select or exclude individual pieces of output, and
render output in HTML, Rich-Text, and other formats. In addition, you can control the
appearance of your procedure output by changing column formats and headers and
specifying colors and fonts. This workshop discusses the Output Delivery System and
illustrates its use through a series of examples using SAS/STAT procedures. The audience
should be familiar with SAS software.



Customizing Statistical Reports Using ODS and Proc Template
Joy Munk Smith , North Carolina State University
Sandy Donaghy, North Caroline State University

Abstract: The Output Delivery System (ODS) provides nearly limitless flexibility in
formatting statistical output. All statistical output can be stored in SAS data sets and
templates created with Proc Template can be used to create customized reports. This
tutorial will cover using ODS to creating SAS data sets from statistical procedures, and
using Proc Template to create templates for displaying statistical output. The creation,
storage, and use of custom templates will be covered. This material will be covered using
examples and will include an online demonstration.



GETTING STARTED WITH PROC LOGISTIC 
 

Andrew H. Karp 
Sierra Information Services, Inc.   

Sonoma, California USA 
 

 
Introduction 
 
Logistic Regression is an increasingly popular 
analytic tool.  Used to predict the probability that the 
'event of interest' will occur as a linear function of 
one (or more) continuous and/or dichotomous 
independent variables, this technique is implemented 
in the SAS® System in PROC LOGISTIC.  This 
paper gives an overview of how some common 
forms of logistic regression models can be 
implemented using PROC LOGISTIC as well as 
important changes and enhancements to the 
procedure in Releases 6.07 and above of the SAS® 
System, as well as new features available in Version 
8. 
 
Background 
 
Logistic regression is commonly used to obtain 
predicted probabilities that a unit of the population 
under analysis will acquire the event of interest as a 
linear function of one or more: 
 

• continuous-level variables 
• dichotomous (binary) variables 
• or, a combination of both continuous and 

binary independent variables. 
 
Many concepts in logistic regression will be familiar 
to people who already have experience with simple 
and multiple regression models.  In fact, much of the 
syntax in PROC LOGISTIC will be familiar to SAS 
System users already experienced with using 
PROCs REG and/or GLM. 
 
In logistic regression, however, the dependent 
variable is dichotomous and is usually coded as: 
 

• zero (event did not occur) 
• one (event did occur) 

 
for each particular subject in the data set upon which 
the analysis will be carried out. 
 

The logistic function is used to estimate, as a 
function of unit changes in the independent variable, 
the probability that the event of interest will occur.  
This function is often called the link function in that it 
connects, or 'links' changes in values of the 
independent variables to increasing (or decreasing) 
probability of occurrence of the event being modeled 
by the dependent variable. 
 
Implementation in the SAS System 
 
Techniques for implementing logistic regression are 
found in PROC LOGISTIC in the STAT module of 
SAS System software, and is one of several 
procedures in this module which can be used for 
categorical data analysis.  Other procedures for 
categorical data analysis in the STAT module 
include: 
 

• FREQ 
• GENMOD 
• CATMOD 
• PROBIT 
• PHREG 
• LIFETEST 
• PROBIT 

 
Data Preparation 
 
As with other forms of data analysis, the results of a 
logistic regression analysis performed by PROC 
LOGISTIC can be seriously compromised if the 
analyst does not take care to prepare their data 
properly.  Following important rules regarding 
construction and coding of the dependent variable 
are critical to the SAS System's generation of 
accurate results. 
 
Dependent Variable 
 
Your dependent variable should be: 
 

• dichotomous 
• coded zero for 'non-event' 
• coded one for 'event' 



 
Although polytomous (or multinomial logistic) 
regression models (those with three or more levels, 
or categories, of the dependent variable) can be 
implemented in the SAS System, discussion of these 
types of models, and how they are implemented in 
the SAS System, is beyond the scope of this paper 
and will not be considered here.  SAS System 
implementation of these types of models is 
discussed in the following SAS Institute publications: 
 

• Logistic Regression Examples Using the 
SAS System (1995) 

• SAS Technical Report R-109: Conjoint 
Analysis Examples (1993) 

 
Effect of Coding Dependent Variable on how 
PROC LOGISTIC Works 
 
The zero/one coding scheme is the most commonly 
employed method by which events/non-events are 
classified for the purposes of conducting a logistic 
regression analysis.  By default, however, PROC 
LOGISTIC will attempt to model (that is, predict the 
probability of) the lower of the two values of the 
dependent variable. which is usually not the desired 
result. 
 
For example, if a researcher were attempting to 
determine the probability that a patient will die, the 
variable representing "outcome" (i.e., "dead” or 
“alive") might be coded zero for patients who 
survived and one for patients who died.  Since zero 
"sorts lower" than one, PROC LOGISTIC will attempt 
to ‘model’ (that is, predict) the probability that the 
patient will be coded zero (lived) rather than the 
probability that the patient will be coded one (died).  
This is most likely the opposite of what the 
researcher desired. 
 
Overriding SAS System Defaults 
 
Users can override the default attempt by PROC 
LOGISTIC to predict the probability of the non-event 
using one of three approaches: 

• re-coding the dependent variable  
(e.g., 0 = ‘died’, 1 = ‘lived’) 
• creating and applying a FORMAT to the 

dependent variable where the formatted 
value of the ‘event’ group ‘sorts higher’ 
than the ‘non-event’ group  

(i.e., the external representation of 0 = ‘Alive’ 
and 1 = ‘Dead’) 

• use the DESCENDING option in the 
PROC LOGISTIC statement. 

 
This DESCENDING option, new in Release 6.07, is 
probably the easiest and most straightforward 
method by which to override the SAS System 
default, as it avoids potentially unnecessary work in a 
DATA Step before applying PROC LOGISTIC. 
 
Implementing a Logistic Regression Analysis 
 
The structure and syntax of many features in PROC 
LOGISTIC are similar to those used in PROCs REG 
and GLM, which facilitates comparison of how to 
perform a logistic regression analysis with linear 
models such as regression and analysis of variance. 
 
The important difference, for our purposes, between 
what is being estimated by a logistic regression 
model and that estimated by a linear model is: 
 

• linear regression attempts to predict the 
value of the dependent variable as a 
linear function of one (or more) 
independent variables 

• logistic regression attempts to predict 
the probability that a unit under analysis 
will acquire the event of interest as a 
function of one or more independent 
variables. 

 
Put another way, the logistic regression equation 
predicts the probability that the unit under analysis 
will, as a function of one or more independent 
variables, obtain the condition of interest which is 
(usually) coded as 1 in a zero/one coding scheme. 
 
The general form of PROC LOGISTIC is: 
 
PROC LOGISTIC DATA=dsn [DESCENDING] ; 
MODEL depvar = indepvar(s)/options; 
RUN; 
 
Interpretation of SAS System-Generated Results 
 
Tests of the Global Null Hypothesis 
The default output generated by PROC LOGISTIC 
looks very similar to that generated by PROCs REG 
and/or GLM.  This output includes several tests of 
overall model adequacy which test the global null 
hypothesis that none of the independent variables in 
the model are related to changes in probability of 
event occurrence.  Of these, the -2 LOG L test is 
perhaps the most easy to interpret and is analogous 



to the “Global F” test used in a linear regression 
analysis.  The computation of and rationale for the -2 
LOG L test, among others, is found in Hosmer and 
Lemeshow (1989).  Other global tests, such as the 
SCORE, Akaike Information Criterion, and 
Schwartz Bayesian Criterion are also provided but 
are beyond the scope of this paper. 
 
Tests of the Local Null Hypotheses 
Tests of the ‘statistical significance’ of each 
independent variable are also provided.  The Wald 
Chi-Square test (and its associated p-value) are 
printed along with the parameter estimate and 
standardized parameter estimate.  As with linear 
regression analysis, the parameter estimate can be 
conceptualized as how much mathematical impact a 
unit changes in the value of the independent variable 
has on increasing or decreasing the probability that 
the dependent variable will achieve the value of one 
in the population from which the data are assumed 
to have been randomly sampled. 
 
The Odds Ratio 
Exponentiation of the parameter estimate(s) for the 
independent variable(s) in the model by the number 
e (about 2.17) yields the odds ratio, which is a more 
intuitive and easily understood way to capture the 
relationship between the independent and dependent 
variables.  This quantity is automatically portrayed in 
PROC LOGISTIC starting in Release 6.07; users 
with earlier SAS System releases can easily 
compute this quantity by hand. 
 
The odds ratio gives the increase or decrease in 
probability that a unit change in the independent 
variable has in the probability that the event of 
interest will occur.  Two analytic scenarios will be 
presented here to further motivate this concept: a) 
categorical independent variable; and, b) continuous 
independent variable.  Both examples are drawn 
from Hosmer and Lemeshow’s (1989) study of 
patient survival after admission to a hospital 
intensive care unit (ICU). 
 
a) categorical independent variable 
A logistic regression model was implemented using 
‘admission type’ as an independent variable.  This 
variable was coded one if the patient was admitted to 
the hospital via emergency room and zero if the 
patient was admitted via another hospital ‘service’, 
such as surgery, cardiology, etc.. 
 
The resulting odds ratio for this model was 8.89, 
which suggests that a patient admitted via the 

emergency room is about 9 times more likely to die 
than a patient admitted from another service. 
 
b) continuous level independent variable 
Consider another analytic situation where the event 
of interest to be predicted is patient’s survival after 
admission to a hospital intensive care unit (ICU), and 
the independent variable is age of patient in years. 
Application of PROC LOGISTIC to the Hosmer and 
Lemeshow data set yielded a parameter estimated 
for the variable AGE as 0.0275; exponentiation of 
that estimate gives an odds ratio of 1.028.  In this 
example, a one unit (that is, one year) increase in a 
patient’s age increases by 2.8 percent the chance 
they will die (i.e., acquire the event of interest).  [Of 
course, while this result may be ‘statistically 
significant’, the clinical relevance to a health care 
provider of patient age, without regard to other 
prognostic factors (such as disease severity) may 
limit the practical usefulness of the results.] 
 
Customized Odds Ratios 
As with the previous example, a unit change in the 
values of the independent variable(s) may not be 
substantively relevant or useful to the analyst.  In the 
ICU survival study, a five, ten, or twenty year change 
in patient age may be of more clinical relevance than 
a change of just one year.  Customized odds ratios 
can be obtained by: 
 

• hand, using a calculator 
• placing the parameter estimates 

generated by PROC LOGISTIC into an 
output SAS data set using the OUTEST 
option and then working in the data step 

using the UNITS option, which is available in 
Release 6.10 and above. For example: 
 
UNITS AGE = 5 10 20 ; 
 
Placed after the MODEL statement would generate 
customized odds ratios for five, ten and twenty year 
changes in patient age. 
 
Confidence Intervals for Odds Ratios 
As with regression analysis, the parameter estimates 
and associated odds ratios are point estimates of the 
true value of these quantities in the population from 
which the data under analysis are assumed to have 
been randomly sampled.  Confidence intervals for 
the odds ratios can be obtained by: 
 

• manual calculation 



• use of the RISKLIMITS option, which 
was first available in Release 6.07 

 
By default, the RISKLIMITS option produces 95% 
confidence intervals around the odds ratios for each 
independent variable in the model.  Users can obtain 
customized confidence intervals by using the ALPHA 
option. 
Multiple Logistic Regression Model 
 
Researchers are frequently interested in examining 
either the joint effect of two more independent 
variables on the likelihood of event outcome.  In 
other situations the effect of a single independent 
variable is analyzed controlling for (that is, holding 
constant the effect of) other independent variables.  
In these situations a multiple logistic regression 
model is required, and is implemented by placing the 
names of the independent variables of interest to the 
right of the equals sign in the MODEL statement. 
 
Multiple logistic regression model results generated 
by PROC LOGISTIC are interpreted in much the 
same way as are results obtained from a multiple 
logistic regression model:  the parameter estimates 
(and resulting odds ratios) are the unique effect (if 
any) on the probability of event occurrence as if each 
independent variable were entered in to the model 
last.  This is analogous to “Type III” sum of squares 
analysis provided by PROCs REG and/or GLM. 
Automated Selection of ‘Optimal’ Subsets of 
Independent Variables 
PROC LOGISTIC implements three common 
methods to automate selection of a ‘best subset’ of 
independent variables: 
 

• forward selection 
• backward elimination 
• stepwise selection 

 
Implementation occurs when the user codes the 
SELECTION= option to the right of the slash sign in 
the model statement.  The name of the desired 
selection method is placed following the equals sign. 
 
 
Assessing Model Fit 
 
PROC LOGISTIC provides several means of 
assessing how well the logistic regression model fits 
the data.  These include: 
 

• Hosmer and Lemeshow Chi-Square 
Goodness of Fit 

• R-square ‘like’ statistics 
• Classification Tables 

 
Hosmer and Lemeshow Test 
This approach provides a chi-square-based test 
which assesses how well the data under analysis 
perform under the null hypothesis that the model fits 
the data.  This test, implemented by the SAS System 
in Release 6.07, is called by the LACKFIT option 
and is discussed at length by the authors in their 
text. 
 
R-square ‘Like’ Statistics 
These measures, implemented in SAS System 
Release 6.10, provide a generalization of the 
coefficient of determination to the logistic regression 
model.  Their derivation is found both in the Hosmer 
and Lemeshow text and in SAS/STAT Software: 
Changes and Enhancements, Release 6.10.  Two 
statistics are printed if the RSQUARE option is used:  
the ‘adjusted R-square’ statistic is appropriate for 
models containing one or more dichotomous 
independent variables.  
 
Classification Tables 
This approach provides a convenient way to assess 
the: 
 

• sensitivity 
• specificity 
• false positive rate 
• false negative rate 
• proportion of cases correctly classified 

 
by a particular logistic regression model.  
Classification tables are generated by use of the 
CTABLE option; additional use of the PPROB option 
avoids generation of unnecessary output. 
 
Enhancements to PROC LOGISITIC in Version 8 
 
Substantial enhancements to PROC LOGISTIC have 
been added in Version 8 of SAS/STAT Software, 
including: 
• The CLASS Statement, which allows 

incorporation of polytomous categorical 
independent variables without having to code 
dummy variables in a Data Step prior to invoking 
PROC LOGISTIC.  The CLASS Statement 
includes options permitted the user to specify a 
reference group and to implement different types 
of effect coding. 

• Easy inclusion of interaction terms among 
independent variables using syntax similar to 



that available in PROC GLM.  Users can specify 
the "deepness" of the interactions PROC 
LOGISITC is to consider.  For example, the 
following MODEL STATEMENT 

MODEL RESPOND = VAR1|VAR2|VAR3|VAR4 @2; 
instructs PROC LOGISTIC to consider only the      
two-way interactions among the independent 
variables. 
 
The new Output Delivery System (ODS) can be used 
with PROC LOGISTIC to both enhance the visual 
quality of the output it generates and to create output 
SAS data sets containing parts of the output.  The 
latter functionality is quite useful when an analyst 
wants to create a SAS data set containing "side by 
side" analyses of competing models.     
 
 
Additional Functionalities in PROC LOGISTIC 
 
PROC LOGISTIC provides a number of additional 
functionalities and tests not addressed in this paper.  
These include: 
 

• detection of outliers and influential 
observations 

• generation of values for a Receiver-Operator 
Characteristics (ROC) curve to an output 
data set for subsequent plotting by PROCs 
PLOT and/or GPLOT 

• generation of false positive and false 
negative rates using Baye’s Theorem. 

 
 
Note:  SAS is the trademark of SAS Institute, Cary, 
NC 
 
References 
 
Allison, Paul, Logistic Regression Modeling Using 
the SAS System: Theory and Applications, SAS 
Institute, 1998 
 
Stokes, et. al., Cateogorical Data Analysis Using the 
SAS System, SAS Institute, 1996 
 
Stokes, et al., Categorical Data Analysis Using the 
SAS System, Second Edition, 2000 
 
Hosmer and Lemeshow ,Applied Logistic 
Regression, Wiley:, 1989 
 
SAS Institute, Inc: SAS/STAT Software, Volume 2: 
the LOGISTIC Procedure 

 
SAS Institute, Inc.: SAS/STAT Technical Report P-
229, SAS/STAT Software: Changes and 
Enhancements, Release 6.07 
 
SAS Institute, Inc.: SAS/STAT Software: Changes 
and Enhancements Release 6.10 
 
SAS Institute, Inc.: Logistic Regression Examples 
Using the SAS System (1995) 
 
SAS Institute, Inc: SAS/STAT Software: Changes 
and Enhancements through Release 6.12 (1997) 
 
Acknowledgments 
The author would like to thank Miriam G. Cisternas, 
M.S., M.R.P., formerly of the Technology 
Assessment Group, San Francisco, and Judy Calem 
of the United States Environmental Protection 
Agency, Washington, DC for their comments on 
earlier versions of this paper.  The author is also 
deeply indebted to Paul Allison, Ph.D., of the 
University of Pennsylvania, and Philip W. Wirtz, 
Ph.D., of The George Washington University, for 
their helpful comments and suggestions. 
 
The author can be contacted at: 
 
Sierra Information Services, Inc. 
19229 Sonoma Highway 
PMB 264 
Sonoma, California 95476  USA 
707 996 7380 
SierraInfo@ AOL.COM 
www.SierraInformation.com 
 



Paper P710

Ideas on Variable Selection and Alternative Links in Procedure CATMOD
Kimberly Hughes DeJarnatt , John Brown University, Siloam Springs, AR

James E. Dunn, University of Arkansas, Fayetteville, AR

ABSTRACT
Two practical features are lacking in SAS procedure CATMOD:
(1) for nominal categories of response, only use of baseline logit
link functions admits to maximum likelihood estimation, and (2) no
provision exists for automated “SELECTION=” model-building.
This paper illustrates how both might be implemented, based in
the first case on a class of generalized additive models previously
presented to SUGI, and improvising on the basis of sweep
operations in the second. Agresti-level data sets are used to
illustrate the methodology. Even in those cases, we demonstrate
that either model fit or power may improve by choosing
alternatives to baseline logits. Considerably simplified models
often result by zeroing parameters in addition to those suggested
by the ANOVA table. The implementing SAS/IML code is
available on request. Statisticians and other scientists faced with
modeling multinomial response will find this paper of interest.
Key words: multinomial, IML, sweep, Wald statistics, logit.

INTRODUCTION
This is a story of what a next generation version of SAS
procedure CATMOD might include. CATMOD’s origins are in the
work by Grizzle, Starmer and Koch (1969), the ‘GSK model’,
having passed through the now defunct procedure FUNCAT in
order to arrive at its current form. Fundamentally, CATMOD
operates by fitting a multivariate generalized linear model (MGLM)
to a link-transformed multinomial response. The baseline logit,
which is appropriate for nominal responses, is the pre-
programmed default link function, and adjacent category and
cumulative logits are pre-programmed for ordinal responses.
While additional link functions can be defined using a
RESPONSE statement, only use of baseline logits admits to
maximum likelihood estimation. All others default to use of
generalized least squares (GLS), an artifact of the original GSK
approach. In that GLS is not fully efficient at best, and non-
applicable for independent multinomial samples without
replication, an alternative to baseline logits seldom is considered
as an option. Since Dunn (1985) pointed out the existence of
alternatives to baseline logits, even for nominal responses,
CATMOD of the future would make fully efficient estimation
possible for these options. We demonstrate here how this might
be accomplished, and present analyses of familiar data sets
where improved model fits were attained.

Automated variable selection, e.g., the SELECTION =
option in procedure REG, has a long history in multiple
regression, and recently has been implemented for both logistic
regression and proportional hazards models in procedures
LOGISTIC and PHREG, respectively. Any active data analyst
knows the value of these model-building algorithms. However, the
problem is even more complex in the case of data sets suitable
for CATMOD. Not only are the effects listed in the analysis of
variance table subject to retention or deletion, but also these
same effects within the individual link functions need be
examined. Without limiting ourselves to baseline logits, we show
that this is easily implemented using the SWEEP operator
contained in the IML procedure, and again demonstrate its
effectiveness using familiar data sets.

MATHEMATICAL FORMULATION
We suppose independent multinomial sampling from each of m,
d-category multinomial populations, where at most a nominal
relation exists among the multinomial categories. Associated with
each sample are associated values of c explanatory variables, x =
(x1, …, xc)’ which may be continuous, or indicators for levels of a
categorical variable, or a mixture of both. The resulting data has
the form

Population Category Sample Size x’
1 2 … d

1 n11 n12 … n1,d n1+ x '
1

2 n21 n22 … n2,d n2+ x '
2

……….

m nm1 nm2 … nm,d nm+ x '
m

where P[ni1,…,nid] = ni+! ∏
=

π
d

1j

n
ij

ij / ∏
=

d

1j
ijn !, 0 < ijπ < 1, and �

=
π

d

1j
ij = 1

for i = 1,…,m. Defining iππππ = [ 1iπ ,…, idπ ]’, we postulate that iππππ is

related to x i through a set of multivariate link functions, f( iππππ ) =

[f1( iππππ ),…,fu( iππππ )]’, where for a MGLM,

f( iππππ ) = ( I )u( ⊗ x '
i ) ββββ with ββββ = ( '

1ββββ ,…, '
uββββ )’ (1)

for i = 1,…,m.
Since necessarily u = d – 1 for invertibility (Dunn,

1985), we shall assume that this restriction on u always holds in
the following development. A broad class of multivariate link
functions (Dunn, 1985) applicable for nominal categories of
response are the generalized additive logits (GAL), where for any
monotone h, mapping (0,1) into the positive real axis, f ij =

ln[h( ijπ )/h( idπ )] for j = 1,…,d - 1. Its inverse is

ijπ = h 1− [h( idπ )e ijf ], (2)

where idπ solves ]e)(h[h ijf
id

1d

1j

1 π�
−

=

− + idπ = 1.

Baseline logits, or additive logits (AL) in Aitchison’s terminology
(1982), with h( π ) = π provide a familiar example, while additive
log-logits (ALL) and additive tangent-logits (ATL) with h( π ) = -
ln( π ) and h( π ) = tan(3.14159… π /2), respectively, provide
immediate extensions. Dunn (1985) also noted that if ln in GAL

were replaced by any continuous g: R + ↔ R (and exp by g 1− ),
these links also would be invertible and the class described as
generalized additive (GA) link functions. While the examples
presented here involve only the GAL class, the general approach
to maximum likelihood, as well as variable selection, are
applicable to the broader class of GA links.



EQUATIONS WHICH ALWAYS APPLY FOR
MAXIMUM LIKELIHOOD ESTIMATION

Starting with the likelihood function L = C ∏∏
= =

π
m

1i

d

1j

n
ij

ij ,

ln(L) = � � �
=

−

=

−

=
�
�

�
�
�

�
π−+π

m

1i

1d

1j

1d

1k
ikidijij )1ln(n)ln(n + ln(C),

from which

ββββ∂
∂ )Lln(

= � � �

�
=

−

=

−

=
−

= �
�
�
�

�

�

�
�
�
�

�

�

∂
π∂

π−
−

∂
π∂

π

m

1i

1d

1j

1d

1k

ik
1d

1k
ik

idij

ij

ij

1

nn

ββββββββ

= � �
=

−

= �
�

�

�

�
�

�

�

∂
π∂

��

�
	



��

�
�


π
−

π

m

1i

1d

1j

ij

id

id

ij

ij nn

ββββ
= w( ββββ ), (3)

defining the maximum likelihood estimator (MLE) to be
^

ββββ

satisfying w(
^

ββββ ) = 0. In order to implement Fisher’s method of
scoring, the matrix of second derivatives of log-likelihood is given
by ∂ w’/ ββββ∂ =

( ) ( ) .''
1

1

1

1

1

1

1
22� � ��

=

−

=

−

=

−

= �
�
�

�

�
�
�

�
∂∂

∂
∂

��

�
	



��

�
�


−+∂∂
��

�
	



��

�
�


∂
∂

−
∂
∂

−
m

i

d

j

d

j
ij

id

id

ij

ij
ij

d

k

ik

id

idij

ij

ij nnnn
ββββ

ββββ
ββββ

ββββββββ
π

ππ
ππ

π
π

π

Replacing n ij by its expectation, E(n ij ) = n +i ijπ yields

E( ∂ w’/ ββββ∂ ) = -W =

( ) ,'
1

'
11

1

1

1

1

11 �
�
�

�

�
�
�

�

�
�
�

	




�

�
∂∂

∂
∂

+∂∂
∂

∂
− � � ��

−

=

−

=

−

==
+

d

j

d

k

d

j
ij

ik

id
ij

ij

ij

m

i
in ββββ

ββββ
ββββ

ββββ
ππ

π
π

π
π

(4)

a symmetric matrix, where V = W 1− is the asymptotic covariance

matrix of ββββ̂ . Solution is by means of a Newton-Raphson iteration,

1s
ˆ

+ββββ = sβ̂βββ + W( sβ̂βββ ) 1− w( sβ̂βββ ), or more concisely, 1s
ˆ

+ββββ solves the

linear equations W( sβ̂βββ ) 1s
ˆ

+ββββ = )ˆ(~
sββββw , where the right hand

side )ˆ(~
sββββw = [W( sβ̂βββ ) sβ̂βββ + w( sβ̂βββ )], is a vector of “working values”

at iteration step s as traditionally defined, e.g., Finney (1971).

From equations (3) and (4) we see that ββββ̂ depends on

choice of link functions only through ββββ∂π∂ ij . But even this has a

general form for GAL and GA links since from equation (2), ijπ =

ijπ (f ij , idπ ) for j = 1,…,d – 1. Thus,

ββββ∂
π∂ ij =

�
�
�
�
�
�

�

�

�
�
�
�
�
�

�

�

∂
π∂

∂
π∂

−1d

ij

1

ij

ββββ

............
ββββ

=

�
�
�
�
�
�

�

�

�
�
�
�
�
�

�

�

∂
π∂

π∂
π∂

+
∂
∂

∂
π∂

δ

∂
π∂

π∂
π∂

+
∂
∂

∂
π∂

δ

−−

−

−

−
−

1d

id

id

ij

1d

1d,i

1d,i

1d,i
1d,j

1

id

id

ij

1

1i

1i

1i
1j

f

f

f
f

ββββββββ

............
ββββββββ

=

�
�
�
�
�

�

�

�
�
�
�
�

�

�

∂
∂

∂
∂

−
∂
∂

∂
∂

∂
∂

−
∂
∂

�

�

= −−

−

=

1-d

1k
i1-dj,

1-d

1k 1

ik

id

ij

11,

1,

1

1
1

d

ik

id

ij

di

di

i

i
j

f

f

ββββ

............
ββββ

π
π
ππ

δ

π
π
ππδ

x

xi
, (5)

where rsδ is Kronecker’s delta, equal to 1 if r = s and 0 otherwise.

Equation (5) can be simplified. Summing over j = 1,…,d - 1, obtain

�
−

= ∂
π∂1d

1j

ij

ββββ
=

�
�
�
�
�
�

�

�

�
�
�
�
�
�

�

�

∂
π∂

∂
π∂

�

�

=

−

=

1-d

1j 1-d

ij

1d

1j 1

ij

ββββ

............
ββββ

=

�
�
�
�
�
�

�

�

�
�
�
�
�
�

�

�

∂
π∂

π∂
π∂

−
∂
π∂

∂
π∂

π∂
π∂

−
∂
π∂

� �

� �

= = −

= =

1-d

1j

1-d

1k 1d

ik

id

ij
i

1-di,

1-di,

1-d

1j

1-d

1k 1

ik

id

ij
i

1i

1i

f

...
f

ββββ

ββββ

x

x

which shares the common term �
−

= ∂
π∂1d

1j

ij

ββββ
on both sides. Solving for

this yields

�
−

= ∂
π∂1d

1j

ij

ββββ
= (1 + �

−

= π∂
π∂1d

1k id

ik ) 1−

�
�
�
�
�

�

�

�
�
�
�
�

�

�

∂
π∂

∂
π∂

i
1-di,

1-di,

i
1i

1i

f

...
f

x

x

, (6)

which when substituted in equation (5) yields

ββββ∂
π∂ ij =

�
�
�
�
�
�

�

�

�
�
�
�
�
�

�

�

∂
π∂

π∂
π∂

π∂
π∂+−δ

∂
π∂

π∂
π∂

π∂
π∂+−δ

�

�

−

= −

−−
−

−

=

−

1d

1k
i

1d,i

1d,i

id

ij1

id

ik
1d,j

1d

1k
i

1i

1i

id

ij1

id

ik
1j

f
])1([

...
f

])1([

x

x

. (7)

Equations (6) and (7) are readily computable as intermediate
steps in evaluating equations (3) and (4).

ANOVA TESTS USING SWEEP OPERATIONS

Since sweeping [W( sβ̂βββ ) � w~ ( sβ̂βββ )] with respect to all rows at each

iterative step yields [W( sβ̂βββ ) 1−
� 1s

ˆ
+ββββ ], at the

MLE solution, ββββ̂ , var[ ββββ̂ ] is estimated by W( sβ̂βββ ) 1− . Once

convergence is attained, then a generalized Wald statistic defined

by X 2 = ββββ̂ ’G’[G W( sβ̂βββ ) 1− G’] 1− G ββββ̂ for testing H 0 : G ββββ = 0,

where G is any column permutation of [I 0�)m( ], is obtained by

sweeping

�
�
�

�

�
�
�

� −

0'ˆ

ˆ)ˆ( 1
s

ββββ
ββββββββW

(8)

with respect to m rows corresponding to subscripts of non-zero

columns of G. The result of the sweep is �
�

�
�
�

�

−•
••

2X
, so that one

only needs to change the sign of the bottom corner element to

obtain the test statistic, X 2 ~ 2
)m(χ under H 0 . Since matrix (8) is

unaffected by the sweep, it may be swept again to test other
hypotheses.

Consider an example given by Agresti (1996) in which
alligators from five lakes and two size classes were classified with
respect to their primary food choice. The data appears in Table 1.

Table 1. Alligators classified by primary food choice.
Primary Food Choice

Lake Size
(m)

Fish Invert. Reptile Bird Other

3.2≤ 23 4 2 2 8Hancock
>2.3 7 0 1 3 5

3.2≤ 5 11 1 0 3Oklawaha
>2.3 13 8 6 1 0

3.2≤ 5 11 2 1 5Trafford
>2.3 8 7 6 3 5

3.2≤ 16 19 1 2 3George
>2.3 17 1 0 1 3



Table 2 shows identical chi-squared statistics given by
CATMOD using default AL links and those resulting from the
sweep operations described here. Since the explanatory
variables, Lake and Size Class, are categorical, zero-sum
restrictions were imposed (as does CATMOD) before the sweep
operations. Because the order of parameters corresponds to that
of equation (1) (unlike CATMOD), rows 1, 6, 11, and 16 of matix
(8) were swept to obtain SS for Intercept; rows 2, 3, 4, 7, 8, 9, 12,
13, 14, 17, 18, and 19 were swept to obtain SS for Lakes; and
rows 5, 10, 15, and 20 were swept to obtain SS for Size Class.
This was repeated using ALL links, with results also shown in
Table 2.

Table 2. Analysis of variance of primary food choice data in
Table 1 using additive logistic (AL) and additive log-
logistic (ALL) links.

AL ALL
Source d.f. X2 p-value X2 p-value
Intercept 4 70.39 <0.0001 84.02 <0.0001
Lake 12 35.49 3.91E-4 48.30 2.78E-6
Size 4 18.76 8.76E-4 20.29 4.37E-4
Fit 12 17.08 0.1466 17.85 0.1204

Even though lack-of-fit X2 was marginally smaller for AL
links, use of ALL links resulted in an increase of 12.81 in Lake X2.
Since the degrees of freedom are identical in both cases, the
ALL-based test for Lake effects has increased power over that
based on AL links. Since our focus until now primarily had been
on comparing lack-of-fit under alternative choices of links, the
potential for increased power as a result of link choice remains
unexplored territory.

In fact it is not difficult to find examples in the published
literature where use of ALL links provides a better fit than use of
AL links. Grizzle, et al. (1969) illustrated GSK methodology using
numbers of depletions (deaths) incurred in litters of mice
classified by litter size and exposure to either treatments A or B.
The data appears in Table 3, and the resulting ANOVA, treating
litter size as quantitative, is shown in Table 4. Use of ALL links
rather than AL reduced lack-of-fit X2 from 10.21 to 9.04. Note that
a marked increase in the X2 statistic for litter size also has
occurred.

Table 3. Number of litters showing 0, 1 or 2+ depletions.
Number of depletionsLitter

Size
Treatment

0 1 2+
7 A

B
58
75

11
19

5
7

8 A
B

49
58

14
17

10
8

9 A
B

33
45

18
22

15
10

10 A
B

15
39

13
22

15
18

11 A
B

4
5

12
15

17
8

Table 4. Analysis of variance of number of mice depletions
treating litter size as quantitative using additive logit
(AL) and additive log-logit (ALL) links.

AL ALL
Source d.f. X2 p-value X2 p-value
Intercept 2 107.15 <0.0001 123.03 <0.0001
Size 2 78.41 <0.0001 95.81 <0.0001
Treatment 2 6.71 0.0350 5.68 0.0585
Fit 14 10.21 0.7464 9.04 0.8287

BACKWARD ELIMINATION USING SWEEP
Quite often, even after eliminating factors and interactions based
on the ANOVA table, many of the 1 d.f. Wald statistics, i.e., X2 =

(estimate/standard error)2 ~ 2
)1(χ , are not significantly different from

zero, thus suggesting that a simpler model may be attained. The
relative magnitudes of these, from small to large, suggest a
tentative order for elimination. Since conditional odds ratios ala
Agresti (1996) are identically 1 for all those non-intecept
parameters which are zeroed, this often leads to considerable
economy of interpretation. In order to eliminate additional
parameters, one simply does successive sweeps of matrix (8)
with respect to rows corresponding to indices of increasing Wald
statistics until lack of statistical significance of the entire set of
zeroed parameters is no longer obtained. This is illustrated in
Table 5, based on the primary food choice data in Table 1, and
using both AL and ALL links. Profiles are in order: bird, fish,
invertebrates, other, reptiles (using reptiles as the baseline);
George, Hancock, Oklawaha, Trafford; and >2.3, ≤ 2.3.
Choosing α = 0.05 as the nominal significance level, selection
stopped for AL links with 10 parameters declared not significantly
different from zero (p = 0.105), while for ALL links, selection
stopped with 7 parameters declared not significantly different
from zero (p = 0.071). This difference seems attributable to the
fact that Wald statistics generally were larger using ALL rather
than AL links, which corresponds to a similar trend already noted
in the ANOVA statistics in Table 2. With the exception of
parameter #12, all other parameters selected using ALL links
were included in the set selected using AL links.

Table 5. Order of selection of parameters to be zeroed in models
for alligator primary food choice, using additive logits
(AL) and additive log-logits (ALL).

AL ALL
Index Parameters X2 Order X2 Order
1
2
3
4
5

1ββββ 0.388
2.149
1.349
3.756
0.120

4
10
8

2

0.864
3.053
1.603
4.306
0.057

3

7

1
6
7
8
9
10

2ββββ 29.03
4.371
0.555
2.882
0.367

5

3

52.32
6.881
3.488
2.698
0.232 2

11
12
13
14
15

3ββββ 9.109
3.676
4.084
0.006
9.008

1

14.38
2.494
8.979
1.476
13.39

8

6

16
17
18
19
20

4ββββ 3.168
1.574
1.166
4.837
1.099

9
7

6

3.155
0.942
2.731
4.947
1.450

4

5

As a final remark in this section, note that we have been able to
produce Table 5 based on only a single model fit for each set of
links. This is a distinct advantage of backward elimination since
model-fitting for MGLM’s tends to be computationally expensive in
that the size of parameter sets associated with MGLM’s tends to
be explosive. We have not based our model-building decisions
entirely on 1 d.f. Wald statistics, but rather do a single, multiple
d.f. test to make a decision about whether or not to zero the entire
tentative subset of parameters. It’s a simple computational step
using sweep operations, and leads to a single p-value at the end.



CONCLUSION
For categorical predictors, the preliminary step of
reparameterizing to full rank, e.g., using zero-sum restrictions,
has not been essential in any of the data sets we’ve examined,
since all of the computational steps basically are identical
regardless of whether a true or a g2-inverse is used. This
increasingly has become an encumbrance for CATMOD users
who have forgotten or never learned the concept of
reparameterizing a model to full rank.

For the alligator primary food choice data, a general
increase in the size of Wald statistics was observed, both
individually and in the ANOVA table, as a result of replacing AL
links with ALL links. Selection of 7 parameters to zero in the latter
case, compared to 10 using AL links is associated with this
increase. Clearly this is attributable to standard errors using ALL
links which are half or less than those based on AL links. We
have not yet explored whether this is a general occurrence, or
simply specific to this data set.

For some non-trivial data sets encountered in our
consulting work, we have been able to obtain major model
simplifications using an ad hoc approach to parameter selection
now carried on systematically by our backward elimination
algorithm. In the case of the alligator primary food choice
example, we would focus on interpreting 7 or perhaps 9
conditional odds ratios involving reptiles, rather than the initial
undifferentiated 16, 9 or 7 of which we expect to be close to 1. We
are aware, however, that one cannot always fit a “full model” to
use as a starting point for backward elimination. We can,
however, compute efficient score statistics without fitting the
model, and this is an avenue which we are pursuing.

REFERENCES
Agresti, A. 1996. An Introduction to Categorical Data Analysis,

John Wiley & Sons, New York.
Aitchison, J. 1982. The statistical analysis of compositional data.

J. of the Royal Statistical Society (B) 44:139 – 177.
Dunn, J.E. 1985. The role of invertibility and symmetry of

polytomous metameters for GSK and other related
analyses. Proc. of 10th Annual Conf. of SAS Users
Group, pp. 990 – 999.

Finney, D.J. 1971. Probit Analysis, 3rd edition, Cambridge
University Press.

Grizzle, J.E., Starmer, C.F., and Koch, G.G. 1969. Analysis of
categorical data by linear models. Biometrics 25:489 –
504.

CONTACT INFORMATION
Your comments and questions are valued and encouraged.
Contact the author at:

Kimberly Hughes DeJarnatt
John Brown University
2000 W. University
Siloam Springs, AR 72762
(501) 524-7279
khughes@jbu.edu



Paper P711

Using the SAS® System to Study the Gender and Level Measurement Equivalence of a
Multi-rater Survey

Jim Penny, Center for Creative Leadership, Greensboro, NC

ABSTRACT
This research used logistic regression to model item responses
from a popular 360-for-development survey. The survey
contained 57 items on 11 scales. The model used gender and
rater group to identify items that exhibited differential item
functioning (DIF). The rater groups were self, boss, peer, and
direct report. The sample consisted of 752 survey families where
a survey family consisted of a matched set of four surveys: one
self, one boss, one peer, and one direct report. The sample of
3008 surveys contained 76% male and 24% female raters. The
procedure to flag items exhibiting differential functioning used
effect size computed from Wald chi-square statistics rather than
statistical significance, resulting in fewer flagged items.

Three items exhibited rating anomalies due to the gender of the
rater or ratee. Twelve items exhibited DIF attributable to rater
group. In each instance, the apparent effect of the DIF was
small. An examination of the maximum likelihood parameter
estimates suggested the rater group DIF was the possible result
of hierarchical complexity. The DIF due to gender conformed to
expectations of gender-related stereotypical interpretations of
item text. This research further suggested that DIF due to
environmental complexity could be a naturally occurring
phenomenon in some 360-assessment, and that the
interpretation of some 360-feedback might need to include the
potential for such DIF to exist.

INTRODUCTION
There has been a veritable explosion in the use of 360-
assessment, a form of multi-rater assessment for managerial
development in organizations. The process of 360-assessment
involves providing managers with feedback from four sources: (1)
the manager’s boss, (2) the manager’s subordinates or direct
reports, (3) the peers or the customers of the target, and (4) the
self. Although the notion of receiving multi-source feedback is
not new, at least one premise of multi-rater methodology remains
unresolved: Does the 360-process produce a similar measure
from different rater groups just as a measuring tape produces a
similar measure with different carpenters? Alternatively, does the
360-methodology provide an equivalent measure with each rater
group?

In addition to the increase in the use of 360-assessment, there
continues to exist the question of whether or not women receive
fair assessments of performance in the workplace, or do a variety
of psychological and sociological biases influence the results of
360-methodology when applied to women? That is, does 360-
methodology provide an equivalent measure for both men and
women, or do the gender biases that sometimes accompany
performance appraisals function to influence the manner in which
some raters interpret some items? Moreover, might there exist a
potential interaction between rater group and gender of the ratee
or between the gender of the rater and the gender of the ratee?

DIFFERENCES AMONG RATER GROUPS
Discussions of the differences between self and others’ ratings
sometimes arise during 360-feedback sessions (Van Velsor &
Leslie, 1991), making the existence of measurement equivalence
important to interpretations of 360-feedback. It is possible, if not
expected, that a feedback recipient will receive low ratings in one
area from one rater source while receiving high ratings in that
same area from another rater group. A manager, for example,
may be interpersonally skilled with bosses yet cold and aloof with
direct reports. This manager, therefore, could receive high

ratings on interpersonal skills by the boss while receiving low
ratings on this dimension by direct reports. However, in the
interpretation of the between group difference, there is the
underlying assumption that the raters are responding to their
perceptions based on their observations of behaviors exhibited by
the manager, and that two raters with similar observations will
respond similarly to a given item even though the raters may
occupy positions of different levels.

CONTINGENCY THEORY
Contingency theories of leadership (Fielder 1978; Fielder &
Chemers, 1982) suggest that disparate ratings can be an
indication of an effective manager, and that gaps in the
perspectives between groups of raters are often a naturally
occurring phenomenon of management. Moreover, Yukl (1981,
pp. 99-119) suggested that managers often change their behavior
to fit particular situations, and, following this line of argument,
managers who behave differently toward different groups of co-
workers may receive disparate ratings from members of those
groups. Hence, between group differences may be an
acceptable outcome for some managers.

Concomitant with the interpretation of group differences in 360-
feedback is the expectation that a different interpretation of the
item by one group of raters does not contribute substantially to
the observed difference, and that the observed difference is only
the result of behavioral differences produced by the
circumstances of contingency. However, it seems reasonable to
anticipate that some items may tap into differences produced by
organizational contingency to a greater degree than do some
other items. The ratings produced by items influenced by
contingency, then, become composite scores comprised not only
of an estimate of the managers standing on the trait measured by
the survey but also of the degree to which contingency influenced
the ratings.

COMPLEXITY THEORY
Jacques (1996) and Jacques & Clement (1994) suggested that
the degree of environmental complexity and ambiguity seen by a
person within an organization generally increases with rank. That
is, a supervisor of the manager is likely to see a more complex
and a more difficult to comprehend environment than is the direct
report of the manager. For example, 360-surveys sometimes
contain items that measure the resourcefulness of the manager,
and one might argue that the increase in complexity from one
level to another could produce different interpretations of what
resourcefulness means. Hence, it seems reasonable to
anticipate that differences in environment may influence the
ratings given on a 360-survey.

As with contingency theory, the interpretation of between-group
differences in 360-ratings is posited on the expectation that an
observed difference is solely a function of the behavioral
differences witnessed by the raters. However, it seems
reasonable to anticipate that some items may tap environmental
complexity more so than other items. In that event, a rating
difference produced by such items may represent a composite of
not only the standing of the manager on the trait assessed by the
items but of also the degree to which complexity influences the
rater’s interpretation of that item. One might argue, then, that a
manager reviewing 360-feedback could choose to make
behavioral changes due not only to the behavioral observations of
the raters but also, at least in part, to ratings produced by the
anomalous functioning of some items.

DIFFERENCES BETWEEN GENDERS
Although far from conclusive, a condition indicative of the



complex role gender plays in society, many studies have
examined the influence of gender on ratings of managerial
effectiveness over the past twenty-five years. Some studies have
demonstrated statistically significant differences attributable to
gender of the ratee (Bartol & Butterfield, 1976; Jacobson &
Effertz, 1974; Rosen & Jerdee, 1974; Schmitt & Lapin, 1980).
Other studies have failed to produce such differences (Pulakos &
Wexley, 1983; Thompson & Thompson, 1983).

In circumstances where a woman functions in a role often
associated with men, one might expect to find to find differences
attributable to the interaction of “role gender” and gender of the
person filling the role. For example, a woman working as a
firefighter might find herself at risk to receive performance
reviews that carry not only an assessment of her performance but
that also carry the influence of the interaction of her gender with
the “gender” of the job. Of course, it stands to reason that men
filling roles often associated with women will experience similar
bias in performance reviews. Bartol & Butterfield (1976) and
Rosen & Jerdee (1974) identified statistically significant
interactions between role gender and person gender; however,
Jacobsen & Effertz (1974) and Mobley (1982) failed to identify
such interactions.

The influence of gender is likely a composite of many factors,
some of which may have small effects until they exist in concert
with gender. Moreover, one could argue that raters are more
likely to remember the gender of the manager long after
forgetting particular exemplars of either good or bad behaviors.
Such biases attributable to gender may influence ratings more
than other factors and behaviors. For instance, Nieva & Gutek
(1980) suggested that level of qualification, level of performance,
degree of inference resulting from the ratings, and sex-role
incongruence may each explain a portion of rating variability.
Other explanatory factors also have arisen in the study of gender
differences in managerial ratings. Cash, Gillen, & Burns (1977)
suggested that some raters attribute a man’s success to ability
while attributing the success of a woman to effort and luck.
Greenhaus & Paurasuraman (1993) confirmed those findings,
though only for women in the highest performance levels. At
moderate levels of performance, they found that raters were likely
to use ability to explain a woman’s success.

In addition, one might also suggest that stereotypical behaviors
and biases may influence performance ratings. Noe (1988) and
Powell (1988) gave evidence to suggest that negative
stereotypes against minorities and women can have a substantial
impact on ratings of performance and effectiveness. Moreover,
Martell (1991) found that if there existed less time to make an
assessment of managerial performance, the performance of men
was likely to receive higher ratings than comparable
performances by women. Maurer & Taylor (1994) rendered this
finding even more poignant when they demonstrated that the
perceived masculinity of the ratee could produce higher ratings.
Lastly, Powell & Butterfield (1989) suggested that the definition of
“good manager” still carried connotation of masculinity despite
the growing population of female managers.

It seems reasonable to anticipate that some items will tap
perceptual differences due to gender to a greater extant than will
other items, and one might also suggest that particular items may
tap particular gender-related biases and either increment or
decrement differentially the resulting 360-ratings. In addition, one
may ask if the differential functioning of the item is due to the
gender of the rater, the gender of the ratee, the interaction of the
two genders, all three or some other combination. Moreover, do
either or both genders interact with the rater group?

RESEARCH QUERSTIONS
This research sought to establish the degree to which

differential item functioning attributable to rater group and gender
may influence the ratings of a 360-survey. That is, will a given
manager receive similar ratings from the boss, a direct report,
and a peer if those three other raters have had similar

experiences with the manager? Are there components in item
ratings attributable to the gender of the rater or to the gender of
the ratee? Are there items that function differently for particular
combinations of rater and ratee gender? Is there evidence to
support the existence of an interaction between the gender of
ratee and the rater group? Moreover, if such items exist, does an
explanatory model exist using extant measurement and
psychological theory? Finally, if such items exist and if such
explanatory models exist, what, then, may be the subsequent
implications for the interpretation of the 360-feedback.

METHODOLOGY
This research used logistic regression to detect DIF.
Swaminathan & Rogers (1990) first presented this methodology
and demonstrated its relationship to the Mantel-Haenszel
procedure (Mantel & Haenszel, 1959; Holland & Thayer, 1988).
Swaminathan & Rogers (1990) and Clauser & Mazor (1998) have
shown that logistic regression is equal in power to the Mantel-
Hanzsel procedure for the detection of uniform DIF. Moreover,
these same authors with Penny & Johnson (1999) have shown
that the Mantel-Haenszel procedure may lack sufficient statistical
power to detect some instances of nonuniform DIF. However,
Rogers (1989), Rogers & Swaminathan (1993), and
Swaminathan & Rogers (1990) found that logistic regression
procedures likely to have sufficient power to detect non-uniform
DIF.

Much of the initial research in the use of logistic regression for
the detection of DIF involved the examination of dichotomous
items; that is, items with two possible responses, usually 0 and 1.
However, logistic regression is easy to extend to polytomous data
where the respondent chooses one of an ordered set of
responses. Samejima (1969, 1979) presented the Graded
Response Model that describes such item responses which are
common on 360-surveys. For example, the Graded Response
Model describes a Likert-type item using a 5-point scale of
1=Strongly Disagree to 5=Strongly Agree positing a response
function for each point on the scale according to

( ) ( )( ) ( )( )

( ) ( )1

1

1

1

1

**

1

+−=
+

−
+

== −−−− −

kPkP

ee
kxP

kk baba θθ

in which a is the discrimination parameter and bk-1 is the
threshold parameter. P*(k) is the item response function that
describes the probability that a response is in category k or
higher. In this model, the discrimination parameter is constant for
all categories of k, and the threshold parameter, bk-1, is the point
on the θ-axis where the probability exceeds 50 percent that the
response is in the next category. Researchers sometimes call
the threshold parameter the “location” parameter.

For the detection of DIF using logistic regression with polytomous
data (Clauser & Mazor, 1998), I can adapt the framework of
Samejima (1969, 1979) and write the equation

kk zz ee
kxP −− +

−
+

==
− 1

1

1

1
)(

1

,

where P(x=k) is the probability of a response k to a particular item
from a respondent of standing θ, and where k takes the values of
the Likert-type response scale (Miller & Spray, 1993; Samejima,
1969, 1979; Swaminathan & Rogers, 1990). From this point
forward, I will drop the subscript i on z to make the model easier
to read.

MODELLING ITEM RESPONSES
Were the existence of DIF not an issue, I would write z as

θττ 10 +=z ,

where θ represents the standing of the ratee on the attribute that
the survey measures. The symbols τ0 and τ1 represent the
intercept and the slope parameters of the logistic regression
model; these symbols also represent forms of the discrimination
and location parameters of the Graded Response Model. This



logistic model represents the situation where the rater group
membership and gender do not influence the item response, and
where the only factor that does influence the response is the
standing of the ratee on the attribute that the survey measures.

To expand the model to include components to represent effects
due to gender and rater group membership, I would write

rgz 3210 ττθττ +++= ,

where g and r represent gender and rater group membership,
respectively, and τ2 and τ3 represent the logistic regression
parameters for those two classifications. This model describes
the instance where only uniform DIF exists. I can define the
values for g in the typical 360-survey as {male, female}.
Similarly, I can define the values for r as {self, direct report, peer,
boss}. Later, to contrast the functioning of an item across these
values, I used dummy codes to represent each value.

I can expand this model to accommodate the potential existence
of nonuniform DIF by the addition of two more terms to produce

θτθτττθττ rgrgz 543210 +++++= ,

where the two new terms indicate an interaction, respectively,
between (a) gender and standing on the attribute that the survey
measures, and (b) rater group membership and standing. The
symbols τ4 and τ5 represent the logistic regression parameters for
these two interaction terms, respectively.

To complete the model for this research, I included two additional
terms. One term is to indicate the possible interaction between
rater group membership and gender; the other term is to indicate
the possible three-way interaction of rater group membership,
gender, and standing on the attribute that the survey measures.
The types of DIF represented by these two terms are uniform and
nonuniform, respectively. I can write this model as

θττθτθτττθττ grgrrgrgz 76543210 +++++++= ,

where the symbols τ6 and τ7 represent the logistic regression
parameters for these two additional interaction terms,
respectively.

A CLOSER LOOK AT MODELLING GENDER
Although this model permits the examination of the rater group
and rater gender effects, it does not permit the comparison of the
gender of the rater to the gender of the ratee. That is, is there
evidence to suggest that some items exhibit DIF that is
attributable to men rating women, women rating women, and so
forth? To examine such an interaction, the model needs to
include terms for the two genders in addition to the cross product
of those genders. It is possible to add those terms to this model,
but to do so leads to a conceptual problem: For the self-rater, do
the self-ratings of a male represent a man rating a man or the self
rating the self? In a manner of thinking, the self-ratings do
represent gender-on-gender ratings, and there may be the
occasional self-rater who can step outside of the self and produce
gender-on-gender ratings, but it seems far more reasonable that
the gender of the self-rater is not as important to the self-ratings
as is self-awareness.

Hence, to examine the interaction of rater gender and ratee
gender in addition to rater group and gender, I used the model

θτθτθτθτθτθτθτ
τττττττθττ

rsrsrsrs

rsrsrsrs

grgggrgrgggr

grgggrgrgggrz

1514131211109

876543210

+++++++
++++++++=

where θ represents the covariate which is a proxy for standing on
the trait measured by the survey, r represents the rater group, gs

represents the gender of the self-rater, and gr represents the
gender of the other rater. The additional terms represent the
various interactions that may be important to understanding the
functioning of the items. The values of the two gender variables
are male and female. However, the values of the rater group
variable no longer include self, but only the values direct report,
peer, and boss.

STATISTICAL SIGNIFICANCE AND EFFECT SIZE

I used the SAS® System to evaluate this model for the data I
collected. The SAS System produced Wald Chi Square statistics
to test the null hypotheses that that the parameter estimates of τ0

through τ15 were statistically significantly different from 0. It was
my anticipation that τ0 and τ1 would routinely achieve statistical
significance. In addition, it was my anticipation that the
parameter estimates of τ2 through τ15 would not routinely achieve
statistical significance.

However, I knew that, with number of terms in the model I had
chosen, I would be making many statistical tests of significance,
and that the experiment-wise Type I error rate could be high. To
compensate for the accumulated Type I error rate that could
naturally occur in this research and to avoid the complex power
analysis (Hsieh, 1989; Whittemore, 1981) of logistic regression
that would suggest an appropriate number of subjects to evaluate
the model, I decided to use effect size instead of statistical
significance. I chose the technique presented in Penny &
Johnson (1999) and converted the Wald chi-square statistic to an
effect size, w, described in Cohen (1988, ch. 7). The formula that
relates the effect size to the sample size is

22 nw=Χ
where Χ2 is the chi-square statistic, n is the sample size, and w is
the effect size. Cohen (1988, ch. 7) used the arbitrary values of
.1, .3, and .5 to indicate small, medium, and large effects,
respectively. Although these values are arbitrary, Penny &
Johnson (1999) found that those values appeared to connote well
derived from the Mantel-Haenszel chi-square statistic used to
identify DIF, and I used the three values to define four effect
ranges to categorize the DIF I discovered with the logistic
regression model. These ranges were nil-to-small, small-to-
medium, medium-to-large, and large-to-extreme.

CLASSIFICATION OF TYPE OF DIF
After I classified the items by the type of DIF, either uniform or
nonuniform, and the source of DIF, I classified them further
according to the apparent explanation of the differential
functioning. An item influenced by complexity theory should
produce maximum likelihood parameter estimates suggestive of
a continuum from direct report to boss. For example, a boss may
interpret an item that assesses the resourcefulness of a manager
differently than would a direct report because the boss, by virtue
of working in a more complex and, perhaps, more ambiguous
environment, may have a different idea of what actions, and
quantities of actions, constitute resourcefulness in a manager. If
a manager, boss, peer and direct report have similar
assessments of the manager’s performance, and that item
functions to augment the ratings of the direct report over those of
the boss while not altering the ratings from the self and peers,
then the item is exhibiting differential item functioning of a type
that produces evidence of a continuum.

In this research, I denoted this type of differential functioning as
“DR(+) to S/P to B(-).” To save space, I often dropped the “S/P”
part of the notation to produce “DR(+) to B(-).” Hence, an item
that functioned the produce differentially lower ratings from direct
reports would receive the notation “DR(-) to B(+).”

An item influenced by contingency theory should produce
maximum likelihood parameter estimates that suggest a contrast
of one rater group to all the others. For example, an item that
assesses the propensity of a manager to learn the work
performed by direct reports may function differently for direct
reports than it does for any other rater group. If the item
functions to differentially decrement the ratings from the direct
report raters, I can describe the functioning using the notation
“DR(-) vs. all others.” Of course, another item could function to
isolate any of the other rater groups, and the ratings from the
isolated group could be incremented or decremented resulting in
notation such as “P(+) vs. all others” or “B(-) vs. all others.”

I classified items influenced by gender into groups suggestive of
the gender stereotype tapped by the item by reviewing the text of



the item after reviewing the regression results. After the final
categorization, I presented my findings to a review panel of 360-
process and 360-content experts who proceeded to challenge my
classifications.

DATA
I used the 1996-1999 Prospector® database from the Center for
Creative Leadership (CCL) for this research. Prospector is a 360-
assessment-for-development feedback instrument developed to
give managers and executives insight into their strengths and
development needs. The instrument consists of 57 items
designed to assess eleven domains related to managerial
effectiveness. Table 1 presents the names and descriptions of
the 11 scales. Each item used a 7-point, Likert-type response
format. The textual anchors for the response scale were 1=”very
strongly disagree” to 7=”very strongly agree” with 4=”neutral”
providing the anchor for the middle of the scale.

I selected a random sample of 752 survey families for use in this
research. Each survey family included matched ratings from a
manager (the self or ratee), a peer, a boss, and a direct report
resulting in 3008 total surveys. Tables 2 and 3 give the
breakdown of the gender, race, and rater group information for
this sample. Because each family contained exactly one survey
from each rater group, there were 752 each of self, peer, boss,
and direct report surveys.

RESULTS
THE INFLUENCE OF STANDING ON RESPONSES
The main effect of standing on the attribute measured by the
survey had by far the greatest influence on the item ratings of all
the terms in the logistic model. The average effect due to the
covariate was in the large-to-extreme category with only a very
few items exhibiting a main effect due to covariate in the medium-
to-large category. The effect of the covariate was never smaller
than medium.

DIF ATTRIBUTABLE TO RATER GENDER
One item exhibited uniform DIF attributable to the gender of the
rater. The effect was .12, placing the item in the lower end of the
small-to-medium category. The product of the differential
functioning was to elevate differentially the ratings given by male
raters over those given by female raters. The text of the item was
“Is willing to make substantial personal sacrifices for the sake of
the business.” The item occurred on the scale called “Committed
to making a difference.”

DIF ATTRIBUTABLE TO RATEE GENDER
Two items exhibited uniform DIF attributable to the gender of the
ratee. The first item occurred on the scale called “Open to
criticism.” The text of the item was “Is not threatened by
criticism.” The second item occurred on the scale called “Seeks
broad business knowledge.” This item also exhibited DIF with
respect to the rater type, and was the only item to exhibit DIF of
two types. The text of this item was “Understands the financial
side of the business.” The effect associated with both items was
.12, which placed the items in the lower end of the small-to-
medium category. Both items functioned to differentially
increment the ratings given to men.

DIF ATTRIBUTABLE TO RATER SOURCE
Twelve items on the survey exhibited uniform DIF attributable to
the rater group. Table 4 presents these items along with the
effect size and the impact of the DIF on the ratings. In each
case, these items functioned to produce evidence of continuity
from direct report to boss. Half of the items functioned to
differentially increment the ratings given by bosses while the
other half functioned to increment the ratings given by direct
reports. Within particular scales, the direction of this functioning
was consistently the same.

DISCUSSION

I used effect size instead of statistical significance to flag
anomalous items in this study. I did this to avoid the complex
power analysis that would suggest an appropriate sample size for
use with logistic regression and these data. By using effect size,
I failed to flag several items that I would have flagged were I
using the typical p-value of .05, though the use of a Bonferroni
correction may have ameliorated that Type I error rate. This
result suggest to me that the sample size was sufficiently large
for the analysis of the logistic model, and that the incidence of
false positives is lower than it might otherwise be using statistical
significance.

In most studies of differential item functioning, the existence of
DIF is not something that is good, and I tend to concur with those
who suggest that DIF is a quantity to remove from an
assessment. The occurrence of DIF may threaten the validity of
an assessment, and reduce the usefulness of the survey (Lord,
1980; Penny & Johnson, 1999). Psychological measures that
assess the learning, the performance, or perhaps even the
potential, of a candidate for a higher appointment are not the
places where one generally wants to find measures influenced,
even in part, by demographic quantities such as gender, race,
nationality, or native language.

However, this study, suggests that the existence of differential
item functioning may not be a completely bad thing, and further
suggests that DIF produced by environmental complexity might
be a naturally occurring phenomenon in the workplace. Hence,
one could argue that the interpretation of 360-feedback reports
should take into account the possibility of anomalous item
functioning produced by such environmental and experiential
differences. Moreover, this anomalous functioning may function
to ameliorate, or exacerbate, some observed rating differences,
and the degree of either may depend, at least in part, on the
standing of the ratee on the trait measured by the survey.

The DIF related to the gender of the ratee and the raters seems
another matter. The development of a useful and competitive
360-assessment is a long, involved, and arduous process where
items receive repeated critical review from many groups of
people. That this research uncovered (a) no DIF related to the
cross of rater and ratee gender, (b) no DIF related to the cross of
rater group and ratee gender, and (c) very little DIF attributable to
the gender of ratees or raters is an important and heartening
finding. However, that some items still tap, if ever so lightly,
particular instances of stereotypical gender associations reminds
us of the long road it has been towards gender equality and of the
longer road that remains before us.

REFERENCES
Bartol, K. M., & Butterfield, D. A. (1976). Sex effects in

evaluating leaders. Journal of Applied Psychology, 61, 446-454.
Cash, T. F., Gillen, B., & Burns, D. S. (1977). Sexism and

“beautyism” in personnel consultant decision making. Journal of
Applied Psychology, 62, 301-310.

Clauser, B. E., & Mazor, K. M. (1998). Using statistical
procedures to identify differentially functioning test items. Educational
Measurement: Issues and Practices, 2, 31-44.

Cohen, J. (1988). Statistical power analysis for the
behavioral sciences. Hillsdale, NJ: Lawrence Erlbaum Associates.

Fiedler, F.E. (1978) The contingency model and the
dynamics of the leadership process, In Advances in experimental social
psychology, ed. L. Berowitz. New York: Academic Press.

Fielder, F.E. & Chemers, M.M. (1982). Improving
leadership effectiveness: The leader match concept. 2nd Ed. New
York: Wiley.

Greenhaus, J. H., Parasuraman, S. (1993). Job performance
attributions and career advancement prospects: An examination of
gender and race effects. Organizational Behavior and Human Decision
Processes, 55, 273-297.

Holland, P. W., & Thayer, D. T. (1988). Differential item
performance and the Mantel-Haenszel procedure. In H. Wainer & H. I.



Braun (Eds.), Test validity (pp. 129-145). Hillsdale, NJ: Erlbaum.
Hsieh, F. Y. (1989). Sample size tables for logistic

regression. Statistics in Medicine, 8, 795-802.
Jacobson, M. B., & Effertz, J. (1974). Sex roles and

leadership perceptions on the leaders and the led. Organizational
Behavior and Human Performance, 12, 383-397.

Jacques, E. (1996). Requisite organization: A total system
for effective managerial organization and managerial leadership for
the 21st century. Cambridge, MA: Cason Hall & Co.

Jacques, E., & Clement, S. D. (1994). Executive
leadership: A practical guide to managing complexity. Cambridge,
MA: Basil Blackwell.

Lord, F. (1980). Application of item response theory to
practical testing problems. Hillsdale, NJ: Erlbaum.

Mantel, N., & Haesnzel, W. (1959). Statistical aspects of
the analysis of data from retrospective studies of disease. Journal of the
National Cancer Institute, 22, 719-748.

Martell, R. F. (1991). Sex bias at work: The effects of
attention and memory demands on performance ratings of men and
women. Journal of Applied Social Psychology, 21, 1939-1960.

Maurer, T. J., & Taylor, M. A. (1994). Is sex by itself
enough? An explanation of gender bias issues in performance
appraisals. Organizational Behavior and Human Decision Processes,
60, 231-251.

Miller, T. R., & Spray, J. A. (1993). Logistic discriminant
function analysis for DIF identification of polytomously scored items.
Journal of Educational Measurement, 30, 107-122.

Mobley, W. H. (1982). Supervisor and employee race and
sex effects on performance appraisals: A field study of adverse impact
and generalization. Academy of Management Journal, 25, 598-606.

Nieva, V. F., & Gutek, B. A. (1980). Women and work: A
psychological perspective. New York: Praeger.

Noe, R. A. (1988). Women and mentoring: A review and
research agenda. Academy of Management Review, 13, 65-78.

Penny, J., & Johnson, R. L. (1999). How group differences
in matching criterion distribution and IRT item difficulty can influence
the magnitude of the Mantel-Haenszel chi-square DIF index. The
Journal of Experimental Education, 67, 343-366.

Powell, G. N. (1988). Women and men in management.

Newbury Park, CA: Sage.
Powell, G. N., & Butterfield, D. A. (1989). The “good

manager:” Did androgyny fare better in the 1980’s? Group and
Organizational Studies, 14, 216-233.

Pulakos, E. D., & Wexley, K. N. (1983). The relationship
among perceptual similarity, sex, and performance ratings in manager-
subordinate dyads. Academy of management Journal, 26, 129-139.

Rogers, H. J. (1989). A logistic regression procedure for
detecting item bias. Dissertation Abstracts International, 50, 3928A.
(University Microfilms No. 90-11,788).

Rogers, H. J., & Swaminathan, H. (1993). A comparison of
logistic regression and Mantel-Haenszel procedures for detecting
differential item functioning. Applied Psychological Measurement, 17,
105-116.

Rosen, B., & Jerdee, T. H. (1974). The influence of sex-role
stereotypes on evaluations of male and female supervisory behavior.
Journal of Applied Psychology, 57, 44-48.

Samejima, F. (1969). Estimation of latent ability using a
response pattern of graded scores, Psychometrika Monograph, 17.

Samejima, F. (1979). A new family of models for the
multiple choice item. Office of Naval Research Report 79-4.
Knoxville, TN: University of Tennessee.

Schmitt, N., & Lappin, M. (1980). Race and sex as
determinants of the means and variance of performance ratings.
Journal of Applied Psychology, 65, 428-435.

Swaminathan, H., & Rogers, H. J. (1990). Detecting
differential item functioning using logistic regression procedures, 27,
361-370.

Thompson, D. E., & Thompson, T. A. (1983). Task-based
performance appraisal for blue-collar jobs: Evaluation of race and sex
effects. Journal of Applied Psychology, 70, 747-753.

Van Velsor, E., & Leslie, J. B. (1991). Feedback to
managers: Vol 1. A guide to evaluating multi-rater feedback
instruments. Greensboro, NC: Center for Creative Leadership.

Whittemore, A. (1981). Sample size for logistic regression
with small response probability. Journal of the American Statistical
Association, 42, 415-427.

Yukl, G. A., (1981). Leadership in Organizations.
Englewood Cliffs, New Jersey: Prentice Hall.

Table 1: Scales on the Prospector survey

Scale Items
1. Seeks opportunities to learn 5

2. Seeks and uses feedback 5

3. Learns from mistakes 5

4. Open to criticism 3

5. Committed to making a difference 4

6. Insightful: Sees things from new
angles

4

7. Has the courage to take risks 4

8. Brings out the best in people 5

9. Acts with integrity 4

10. Seeks broad business knowledge 4

11. Adapts to cultural differences 5

Table 2: Breakdown of gender and race by rater group

Rater
Group Gender Race

Male Femal
e

White Black Other

Direct
Report 495 257 638 62 52

Self 576 176 645 56 51

Peer 569 183 658 49 45

Boss 657 95 695 30 27



Table 3: Breakdown of gender by race

GenderRace
Male Female

White 2047 592

Black 136 61

Other 114 58

Note: N=3008

Table 4: Items that exhibited DIF attributable to rater type

Scale
and
Item

Text of item Effect
Size

Influence of DIF
on responses

1.1 Has grown over time. .15 B(+) to DR(-)

1.4 Has developed significant new skills over time. .10 B(+) to DR(-)

2.4 Responds effectively when given feedback. .13 B(+) to DR(-)

2.5 Has changed as a result of feedback. .22 B(+) to DR(-)

6.1 Is good at identifying the most important part of a complex problem or
issue.

.12 B(-) to DR(+)

6.4 Is good at asking insightful questions. .11 B(-) to DR(+)

9.1 Can be depended on to tell the truth regardless of the circumstances. .18 B(+) to DR(-)

9.3 Is seen by others as an honest person. .12 B(+) to DR(-)

10.1 Has a solid understanding of our products and services. .13 B(-) to DR(+)

10.2 Knows how the various parts of the organization fit together. .18 B(-) to DR(+)

10.3 Knows the business. .17 B(-) to DR(+)

10.4 Understands the financial side of the business. .22 B(-) to DR(+)

CONTACT INFORMATION
Your comments and questions are valued and encouraged. Contact the author at:

Jim Penny
Center for Creative Leadership
One Leadership Place
Greensboro, NC 27438-06300

Work Phone: 336-286-4442
Fax: 336-286-4434
Email: pennyj@leaders.ccl.org
Web: www.ccl.org



Paper P712

Using the SAS® System to Demonstrate the equivalence of On-line and On-paper Survey
Administration across Levels of Raters

Jim Penny, Center for Creative Leadership, Greensboro, NC

ABSTRACT
This research used logistic regression to model item responses
from a popular 360-for-development survey. The model used
method of survey delivery and rater group to identify items that
exhibited differential item functioning (DIF). The methods of
survey delivery were pencil-and-paper and online by web page.
The rater groups were self, boss, peer, and direct report. The
sample consisted of 374 survey families where a survey family
consisted of a matched set of four surveys: one self, one boss,
one peer, and one direct report. Half of the survey families were
from a pencil-and-paper administration; half were from an online
administration. The sample contained 1496 total surveys. The
procedure to flag items exhibiting differential functioning used
effect size computed from Wald chi-square statistics rather than
statistical significance, resulting in fewer flagged items.

The results indicated little evidence to suggest that rating
differences exist due to the method of survey delivery. However,
approximately 10% of the survey items exhibited differential item
functioning attributable to rater group, though the effect size for
each item was small. The examination of the maximum
likelihood parameter estimates suggested that some of this
differential functioning could be the result of hierarchical
complexity. The anomalous functioning of other items was
attributable to contingency theory. This research further
suggested that such forms of DIF might be naturally occurring
phenomena in some 360-assessment, and that the interpretation
of 360-feedback may need to include the potential for this DIF to
exist.

INTRODUCTION
The past decade has seen a steady increase in the use of 360-
assessments for managerial development in organizations, and
the use of these assessments appears to continue without
abatement. One appeal of the 360-process is that it involves
providing managers with feedback from four or more sources.
The four primary sources include (1) the manager’s boss, (2) the
manager’s subordinates or direct reports, (3) the peers or the
customers of the target, and (4) the self. Although the concept of
gathering multi-source information is not new to the field of
professional development, at least one premise of multi-rater
methodology remains unresolved: Does the 360-methodology
provide an equivalent measure with each rater group? That is,
does measurement equivalence exist between the rater groups?
Without rater equivalence, the comparison of ratings, often by
between-group differences, may be problematic.

In addition to the increase in the use of 360-assessment, there
has been an unrelenting move from the pencil-and-paper
administration of 360-surveys to electronic administration using
the Internet and the World Wide Web. However, one can
question the influence of delivery mode on the results of a 360-
assessment asking, does 360-methodology provide an equivalent
measure with each method of delivery, or is one manner of
survey delivery likely to produce better, or worse, ratings than the
other? Moreover, does there exist a potential interaction between
rater group and delivery method? Is there a combination of
survey delivery and rater group that is likely to influence ratings,
and produce an aberrancy that might threaten rating
equivalence? These research questions involving the
measurement equivalence of 360-methodology provided the
impetus for this research.

DIFFERENCES AMONG RATER GROUPS

Ratings differences among rater groups are central to the 360-
assessment process and often lead to much discussion during
feedback sessions (Van Velsor & Leslie, 1991). Indeed, the
study of such differences informs in part the developmental
planning of the individual, and, if such differences did not exist,
there would be little motivation to incur the expense of 360-
assessment. For example, a manager may be interpersonally
skilled with peers yet cold and aloof with direct reports. Such a
manager could receive high ratings on interpersonal skills from
peers while receiving low ratings on this dimension from direct
reports, and learning of these differences in these perceptions
provides a central motivation for the 360-assessment process.

Indeed, such rating differences as these often provide rich
behavioral feedback for the target manager, enabling that
manager to make better choices when planning developmental
activities. However, the accurate interpretation of such a rating
difference requires that one can assume that each set of ratings
uses the same metric. If, for whatever reason, one group of
raters interprets the text of an item or a set of items differently
than another group, then the resulting differences in the ratings
may be the result of not only the observations of the raters but
also of the interpretative difference elicited by the item.

CONTINGENCY THEORY
Contingency theories of leadership (Fiedler 1978; Fiedler &
Chemers, 1982) suggest that what constitutes an appropriate
response may depend on the situation in which the response is to
occur, and that two substantially different responses may be
appropriate for similar stimuli when the contexts of the stimuli
differ. Moreover, Hershey & Blanchard (1969, 1982) and Yukl &
van Fleet (1982) suggest that managers often need to change
their behavior to fit particular situations, and, following this line of
reasoning, managers who behave differently toward different
groups of co-workers may receive disparate ratings from
members of those groups. Hence, differences between the
ratings received from different rater groups may be an acceptable
outcome for some managers, though the accurate interpretation
of such differences may require some study on the part of the
feedback provider. In addition, disparate ratings arising from
differential environmental contexts may provide an indication of
an effective manager, and, as such, these gaps in the
perspectives between groups of raters may exist as a naturally
occurring and perfectly acceptable phenomenon of management.

However, if an item taps a particular situation more strongly than
other items, the observed difference in ratings produced by the
situational behaviors of a manager may become confounded with
the propensity of that item to accentuate a situational
contingency. In so doing, the observed difference in ratings is not
simply the result of observed behavioral differences, but is the
combined result of both a behavioral difference and the
interaction of the item with the raters. As such, the interpretation
of the observed difference becomes problematic because one
does not know how much of the rating difference is due to a
difference in observed behaviors and how much is due to the
anomalous functioning of the item.

COMPLEXITY THEORY
Jacques (1996) and Jacques & Clement (1994) suggested that
the degree of environmental complexity and ambiguity seen by a
person within an organization generally increases with rank with
direct reports seeing a simpler and more easily understood
environment than bosses see. This continuity of complexity and
ambiguity can produce a reality that creates substantially different
experiences for bosses and direct reports and that may require



thinking by bosses that may be difficult for bosses to explain to
direct reports. For example, environmental complexity could lead
bosses and direct reports to give a manager substantially
different ratings in areas such as understanding corporate
strategy if the direct reports feel that the manager has a firm
grasp of corporate strategy while the boss knows there are areas
of strategy that the manager has yet to see. Hence, it seems
reasonable to anticipate that environmental differences may
produce rating differences given on a 360-survey; however, those
rating differences are likely to be a naturally occurring
phenomenon in many corporate environments.

However, it also seems reasonable to anticipate that some items
on a 360-survey could be more likely than other items to tap
environmental complexity. In doing so, a given item could
produce ratings from direct reports that are differentially higher
than the ratings given by the boss, even though the observations
of the both the boss and the direct reports were likely to produce
otherwise similar ratings. In such an event, the rating difference
between boss and direct report raters is not only the result of
behavioral differences observed by the raters but is also the
result of an interaction between the item and the environment of
the rater.

METHODOLOGY
This research involved the use of logistic regression to detect
DIF. I made this choice over other methods such as item
response theory (IRT) and factor analytic techniques for several
reasons. First, I did not anticipate having a sufficient sample to
compute the IRT parameter estimates for each category of rating.
As well, I did not anticipate achieving sufficient multivariate
normality for use with the factor analytic methods. However, my
strongest reason for the choice of logistic regression was the
ability to posit a model that I could evaluate in a single analysis
and then interpret using much of the explanatory framework
developed from linear regression. In addition, the model I built,
and will explain anon, was analogous in form and function to the
underlying polytomous logistic model of item response theory.

For the detection of DIF using logistic regression with polytomous
data (Clauser & Mazor, 1998), I can adapt the framework of
Samejima (1969, 1979) and write the equation

kk zz ee
kxP −− +

−
+

==
− 1

1

1

1
)(

1

,

where P(x=k) is the probability of a response k to a particular item
from a respondent of standing θ, and where k takes the values of
the Likert-type response scale (Miller & Spray, 1993; Samejima,
1969, 1979; Swaminathan & Rogers, 1990). Were the existence
of DIF not an issue, I would write z as

θττ 10 +=z ,

where θ represents the standing of the ratee on the attribute that
the survey measures. I have dropped the subscript k to make the
model easier to read. The symbols τ0 and τ1 represent the
intercept and the slope parameters of the logistic regression
model; these symbols also represent forms of the discrimination
and location parameters of the Graded Response Model
(Samejima (1969, 1979). This model represents the situation
where the rater group membership and the survey delivery
method do not influence the item response, and where the only
factor that does influence the response to the item is the standing
of the ratee on the attribute that the survey measures.

To expand the model to include components to represent effects
due to delivery method and rater group membership, I would write

dgz 3210 ττθττ +++= ,

where g and d represent rater group membership and delivery
method, respectively, and τ2 and τ3 represent the logistic
regression parameters for those two classifications. I can define
the values for d as {0,1} where 0 would indicate survey
administration by web browser and 1 would indicate
administration by pencil-and-paper. Similarly, I can define the
values for g as {1, 2, 3, 4} indicating {self, direct report, peer,

boss} respectively. This model describes the instance where only
uniform DIF exists.

I can expand this model to accommodate the potential existence
of nonuniform DIF by the addition of two more terms to produce

θτθτττθττ dgdgz 543210 +++++= ,

where the two new terms indicate an interaction, respectively,
between (a) rater group membership and standing on the
attribute that the survey measures, and (b) survey delivery
method and standing. The symbols τ4 and τ5 represent the
logistic regression parameters for these two interaction terms,
respectively.

To complete the model for this research, I included two additional
terms. One term is to indicate the possible interaction between
rater group membership and survey delivery method; the other
term is to indicate the possible three-way interaction of rater
group membership, survey delivery method, and standing on the
attribute that the survey measures. The types of DIF represented
by these two terms are uniform and nonuniform, respectively. I
can write this model as

θττθτθτττθττ gdgddgdgz 76543210 +++++++= ,

where the symbols τ6 and τ7 represent the logistic regression
parameters for these two additional interaction terms,
respectively. It is this later model that I tested in this research.

I used the SAS® System to evaluate this model for the data that I
collected. The SAS System produced Wald Chi Square statistics
to test the null hypotheses that that the parameter estimates of τ1

through τ7 were statistically significantly different from 0. It was
my anticipation that τ1 and τ2 would routinely achieve statistical
significance. It was also my anticipation that the parameter
estimates of τ3 through τ7 would not routinely achieve statistical
significance.

However, I knew that, with number of terms in the model I had
chosen, I would be making quite a few statistical tests of
significance, and that the experiment-wise Type I error rate could
be high. To compensate for the accumulated Type I error rate
that could naturally incur in this research and to avoid the
complex power analysis (Hsieh, 1989; Whittemore, 1981) of
logistic regression that would suggest an appropriate number of
subjects to evaluate the model, I decided to use effect size
instead of statistical significance. I chose to follow the lead of
Penny & Johnson (1999) and to convert the Wald chi-square
statistic to an effect size, w, described in Cohen (1988, ch. 7).
The formula that relates the effect size to the sample size is

22 nw=Χ
where Χ2 is the chi-square statistic, n is the sample size, and w is
the effect size. Cohen (1988, ch. 7) used the arbitrary values of
.1, .3, and .5 to indicate small, medium, and large effects,
respectively, and, although these values are indeed arbitrary,
Penny & Johnson (1999) found that those values appeared to
connote well when applied to the Mantel-Haenszel chi-square
statistic. I used these three values to define four effect ranges
that I would use to categorize the DIF that I discovered with the
logistic regression model. These ranges were nil-to-small, small-
to-medium, medium-to-large, and large-to-extreme.

DATA
I used the 1999 Benchmarks® database from the Center for
Creative Leadership (CCL) for this research. Benchmarks is a
360-degree assessment-for-development feedback instrument
developed by CCL researchers who conducted extensive
research exploring the experiences that promote managers’
development (Lindsey, Homes, & McCall, 1987; McCall &
Lombardo, 1983; McCall, Lombardo, & Morrison, 1988). CCL
researchers initially developed Benchmarks as a pencil-and-
paper survey; it became available over the web in 1999. The
instrument consists of three sections designed to assess skills
and perspectives related to managerial effectiveness. I examined
only one section of scales in this research. Table 1 presents the



names and descriptions of the 16 scales. All 106 items used a 5-
point, Likert-type response format. The textual anchors for the
scale were 1=”Not at all,” 2=”To a little extent,” 3=”To some
extent.” 4=”To a great extent,” and 5=”To a very great extent.”

I selected a random sample of 374 survey families from the 1999
Benchmarks® database of the Center for Creative Leadership for
use in this research. Each survey family included matched
ratings from a manager (the self or ratee), a peer, a boss, and a
direct report resulting in 1496 total surveys. Half of the families
(N=187) were pencil-and paper-surveys; the other half was online
surveys. Because each family contained exactly one survey from
each rater group, there were 187 each of self, peer, boss, and
direct report surveys.

I made no selection using any other demographic variables, so
the sample reflected the demographic composition of the parent
population, and was comprised of approximately 61% male
ratees. Moreover, the sample contained approximately 90%
white and 8% black ratees. In addition, about 49% held
bachelor’s degrees, 31% held master’s degrees, and about 15%
held doctoral or professional degrees. These data represented a
broad range of organizations such as governmental agencies,
manufacturing companies, and educational institutions. About
91% of the ratees held middle to upper level positions as
managers.

RESULTS
THE INFLUENCE OF STANDING ON RESPONSES
The main effect of standing on the attribute measured by the
survey had by far the greatest influence on the item ratings of all
the terms in the logistic model. The average effect was .48 with a
standard deviation of .08; the range was from .25 to .61. In most
instances, the effect was in the medium-to-large and large-to-
extreme categories.

DIF ATTRITUBLE TO DELIVERY METHOD
These data provided no evidence of any substantial uniform or
nonuniform DIF attributable to the manner in which the raters
completed the survey. The mean effect of delivery mode was .02
with a standard deviation of .02 and a range from .00 to .07. In
every instance, the effect was in the nil-to-small category.

DIF ATTRIBUTABLE TO RATER SOURCE
Ten items on the survey exhibited uniform DIF attributable to the
rater group. Table 2 presents these items along with the effect
size, the apparent explanatory theory, and the impact of the DIF
on the ratings. These ten items produced effects that barely
made the cut-off, .1, for a small effect. Complexity theory could
explain the DIF found in six of the ten items. The differential
functioning produced lower ratings from the direct reports in half
of these six items.

Contingency theory explained the differential functioning found in
the other four items exhibiting uniform DIF. The effect associated
with these items was also small. Three of these items produced
differential functioning that contrasted the ratings of direct reports
with those from all other groups. With these three items, the
differential functioning produced higher ratings from the direct
reports. The other item that appeared to tap into contingency
theory contrasted the peer ratings with those from all other
groups. For this single item, the differential functioning produced
reduced ratings from the peers.

Only one item on the survey exhibited nonuniform DIF. The
effect associated with this item is .11, which is still a small value.
This item appeared to tap into complexity theory, and the
resultant DIF produced lower ratings from direct reports and
higher ratings from bosses; however, the nature of nonuniform
DIF suggests that the direction of the differential functioning may
reverse for some range of the covariate.

DIF ATTRITUBLE TO DELIVERY METHOD BY RATER

SOURCE INTERACTION
This research uncovered no items that exhibited DIF attributable
to an interaction between rater source and delivery method.

DISCUSSION
In most studies of differential item functioning, the existence of
DIF is not something that is good. Rather, the occurrence of DIF
may threaten the validity of an assessment, and reduce the
usefulness of the survey (Lord, 1980; Penny & Johnson, 1999). I
tend to concur with those who suggest that DIF is a quantity to
remove from an assessment. Psychological measures that
assess the learning, the performance, or perhaps even the
potential, of a candidate for a higher appointment are not the
places where one generally wants to find measures influenced,
even in part, by demographic quantities such as gender, race,
nationality, or native language.

However, this study, suggests that the existence of differential
item functioning may not be a completely bad thing, and further
suggests that the type and degree of DIF found might be the
result of two naturally occurring phenomena in the workplace.
First, the differential environmental complexity that can exist in
the workplace may produce unavoidable, if not expectable,
differential functioning. Second, DIF could also be the natural
result of the different behaviors that a manager can present when
interacting with different groups of people. Hence, one could
argue that the interpretation of 360-feedback reports should take
into account the possibility of anomalous item functioning
produced by such environmental and experiential differences.
Moreover, this anomalous functioning may function to ameliorate,
or exacerbate, some observed rating differences, and the degree
of either may depend, at least in part, on the standing of the ratee
on the trait measured by the survey.

For example, the first scale contained 17 items, 3 of which
exhibited DIF. I computed scale scores for the complete scale,
and compared those values with the scale scores computed
using the 14 items that did not exhibit DIF. The mean difference
(and standard deviation of the difference) of those scale scores
was {.12(.19), .04(.17), .10(.18), .03(.16)} for direct report, self,
peer, and boss raters respectively. These differences, though
statistically significant, do not appear to be of practical
significance, conforming to the prior finding of small effect sizes.

One could argue that a manager receiving 360-feedback could
benefit from knowing the degree to which environmental
complexity influences particular feedback. With such a
breakdown, the manager could better understand how much of a
given rating arose from the observations of the boss, and how
much arose from the different environment from which the boss
interpreted not only the behaviors of the manager but also the
text of the item. It is conceivable, then, that from such feedback
a manager could at once choose the developmental areas on
which to work for improved performance while learning more
about the world as seen by the boss, a world in which the
manager may soon work. Unfortunately, measurement theory
does not yet permit the reliable partitioning of ratings that would
allow the manager to understand the rating component due to
behavior and the component due to environment, and additional
theoretical research will be necessary to produce the
methodology that will permit a breakdown of ratings into
components.

REFERENCES
Clauser, B. E., & Mazor, K. M. (1998). Using

statistical procedures to identify differentially functioning test
items. Educational Measurement: Issues and Practices, 2, 31-
44.

Cohen, J. (1988). Statistical power analysis for the
behavioral sciences. Hillsdale, NJ: Lawrence Erlbaum
Associates.

Fiedler, F.E. (1978). The contingency model and the



dynamics of the leadership process, In Advances in experimental
social psychology, ed. L. Berowitz. New York: Academic Press.

Fiedler, F.E. & Chemers, M.M. (1982). Improving
leadership effectiveness: The leader match concept. 2nd Ed.
New York: Wiley.

Hershey, P., & Blanchard, K. H. (1969). Life cycle
theory of leadership. Training and Development Journal, 23, 26-
34.

Hershey, P., & Blanchard, K. H. (1982). Management
of Organizational Behavior, (4th ed.). Englewood Cliffs, NJ:
Prentice Hall.

Hsieh, F. Y. (1989). Sample size tables for logistic
regression. Statistics in Medicine, 8, 795-802.

Jacques, E. (1996). Requisite organization: A total
system for effective managerial organization and managerial
leadership for the 21st century. Cambridge, MA: Cason Hall &
Co.

Jacques, E., & Clement, S. D. (1994). Executive
leadership: A practical guide to managing complexity.
Cambridge, MA: Basil Blackwell.

Lindsey, E., Homes, V., & McCall, M.W., Jr. (1987).
Key events in executives’ lives (Tech. Rep. No. 32). Greensboro,
NC: Center for Creative Leadership.

Lord, F. (1980). Application of item response theory to
practical testing problems. Hillsdale, NJ: Erlbaum.

McCall, M.W., Jr., & Lombardo, M.M. (1983, February).
What makes a top executive? Psychology Today, 26-31.

McCall, M.W., Jr., Lombardo, M.M., & Morrison, A.M.
(1988). The lessons of experience: How successful executives
develop on the job. Lexington, MA: Lexington Books.

Miller, T. R., & Spray, J. A. (1993). Logistic
discriminant function analysis for DIF identification of
polytomously scored items. Journal of Educational
Measurement, 30, 107-122.

Penny, J., & Johnson, R. L. (1999). How group
differences in matching criterion distribution and IRT item
difficulty can influence the magnitude of the Mantel-Haenszel chi-
square DIF index. The Journal of Experimental Education, 67,
343-366.

Samejima, F. (1969). Estimation of latent ability using
a response pattern of graded scores, Psychometrika Monograph,
17.

Samejima, F. (1979). A new family of models for the
multiple choice item. Office of Naval Research Report 79-4.
Knoxville, TN: University of Tennessee.

Swaminathan, H., & Rogers, H. J. (1990). Detecting
differential item functioning using logistic regression procedure.
Journal of Educational Measurement, 27, 361-370.

Van Velsor, E., & Leslie, J. B. (1991). Feedback to
managers: Vol 1. A guide to evaluating multi-rater feedback
instruments. Greensboro, NC: Center for Creative Leadership.

Whittemore, A. (1981). Sample size for logistic
regression with small response probability. Journal of the
American Statistical Association, 42, 415-427.

Yukl, G. A., & van Fleet, D. (1982). Cross-situational,
multi-method research on military leader effectiveness.
Organizational Behavior and Human Performance, 30, 87-108.

Table 1. Name and description of scales on the Benchmarks survey

Scale Items Description
1. Resourcefulness 17 Can think strategically, engage in flexible problem-solving behavior, and

work effectively with higher management.

2. Doing Whatever It Takes 14 Has perseverance and focus in the face of obstacles.

3. Being a Quick Study 4 Quickly masters new technical and business knowledge.

4. Decisiveness 4 Prefers quick and approximate actions to slow and precise one in many
management situations.

5. Leading Employees 13 Delegates to employees effectively, broadens their opportunities, and
acts with fairness towards them.

6. Setting a Developmental Climate 5 Provides a challenging climate to encourage employees’ development.

7. Confronting Problem Employees 4 Acts decisively and with fairness when dealing with problem employees.

8. Work Team Orientation 4 Accomplishes tasks though managing others.

9. Hiring Talented Staff 3 Hires talented people for his or her team.

10. Building and Mending Relationships 11 Knows how to build and maintain working relationships with coworkers
and external parties.

11. Compassion and Sensitivity 4 Shows genuine interest in others and sensitivity to subordinates’ needs.

12. Straightforwardness and Composure 6 Is honorable and steadfast.

13. Balance between Personal Life and
Work

4 Balances work priorities with personal life so that neither is neglected.

14. Self-awareness 4 Has an accurate picture of strengths and weaknesses and is willing to
improve.

15. Putting People at Ease 4 Displays warmth and a good sense of humor.

16. Acting with Flexibility 5 Can behave in ways that are often seen as opposites.



Table 2. Description of the items that exhibited DIF and the type of DIF observed

Item text with scale and item number Type of DIF Effect Explanatory Theory Impact of DIF
1.6 Understands higher management values, how
Higher management operates, and how they see
things.

Uniform .10 Complexity Dr (-) to Boss (+)

1.10 Does his/her homework before making a proposal
to top management

Uniform .10 Contingency DR (+) vs. all
others

1.13 Establishes effective management practices for
directing employees he/she sees only twice a month.

Uniform .11 Contingency DR (+) vs. all
others

8.4 Focuses more on managing other people to
accomplish a task than on personally finishing
everything the work group does.

Uniform .11 Complexity DR (+) to Boss(-)

9.3 Surrounds him/herself with the best people Uniform .11 Complexity DR (+) to Boss (-)

10.6 When working with peers from other functions or
units, gains their cooperation and support

Uniform .11 Contingency DR (+) vs all others

11.3 Is sensitive to signs of overwork in others. Uniform .12 Complexity DR(-) to Boss (+)

12.2 (Does not) rely on style more than substance in
dealing with top management.

Uniform .11 Contingency Peer (-) vs. all
others

2.11 Accepts conflicts as inevitable and does not shy
away from them.

Uniform .13 Complexity DR (+) to Boss (-)

4.1 Displays a real bias for action, calculated risks, and
quick decisions.

Uniform .11 Complexity DR (-) to Boss (+)

4.4 Does not hesitate when making decisions. Nonuniform .11 Complexity DR (-) to Boss (+)

Note: An effect between .10 and .30 is a small-to-medium effect. The sign beside the rater group name indicates the direction in which the
DIF changed the ratings.

CONTACT INFORMATION
Your comments and questions are valued and encouraged. Contact the author at:

Jim Penny
Center for Creative Leadership
One Leadership Place
Greensboro, NC 27438-06300
Work Phone: 336-286-4442
Fax: 336-286-4434
Email: pennyj@leaders.ccl.org
Web: www.ccl.org



Paper #P713

Using SAS® To Control Multistream Binomial Processes
Peter Wludyka, University of North Florida, Jacksonville, FL & Sheri Jacobs of Vistakon, Inc.

ABSTRACT
Process control schemes for multistream binomial processes are
described.  A multistream process is one in which the streams
are uncorrelated or very weakly correlated.  When each of the J
streams are identical (a homogeneous multistream process) one
can use a group control chart (a k-sigma p-chart on which only
the largest and smallest of the J sample proportions
nonconforming are plotted).  A test (runs rule) that signals when
the same stream produces the largest proportion nonconforming
R consecutive times is presented along with two SAS® programs
useful for designing runs rule schemes, p-charts, and Chi-
Squared control charts.

INTRODUCTION
A multistream process is best introduced by means of an
example.  Consider an injection molding process that makes a
plastic toy.  Tubes running from a reservoir carry liquid plastic into
molds in an apparatus (a frame) which contains four molds.
Suppose for simplicity that one tube is used to fill each toy. Each
mold location can be considered to be a “stream” and this will be
referred to as a 4-stream process.  After cooling and separation
from the mold a toy can be inspected and classified as defective
(nonconforming) or nondefective (conforming).  A process quality
control scheme is a methodology for determine whether the
process is producing “conforming units” in a stable and
predictable manner; that is, one may decide whether the process
is in-control or out-of-control.  The control schemes described
here require that periodically samples of product be inspected.
One might be concerned with two ways in which the process
could cease to be in-control.

1. A process change that affects all of the streams
2. A change that impacts on one or more streams

The first might correspond with to a poor grade of plastic being
used; the second to a clog or other problem with an individual
tube.

Note that identifying which type of  out-of-control condition occurs
will be useful for bringing the process back under control.

PROCESS MODELING AND CONTROL CHARTS
Control charts can be used to control processes (see
Montgomery).  In order to use control charts a statistical model
for the process is required. Suppose that n frames are selected
for inspection at the end of each epoch. Then each stream will be
sampled n times also.  If the streams are uncorrelated then the
process is called a j-stream multistream process. A plausible
process model then is that each stream is a binomial process
with n trials and success probability p, where p is the proportion
of items in the process (stream) that are nonconforming.  When p
is the same for all the streams the process is a homogeneous
multistream process. (See Jacobs and Wludyka for details).  The
process is out-of-control if

1. The overall p changes
2. p changes for one or more streams

A frequently used tool for detecting changes in a binomial
process is the p-chart (see Montgomery). The sample proportion
nonconforming is plotted on the chart at each epoch and a signal
occurs whenever the sample proportion plots outside the k-sigma
control limits.  Typically k = 3 since experience has shown this to
be a useful control band width.  For the multistream process one
may

1. construct a single overall p-chart

2. Construct J individual p-charts (one for each stream).
3. Use a Chi-squared chart

In (2) it is unwise to set k = 3 since the false alarm rate will
usually be much higher than most quality engineers would find
reasonable.  That is, k should be greater than three.  See Jacobs
and Wludyka for methods for determining the proper k.  Note that
is it sufficient to plot only the largest and smallest of the J sample
(stream) proportions on a single chart for (2).  This chart is called
a group p-chart.  The Chi-squared chart will not be described in
this paper; however, the simulation program provided produces
estimated ARLs (average run lengths) for this chart.

RUNS RULES

A runs rule is a simple tool for determining whether one (or more)
of the streams have shifted (p has changed).  At each epoch the
stream for which the proportion nonconforming is largest is
determined.  This will be used to produce a one-sided runs rule.
This has the advantage of being simple to use. When the same
stream has the largest proportion nonconforming for r
consecutive times that will be defined to be a run of length r.
When r equals some constant R (chosen by the user) then an
out-of-control signal occurs. R is chosen such that the in-control
process will have a large average run length (ARL).  The ARL is
defined as the average number of samples until a signal occurs.
When the process is out-of-control a short ARL is desired.  Since
ties can occur for the stream with the highest sample proportion
nonconforming there are several ways in which a “run” can be
defined.  Four rules are:

1. The run is maintained on a tie only if the run stream is
included in the tie

2. The run length is maintained on all ties
3. The run continues (is increased) on a tie if the run

stream is in the tie
4. The run continues on a tie that includes the run stream

and is maintained on a tie that does not include the run
stream.

Each of these has a variant in which the run starts over whenever
there is a j-way tie at zero, which is called a zero restart rule.
These rules are denoted Rule 1a, …, Rule 4a.

A RUNS RULE ARL PROGRAM
Given  the process proportion nonconforming, p, one can then
choose values for n and R that produce ARLs that have suitable
properties.  Note that p is usually estimated from in-control
process data.  The program below produces a series of tables
that aid the user the selecting a control scheme.
/*  ARLs for Runs Rules */
data rule2mat;
j=4; /* the number of streams */
do p0=0.023; /* proportion nonconforming */
do n=75; /* sample size per stream */
do idelta=0.0, .01, .02,.03,.04, .05,.08, .10;
 delta= idelta;  /* prpcess shift vales */
p1=p0+delta; p2=p0;
alltie =
probbnml(p1,n,0)*(probbnml(p2,n,0))**(j-1);
/* calculate t1  */
q1 = 0; q2=0;
t1 = 0; t2in1=0;t2out1=0; t2=0;



do i=1 to n;
        py2eqi = probbnml(p2,n,i)-
probbnml(p2,n,i-1);
        py2lti = probbnml(p2,n,i-1);
        py1lti = probbnml(p1,n,i-1);
        py1eqi = probbnml(p1,n,i)-
probbnml(p1,n,i-1);
        t1wstep = py2eqi**2*py2lti**(j-
3)*py1lti;
        t2in1stp = py2eqi*py2lti**(j-2)*py1eqi;
        t2ot1stp = py2eqi**2*py2lti**(j-
3)*py1lti;
        q1 = q1+ py1eqi*py2lti**(j-1);
        q2 = q2 + py2eqi*py2lti**(j-2)*py1lti;
        t = 1-(q1+(j-1)*q2);
        alltie = alltie + py1eqi*py2eqi**(j-1);
        do w = 2 to j-1;
                c1 =
gamma(j)/(gamma(w+1)*gamma(j-w));
                c2 = gamma(j-
1)/(gamma(w)*gamma(j-w));
                if w = j-1 then c3 = 0;
                else c3 = gamma(j-
1)/(gamma(w+1)*gamma(j-w-1));

        if w = 2 then do;
                t1 = t1+c1*t1wstep;
                t2in1 = t2in1 + c2*t2in1stp;
                t2out1 = t2out1 + c3*t2ot1stp;
                t2 = t2 + c2*t2in1stp +
c3*t2ot1stp;
                end;
        else do;
                t1wstep =
t1wstep*(py2eqi/py2lti);
                t1 = t1+c1*t1wstep;
                t2in1stp =
t2in1stp*(py2eqi/py2lti);
                t2in1 = t2in1 + c2*t2in1stp;
                t2 = t2 +  c2*t2in1stp;

                    t2ot1stp =
t2ot1stp*(py2eqi/py2lti);
                    t2out1 = t2out1 +
c3*t2ot1stp;
                    t2 = t2 + c3*t2ot1stp ;

        end;
         /*  output; */
        end;
end;
z0 = (1-p2)**((j-1)*n)*(1-p1)**n;
output;
end; end; end;
proc print;
        var j n p0 delta q1 q2 t1 t2 t z0;
run;

data probs;
        set rule2mat;

        keep j n q1 q2 t t1 t2 p0 delta z0;
/* arl routine for rule 1 follows */
proc iml;
        use probs;
        /* show datasets; show contents;*/
        labtab = J(1,3,0);
        ptab = J(8,8,0); ptaba = J(8,8,0);
        do step = 1 to 8; /* print step;*/
        read next;/* list;*/
        do instep= 2 to 8; r=instep; /* print r;
*/
        /* print j t1 t2 t q1 p0 ; */
        P=J(2*r-1,2*r-1,0);
        /* print P;*/
        if r > 2 then do;
                do row = 4 to 2*r-1 by 2;

p[row,1]=t1;p[row,2]=0;p[row,3]=(J-
1)*q2;p[row,row]=t-t1;if row < 2*r-2 then
p[row,row+2]=q1;

p[row+1,1]=t2;p[row+1,2]=q1;p[row+1,3]=(J-
2)*q2;p[row+1,row+1]=t-t2; if row < 2*r-2 then
p[row+1,row+3]=q2;
                end;end;
        p[1,1]=t;   p[1,2]=q1;     p[1,3]=(J-
1)*q2;
        p[2,1]=t1;  p[2,2]=t-t1;   p[2,3]=(J-
1)*q2;   if r > 2 then p[2,4]=q1;
        p[3,1]=t2;  p[3,2]=q1;     p[3,3]=t-
t2+(J-2)*q2;  if r > 2 then      p[3,5]=q2;
        /* print P;*/
        Imat=I(2*r-1); /* print Imat;*/
        one=J(2*r-1,1,1); /* print one;*/
        arl=inv(Imat-P)*one;
        ptab[step,1]=delta;ptab[step,r]=arl[1];
        /* print 'arl using rule 1';
        print arl; */
        pzero = p;
        do rstep = 2 to 2*r-1;
                pzero[rstep,1]=p[rstep,1]+z0;

pzero[rstep,rstep]=p[rstep,rstep]-z0;
        end;
        arlz = inv(Imat-pzero)*one;

ptaba[step,1]=delta;ptaba[step,r]=arlz[1];
        end;end;
        print 'arl table for rule 1';
        tag1 = {J n p0};

labtab[1,1]=j;labtab[1,2]=n;labtab[1,3]=p0;
        print labtab[colname=tag1];
        tag2= {delta r2ARL r3ARL r4ARL r5ARL
r6ARL r7ARL r8ARL};
        print ptab[colname=tag2 format = 10.2];
        print 'ARL Table for Rule 1a';
        print ptaba[colname=tag2 format = 10.2];

/* arl routine for rule 2 follows */



proc iml;
         use probs;
        /* show datasets; show contents;*/
        labtab = J(1,3,0);
        ptab = J(8,8,0); ptaba = J(8,8,0);
        do step = 1 to 8; /* print step;*/
        read next;/* list;*/
        do instep= 2 to 8; r=instep; /* print r;
*/
        /* print j t1 t2 t q1 p0 ; */
        P=J(2*r-1,2*r-1,0);
        /* print P;*/
        if r > 2 then do;
                do row = 4 to 2*r-1 by 2;

p[row,1]=0;p[row,2]=0;p[row,3]=(J-
1)*q2;p[row,row]=t;if row < 2*r-2 then
p[row,row+2]=q1;

p[row+1,1]=0;p[row+1,2]=q1;p[row+1,3]=(J-
2)*q2;p[row+1,row+1]=t; if row < 2*r-2 then
p[row+1,row+3]=q2;
                end;end;
        p[1,1]=t;  p[1,2]=q1;   p[1,3]=(J-1)*q2;
        p[2,1]=0;  p[2,2]=t;    p[2,3]=(J-1)*q2;
if r > 2 then p[2,4]=q1;
        p[3,1]=0;  p[3,2]=q1;   p[3,3]=t+(J-
2)*q2; if r > 2 then p[3,5]=q2;
        /* print P;*/
        Imat=I(2*r-1); /* print Imat;*/
        one=J(2*r-1,1,1); /* print one;*/
        arl=inv(Imat-P)*one;
        ptab[step,1]=delta;ptab[step,r]=arl[1];
        /* print 'arl using rule 2';
        print arl; */
        pzero = p;
        do rstep = 2 to 2*r-1;
                pzero[rstep,1]=p[rstep,1]+z0;

pzero[rstep,rstep]=p[rstep,rstep]-z0;
        end;
        arlz = inv(Imat-pzero)*one;

ptaba[step,1]=delta;ptaba[step,r]=arlz[1];
        end;end;
        print 'arl table for rule 2';
        tag1 = {J n p0};

labtab[1,1]=j;labtab[1,2]=n;labtab[1,3]=p0;
        print labtab[colname=tag1];
        tag2= {delta r2ARL r3ARL r4ARL r5ARL
r6ARL r7ARL r8ARL};
        print ptab[colname=tag2 format=10.2];
        print 'ARL Table for Rule 2a';
        print ptaba[colname=tag2 format = 10.2];
/* arl routine for rule 3 follows */
        proc iml;
        use probs;
        /* show datasets; show contents;*/
        labtab = J(1,3,0);

        ptab = J(8,8,0); ptaba = J(8,8,0);
        do step = 1 to 8; /* print step;*/
        read next;/* list;*/
        do instep= 2 to 8; r=instep; /* print r;
*/
        /* print j t1 t2 t q1 p0 ; */
        P=J(2*r-1,2*r-1,0);
        /* print P;*/
        if r > 2 then do;
          do row = 4 to 2*r-1 by 2;
          p[row,1]=t1;  p[row,2]=0;
p[row,3]=(J-1)*q2;   if row < 2*r-2 then
p[row,row+2]=q1+t-t1;

p[row+1,1]=t2;p[row+1,2]=q1;p[row+1,3]=(J-2)*q2;
if row < 2*r-2 then p[row+1,row+3]=q2+t-t2;
                end;end;
        p[1,1]=t;  p[1,2]=q1;   p[1,3]=(J-1)*q2;
        p[2,1]=t1; p[2,2]=0;    p[2,3]=(J-1)*q2;
if r > 2 then     p[2,4]=q1+t-t1;
        p[3,1]=t2; p[3,2]=q1;   p[3,3]=(J-2)*q2;
if r > 2 then                p[3,5]=q2+t-t2;
        /* print P;*/
        Imat=I(2*r-1); /* print Imat;*/
        one=J(2*r-1,1,1); /* print one;*/
        arl=inv(Imat-P)*one;
        ptab[step,1]=delta;ptab[step,r]=arl[1];
        /* print 'arl using rule 3';
        print arl; */
        pzero = p;
        do rstep = 2 to 2*r-1;
                pzero[rstep,1]=p[rstep,1]+z0;

pzero[rstep,rstep]=p[rstep,rstep]-z0;
        end;
        arlz = inv(Imat-pzero)*one;

ptaba[step,1]=delta;ptaba[step,r]=arlz[1];
        end;end;
        print 'arl table for rule 3';
        tag1 = {J n p0};

labtab[1,1]=j;labtab[1,2]=n;labtab[1,3]=p0;
        print labtab[colname=tag1];
        tag2= {delta r2ARL r3ARL r4ARL r5ARL
r6ARL r7ARL r8ARL};
        print ptab[colname=tag2 format=10.2];
        print 'ARL Table for Rule 3a';
        print ptaba[colname=tag2 format = 10.2];
/* arl routine for rule 4 follows */
proc iml;
       proc iml;
         use probs;
        /* show datasets; show contents;*/
        labtab = J(1,3,0);
        ptab = J(8,8,0); ptaba = J(8,8,0);
        do step = 1 to 8; /* print step;*/
        read next;/* list;*/
        do instep= 2 to 8; r=instep; /* print r;
*/



        /* print j t1 t2 t q1 p0 ; */
        P=J(2*r-1,2*r-1,0);
        /* print P;*/
        if r > 2 then do;
                do row = 4 to 2*r-1 by 2;

p[row,1]=0;p[row,2]=0;p[row,3]=(J-
1)*q2;p[row,row]=t1;if row < 2*r-2 then
p[row,row+2]=q1+t-t1;

p[row+1,1]=0;p[row+1,2]=q1;p[row+1,3]=(J-
2)*q2;p[row+1,row+1]=t2; if row < 2*r-2 then
p[row+1,row+3]=q2+t-t2;
                end;end;
        p[1,1]=t;p[1,2]=q1;p[1,3]=(J-1)*q2;
        p[2,1]=0;p[2,2]=t1;p[2,3]=(J-1)*q2;   if
r > 2 then p[2,4]=q1+t-t1;
        p[3,1]=0;p[3,2]=q1;p[3,3]=t2+(J-2)*q2;if
r > 2 then p[3,5]=q2+t-t2;
        /* print P;*/
        Imat=I(2*r-1); /* print Imat;*/
        one=J(2*r-1,1,1); /* print one;*/
        arl=inv(Imat-P)*one;
        ptab[step,1]=delta;ptab[step,r]=arl[1];
        /* print 'arl using rule 2';
        print arl; */
        pzero = p;
        do rstep = 2 to 2*r-1;
                pzero[rstep,1]=p[rstep,1]+z0;

pzero[rstep,rstep]=p[rstep,rstep]-z0;
        end;
        arlz = inv(Imat-pzero)*one;

ptaba[step,1]=delta;ptaba[step,r]=arlz[1];
        end;end;
        print 'arl table for rule 4';
        tag1 = {J n p0};

labtab[1,1]=j;labtab[1,2]=n;labtab[1,3]=p0;
        print labtab[colname=tag1];
        tag2= {delta r2ARL r3ARL r4ARL r5ARL
r6ARL r7ARL r8ARL};
        print ptab[colname=tag2 format=10.2];
        print 'ARL Table for Rule 4a';
        print ptaba[colname=tag2 format = 10.2];

Program output and interpretation

A series of tables are produced which can be used to pick R and
n.
Table 1: Runs Rule ARL Output

These are partial outputs; that is those for Rule1 (Table 1) and
Rule 2 (Table 2) for selected values of R. Continuing with the
TOY process, we have J = 4 streams in which the in-control
proportion nonconforming is estimated to be 0.023.  If one takes
samples of size n = 75, then the in-control ARL using Rule 1 is
926.44 with R = 5 and the in-control ARL for Rule 2 is 492.71 with
R = 5 (note that in-control corresponds to delta = 0).  If the
process shifts upward by 0.03 for a single stream  (so that the
stream now produces 5.3% nonconforming) then using Rule 1 it
will take on average 18 samples to detect the shift and 16.32
samples using Rule 2.

Table 2: Runs Rule ARLs for Rule 2

A quality engineer might on this basis decide to use Rule 2 with R
= 5; or, decide to examine other (larger) sample sizes to increase
the power of the detection scheme.  For example, increasing the
sample size to 150 reduces the ARL for a shift of 0.03 to about 9
for each of the rules examined.

Given J, p, and n the program outputs ARLs for R =2, …,8 (and
can be easily modified to larger values of R) for each of the eight
rules so that an engineer can examine several scenarios before
choosing a rule.



PROCESS SHIFTS
Runs rules are of no value for detecting an overall process shift.
For that reason it is often wise to use the runs rule in conjunction
with another tool, such as a process p-chart, in which the stream
data is aggregated to form a single p-chart.  It is also possible to
use a Chi-Squared chart with a runs rule or a group p-chart (see
Jacobs and Wludyka for a thorough explanation). Using a control
chart along with a runs rule will decrease all ARLs, especially the
in-control ARL., so care must be used when employing such a
control scheme.
The advantage of a dual scheme is that both stream shifts and
overall shifts are more easily detected.

If one plans to use a p-chart with a runs rule it is probably wise to
choose a Runs Rule with an in-control ARL of 500 or more.  Then
using a p-chart with k = 3 will probably likely produce a scheme
with in-control ARL of about 225.

SIMULATION TOOLS FOR CONTROL SCHEMES

Monte Carlo methods can be used to estimate the ARLs
associated with a complex control scheme.

Program for Runs Rule with a P-chart ARLs

/***********************************************
*********************
*        simulates ARLs: Runs rule 2 (maintain
run on ties) + p-chart
*        overal p-chart k = (user's choice)
*        group p-charts k1,k2 = equated
*        ChiSquare chart based on nominal ARL0
(user specified)
*        Default: case 1 to case 2
(ALPHA{1}=DELTAJ and DELTA + 0)
*        Modify: case 1 to case 1 ( ALPHA{1} = 0
and DELTA=DELTAJ)
*        signal(1) = Overall p-chart
*        signal(2) = pj
*        signal(3) = chi-square overall
*        signal(4) = chi-square for j-columns;
*        signal 10 - 20 for individual pj
*        signal(13) = chisq overall
*        signal(14) = chisq for j cols
************************************************
**********************/
data simdat1;
        do jstrs=3;  /*users list for loop*/
        do n=50; /*user list for loop*/
 /* determine control limits  */
        p0=0.10;
        inum=1;jnum=jstrs;
        kovp = 3.0;
        ovp = p0;
        ovpucl = min(1,ovp + kovp*sqrt((ovp*(1-
ovp))/(inum*jnum*n)));
        ovplcl = max(0, ovp - kovp*sqrt((ovp*(1-
ovp))/(inum*jnum*n)));

        ovpnucl =int(n*inum*jnum*( min(1,ovp +
kovp*sqrt((ovp*(1-ovp))/(inum*jnum*n)))));
        ovpnlcl =int(n*jnum*inum*( max(0, ovp -
kovp*sqrt((ovp*(1-ovp))/(inum*jnum*n)))));
        /*  determine k1 and k2 by equating arl0
to p-chart */
uclpx=(ovp+kovp*sqrt((ovp*(1-
ovp))/(Jnum*n)))*(Jnum*n);
lclpx=(ovp-kovp*sqrt((ovp*(1-
ovp))/(Jnum*n)))*(Jnum*n);
if lclpx <=0 then powp0=1-
probbnml(ovp,Jnum*n,floor(uclpx));
else powp0 = 1-probbnml(ovp,Jnum*n,
floor(uclpx))+probbnml(ovp,Jnum*n,floor(lclpx));
        /*     */
pj0=p0;
k1=2.9;
do until (diff < 0 or k1 > 6);
k1=k1+.01;
uclpjx=(pj0+k1*sqrt((pj0*(1-pj0))/(n)))*(n);
lclpjx=(pj0-k1*sqrt((pj0*(1-pj0))/(n)))*(n);
if lclpjx <=0 then powpj0=1-
probbnml(pj0,n,floor(uclpjx));
else powpj0 = 1-probbnml(pj0,n,
floor(uclpjx))+probbnml(pj0,n,floor(lclpjx));
powpj0 = 1-(1-powpj0)**jnum;
diff = powpj0 - powp0;
end;
k2=k1-.01;
uclpjx2=(pj0+k2*sqrt((pj0*(1-pj0))/(n)))*(n);
lclpjx2=(pj0-k2*sqrt((pj0*(1-pj0))/(n)))*(n);
        /*
put 'powp0 ='powp0  '    powpj0= 'powpj0;
        */
        /*  end k1 and k2 */
        kpj = k1;
        pj0 = p0;
        pjucl = min(1,pj0 + kpj*sqrt((pj0*(1-
pj0))/(inum*n)));
        pjlcl = max(0,pj0 - kpj*sqrt((pj0*(1-
pj0))/(inum*n)));
        pjnucl =int( min(1,pj0 +
kpj*sqrt((pj0*(1-pj0))/(inum*n))));
        pjnlcl = int( max(0,pj0 -
kpj*sqrt((pj0*(1-pj0))/(inum*n))));
        kpj=k2;
        pjucl2 = min(1,pj0 + kpj*sqrt((pj0*(1-
pj0))/(inum*n)));
        pjlcl2 = max(0,pj0 - kpj*sqrt((pj0*(1-
pj0))/(inum*n)));
        pjnucl2 =int( min(1,pj0 +
kpj*sqrt((pj0*(1-pj0))/(inum*n))));
        pjnlcl2 = int( max(0,pj0 -
kpj*sqrt((pj0*(1-pj0))/(inum*n))));
        ncsarl = 800;
        csqcl = cinv(1-(1/ncsarl),inum*jnum);
        csqclq = cinv(1-(1/ncsarl),jnum);
        do deltaj  = 0.0,0.01,0.02,0.05,0.10,.2;
        array tsig(30);
    do init = 1 to 30;



        tsig(init)=0;
end;
seed1 = -1;
numreps = 1000;
totr=0; count=0;repct=0;
do reps = 1 to numreps;

        R=5;
        if jstrs = 3 then r = 6;
        if (jstrs = 3 and n=20 and p0=.01) then
r = 5;
        if jstrs = 4 then r=5;
        if jstrs = 5 then r=4;
                if (jstrs=5 and n=100 and p0 >
.05)  then r=5;
                if (jstrs=5 and n=200 and p0 >
.01) then r=5;

        if jstrs = 8 then r=4;
        if jstrs = 10 then r=4;
                if (jstrs = 10 and n = 20 ) then
r= 3;
                if (jstrs = 10 and n = 50 and p0
= .01) then r=3;
        if jstrs > 10 then r = 3;
        totr=totr+count;
        /*
        put 'count =' count totr;
        */
        count =0;
        rsig=0;
        rlength=1;
        prevmaxj=-1;

        do until ( rsig = 1 or count > 3000 );
        repct=repct+1;
        count = count+1;
        /*
        put rlength;
        */

        inum=1;
        jnum=JSTRS;
        /* p0=0.2; */
        delta = 0; /*  deltaj; */
        array alpha(20);
do ainit = 1 to 20;
        alpha{ainit}=0.0;
end;

        alpha{1}= deltaj;  /* 0 */
        alpha{2}=0.0;
        alpha{3}=0.0;

        array signal(30);
do ksig = 1 to 30;
        signal(ksig) = 0;
end;
        array p(1,20);
        array y(1,20);

        array pjhat(20);
        array yjsum(20);
do i=1 to inum;
        do j=1 to jnum;
        p(i,j) = p0 + delta + alpha(j);

end;end;
       /* n = 50; */

  /* generate random samples */
do i=1 to inum;
        do j=1 to jnum;
                pij=p(i,j);
               y(i,j) = ranbin(seed1,n, p(i,j));
end;end;
 /*  calculate phat,pjhat, chisq overall, chisq-
for-j-columns
        test for signals  */
      /*  calc run length */
        array ystr(20);
        maxj = 1;
        tiesw = 0;
        ystr(1) =y(1,1);
        do jstep = 2 to jnum;
                ystr(jstep) = y(1,jstep);
                if ystr(maxj) ge ystr(jstep)
then
                        if ystr(maxj) eq
ystr(jstep) then
                                tiesw =1;
                        else maxj = maxj;
                else do; maxj = jstep ; tiesw =
0; end;

        end;
        /*
put 'before'  ystr1 ystr2 ystr3 ystr4 ystr5 maxj
tiesw prevmaxj rlength count;
        */
if tiesw = 0 then
if maxj=prevmaxj then rlength = rlength +1;
else do;
        prevmaxj=maxj;
        rlength=1;
end;
        /*
put 'after '  ystr1 ystr2 ystr3 ystr4 ystr5 maxj
tiesw prevmaxj rlength count;

        */
if rlength = r then rsig =1;

        /* end calc run length  */
ysum = 0;
zsqsum = 0;
zsqsumq = 0;
do j = 1 to jnum;
        yjsum(j) = 0;

do i = 1 to inum;



        ysum = ysum+y(i,j);
        yjsum(j) = yjsum(j) + y(i,j);
        zsqsum = zsqsum +(y(i,j)-n*p0)**2;
end;
pjhat(j)=yjsum(j)/(n*inum);
if pjhat(j) gt pjucl or pjhat(j) lt pjlcl then
signal(2) = 1;
if pjhat(j) gt pjucl2 or pjhat(j) lt pjlcl2 then
signal(4) = 1;
if pjhat(j) gt pjucl or pjhat(j) lt pjlcl then
signal(j+9) = 1;
        else signal(j+9) = 0;
zsqsumq = zsqsumq + (yjsum(j) - n*inum*p0)**2;
end;
phat=ysum/(n*inum*jnum);
csqst = (zsqsum)/(p0*(1-p0)*n);
csqstq = (zsqsumq)/(p0*(1-p0)*n*inum);
if csqst gt csqcl then signal(3) = 1;
        else signal(3) = 0;
 /* if csqstq gt csqclq then signal(4) = 1;
        else signal(4) = 0;  */
if phat gt ovpucl or phat lt ovplcl then
signal(1) = 1;
        else signal(1) = 0;
do ksig2 = 1 to 20;
        tsig(ksig2)=tsig(ksig2)+signal(ksig2);
end;
if signal(1)=1 then rsig=1;
end;
end;

totr=totr+count;
arlRp=totr/numreps;
arlp=repct/tsig1;
arlpj=repct/tsig2;
arlpj2=repct/tsig4;
arlchi=repct/tsig3;
output;
end;
END;
end;
run;
  /*
proc print;
        by jstrs n deltaj;
   var repct arlRp arlp  arlpj arlchi tsig1
tsig2 tsig3 tsig4 tsig5 tsig6 tsig7 tsig7 tsig8
tsig9
        tsig10 tsig11 tsig12 tsig13 tsig14
tsig15
        r csqcl csqst csqclq csqstq
        p1 p2 p3 p4 p5 p6 p7 p8 p9 p10 p11 p12
p13 p14 p15 p16
        alpha1 alpha2 alpha3 alpha4;
        */
title 'CASE 1 TO CASE 2'; /* if delta > 0 then
title 'case 1 to case 2';*/
proc tabulate data=simdat1;
        BY JNUM;
        class p0 deltaj n;

        var arlp arlchi arlpj arlpj2 arlRp r k1
k2;
        table p0,deltaj,n*(arlp*f=6.1
arlchi*f=6.1 arlpj*f=6.1 arlpj2*f=6.1
arlRp*f=6.1 r*f=1.0 k1*f=4.2 k2*f=4.2)*(MEAN);
        KEYLABEL
                MEAN='ARL';
run;

Program output and interpretation

Returning to the TOY process (see Table 3, where ARLP is the
average run length for a 3-sigma p-chart, ARLCHI is the ARL for
a Chi-Squared chart, ARLPJ is the ARL for a group p-chart with
K1 = 4.07 sigma limits, ARLPJ2 is the ARL for a group p-chart
with K2=4.06 sigma limits) one sees that for a scheme in which a
k=3 sigma overall p-chart is used in conjunction with a runs rule
with R = 5 the in-control ARL is about 149. This drop should be
attributed to the fact that the in-control ARL for the p-chart is
about 212. A user might consider increasing k with the overall p-
chart.

Table 3: Simulation Output

IMPLEMENTATION
Below is a SAS program that produces a 3-sigma p-chart for the
TOY process.  The streams are denoted by S1, …, S4, which
contain the number of defective items in each sample.  There is
data for eight epochs and the proportion defective is known to be
0.023. Since each of the four streams has sample size 75, the
sample size for the overall p-chart is 300.

goptions;
data toydat;
        input s1 s2 s3 s4  sample;
        defect = s1+s2+s3+s4;
        cards;
1 2 1 2    1
0 2 3 0    2
2 0 2 4    3
2 3 0 5    4
4 2 1 7    5
3 4 2 4    6
1 1 3 5    7
2 3 1 4    8
;
proc shewhart data=toydat graphics;



        pchart defect*sample / subgroupn = 300
p0 = 0.023;
run;

Figure 1: P-chart for TOY process

Using  runs Rule 2 with R = 5, observe that at epoch 1 (sample 1) there
is a tie for the max stream so there is no run-stream; at epoch 2 stream 3
has the largest proportion defective and the run length is one (that is, r
=1); at epoch 3  stream four has the largest proportion defective (there is
a new max stream), and hence r = 1.  Also, at epoch 4 stream  4 is the
max and hence r = 2; at epoch 5 stream four is the max and hence r = 3;
at epoch 6 there is a tie so r remains 3; at epoch 7 stream 4 is the max so
r = 4 and at epoch 8 stream 4 is the max so r = 5.  Since the run length is
equal to R = 5, there is an out-of-control signal at epoch 8.

CONCLUSION
Several process control schemes useful for controlling multistream
binomial processes have been discussed.  A SAS® program for
calculating ARLs for runs rules is provided.  This program is a useful
tool when designing a runs rule scheme.  Next a SAS® monte carlo
simulation program is provided that produces estimated ARLs that are
useful for complex schemes, such as those using a runs rule in
conjunction with an overall p-chart.  Simulation study has shown this to
be an effective process control scheme for multistream binomial
processes..

DOWNLOADING SAS® PROGRAMS
Source code can be downloaded from the University of North
Florida Center for Research and Consulting in Statistics web
page (www.unf.edu/coas/math-stat/CRCS) as technical reports
#080101 and #080201.

REFERENCES
Jacobs, S., and Wludyka, P.,  “Runs Rules and P-Charts for
Multistream Binomial Processes,” to appear (and CRCS technical
report #080201).

Montgomery, D. C. (1997).  Introduction to Statistical Quality
Control, 3rd ed., John Wiley and Sons, New York.

CONTACT INFORMATION
Your comments and questions are valued and encouraged.
Contact the authors at:

Peter Wludyka
                Associate Professor of Statistics

University of North Florida
Jacksonville, Florida
Work Phone: 904-620-1048
Fax: 904-620-2818
Email: pwludyka@unf.edu

 Web: www.unf.edu/coas/math-stat/~pwludyka

Sheri Jacobs
                Quality Engineer

Vistakon, Inc.
Jacksonville, Florida
Work Phone: 904-443-1607
Fax: 904-443-1607
Email: sjacobs@visius.jnj.com



2001: A SAS/STAT Odyssey
Maura Stokes , SAS

Abstract: Version 8 of SAS/STAT software introduced new tools in the areas of
nonparametric regression, survey data analysis, and nonlinear mixed models. This talk
reviews the new methodolgy included in Release 8.2, including the generalized additive
model, exact logistic regression, and multiple imputation, and describes important additions
to existing procedures such as ratio estimation in PROC SURVEYREG, generalized logistic
regression in PROC LOGISTIC, and numerous enhancements in other procedures such as
NPAR1WAY, FREQ, and PHREG. In addition, this talk discusses the new statistical
enhancements to Version 9, which include additional work in survey data analysis, such as
logistic regression for survey data, software for power and sample size computations, and
numerous enhancements to existing procedures.



Paper P-715

A Simulation Study to Compare the Performance of Permutation Tests for Time by Group Interaction in
an Unbalanced Repeated-Measures Design, Using Two Permutation Schemes

Mark S. Litaker and Bob Gutin, Medical College of Georgia, Augusta GA

ABSTRACT

The use of permutation tests for the analysis of data
incorporating repeated measurements presents a choice of
possible permutation schemes to generate the empirical null
distribution of the test statistic.  A commonly-recommended
scheme keeps the vector of observations for each subject intact,
with permutation based on group membership only.  Another
option is to permute the observations across the time points as
well as relative to treatment group.  These two permutation
schemes are compared with respect to power and preservation of
the nominal alpha level in testing for a time by group interaction
using simulated data based on a randomized trial of effects of an
exercise program.  SAS® PROC IML is used to generate
correlated observations under the null and alternative hypotheses
which are then analyzed using PROC GLM.  P-values are
obtained for the usual F statistic and for each of the permutation
tests.  Proportions of significant interaction terms are calculated
to obtain empirical power and alpha for each of the permutation
schemes.  The two schemes are then applied to the analysis of
observed data from the study.

INTRODUCTION

In biological research it is often the case that observed data do
not follow convenient distributions.   Since many of the most-used
methods of statistical analysis rely on the assumption that the
data are sampled from a Normal distribution, use of these
methods in many practical situations may give questionable
results.   While transformations may provide a remedy for some
distributional problems, it is often the case that no suitable
transformation exists.  An alternative approach to analysis of
such data is the use of permutation testing.  Permutation tests
are exact for all sample sizes regardless of the underlying
distribution (Higgins, Noble; 1993).   Assumptions regarding the
form of the correlation structure of the parent distribution are not
required.  Two initial steps in the use of a permutation test are to
identify a test statistic that differentiates between the null and
alternative hypothesis situations, and to identify a permutation
scheme that will generate the distribution of the test statistic
under the null hypothesis (Good; 1995).  Often there is a clear
choice of permutation scheme based on the experimental design,
but this is not always the case.  In designs that incorporate
repeated measurements on the same experimental units, one
must decide whether to keep each subject’s vector of
observations intact or to permute across time points as well.

PERMUTATION TESTS
To perform a permutation test, the test statistic is calculated for
the observed data.   Then the data is permuted across groups,
and the test statistic is calculated for each permutation. Typically
a very large number of permutations is possible, so a random
sample of permutations is selected instead of all possible
arrangements.  The test consists of calculating the area under
the curve of this empirical null distribution of the test statistic that
is at least as extreme as the test statistic that was calculated
from the observed data.  That is, the p-value is the fraction of the
test statistics from the null distribution that are at least as
extreme as that which resulted from the actual data.  Typically, a

random sample of 100 to 500 repetitions is adequate to
approximate the permutation distribution (O’Sullivan, et al; 1984).

THE REPEATED MEASURES SITUATION
Consider an experimental design with two groups and repeated
measurements made at three time points.  The effect that is of
interest is the difference between groups in change across the
times of observation.  An appropriate test statistic is one whose
magnitude reflects the amount of deviation between the observed
data and the null situation.  For the current experimental design
an obvious choice is the usual F statistic for group by time
interaction from a split-plot or repeated measure analysis of
variance (ANOVA).  To generate the permutation distribution of
the F statistic, observations are permuted across group
assignments.   The order of observations for each subject may be
maintained, or the observed values for each subject may be
permuted across observation times as well.  In the repeated
measures design, subjects are randomized to one or the other of
the experimental groups, but the repeated observations occur at
fixed times.  That is, subjects are not randomized to times.  It has
been suggested (Higgins) that the permutation scheme should
correspond to the randomization scheme used in the experiment.
However, this is not consistent with the situation with the usual
Normal-based F test. The null hypothesis for the overall F test is
that both of the main effects and the interaction effect are zero,
that is, that neither time nor group is a meaningful categorization,
whether experimental units are randomized to group only or to
group and subplot.  Thus, it is of interest to compare the
performance of the two permutation schemes.

EXAMPLE:  A STUDY OF THE EFFECTS OF PHYSICAL
TRAINING IN CHILDREN
Study subjects  were 80 obese children 7 – 11 years of age , who
were randomized to participate in a physical training program
during either the first or second four-month period of the study.
The primary interest was in estimating changes in body
composition due to the physical training program.  For this
evaluation, percent body fat as measured by dual energy x-ray
absorptiometry was selected as the dependent variable.  The
statistical analysis was by mixed-model ANOVA, which was
performed using SAS PROC GLM.   Subject was included as a
random effect, and group and time were fixed effects in the
model.  The statistical test which is of interest is the F test for the
group by time interaction term.

THE SIMULATED DATA SETS
In order to compare the performance of the two permutation
schemes, simulated data was generated having approximately
the structure that was observed in the actual study.  The
simulated data sets each consist of 80 subjects and 3
observations.   Correlated observations were produced by
generating  for each subject a “subject effect” consisting of a
Uniform(0,20) random variable.  Observations at each of the time
points were generated by adding a Normal random number to the
subject effect with means set to generate the desired group by
time effects.   The standard deviation of the Normal term was set
at 3.5,  giving a standard deviation of approximately 6.75 for the
sum of the Uniform and Normal components.  This is similar to
the within-cell standard deviation of the observed data.  Since the
subject effect is Uniform rather than Normal, the resulting



distributions will be symmetric, but will be overdispersed relative
to the Normal distribution.

EVALUATING THE PERMUTATION TESTS
Each of the simulated data sets was analyzed using both of the
permutation schemes.  In scheme 1, each subject’s vector of
observations remains intact, and these 3-element vectors are
permuted across the group assignments.  In scheme 2, the
vectors of observations are permuted across groups, and then
the three observations for each subject are randomly permuted
across times.  In order to calculate p-values to four decimal
places, 1000 random permutations were performed for each test.
For each of the permutation tests and the Normal-based ANOVA
on each simulated data set, p-values for group by time interaction
were written to text files for performance comparisons.  Validity of
the tests was evaluated by simulating data with no group by time
interaction.  In the simulations of the null situation, mean percent
body fat was increasing over the times of observation in both
groups.   If the test rejects the null hypothesis in 5% of trials when
alpha = .05, when the null  hypothesis is true, then it is a valid
test.  To evaluate the power of the tests, data was simulated with
a group by time interaction.  For group 1, the group which
received the training program during months 0 – 4, mean percent
fat values were 44 , 42, and 43 for months 0, 4, and 8,
respectively.  For group 2, the corresponding means were 44, 45,
and 43.  The power of the test is the proportion of trials that result
in rejection of the null hypothesis.  At the 95% confidence level,
this is the proportion of tests which yield a p-value of .05 or less.

RESULTS
Preliminary results of the simulation study show little evidence of
a difference in performance between the two permutation tests.
In 253 simulations under the null hypothesis, scheme 1
demonstrated an empirical alpha level of .0553, while scheme 2
showed .0593.   The observed alpha for the F test was also
.0593.   Under  the alternative situation, observed power in 285
simulations was 76.5% for the test using permutation scheme 1,
77.2% using scheme 2, and 76.8% for the F test.
Analysis of the observed data from the physical training study
using the Normal-based ANOVA and each of the permutation
tests gave similar results.   The p-values for group by time
interaction were .0007 for the ANOVA, and .002 for the
permutation tests.  In this case, the two permutation schemes
gave identical results.

CONCLUSION
Based on these results, there is not a clear performance basis on
which to choose between the permutation schemes.
Permutation scheme 1 is a simpler procedure than scheme 2,
and requires less computing time.  This may suggest that
scheme 1 would be preferable in practice.  Performance of both
permutation tests was similar to that of the Normal-theory test for
the observed and simulated data in this study.   The assumption
of Normality is not seriously violated for these data, despite the
use of a mixed distribution in the simulations.  Thus, this study
may not provide an adequate tool to distinguish differences in
performance between the tests that might exist for data with a
more extreme departure from Normality.

REFERENCES
1. SAS/IML® Software: Usage and Reference, Version 6, First

Edition.  SAS Institute, Inc., Cary, NC; 1980.

2. Higgins JJ, Noble W.  A Permutation Test for a Repeated
Measures Design, Proceediings of the 1993 Kansas State
University Conference on Applied Statistics in Agriculture;
1993

3. Good P.  Permutation Tests: A Practical Guide to
Resampling Methods for Testing Hypotheses.  Springer,

New York; 1995.

4. O’Sullivan F, Whitney P, Hinshelwood MM, Hauser ER.  The
Analysis of Repeated Measures Experiments in
Endocrinology.  J Animal Science 59 (4):1070-1079; 1984.

CONTACT INFORMATION
Your comments and questions are valued and encouraged.
Contact the author at:

Author Name:  Mark Litaker
Company:  Medical College of Georgia
Address: Office of Biostatistics and Bioinformatics
City state ZIP:  Augusta, GA 30912-4900
Work Phone: (706) 721-3785
Fax:  (706) 721-6294
Email: mlitaker@mail.mcg.edu

 



APPENDIX.

options cleanup nosource nonotes;

*----------------------------------------------------------------;
* provide a name for the  dependent variable       ;
*----------------------------------------------------------------;
%let dep = fat;

*------------------------------------------------------------------------;
* identify 3 measurements of the dependent variable     ;
*------------------------------------------------------------------------;
%let dep1 = fat1;
%let dep2 = fat2;
%let dep3 = fat3;
*---------------------------------------------------------------------------;
* macro to repeatedly simulate data and analyze by         ;
* permutation tests using different permutation schemes  ;
*---------------------------------------------------------------------------;

* permutation scheme 1 *;

%macro permute1(reps1);
  %do i = 1 %to &reps1;
*----------------------------------------------------------------------------;
* reassign 3 observations per subject randomly to groups  ;
* keeping each subjects vector of observations intact         ;
*----------------------------------------------------------------------------;

proc iml;
use &dep;
read all var {subject &dep1 &dep2 &dep3} into &dep;
rand1=j(nrow(&dep),1,1);
do i = 1 to nrow(rand1);
  rand1(|i|)=ranuni(-1);
end;
order=&dep||rand1;
create order2 var {subject &dep1 &dep2 &dep3 rand1};
append from order;
run;

proc sort data=order2;
by rand1;
run;
proc iml;
use order2;
read all var {subject &dep1 &dep2 &dep3} into reorder;
use fat;
read all var {group} into group;
permute1=group||reorder;
create permute var {group subject &dep1 &dep2 &dep3};
append from permute1;
run;

 *--------------------------------------------;
 *  analysis of variance for the       ;
 *  permuted data                            ;
 *--------------------------------------------;
 *  rearrange data to have a single observation per record;
data permute2;
set permute;
do i = 0 to 8 by 4;
 subject = subject;
 group = group;
 month = i;
 if month eq 0 then &dep = &dep1;
 else if month eq 4 then &dep = &dep2;
 else if month eq 8 then &dep = &dep3;
 output;
end;
keep subject group month &dep;
run;
proc glm data=permute2 noprint outstat=stats;

class subject group month;
model &dep  = subject(group) group month group*month /ss3;
random subject(group);
run;
data stats;
set stats;
if  _source_ = ’GROUP*month’;
file "&dep 1.txt" mod;
put f;
run;
   %end;
%mend permute1;

* permutation scheme 2;
* randomization by group and time;

%macro permute2(reps2);
  %do i = 1 %to &reps2;
*----------------------------------------------------------------------------;
* reassign 3 observations per subject randomly to groups  ;
* and randomly to times                                                       ;
*----------------------------------------------------------------------------;
proc iml;
use &dep;
read all var {&dep1 &dep2 &dep3} into &dep;
rand1=j(ncol(&dep),1,1);
do i = 1 to nrow(rand1);
  rand1(|i|)=ranuni(-1);
end;
rand2=rand1‘ ;
randcols=rand2//&dep;

create order2 var {col1 col2 col3};
append from randcols;
run;

proc transpose data=order2 out=order3;
run;
* permute columns;
proc sort data=order3;
by col1;
run;
data order3;
set order3;
drop _name_ col1;
run;
proc transpose data=order3 out=order2;
run;
data order2;
set order2;
drop _name_;
&dep1=col1;
&dep2=col2;
&dep3=col3;
drop col1 col2 col3;
run;
proc iml;
use &dep;
read all var {group} into group;
rand2=j(nrow(group),1,1);
do i = 1 to nrow(rand2);
  rand2(|i|)=ranuni(-1);
end;
group=group||rand2;
create group var {group rand};
append from group;                          run;
* permute rows;
proc sort data=group;
by rand;
run;

proc iml;
use group;



read all var {group};
use order2;
read all var {&dep1 &dep2 &dep3} into &dep;
use &dep;
read all var {subject} into subject;
permute=subject||group||&dep;
create permute var {subject group &dep1 &dep2 &dep3};
append from permute;
run;

 *----------------------------------- ---------------------------------------;
 *  analysis of variance for the  randomized data                ;
 *---------------------------------------------------------------------------;

 *  rearrange data to have a single observation per record;
data permute2;
set permute;
do i = 0 to 8 by 4;
 subject = subject;
 group = group;
 month = i;
 if month eq 0 then &dep = &dep1;
 else if month eq 4 then &dep = &dep2;
 else if month eq 8 then &dep = &dep3;
 output;
end;
keep subject group month &dep;
run;
proc glm data=permute2 noprint outstat=stats;
class subject group month;
model &dep  = subject(group) group month group*month /ss3;
random subject(group);
run;
data stats;
set stats;
if  _source_ = ’GROUP*month’;
file "&dep 2.txt" mod;
put f;
run;
   %end;
%mend permute2;

*      ----------------------------------------------------------------------;
*      macro to simulate data and perform 3 tests                ;
*      ----------------------------------------------------------------------;
%macro simstudy(reps);
  %do j = 1 %to &reps;

*------------------------------------------------------------------------;
* SIMULATE data with one record per subject,              ;
* three observations per subject in each record              ;
*------------------------------------------------------------------------;

proc iml;
subject=j(80,1,1);
group1=j(40,1,1);
group2=j(40,1,2);
subeffect=j(80,1,1);
fixed1=j(80,1,1);
fixed2=j(80,1,1);
fixed3=j(80,1,1);
fat1=j(80,1,1);
fat2=j(80,1,1);
fat3=j(80,1,1);
group=group1//group2;

   *  generate  the alternative hypothesis situation  ;
   * simulate data with group*time effect;

do i = 1 to 40;
  subject(|i|) = i;
  subeffect(|i|)= 20*ranuni(-1);
  fixed1(|i|) = 34 + 3.5*rannor(-1);
  fixed2(|i|) =  32 + 3.5*rannor(-1);

  fixed3(|i|) = 33 + 3.5*rannor(-1);
end;
do i = 41 to 80;
  subject(|i|) = i;
  subeffect(|i|)= 20*ranuni(-1);
  fixed1(|i|) = 34 + 3.5*rannor(-1);
  fixed2(|i|) =  35 + 3.5*rannor(-1);
  fixed3(|i|) = 33 + 3.5*rannor(-1);
end;

  /*   *OR generate the null situation;
       * simulate data with time effect only;
      do i = 1 to 80;
  subject(|i|) = i;
  subeffect(|i|)= 20*ranuni(-1);
  fixed1(|i|) = 34 + 3.5*rannor(-1);
  fixed2(|i|) =  35 + 3.5*rannor(-1);
  fixed3(|i|) = 36 + 3.5*rannor(-1);
end;
  */
fat1=subeffect+fixed1;
fat2=subeffect+fixed2;
fat3=subeffect+fixed3;
fat=subject||group||fat1||fat2||fat3;
create fat var {subject group fat1 fat2 fat3};
append from fat;
run;

*-----------------------------------------------;
* analysis of observed data  (anova) ;
*------------------------------------------------;

*  rearrange data to have a single observation per record;

data &dep2;
set &dep;
do i = 0 to 8 by 4;
 subject = subject;
 group = group;
 month = i;
 if month eq 0 then &dep = &dep1;
 else if month eq 4 then &dep = &dep2;
 else if month eq 8 then &dep = &dep3;
 output;
end;
keep subject group month &dep;
run;

* analysis of variance;

proc glm data=&dep2 noprint outstat=fstat;
class subject group month;
model &dep  = subject(group) group month group*month /ss3;
random subject(group);
run;



*  save the observed value of the F-statistic  ;

data fstat;
set fstat;
if  _source_ = ’GROUP*month’;
file ’alt.txt’ mod;
put _name_ _source_ f prob;
call symput(’obs_f’,f);    *value of F from the observed data;
run;

*  run permutation test using scheme 1;
%permute1(1000)
run;

data fstats;
infile "&dep 1.txt" missover;
input f;
if f eq . then delete;
p = 0;
if f ge &obs_f then p = 1;
label p=’(p-value)’;
run;
proc means data=fstats n mean noprint;
title1 ’permutation 1:  permute by group only’;
title2 ’group*time p-value’;
title3 "dependent variable: &dep";
output out=pval1 n=n1 mean=pval1;
var p;
run;
data pval1;
set pval1;
file ’alt.txt’ mod;  * if simulating group*time effect;
* file ‘null.txt’ mod;  * if simulating null ;
put n1 pval1;
run;

* run permutation test using scheme 2;
%permute2(1000)
run;

data fstats;
infile "&dep 2.txt" missover;
input f;
if f=. then delete;
p = 0;
if f ge &obs_f then p = 1;
label p='(p-value)';
run;
proc means data=fstats n mean noprint;
title1 'permutation 2: permuting by group and time';
title2 'group*time p-value';
title3 "dependent variable: &dep";
output out=pval2 n=n2 mean=pval2;
var p;
data pval2;
set pval2;
file 'alt.txt' mod;
put n2 pval2;
run;

  * remove temporary files;
  data clear;
  space=.;
file "&dep 1.txt";
put space;
file "fat 2.txt";
put space;

run;

%end;
proc datasets kill;
%mend simstudy;
run;

%let reps=200;   * set number of simulations;
%simstudy(&reps)
run;

* calculate and print empirical power and alpha values;

data output;
infile 'alt.txt';  * for alternative H;
* infile ‘null.txt’; * for null H;
input _name_ $ _source_ $ obsf obsp / n1 pval1 / n2 pval2;
if obsp le .05 then obs_power=1;
if obsp gt .05 then obs_power=0;
if pval1 le .05 then p1_power=1;
if pval1 gt .05 then p1_power=0;
if pval2 le .05 then p2_power=1;
if pval2 gt .05 then p2_power=0;
run;

proc means data=output n mean maxdec=4;
title1 'power for F and two permutation tests';
title2 'alternative hypothesis';
*title2 ‘null hypothesis’;
var obs_power p1_power p2_power;
run;



Heel Ultrasound as a Predictor of Appendicular Bone Mineral Density

Rebecca G. Frederick, Louisiana State University, Baton Rouge, LA
E. Barry Moser, Louisiana State University, Baton Rouge, LA
Ellen R. Brooks, Northwestern University Medical School, Chicago, IL

And Woman’s Health Research Institute, Woman’s Hospital, Baton Rouge, LA.

Abstract
Emerging medical technologies for use in the area of
skeletal assessment of bone mineral density (BMD) are on
the rise, while at the same time the aging population and
the incidence of osteoporosis both increase. A new
technology, quantitative peripheral heel ultrasound
(Sahara Clinical Bone Sonometer, Hologic), measures
variables related to sound transmission through the
calcaneus. This study evaluates the utility of heel
ultrasound in predicting appendicular BMD as determined
by dual energy x-ray absorptiometry (Hologic QDR 4500)
at the hip in Caucasian females, 65-81 years old.
Computations were performed on an IBM 300PL personal
computer with Microsoft Windows NT Workstation and
SAS software. Proc Reg was used for variable selection
and model building, while Proc CanCorr provided
canonical correlations of the data. There is an adequate
correlation that exists for predicting the T-score (a
diagnostic criterion of the World Health Organization) for
the total femur (hip) and the femoral neck (hip) of women
using the heel ultrasound T-score, broadband attenuation
of sound waves (BUA), speed of sound (SOS), stiffness
index (QUI), age and body mass index (BMI). This paper
discusses the selection of predictor variables and the
evaluation of the model.

Introduction
The measurement of bone mineral density (BMD =
gm/cm2) and bone mineral content (BMC = grams) using
dual energy X-ray absorptiometry (DXA), is a widely
accepted technology that affords low radiation exposure,
quick scanning time, and quantitative data from which to
rule out bone loss (Genant, et al, 1996). Two anatomical
sites, the lumbar spine and proximal femur (hip) are
usually measured using DXA.

Although the DXA has been accepted as the gold
standard for evaluating area bone density, other methods
have more recently been developed that may provide
additional information on bone microarchitecture. This
information is particularly significant with respect to
ascertaining fracture risk. Quantitative peripheral heel
ultrasound of the calcaneus (heel) uses imperceptible
sound waves that are passed through the heel. This
equipment is portable, whereas DXA is not, and may
therefore make heel ultrasound a useful tool for mass
(community-based) screening of the high-risk
postmenopausal population. Further, it may be a more
cost-effective means for identifying those individuals who
should be referred for detailed osteoporosis evaluation
(Sim, Stone, Johansen, and Evans, 2000; Stewart, 2000).
Since the diagnostic criterion for osteoporosis is based
upon DXA, further evaluation of the relationship between
the variables measured with the two differing technologies
is warranted.

Purpose
The purpose of this investigation was to assess the strength
of the predictive relationship of heel ultrasound for variables
from hip DXA scanning, particularly the T-score. Our
specific focus was on the older Caucasian postmenopausal
female (aged 65-81 years), since older women are at high
risk for continued slow bone loss (Riggs, Khosla, and
Melton, 1998).

Methods
The Institutional Review Board approved this study and the
informed consent of all subjects was obtained. One hundred
and sixty-seven women were enrolled in this study.
Anthropometric data that included height, weight, and body
mass index (BMI = wt in kg/ht in m2) were measured. Age
was also included as an explanatory variable, since it is a
potentially confounding variable due to the decline that
occurs in bone density with aging.

DXA scanning of the hip and heel ultrasound measurements
were performed on the same day. Since the left hip was
scanned by DXA, all duplicate heel ultrasound
measurements were made using the left heel. The left lower
leg (and thus heel) was positioned, using a goniometer, such
that there was a 90 degree angle at the knee.

Variables that were measured using the differing
technologies are:

Table 1: Quantitative Heel Ultrasound

• Broadband attenuation of sound waves (BUA)
• Speed of Sound (SOS)
• Stiffness index of bone (QUI)
• T-score (World Health Organization diagnostic criterion

for determination of a patients’ current BMD versus
their expected peak BMD. This comparison is
delineated into three categories: normal, low BMD, or
osteoporosis. The T-score criterion is based upon
DXA data)

Table 2: DXA of the Proximal Femur-Hip

• Total Femur BMD, BMC, and T-score (defined above)
• Femoral Neck BMD, BMC, and T-score (defined above)

Analysis
Regression Methods
The data was imported into SAS from an Excel spreadsheet.
Proc Univariate was used to review the data and identify any
potential errors and outliers in data entry. Proc Reg, with the
stepwise option, was then used to determine which DXA
variable (of the hip) was most related to the heel ultrasound



variables. These models used age and BMI. An example
of a typical model was:

Exhibit 1:Typical Model of Data

Model εββααβ ++++++= 3322110 XXX...XY kk

Where:

Y : Hip Measurements

0β : Intercept

1α ,..., kα : Coefficients of Heel Measurements

X,...,X1 k : Heel Measurements

2β : Coefficients of Age

2X : Age of individual

3β : Coefficients of Body Mass Index

3X : Body Mass Index (BMI)

ε : Error

Stepwise regression, at the default significance level of 0.15,
was performed to identify potential models of explanatory
variables. A typical model statement was:

Exhibit 2: Hip Measurements of SAS Regression Procedure
Proc Reg;
Model LT_TOTF2 = US_T_S US_QUI US_BUA US_SOS BMI AGE

/ selection=stepwise;
Run;

Polynomial Interactions were also assessed, however, none
were found to be statistically important for any of the
explanatory variables using either heel measurement.

The results from the stepwise regressions did not identify the
same model with respect to the heel measurements. The
first explanatory measure, at alpha = 0.15, selected the total
femur T-score, then the BMI, and finally, age. For the
femoral neck T-score, using BMI and age as covariates, the
procedure selected heel BUA. The total model R2 for total
femur T-score was 0.4959, and for the femoral neck T-score
was 0.3670.

______________________________________________________________________________________________________________________________

Table 3: Hip Procedure for Regression with the Stepwise Option
Variable Partial Model F Value Prob > F
Entered R2 R2

Total Femur T-Score
T-score 0.3012 0.3012 69.39 <.0001
BMI 0.1832 0.4844 56.86 <.0001
Age 0.0115 0.4959 3.26 0.0590

Femoral Neck T-Score
BUA 0.2514 0.2514 54.06 <.0001
BMI 0.0906 0.3420 22.04 <.0001
Age 0.0250 0.3670 6.27 0.0133

____________________________________________________________________________________________________

Figure 1: Partial Regression Plot 1 of T-Score
Regression Diagnostics
Partial regression plots are used to assess the major role that an
explanatory variable, kX , plays in the model given that all of other

explanatory variables under consideration are already in the
model. Both the response variable, Y , and the explanatory
variable, kX , are regressed against the other explanatory

variables in the model and the residuals are obtained from each
fit. Thus, a partial regression plot for the total femur T-score, Y ,
and the heel T-score, 1X , consists of a plot of the Y residuals,

ε ( Y | 2X 3X ) against the 1X residuals, ε ( 1X | 2X 3X ) where

2X and 3X are BMI and Age, respectively. For the three-variable

model there are three partial leverage plots of the residuals of the
total femur T-score versus residuals from each of the predictors.
These graphics appear in figure 1:



Figure 2: Partial Regression Plot 2 of Body Mass Index

Figure 3: Partial Regression Plot 3 of Age

From the three partial regression plots, Figures 1-3, the T-score of
the hip and the BMI support relationships with femur T-score. This
occurred even when the other explanatory variables are in the
model. Yet, age contributed little to no additional information for
predicting femur T-score when the heel ultrasound T-score and
BMI were in the model.

Canonical Correlation
Canonical correlation (CANCORR procedure) was used to
perform canonical correlation, partial canonical correlation, and
canonical redundancy analysis. It was used to analyze the
relationship between two sets of variables (linear sets of both the

hip and heel measurements). Canonical correlation is a
type of correlation that is a variation on the concept of
multiple regression and correlation analysis. The
procedure was written as:

Exhibit 3: SAS Procedure of Canonical Correlations
PROC CANCORR ALL

Vprefix=Heel Vname="Measurement from the Heel"
Wprefix=Hip Wname="Measurement from the Hip";

VAR US_T_S US_SOS US_BUA US_QUI;
WITH LT_TOTF2 LT_FEM_3;
RUN;

Proc CANCORR has an option ALL, (Exhibit 3) that
displays the correlations among the original heel and hip
measurements. The correlations within the heel
measurement were in the range of 0.9978 to 0.9184. The
correlation within the hip measurements was 0.8878. The
procedure also displays the correlations between the set
of X (heel) variables, and the set of Y (hip) variables. The
correlations between the heel and hip measurements were
smaller than the within set of correlations as expected.

The largest correlation was between the heel BUA and the
hip T-score (r=0.5391). The smallest correlation was
between the heel SOS and the T-score for the femoral
neck (r=0.4443). The correlations for the within and
between measurements are shown below:

Table 4: Correlations Within the Heel Measurements
T-score SOS BUA QUI

T-score 1.0000 0.9893 0.9659 0.9977
SOS 0.9893 1.0000 0.9184 0.9876
BUA 0.9659 0.9184 1.0000 0.9638
QUI 0.9977 0.9876 0.9638 1.000

Table 5: Correlations Within Hip Measurements
Total Femur

T-Score
Femoral Neck

T-Score
Total Femur

T-Score
1.000 0.8878

Femoral Neck
T-Score

0.8878 1.000

Table 6: Correlations Between Heel and Hip Measurements
Total Femur

T-Score
Femoral Neck

T-Score
Heel T-score 0.5195 0.4717

SOS 0.4894 0.4443
BUA 0.5391 0.4893
QUI 0.5154 0.4673

Table 7: Canonical Correlations & Multivariate Statistics
Canonical
Correlation

Eigenvalue Probability > F Wilks’
Lamba

1 0.556299 0.4490 <.0001 <.0001
2 0.026812 0.0007 0.9898



As seen in Table 7, the first canonical correlation was 0.556
(p<0.0001), which indicates a definite linear association between
hip and heel measurements, however the magnitude of the
correlation was not very high, indicating that predictions would not
be precise. Since the measurements were in the same units, the
standardized coefficients were almost equivalent to the raw
coefficients (Tables 8 & 9).

Table 8: Standardized Canonical Coefficients for Heel Measurements
Heel 1 Heel 2

Heel T-score 13.2139 -37.8835
SOS -8.7556 18.1880
BUA -3.8424 10.5013
QUI 0.0934 9.9315

Table 9: Standardized Canonical Coefficients for Hip Measurements
Hip 1 Hip 2

Total Femur
T-score

0.8973 1.9790

Femoral Neck
T-score

0.1141 -2.1700

Since canonical variable 1 was significant, it was interpreted. The
standardized canonical heel measurement variable 1 was a
weighted difference between T-score with SOS and BUA:

• a very strong positive value of T-score = 13.2139
• a strong negative value of SOS = -8.7556
• a negative value of BUA = -3.8424
• a very small positive value of QUI = 0.0934.

The first canonical variable of standardized hip measurements
was largely dominated by the femoral neck T-score since we
have:

• a positive value of total femur T-score = 0.897
• a small positive value of femoral neck T-score = 0.114

The canonical redundancy analysis did not indicate a good
relationship between the opposite canonical variables and their
own canonical variables (the hip and heel measurement). The
standardized proportion of variance that explained the heel and
hip measurement was 0.2553 and 0.2844, respectively. Even
after they were added together, the cumulative proportions were
only 0.2554 and 0.2845, respectively.

Table 10: Canonical Redundancy Analysis
Standardized Variance of

Heel Measurement
Standardized Variance of

Hip Measurement
Proportion Cumulative

Proportion
Proportion Cumulative

Proportion
1 0.2553 0.2553 0.2844 0.2844
2 0.0000 0.2554 0.0001 0.2845

Conclusion
The strongest correlation relationship observed between
the heel and hip, using differing technologies, was
between the total femur T-score and heel BUA. Bone is
known to attenuate high frequency (ultrasonic) sound
waves, with those patients who are older and are
osteoporotic, such that a lower BUA reading is obtained.
Consistent with this, we were able to demonstrate that a
direct correlation existed between the hip T-score and
heel BUA measurement. Simply stated, the lower the hip
T-score, the lower the heel BUA measurement.

Although a statistical relationship existed between
variables from the heel and hip, using diverse
technologies, a statistically robust predictive relationship
was not observed. Anatomic site discordance in BMD,
using DXA, is a well-known phenomenon that has made
DXA interpretation for diagnosis somewhat confusing to
the clinician (Mulder, Michaeli, Flaster, Siris, 2000;
Faulkner, von Stetten, Miller, 1999). This problem was
therefore already an issue (we assessed heel and hip) and
confounded further by the use of different technologies to
quantify the BMD.

Although two ultrasound variables (BUA and SOS)
explained some of the variance in the hip data, BMI and
age were also selected in the stepwise regression model
for the total femur T-score. Both weight (reflected in the
BMI ratio) and age were known to have an affect on BMD.
When we controlled for age and BMI, BUA was the
strongest predictor for the femoral neck T-score.

Quantitative peripheral ultrasound does not strongly
explain and account for the variance in the total femur and
femoral neck T-score, as quantified by DXA. Further
studies are required to better understand the biological,
corresponding statistical relationship, the clinical utility and
interpretation of quantitative peripheral ultrasound of the
heel and how those results relate to the gold standard,
DXA.



References
Borland, Russell. Running Microsoft® Word for Windows® 95,

Microsoft Press, A Division of Microsoft Corporation, 1995.

Faulkner, K.G., von Stetten, E., Miller, P. Discordance in patient
classification using T-scores. Journal of Clinical
Densitometry. 2:343-350, 1999.

Genant, H., Engelke, K., Fuerst, T., Gluer, C., Grampp, S., Harris,
S.T., Jergas, M., Lang, T., Lu, Y., Majumdar, S., Mathur, A.,
Takada, M. Non invasive assessment of bone mineral and
structure: state of the art. Journal of Bone and Mineral
Research. 11:707-730, 1996.

Microsoft® Windows® 95 Resource Kit, Microsoft Press, A Division
of Microsoft Corporation, 1995

Mulder, J.E., Michaeli, D., Flaster E.R., Siris, E. Comparison of
bone mineral density of the phalanges, lumbar spine, hip,
and forearm for the assessment of osteoporosis in
postmenopausal women. Journal of Clinical Densitometry.
3:373-381, 2000.

Riggs, B.L., Khosla, S., Melton, L.J. A unitary model for
involutional osteoporosis: estrogen deficiency causes both
type I and type II osteoporosis in postmenopausal women
and contributes to bone loss in aging men. Journal of Bone
and Mineral Research. 13:763-773, 1998.

SAS Institute, Inc. SAS/INSIGHT® User’s Guide, Version 6,
Second Edition. Cary, NC: SAS Institute, Inc., 1993.

SAS Institute, Inc. SAS/GRAPH® Software: Usage, Version 6
Edition, First Edition. Cary, NC: SAS Institute, Inc., 1991.

SAS Institute, Inc. SAS/STATTM Guide for Personal Computers,
Version 6 Edition. Cary, NC: SAS Institute, Inc., 1987.

SAS Institute, Inc. SAS® Procedures Guide for Personal
Computers, Version 6 Edition. Cary, NC: SAS Institute,
Inc., 1985.

SAS Institute, Inc. SAS® Online Doc, Version 8 Edition. Cary, NC:
SAS Institute, Inc., 1999.

Sim, M.F., Stone, M., Johansen, A., Evans, W. Cost effectiveness
analysis of BMD referral for DXA using ultrasound as a
selective pre-screen in a group of women with low trauma
Colles’ fractures. Technology and Health Care Journal.
8:277-284, 2000.

Stewart, R.A. Quantitative ultrasound or clinical risk-factors-which
best identifies women at risk of osteoporosis? British
Journal of Radiology. 73:165-171, 2000.

Virgile, Robert. Efficiency—Improving the Performance of
Your SAS® Applications, Cary, NC SAS Institute, Inc., 1998.

Acknowledgments
Special thanks to the Osteoporosis Center at Woman’s
Hospital, under the direction of Joel Silverberg, M.D. and
Laura Rodger, R.T. for their time and support of this study.
In addition, a special thanks goes to Rehana Javed, M.D.
for her dedication in making all of the heel ultrasound
measurements.

The authors would like to thank Edith Flaster for her
helpful comments on an earlier report from this
investigation.

SAS and all other SAS Institute Inc. product or service
names are registered trademarks or trademarks of SAS
Institute Inc. in the USA and other countries. ® indicates
USA registration.

Contact Information
Your comments and questions are valued and
encouraged. Contact the authors at:

Rebecca Frederick or E. Barry Moser
Louisiana State University
Dept. of Experimental Statistics
161 Agric. Admin. Bldg.
Baton Rouge, LA 70803
Work Phone: 225-578-8303
Fax Phone: 225-578-8344
Email: rfrederi@lsu.edu

bmoser@lsu.edu
Ellen R. Brooks, Ph.D.

Northwestern University Medical School-Division
of Cardiology and Department of Preventive
Medicine,

Chicago, IL 60611
Work Phone: 312-908-0020
Fax Phone: 312-908-0031
Email: e-brooks3@northwestern.edu



Survey Estimates and Variance Estimation Using the SURVEYMEANS

Procedure

Hossein N. Yarandi, Ph.D.*, College of Nursing and Biostatistics Unit, University of Florida

Shawn M. Kneipp, Ph.D., ARNP, College of Nursing, University of Florida

(* - principal contact)

National surveys, conducted by the various governmental organizations, are usually characterized with a

complex sample design. The characteristics of a complex sample design may include clustering, stratification,

disproportionate sampling, and multiple stages of sample selection. Analyzing data from a complex sample survey

cannot be done accurately using the standard SAS Procedures such as MEANS, UNIVARIATE, REG, or GLM.

When using these procedures, it is assumed that the data are selected from a simple random sample.

A simple random sample requires that one have access to all the subjects in the population and the

probability of selecting each subject in the population is the same for each and every subject. In addition, the chance

of selecting a subject is independent even if other subjects are chosen. In contrast, when the data are collected from

a survey with a complex sample design, the variance of the variables measured in the survey will be underestimated

when using the standard statistical methods for nonsurvey data resulting in lower confidence intervals and higher

Type I error by rejecting a true null hypothesis (Cohen 1997). A number of alternatives, called replication methods,

have been developed for estimating variances and weighting procedures for the types of complex sample designs

usually encountered in practice (Judkins and Wright 1990; Flyer, Morganstein, and Rust 1989).

In SAS Version 8 and beyond, three procedures are added to SAS/STAT software (SAS/STAT, 2000).

These procedures are: SURVEYMEANS, SURVEYREG, and SURVEYSELECT. They are designed to

specifically analyze complex survey data. The purpose of this article is to demonstrate the difference in variance

estimation using the SURVEYMEANS procedures for a variable, such as AGE, from the Medical Expenditure Panel

Survey. The data will be analyzed without the sampling weights, with sampling weights, and stratified sampling.

Medical Expenditure Panel Survey

The Medical Expenditure Panel Survey (MEPS) is cosponsored by the Agency for Healthcare Research and

Quality (AHRQ) and the National Center for Health Statistics (NCHS). MEPS provides nationally representative

estimates of health care use, its expenditure, sources of payment, and insurance coverage for the U.S. civilian

non-institutionalized population (MEPS HC-003, 1996). MEPS also includes a national representative survey of

nursing homes and their residents. MEPS is comprised of four component surveys: the household component, the

medical provider component, the insurance component, and the nursing home component. In addition, it allows for



health services research intended to guide health care policy.

Designed to capture the changing dynamics of health care delivery and its insurance system, MEPS began

in 1996. An important feature of the MEPS is that it uses a panel survey design in which minority and low-income

households are oversampled. Medical expenditure data are collected at both the individual and household levels

through a prescreening telephone interview, a mailed questionnaire, and a telephone followup interview for

nonrespondents. The data reflect demographic characteristics, income, employment, health conditions, health status,

access and use of medical care services, charges and payments, satisfaction with care, and health insurance coverage

(MEPS HC-003, 1996).

Replication Methods for Analyzing Data from Complex Survey

Replication methods involve the selection of subsamples from the whole sample, then the estimated

variances among the subsamples are used to estimate the variance of the full sample (Judkins and Wright 1990; and

Wolter 1985). Another approach is the Taylor Expansion Method that can be used in estimating variances for the

types of complex sample designs and weighting procedures usually encountered in practice. There are various

replication approaches for creating subsamples from the full sample but the two widely used methods are Balanced

Repeated Replication and the Jackknife Replication. Balanced repeated replication is generally used with multistage

stratified sample designs while the Jackknife replication is preferred when there is no explicit stratification. The

jackknife replication method can, however, be used when systematic sampling has been employed (Cohen, Burt, and

Jones 1986; and Flyer 1987). Frequently, in complex survey data sets the full sample weights are provided. In

addition, to employ a replication method, two additional replicate weights called the primary sampling unit (PSU)

and the variance strata are usually required.

MEPS uses multistage sampling: At the first stage of sampling, a small number of primary sampling units

(PSUs) are selected. Most of these PSUs consist of individual counties, but sometimes they include two or more

adjacent counties. A random samples of PSUs are selected in the first stage of sampling. During the second and

additional stages of sampling, only individuals living within these selected PSUs are selected.

To decrease the variability of parameter estimators based on data from the completed survey, sampling

theory suggests that it is better to sample large-population PSUs with a higher probability than small-population

PSUs (Korn and Graubard, 1999). Recall that, one of the design considerations of MEPS is to provide reliable

estimates the minority groups. To help accomplish this, PSUs with larger proportions of these minorities were

included in the sample with higher probabilities. Additionally, from a meteorological perspective, one can classify

PSUs into a small number of groups (Astrata@) and then sample a small number of PSUs from each stratum. This is

known as stratified sampling, and is frequently used to decrease the variability of estimated quantities. Sample

survey methodology allows one to sample units from the strata with differing probabilities provided by the survey

designers. The data from each individual are associated with a sample weight, which is essentially the number of

people in the target population that he or she represents. In calculating these weights, consideration is given to the

differential probabilities with which individuals are sampled.



SAS Procedures

There are three SAS procedures designed to manage survey data. They include SURVEYMEANS Procedure,

SURVEYREG Procedure, and SURVEYSELECT Procedure (SAS/STAT, 2000).

The SURVEYMEANS Procedure takes into account the sample design used to select the survey sample and

provides descriptive statistics of survey population such as means, standard error, and confidence limits. The sample

design can be a complex survey sample design with stratification, clustering, and unequal weighting. The Taylor

expansion method is used to estimate the variance. It computes sampling errors of estimators by obtaining a linear

approximation for the estimators (Wolter 1985). The estimate of the variance is the variation among PSU when

there are clusters. When a stratified design is used, the procedure pools stratum variance estimates to compute the

overall variance estimate.

The SURVEYREG can handle complex survey sample designs by performing regression analysis for survey

data. The procedure fits linear models for survey data and computes regression coefficients and their

variance-covariance matrix. The procedure also provides the predicted values for the sample survey data, computes

the regression coefficient estimators by generalized least squares estimation using element-wise regression, and

calculates the significance tests for the model effects and for any specified estimable linear functions of the model

parameters. The procedure assumes that the regression coefficients are the same across strata and the PSUs.

The SURVEYSELECT procedure provides a variety of methods for selecting probability-based random

samples. The procedure can select a simple random sample or a sample according to a complex multistage sample

design that includes stratification, clustering, and unequal probabilities of sample selection.

An Example

The variable AGE is chosen of a subsample of women with the age range of 18-46 years from the MEPS

1996 full-year data set. Procedure SURVEYMEANS is used to compute the mean, standard error, and 95%

confidence limit for the variable age. Figure 1 shows the results of the analysis without using the sampling weights.

Quite often in complex surveys, respondents have unequal weights, which reflect unequal selection

probabilities and adjustments for nonresponse and stratification. In such surveys, the appropriate sampling weights

must be used to obtain valid estimates for the study population. Figure 2 illustrates the mean, standard error and

95% confidence interval for the variable AGE with unequal sampling weights. These statistics are different from the

estimates shown in Figure 1 where the summary statistics are computed without the sampling weights. In Figure 2,

the standard error is higher using the sampling weights. Finally, Figure 3 displays the analysis using the stratified

information provided in the MEPS data set. Compared to the results in Figure 2, the estimates of the mean are the

same. However, the standard error is larger when the number of strata are specified. When the design is stratified,

the SURVEYMEANS procedure pools stratum variance estimates to compute the overall variance estimate (Figure

3) and the degrees of freedom equals the number of PSUs minus the number of strata in the sample design.

In summary, analyst using complex survey data, such as MEPS, to address their research questions must use



the procedures designed to deal with complex survey data. Otherwise, they risk the possibility of obtaining incorrect

results. In particular, using standard SAS procedures for survey data that have a large variability results are biased

estimates and will not accurately represent the survey population.

                              
                          The SURVEYMEANS Procedure

                                 Data Summary

                     Number of Observations          4490

                                  Statistics

                                         Std Error     Lower 95%     Upper 95%
Variable             N          Mean       of Mean   CL for Mean   CL for Mean
------------------------------------------------------------------------------
age               4490     32.166370      0.117263     31.936477     32.396262
------------------------------------------------------------------------------
                              

Figure 1.  Data Summary measures of variable age without the sampling weights

                             The SURVEYMEANS Procedure

                                 Data Summary

                     Number of Observations          4490
                     Sum of Weights              56838646

                                  Statistics

                                         Std Error     Lower 95%     Upper 95%
Variable             N          Mean       of Mean   CL for Mean   CL for Mean
------------------------------------------------------------------------------
age               4490     31.967844      0.217365    31.541822    32.393934
-------------------------------------------------------------------------------

 Figure 2.  Data Summary measures of variable age with the weights

                            
                          The SURVEYMEANS Procedure

                                 Data Summary

                     Number of Strata                  42
                     Number of Observations          4490
                     Sum of Weights              56838646

                                  Statistics

                                         Std Error     Lower 95%     Upper 95%
Variable             N          Mean       of Mean   CL for Mean   CL for Mean
------------------------------------------------------------------------------
age               4490        31.967844   0.443845    31.068181    32.8664207
------------------------------------------------------------------------------



                              
Figure 3.  Data Summary measures of variable age with the weights and the stratified

information

Author Contact Information

Hossein N. Yarandi, Ph.D.*

Associate Professor
College of Nursing and Biostatistics Unit
University of Florida
Campus Box 100187
Gainesville, FL 32610-0187
Telephone: (353) 846-0658
Fax: (352) 846-1624
E-mail: yarandi@ufl.edu

Shawn M. Kneipp, Ph.D., ARNP
Assistant Professor
College of Nursing
University of Florida
Campus Box 100187
Gainesville, FL 32610-0187
Telephone: (353) 392-9207
Fax: (352) 846-1624
E-mail: skneipp@nursing.ufl.edu

* Correspondence should be directed.

References

Cohen, S. (1997). An evaluation of alternative PC-based software packages developed for the analysis of complex
survey data. The American Statistician, 51, 293-299.

Cohen, S., Burt, V., and Jones, G. (1986). Efficiencies for variance estimation for complex
survey data. The American Statistician, 40, 157-164.

Flyer, P. (1987). Finite population correction for replication estimates of variance. Proceedings
of the Section on Survey Research Methods of the American Statistical Association, 732-736.

Flyer, P., Morganstein, D., and Rust, K. (1989). Complex survey variance estimation and contingency tables
analysis using replication. Proceedings of the Section on Survey Research Methods of the American
Statistical Association, 110-119.

Judkins, D. and Wright, D. (1990). National health interview survey: report on variance
estimation. Rockville, MD: Westat.

Korn, E. & Graubard, B. (1999). Analysis of Health Surveys, New York: John Wiley & Sons.

MEPS HC-003 (1998). Population characteristics and utilization data for 1996, Agency for Health Care Policy and
Research, Rockville, MD.

SAS Institute Inc. (2000). SAS/STAT User=s Guide, Cary, NC: SAS Institute.

Wolter, K. (1985). Introduction to variance estimation, New York: Springer-Verlag.



Bootstrapping the Levene Test for Equality of Variances

Robert G. Stewart

East Tennessee State University

Since its introduction in 1960, Levene’s test has remained prominent for testing the hypothesis
of equal group variances.  Indeed, many refinements have been proposed over the years to
improve test robustness and power.  Herein, the application of bootstrap methods to improve
the robustness and power of Levene’s test are discussed.  A SAS macro (v6.12) for computing
bootstrap versions of Levene’s test is appended.





SECTION CHAIRS                             

Keith Cranford
  Marquee Associates

Carla Mast
Transmedia Network, Inc

Joy Munk Smith
North Carolina State University

T
U

T
O

R
IA

L
S

TUTORIALS





Paper P801

Conversion of SUDAAN���� Output into Publication-Quality Tables—A Simplified Approach
Charlotte Cates Gard, Research Triangle Institute, Rockville, MD

ABSTRACT
We have developed a program that utilizes the capabilities of the
SAS Output Delivery System and the SAS REPORT procedure to
generate Rich Text Format tables from SUDAAN PROC
CROSSTAB output.  Because the SAS Output Delivery System
allows style elements to be specified directly in PROC REPORT,
the tables generated by our program are in “final form” and
require little manipulation to meet formatting requirements.  In
addition, as most of the formatting is done “behind the scenes,”
the code is straightforward and can be easily modified for various
table configurations.

INTRODUCTION
As the survey industry expands, more programmers are required
to work with data from complex surveys.  Traditionally, complex
survey data have been analyzed using specialized software such
as SUDAAN, WesVar, and Stata.  Often, the output from these
programs has required further manipulation to meet the specific
formatting requirements of publication.

This paper addresses the conversion of SUDAAN output into
publication-quality tables.  Some previous solutions have relied on
the transcription of data from printed output into pre-formatted
tables.  Other solutions have utilized sophisticated SAS®

programs, combined with manipulations in a word processing
program, to generate tables.  Whatever the approach, producing
more than a few such tables proved to be a time-consuming and
tedious task.

THE DATA
The program presented here was used to analyze data from the
1999 National Youth Tobacco Survey.  This survey, sponsored by
the American Legacy Foundation, was designed to provide data
on tobacco-related issues for a sample of students in grades six
through twelve.  More information on American Legacy
Foundation research efforts can be obtained by visiting
www.americanlegacy.org.

THE REQUIREMENTS
A number of formatting requirements were specified for the
National Youth Tobacco Survey tables.  The table below depicts
many of these requirements.

Demographic
Category N

Never-Smoker,
Not Open

to Smoking

Never-Smoker,
Open to
Smoking

Age

11 yrs 1784 72.9
[69.1 - 76.8]

14.3
[12.3 - 16.3]

12 yrs 2477 57.9
[54.6 - 61.2]

16.5
[14.8 - 18.2]

13 yrs 2712 44.8
[41.4 - 48.1]

16.5
[14.5 - 18.6]

Here, N represents the (unweighted) sample size, summed
across all values of the response variable (i.e., across the
columns).  For each combination of a column variable and row
variable, the (weighted) row percentage and its 95% confidence
interval are displayed.  Those familiar with SUDAAN will recall
that the CROSSTAB procedure can be used to generate sample
sizes and row percentages.  Confidence intervals, however, are
not available in PROC CROSSTAB and must be formed within
SAS.

For this project, we were required to combine the output from
multiple SUDAAN cross tabulations into a single table that could
be read and manipulated in Microsoft Word.  Most often, cross
tabulations of a response variable with the demographic variables
age, race, and gender were required.  Header lines were desired,
to separate the data from the various cross tabulations.

THE OLD WAY
The method initially used to generate tables for the National
Youth Tobacco Survey relied on a combination of SAS
programming and “by hand” manipulations in Microsoft Word.
Although programmatically savvy, this approach proved to be
quite labor intensive, particularly when a large number of tables
were required.

The weakness of this approach lay in the hard coding of many
table specifications.  Changes to the specifications required that
the programs be rewritten (or, at the very least, modified
extensively).  For instance, the number of levels of the response
variable was utilized in key DATA step operations.  As a result,
separate programs had to be written for response variables with
five levels, six levels, seven levels, etc.  Because the programs
relied on sophisticated programming techniques, they could be
difficult for the novice programmer to understand and modify.

THE NEW WAY
With Release 8.1, SAS introduced into production its Output
Delivery System Rich Text Format capability (this capability was
available experimentally in Version 8 but was significantly
improved with Release 8.1).  With this, files created from SAS
procedural output could be read and manipulated directly in
Microsoft Word.

With this in mind, we sought to develop an approach that would
utilize the new Rich Text Format capability to convert SUDAAN
output into publication-quality tables quickly, accurately, and with
modest programming effort.

PROC TABULATE VERSUS PROC REPORT
Originally, we intended to use the SAS TABULATE procedure to
generate the required tables.  However, we were unable to meet
certain formatting requirements with this approach.  For example,
we could not create the confidence intervals in the desired format.
PROC TABULATE would not allow us to display a character
variable combining the (formatted) lower and upper confidence
limits.  We were, thus, forced to consider the lower and upper
limits separately and, as a result, could not display them in the
same cell, as required.

We also had problems displaying the lower and upper limits of the
confidence interval below their corresponding point estimate.
When we tried to do this, we ended up with a stack of cells for
each row percentage—one containing the percentage itself, one
containing the lower confidence limit, and one containing the
upper confidence limit.  In addition, with the confidence interval
displayed below its corresponding point estimate, we lost the
ability to display the (total) sample sizes, as with PROC
TABULATE all statistics must be in the same dimension (either
row, column, or page).  Ultimately, the SAS REPORT procedure
provided us a much better solution.

THE DETAILS
The program presented below uses SUDAAN PROC CROSSTAB
to generate (weighted) cross tabulations of age, race, and gender
with smoking stage.  An output data set is created by SUDAAN,
which is manipulated through a series of SAS DATA step



operations.  SAS PROC REPORT operates on the modified data
set to generate the required table.

SETUP
We begin our program with an OPTIONS statement.  With the
ORIENTATION = option, we specify the paper orientation to be
used when printing to the Output Delivery System destination.
Note that the OPTIONS statement can also be used to change
the default paper size.  This is often required when generating
very large tables (tables with many columns) and can be achieved
through use of the PAPERSIZE = option.

Next, formats are specified for the variables used in the cross
tabulations.  Formats for the demographic variables, QN1R,
NEWRACE, and QN2R (which represent age, race, and gender,
respectively) are as follows:

PROC FORMAT;

VALUE QN1RF 1 = “11 YRS”
            2 = “12 YRS”
            3 = “13 YRS”
            4 = “14 YRS”
            5 = “15 YRS”
            6 = “16 YRS”
            7 = “17 YRS”
            8 = “18-19 YRS”;

VALUE NEWRACEF 1 = “WHITES”
               2 = “AFR-AMER”
               3 = “HISPANICS”
               4 = “ASIANS”
               5 = “OTHERS”;

VALUE QN2RF 1 = “MALES”
            2 = “FEMALES”;

The format for the response variable, STAGE, is also provided.
Note the use of the “\” character in certain format values.  This is
called a split character and allows us to wrap these values for
display in the final table.

VALUE STAGEF 1 = "NEVER-SMOKER,\NOT OPEN\TO
                  SMOKING"
             2 = "NEVER-SMOKER,\OPEN TO\SMOKING"
             3 = "EXPERIMENTER"
             4 = "FORMER SMOKER"
             5 = "NON-DAILY\CURRENT SMOKER"
             6 = "ESTABLISHED\SMOKER";

During setup, each of the above variables is created in the SUSC
data set and the proper format is applied.  (Note that LIBNAME
statements, used to indicate storage locations for the input and
output files, should also be specified during setup.  They have
been omitted here.)

MACRO VARIABLES
A number of macro variables are created, using the %LET
statement, as below.

%LET COL_VAR = STAGE;
%LET LEVELS = 6;

COL_VAR specifies the response variable (here STAGE), and
LEVELS specifies the number of levels of the response variable
(here six).  Although not shown here, macro variables are also
used to specify the macro variables FILENAME and TITLE.

Note, with this particular approach, the %LET statement is the
only place where the number of levels of the response variable is
indicated.  Otherwise, this program does not need to know the
number of levels of the response variable.  Therefore, if the
response variable was redefined, resulting in a change in the
number of levels, this is the only line of code that would have to

be modified.  Furthermore, if one wished to represent cross
tabulations of age, race, and gender with another response
variable (brand preference, for instance), he or she could do so
simply by changing these %LET statements.

SUDAAN PROC CROSSTAB
We are now ready to run the SUDAAN CROSSTAB procedure.
(Recall that, before using a SUDAAN procedure, we must sort the
data set by the variables appearing on the NEST statement.  This
step is omitted here.)

PROC CROSSTAB DATA = YTS.SUSC FILETYPE = SAS
   DESIGN = WR;
NEST NSTRATUM NPSU / MISSUNIT;
WEIGHT FINALWT;
SUBGROUP QN1R NEWRACE QN2R &COL_VAR;
LEVELS 8 5 2 &LEVELS;
TABLES (QN1R NEWRACE QN2R) * &COL_VAR;
PRINT NSUM ROWPER SEROW;
OUTPUT NSUM ROWPER SEROW /
   FILENAME =OUTPUT.SUDOUT
   FILETYPE = SAS REPLACE;
RUN;

With the PRINT and OUTPUT statements, we request that the
following statistics be output: NSUM (the unweighted sample size
in each cell), ROWPER (the row percentage in each cell), and
SEROW (the standard error of the row percentage in each cell).
The PRINT statement requests that this information be printed to
the screen, whereas, the OUTPUT statement requests that this
information be written to a file (specifically to the file SUDOUT in
the path specified by the LIBNAME statement for OUTPUT).

Note that PROC CROSSTAB generates a separate table for each
cross tabulation requested.  SUDAAN numbers the tables using
the variable TABLENO.  Here, TABLENO = 1 is the table for
QN1R crossed with COL_VAR, TABLENO = 2 is the table for
NEWRACE crossed with COL_VAR, and TABLENO = 3 is the
table for QN2R crossed with COL_VAR.

A subset of the SUDOUT data set is provided below.

PROCNUM TABLENO QN1R STAGE NEWRACE QN2R NSUM ROWPER SEROW
1 1 0 0 -2 -2 14589 100 0
1 1 0 1 -2 -2 6024 40.29219 1.544229
1 1 0 2 -2 -2 1744 11.75898 0.560587
1 1 0 3 -2 -2 5278 36.50132 1.247278
1 1 0 4 -2 -2 173 1.314009 0.153495
1 1 0 5 -2 -2 388 2.860266 0.262266
1 1 0 6 -2 -2 982 7.273234 0.694255
1 1 1 0 -2 -2 1784 100 0
1 1 1 1 -2 -2 1310 72.93052 1.95798
1 1 1 2 -2 -2 248 14.30842 1.021948
1 1 1 3 -2 -2 223 12.5744 1.699181
1 1 1 4 -2 -2 1 0.051571 0.052627
1 1 1 5 -2 -2 1 0.070561 0.06979
1 1 1 6 -2 -2 1 0.064537 0.063832

DATA STEP MANIPULATIONS
A number of manipulations are required, to ready the SUDAAN
output data set for SAS PROC REPORT.

DATA DATA1;
SET OUTPUT.SUDOUT;
IF &COL_VAR = 0 THEN DELETE;
GRP = TABLENO;
LCL = ROUND(ROWPER – (1.96 * SEROW), .1);
IF LCL < 0 THEN LCL = 0;
UCL = ROUND(ROWPER + (1.96 * SEROW), .1);
LENGTH CI $15 VALUE $51;
CI = “[“ || COMPRESS(PUT(LCL, 5.1)) ||
   “ – “ || COMPRESS(PUT(UCL, 5.1)) || “]”;
VALUE = PUT(ROUND(ROWPER, .1), 5.1) ||
   “                               “ || CI;
RUN;



In the code above, we create a temporary data set, DATA1, from
the SUDAAN output data set.  We remove observations for which
the macro variable COL_VAR is equal to zero.  These
observations represent the totals, summed across the columns.
Although these totals are included in the final table, we will use
PROC REPORT to recalculate them later.

Next, we create the variable GRP, which is equal to TABLENO.
LCL and UCL, the (rounded) lower and upper confidence limits,
are then calculated.

The character variable CI is formed by concatenating LCL and
UCL (with leading and trailing brackets and an intervening dash).
Similarly, the variable VALUE, is formed by concatenating the
(rounded) value of ROWPER and the formatted confidence
interval, CI.

DATA DATA2;
SET DATA1;
IF (QN1R = 0 or NEWRACE = 0 or QN2R = 0)
   THEN DO;
NSUM = .;
VALUE = “        “;
END;
RUN;

Here, we create a data set, DATA2, from DATA1.  We identify
those observations for which QN1R is equal to zero, NEWRACE
is equal to zero, or QN2R is equal to zero.  These represent the
overall totals for QN1R, NEWRACE, and QN2R (summed across
the rows).  By setting NSUM and VALUE equal to missing (or
blank) for these observations, we generate header rows (blank
lines that appear before the age, race, and gender data in the
final table).

DATA DATA3;
SET DATA1;
IF QN1R = 0 THEN DO;
GRP = 4;
NSUM = .;
VALUE = “        “;
OUTPUT;
END;
RUN;

Next, we create the data set DATA3, also from DATA1.  We
create a fourth group from those observations for which QN1R is
equal to zero.  This serves to add a blank line before the overall
totals.  (For convenience, we use observations for which QN1R is
equal to zero.  We might also have used observations for which
NEWRACE is equal to zero or for which QN2R is equal to zero.
The key is to have one observation for each (nonzero) value of
COL_VAR.)

DATA DATA4;
SET DATA1;
IF QN1R = 0 THEN DO;
GRP = 5;
OUTPUT;
END;
RUN;

DATA4 is created from the data set DATA1 and contains the
totals based on age.  These totals will be used as overall totals in
the final table.

DATA DATA5;
SET DATA2 DATA3 DATA4;
RUN;

Here, we merge the data sets we have created above.  You will
recall that DATA2 contains the age data, race data, and gender
data, DATA3 contains a blank line (effectively), and DATA4
contains the overall (age) totals.

DATA DATA6;
SET DATA5;
IF GRP = 1 THEN TEMP = QN1R;
ELSE IF GRP = 2 THEN TEMP = NEWRACE;
ELSE IF GRP = 3 THEN TEMP = QN2R;
ELSE IF GRP = 4 THEN TEMP = QN1R;
ELSE IF GRP = 5 THEN TEMP = QN1R;
RUN;

With DATA6, we create the variable TEMP.  Note that, for each
GRP, TEMP is set equal to the variable from which the data were
derived.  (Recall that GRP = 1 is derived from TABLENO = 1,
which is derived from the QN1R cross tabulation.  GRP = 2 is
derived from the NEWRACE cross tabulation, and GRP = 3 is
derived from the QN2R cross tabulation.  GRP = 4 and GRP = 5
are derived from QN1R.)

DATA DATA7;
SET DATA6;
BY GRP TEMP;
RETAIN LEVEL 0;
IF FIRST.TEMP THEN DO;
LEVEL = LEVEL + 1;
END;
RUN;

The GRP variable is used to distinguish between age data, race
data, gender data, the blank line preceding the age totals, and the
overall (age) totals.  With this DATA step, LEVEL is incremented
each time the value of TEMP changes.  This effectively numbers
the rows in the final table.

FORMATS
We now specify the format for the newly created variable LEVEL.
To do this, we use the FORMAT procedure in SAS.  Note that we
have included here not only the values of each of the variables
(QN1R, NEWRACE, and QN2R), but also headers for each of
these variables.

PROC FORMAT;

VALUE LEVELF 1 = “AGE”
             2 = “11 YRS”
             3 = “12 YRS”
             4 = “13 YRS”
             5 = “14 YRS”
             6 = “15 YRS”
             7 = “16 YRS”
             8 = “17 YRS”
             9 = “18-19 YRS”
            10 = “RACE”
            11 = “WHITES”
            12 = “AFR-AMER”
            13 = “HISPANICS”
            14 = “ASIANS”
            15 = “OTHERS”
            16 = “GENDER”
            17 = “MALES”
            18 = “FEMALES”
            19 = “        “
            20 = “TOTAL”;

VALUE MISSF  . = “        “;

RUN;

One disadvantage of this approach is that the rows of the table
must be specified in the SAS program (and, thus, must be known
in advance).  This is necessary because we are combining cross
tabulations for age, race, and gender in one table.  If only one
cross tabulation were required, this would not be necessary (and
the number of DATA step manipulations would be greatly
reduced).



STYLE DEFINITION
Next, we use the SAS TEMPLATE procedure to create a style
definition.  The SAS System provides a number of style definitions
for use in formatting Output Delivery System output.  These style
definitions can be used as provided or can be modified to add
new style elements or change existing style elements.

PROC TEMPLATE;
DEFINE STYLE STYLES.LEGACY;
PARENT = STYLES.RTF;
STYLE HEADER FROM HEADERSANDFOOTERS /
   BACKGROUND = WHITE;
STYLE SYSTEMTITLE FROM TITLEANDFOOTERS /
   FONT = (“TIMES”, 10PT);
STYLE SYSTEMFOOTER FROM TITLEANDFOOTERS /
   FONT = (“TIMES”, 10PT);
END;
RUN;

In the above code, we use PROC TEMPLATE to modify an
existing style definition--STYLES.RTF.  With the STYLE HEADER
statement, we change the background color for the header from
grey to white.  With the STYLE SYSTEMTITLE and STYLE
SYSTEMFOOTER statements, we specify the font type and size
for the title and footnote.

The following code applies the style definition:

ODS LISTING CLOSE;
ODS RTF FILE = &FILENAME STYLE = LEGACY;

This code also tells the SAS System to close the Listing
destination and to begin writing output to the Rich Text Format file
specified by the macro variable FILENAME.

THE REPORT PROCEDURE
We are now ready to run PROC REPORT.  PROC REPORT
operates on DATA7, the final manipulated data set, to generate
the formatted table.

PROC REPORT DATA = DATA7 SPLIT = “\” NOWD
   STYLE(COLUMN) = [FONT_SIZE = 8PT JUST = C];
COLUMNS GRP LEVEL NSUM &COL_VAR,VALUE N;
DEFINE GRP / GROUP NOPRINT;
DEFINE LEVEL / GROUP ORDER = INTERNAL
   FORMAT = LEVELF. “ “
   STYLE = {CELLWIDTH = .75IN};
DEFINE NSUM / ANALYSIS FORMAT = MISSF. “ “
   STYLE = {CELLWIDTH = .75IN};
DEFINE &COL_VAR / ACROSS ORDER = INTERNAL “ “
   STYLE = {CELLWIDTH = 1IN};
DEFINE VALUE / DISPLAY “ “
   STYLE = {CELLWIDTH = 1IN} FLOW;
DEFINE N / NOPRINT;
TITLE1 &TITLE;
FOOTNOTE “*DATA ARE FROM 1999 NATIONAL YOUTH
   TOBACCO SURVEY.”;
RUN;

The NOWD option on the PROC statement runs PROC REPORT
without the REPORT window and is required when using the
Output Delivery System with PROC REPORT.

Recall that VALUE is a character variable combining each row
percent with its corresponding (formatted) confidence interval.
With &COL_VAR,VALUE in the COLUMNS statement, we are
requesting that VALUE be displayed, for each level of COL_VAR,
for each GRP and LEVEL combination.

The use of FLOW in the DEFINE statement for VALUE allows this
particular column to flow to another line if it exceeds a specified
width.  This solves the problem of displaying the confidence
interval below its corresponding point estimate as we have set our

variable lengths and column widths to ensure that this flow takes
place.

N, here, is a dummy variable.  This program will not work without
it.  As you can see in the DEFINE statement for N, it is not
actually printed.

Note that, in addition to the style elements specified in the style
definition, we can also specify style elements directly in PROC
REPORT.  Here, we have specified the font size, the justification
of text in the columns (centered), and the cell widths.

We must now tell the SAS System that we wish to stop writing the
output to the Rich Text Format file.  We do so with the following
code:

ODS RTF CLOSE;
ODS LISTING;

This closes the Rich Text Format destination and reopens the
Listing destination.

Appendix A displays the table that is generated by PROC
REPORT.

“BY HAND” MANIPULATIONS
Although the table generated by our program satisfies the key
formatting requirements, certain minor “by hand” manipulations
must still be made.  These include the following:  the addition of a
superscript character in the title and footnote, the addition of (one)
gridline and (two) labels in the topmost header row, the
application of italics to certain labels, and the application of
shading to the header rows.  In some cases, margins must also
be adjusted.

Provided in Appendix B is the table generated by our program,
modified slightly for publication.

CONCLUSION
With the introduction of the SAS Output Delivery System Rich
Text Format capability, the opportunity exists to simplify the
process of converting SUDAAN output into publication-quality
tables.  The program described above offers one approach for
doing so.  With it, we have realized significant reductions in the
amount of time required to generate publication-quality tables for
the National Youth Tobacco Survey.

CONTACT INFORMATION
Your comments and questions are valued and encouraged.
Contact the author at:

Charlotte Gard
Research Triangle Institute
6110 Executive Boulevard, Suite 420
Rockville, MD  20852
Work Phone:  (301) 770-8226
Fax:  (301) 230-4646
E-mail:  cgard@rti.org

SAS is a registered trademark or trademark of SAS Institute Inc.
in the USA and other countries.  � indicates USA registration.

SUDAAN� is a trademark of the Research Triangle Institute.

Other brand and product names are registered trademarks or
trademarks of their respective companies.



A
PP

EN
D

IX
 A

:  
Ta

bl
e 

A
-2

.  
Pe

rc
en

ta
ge

 D
is

tri
bu

tio
n 

of
 S

m
ok

in
g 

St
ag

e*

N
ev

er
-S

m
ok

er
,

N
ot

 O
pe

n
to

 S
m

ok
in

g

N
ev

er
-S

m
ok

er
,

O
pe

n 
to

S
m

ok
in

g
E

xp
er

im
en

te
r

F
or

m
er

 S
m

ok
er

N
on

-D
ai

ly
C

ur
re

nt
 S

m
ok

er
E

st
ab

lis
he

d
S

m
ok

er

A
ge

11
 y

rs
17

84
72

.9
[6

9.
1 

- 
76

.8
]

14
.3

[1
2.

3 
- 

16
.3

]
12

.6
[9

.2
 -

 1
5.

9]
0.

1
[0

.0
 -

 0
.2

]
0.

1
[0

.0
 -

 0
.2

]
0.

1
[0

.0
 -

 0
.2

]

12
 y

rs
24

77
57

.9
[5

4.
6 

- 
61

.2
]

16
.5

[1
4.

8 
- 

18
.2

]
24

.6
[2

1.
3 

- 
28

.0
]

0.
1

[0
.0

 -
 0

.1
]

0.
3

[0
.1

 -
 0

.5
]

0.
6

[0
.3

 -
 0

.9
]

13
 y

rs
27

12
44

.8
[4

1.
4 

- 
48

.1
]

16
.5

[1
4.

5 
- 

18
.6

]
34

.7
[3

1.
6 

- 
37

.9
]

0.
3

[0
.1

 -
 0

.5
]

1.
4

[0
.8

 -
 2

.1
]

2.
2

[1
.5

 -
 3

.0
]

14
 y

rs
18

95
33

.0
[3

0.
2 

- 
35

.9
]

14
.2

[1
2.

0 
- 

16
.4

]
43

.4
[3

9.
1 

- 
47

.8
]

1.
0

[0
.4

 -
 1

.5
]

2.
8

[1
.9

 -
 3

.8
]

5.
6

[4
.0

 -
 7

.1
]

15
 y

rs
17

47
31

.4
[2

7.
6 

- 
35

.3
]

8.
9

[7
.4

 -
 1

0.
4]

43
.6

[4
0.

2 
- 

46
.9

]
1.

9
[1

.1
 -

 2
.7

]
4.

2
[3

.0
 -

 5
.4

]
10

.0
[7

.8
 -

 1
2.

1]

16
 y

rs
17

61
24

.8
[2

1.
9 

- 
27

.7
]

6.
7

[5
.6

 -
 7

.7
]

47
.9

[4
4.

8 
- 

51
.1

]
3.

0
[2

.1
 -

 3
.9

]
4.

8
[3

.4
 -

 6
.1

]
12

.8
[1

0.
1 

- 
15

.5
]

17
 y

rs
17

34
24

.7
[2

1.
6 

- 
27

.7
]

5.
2

[4
.0

 -
 6

.5
]

44
.5

[4
1.

0 
- 

47
.9

]
2.

3
[1

.6
 -

 3
.0

]
5.

6
[4

.1
 -

 7
.1

]
17

.8
[1

4.
0 

- 
21

.5
]

18
-1

9 
yr

s
47

9
19

.0
[1

4.
2 

- 
23

.8
]

5.
9

[3
.4

 -
 8

.3
]

42
.1

[3
7.

4 
- 

46
.9

]
4.

6
[2

.5
 -

 6
.6

]
7.

0
[5

.1
 -

 9
.0

]
21

.4
[1

5.
6 

- 
27

.2
]

R
ac

e

W
hi

te
s

83
45

40
.6

[3
6.

6 
- 

44
.5

]
11

.7
[1

0.
2 

- 
13

.2
]

32
.9

[3
0.

1 
- 

35
.8

]
1.

6
[1

.1
 -

 2
.0

]
3.

7
[3

.0
 -

 4
.3

]
9.

5
[7

.6
 -

 1
1.

5]

A
fr

-A
m

er
23

36
39

.5
[3

5.
5 

- 
43

.4
]

11
.4

[9
.9

 -
 1

2.
9]

44
.9

[4
1.

2 
- 

48
.6

]
0.

9
[0

.4
 -

 1
.4

]
0.

8
[0

.4
 -

 1
.2

]
2.

6
[1

.6
 -

 3
.5

]

H
is

pa
ni

cs
26

23
39

.0
[3

5.
2 

- 
42

.7
]

12
.4

[1
0.

7 
- 

14
.2

]
42

.0
[3

8.
2 

- 
45

.8
]

0.
9

[0
.4

 -
 1

.3
]

1.
9

[1
.2

 -
 2

.6
]

3.
8

[2
.5

 -
 5

.0
]

A
si

an
s

53
8

54
.4

[4
8.

3 
- 

60
.5

]
11

.6
[8

.6
 -

 1
4.

7]
25

.6
[2

0.
6 

- 
30

.6
]

1.
3

[0
.3

 -
 2

.4
]

1.
3

[0
.0

 -
 2

.7
]

5.
8

[2
.5

 -
 9

.2
]

O
th

er
s

45
5

33
.8

[2
7.

4 
- 

40
.2

]
13

.7
[8

.7
 -

 1
8.

8]
37

.6
[3

1.
8 

- 
43

.3
]

1.
3

[0
.1

 -
 2

.4
]

4.
6

[1
.4

 -
 7

.8
]

9.
0

[4
.9

 -
 1

3.
2]

G
en

de
r

M
al

es
72

65
39

.0
[3

6.
1 

- 
41

.9
]

11
.7

[1
0.

3 
- 

13
.1

]
36

.5
[3

4.
1 

- 
38

.8
]

1.
7

[1
.3

 -
 2

.2
]

3.
3

[2
.6

 -
 4

.1
]

7.
7

[6
.3

 -
 9

.2
]

Fe
m

al
es

72
67

41
.5

[3
8.

0 
- 

45
.1

]
11

.8
[1

0.
7 

- 
12

.9
]

36
.6

[3
3.

7 
- 

39
.5

]
0.

9
[0

.6
 -

 1
.2

]
2.

4
[1

.9
 -

 2
.9

]
6.

8
[5

.4
 -

 8
.2

]

T
ot

al
14

58
9

40
.3

[3
7.

3 
- 

43
.3

]
11

.8
[1

0.
7 

- 
12

.9
]

36
.5

[3
4.

1 
- 

38
.9

]
1.

3
[1

.0
 -

 1
.6

]
2.

9
[2

.3
 -

 3
.4

]
7.

3
[5

.9
 -

 8
.6

]

*D
at

a 
ar

e 
fro

m
 1

99
9 

N
at

io
na

l Y
ou

th
 T

ob
ac

co
 S

ur
ve

y.



A
PP

EN
D

IX
 B

:  
Ta

bl
e 

A
-2

.  
Pe

rc
en

ta
ge

 D
is

tri
bu

tio
n 

of
 S

m
ok

in
g 

St
ag

e1  (M
O

D
IF

IE
D

)

D
em

og
ra

ph
ic

C
at

eg
or

y
N

N
ev

er
-S

m
ok

er
,

N
ot

 O
pe

n
to

 S
m

ok
in

g

N
ev

er
-S

m
ok

er
,

O
pe

n 
to

S
m

ok
in

g
E

xp
er

im
en

te
r

F
or

m
er

 S
m

ok
er

N
on

-D
ai

ly
C

ur
re

nt
 S

m
ok

er
E

st
ab

lis
he

d
S

m
ok

er

A
ge

11
 y

rs
17

84
72

.9
[6

9.
1 

- 
76

.8
]

14
.3

[1
2.

3 
- 

16
.3

]
12

.6
[9

.2
 -

 1
5.

9]
0.

1
[0

.0
 -

 0
.2

]
0.

1
[0

.0
 -

 0
.2

]
0.

1
[0

.0
 -

 0
.2

]

12
 y

rs
24

77
57

.9
[5

4.
6 

- 
61

.2
]

16
.5

[1
4.

8 
- 

18
.2

]
24

.6
[2

1.
3 

- 
28

.0
]

0.
1

[0
.0

 -
 0

.1
]

0.
3

[0
.1

 -
 0

.5
]

0.
6

[0
.3

 -
 0

.9
]

13
 y

rs
27

12
44

.8
[4

1.
4 

- 
48

.1
]

16
.5

[1
4.

5 
- 

18
.6

]
34

.7
[3

1.
6 

- 
37

.9
]

0.
3

[0
.1

 -
 0

.5
]

1.
4

[0
.8

 -
 2

.1
]

2.
2

[1
.5

 -
 3

.0
]

14
 y

rs
18

95
33

.0
[3

0.
2 

- 
35

.9
]

14
.2

[1
2.

0 
- 

16
.4

]
43

.4
[3

9.
1 

- 
47

.8
]

1.
0

[0
.4

 -
 1

.5
]

2.
8

[1
.9

 -
 3

.8
]

5.
6

[4
.0

 -
 7

.1
]

15
 y

rs
17

47
31

.4
[2

7.
6 

- 
35

.3
]

8.
9

[7
.4

 -
 1

0.
4]

43
.6

[4
0.

2 
- 

46
.9

]
1.

9
[1

.1
 -

 2
.7

]
4.

2
[3

.0
 -

 5
.4

]
10

.0
[7

.8
 -

 1
2.

1]

16
 y

rs
17

61
24

.8
[2

1.
9 

- 
27

.7
]

6.
7

[5
.6

 -
 7

.7
]

47
.9

[4
4.

8 
- 

51
.1

]
3.

0
[2

.1
 -

 3
.9

]
4.

8
[3

.4
 -

 6
.1

]
12

.8
[1

0.
1 

- 
15

.5
]

17
 y

rs
17

34
24

.7
[2

1.
6 

- 
27

.7
]

5.
2

[4
.0

 -
 6

.5
]

44
.5

[4
1.

0 
- 

47
.9

]
2.

3
[1

.6
 -

 3
.0

]
5.

6
[4

.1
 -

 7
.1

]
17

.8
[1

4.
0 

- 
21

.5
]

18
-1

9 
yr

s
47

9
19

.0
[1

4.
2 

- 
23

.8
]

5.
9

[3
.4

 -
 8

.3
]

42
.1

[3
7.

4 
- 

46
.9

]
4.

6
[2

.5
 -

 6
.6

]
7.

0
[5

.1
 -

 9
.0

]
21

.4
[1

5.
6 

- 
27

.2
]

R
ac

e

W
hi

te
s

83
45

40
.6

[3
6.

6 
- 

44
.5

]
11

.7
[1

0.
2 

- 
13

.2
]

32
.9

[3
0.

1 
- 

35
.8

]
1.

6
[1

.1
 -

 2
.0

]
3.

7
[3

.0
 -

 4
.3

]
9.

5
[7

.6
 -

 1
1.

5]

A
fr

-A
m

er
23

36
39

.5
[3

5.
5 

- 
43

.4
]

11
.4

[9
.9

 -
 1

2.
9]

44
.9

[4
1.

2 
- 

48
.6

]
0.

9
[0

.4
 -

 1
.4

]
0.

8
[0

.4
 -

 1
.2

]
2.

6
[1

.6
 -

 3
.5

]

H
is

pa
ni

cs
26

23
39

.0
[3

5.
2 

- 
42

.7
]

12
.4

[1
0.

7 
- 

14
.2

]
42

.0
[3

8.
2 

- 
45

.8
]

0.
9

[0
.4

 -
 1

.3
]

1.
9

[1
.2

 -
 2

.6
]

3.
8

[2
.5

 -
 5

.0
]

A
si

an
s

53
8

54
.4

[4
8.

3 
- 

60
.5

]
11

.6
[8

.6
 -

 1
4.

7]
25

.6
[2

0.
6 

- 
30

.6
]

1.
3

[0
.3

 -
 2

.4
]

1.
3

[0
.0

 -
 2

.7
]

5.
8

[2
.5

 -
 9

.2
]

O
th

er
s

45
5

33
.8

[2
7.

4 
- 

40
.2

]
13

.7
[8

.7
 -

 1
8.

8]
37

.6
[3

1.
8 

- 
43

.3
]

1.
3

[0
.1

 -
 2

.4
]

4.
6

[1
.4

 -
 7

.8
]

9.
0

[4
.9

 -
 1

3.
2]

G
en

de
r

M
al

es
72

65
39

.0
[3

6.
1 

- 
41

.9
]

11
.7

[1
0.

3 
- 

13
.1

]
36

.5
[3

4.
1 

- 
38

.8
]

1.
7

[1
.3

 -
 2

.2
]

3.
3

[2
.6

 -
 4

.1
]

7.
7

[6
.3

 -
 9

.2
]

Fe
m

al
es

72
67

41
.5

[3
8.

0 
- 

45
.1

]
11

.8
[1

0.
7 

- 
12

.9
]

36
.6

[3
3.

7 
- 

39
.5

]
0.

9
[0

.6
 -

 1
.2

]
2.

4
[1

.9
 -

 2
.9

]
6.

8
[5

.4
 -

 8
.2

]

T
ot

al
14

58
9

40
.3

[3
7.

3 
- 

43
.3

]
11

.8
[1

0.
7 

- 
12

.9
]

36
.5

[3
4.

1 
- 

38
.9

]
1.

3
[1

.0
 -

 1
.6

]
2.

9
[2

.3
 -

 3
.4

]
7.

3
[5

.9
 -

 8
.6

]

1 D
at

a 
ar

e 
fro

m
 1

99
9 

N
at

io
na

l Y
ou

th
 T

ob
ac

co
 S

ur
ve

y.



Paper P-802

ODS, YES!  Odious, NO! – An Introduction to the SAS Output Delivery System

Lara Bryant, University of North Carolina at Chapel Hill, Chapel Hill, NC
Sally Muller, University of North Carolina at Chapel Hill, Chapel Hill, NC

Ray Pass, Ray Pass Consulting, Hartsdale, NY

ABSTRACT
ODS (originally pronounced ‘odious’, but now pronounced ‘ya gotta
love it’) is the new SAS System facility, starting with Version 7, that
you can use to format your PROC and DATA output in ways just
recently only dreamed about.  ODS offers greatly enhanced flexibility
and ease of use for both new SAS users and experienced SAS users new
to ODS.  This paper will discuss the basics of ODS, emphasizing
methods of converting standard PROC output to the following
“destinations”:

- Listing - default (the only way to get PROC output up to now)
- HTML - HyperText Markup Language (probably the best tool
                available for information  exchange today)
- Output - SAS data sets  (no more PROC PRINTTO!)
- Printer    - available experimentally in V7, and for production in
                          V8.  Produces both Postscript and PCL output on
                          all hosts, and on PC hosts additionally produces output
                          for any printer supported by the host operating system.
                          Note with Version 8.1, PDF (Postscript Display
                          Format) is also available as production.

- RTF - for importing into MS Word. (in production now with
                          V8.1, but not covered in this paper.

For more information on RTF see:

http://www.sas.com/rnd/base/news/odsrtf/index.html

Also not covered in this paper, the following destinations are available
as experimental in Version 7 and Version 8:

- LaTex - a driver that produces your output marked
                                               up using LaTex.
- XML - a driver that produces XML
- HTML STYLESHEET - lets you use HTML CSS (Cascading
Style
                                               Sheets)

For more information on these experimental destinations see:

http://www.sas.com/rnd/base/topics/expv8/index.html

Prior to ODS, all SAS output results were lumped together in a single
"listing" output.  With the advent of ODS, each PROC now produces
one or more data components which are then combined with different
formats to produce one or more output objects.  These output objects are
then sent to one or more destinations as defined above.  In this paper we
will demonstrate how you select the output objects to send to each
destination, and the syntax for each destination.  By the end of the paper
you will have a working knowledge of ODS and feel comfortable
enough to easily create at least three new kinds of output in SAS!

INTRODUCTION
Creating output objects that can be sent to destinations (e.g. HTML) is
often just a matter of running procedures in your existing SAS program
with just a few extra lines of code (sometimes only one line).  When you
run a procedure or DATA step, ODS combines the resulting data with a
template (or table definition) to create an output object, or a series of
output objects coming from various parts of the procedure’s output.
ODS allows you to choose specific output objects created from a
procedure or DATA step to send to an output destination.  ODS

provides default table definitions for most (but not all!) procedures and
for the DATA step.  You can also create or modify your own table
definition with PROC TEMPLATE.  The output object is formatted
according to its content and the destination you send it to.  You can also
send your output to more than one destination.  For example, you can
create an output data set from a PROC MEANS procedure that is also
displayed on an HTML page.

OPENING AND CLOSING DESTINATIONS
The Listing, HTML, and Output destinations can be open or closed. By
default, the Listing destination is open, and the HTML, Output, and
Printer destinations are closed. The statement for opening the Listing
destination is:

  ods listing;

The commands for opening the HTML, Output, and Printer destinations
are more detailed, and therefore are presented in this paper in the
overview of each destination.  To close a destination, the syntax is

        ods <destination> close;
  e.g.  ods listing close;

You may want to close the Listing destination to free up resources that
would otherwise be used to send output objects to this destination.

SELECTION AND EXCLUSION LISTS
For each destination, the SAS System maintains a list of the objects that
are to be sent there.  The SAS System also maintains an overall list of
objects that are to be sent to all open destinations. If you are selecting
objects to send to a destination, SAS maintains a SELECTION list. If
you are selecting objects that you do not want sent to a destination, SAS
maintains an EXCLUSION list for that destination. Generally you need
only select or exclude objects for a particular destination, rather than
trying to maintain both a SELECTION and an EXCLUSION list for that
destination. The same holds true if you are creating an overall selection
or exclusion list -- you only need one or the other.

There are two ways that these SELECTION and EXCLUSION lists can
be modified:

� explicit modification from a command by you
� automatic modification by ODS at certain points (step

boundaries) in the SAS program

For more information on step boundaries see "SAS Language Reference
Concepts Version 8," pg. 271.

Explicit Modification
To explicitly modify the overall SELECTION and EXCLUSION lists,
you may use the following syntax:

  ods <options>;
To explicitly modify a specific destination's SELECTION and
EXCLUSION lists, you may use the following syntax:

  ods listing <options>;
  ods html    <options>;
  ods printer <options>;
where the options are

select  <specific output objects>
select  all



select  none
exclude <specific output objects>
exclude all
exclude none

The default values for the destinations are as follows:

Overall list             - select all
Listing destination - select all
HTML destination - select all
Printer destination - select all
Output destination - exclude all

Changing the overall list is helpful if you want to exclude an object from
all destinations. For example, rather than typing,

  ods html exclude all;
  ods printer exclude all;
You could simply type:

  ods exclude all;
Automatic Modification
When you do NOT explicitly modify a SELECTION or EXCLUSION
list, ODS automatically sets defaults as noted above at every step
boundary.  (A step boundary signals the end of the preceding step, for
instance a "run;" statement or a "quit;" statement or a new DATA or
PROC step.)  When you do use explicit modification, ODS, by default,
maintains the modifications for one use only, reverting back to defaults
at the boundary.  This can be overcome by using the PERSIST option.

Persist Option with SELECT OR EXCLUDE
Consider the following code:

  ods listing select BasicMeasures;
  proc univariate data='A:/meddat';
  run;
  proc univariate data='A;/meddat';
  run;
As a result of this code, ODS would select only the “BasicMeasures”
statistics for the first PROC UNIVARIATE.  The RUN statement ends
the procedure (this is a step boundary, but even if you did not specify
the RUN statement, the beginning of the second PROC UNIVARIATE
would end the first PROC UNIVARIATE). Either way, you would only
have “BasicMeasures” printed for the first PROC. After the first PROC,
the list is automatically set to its default value, which is SELECT ALL
for the default Listing destination.  The second PROC would therefore
include all statistics generated by the PROC UNIVARIATE.  Obviously,
if you only wanted “BasicMeasures” throughout, it would be tedious to
have to specify the desired list after every procedure. ODS provides a
way around this. By adding the PERSIST option to the SELECT/
EXCLUDE statement, you only have to specify the SELECTION/
EXCLUSION list once for it to be maintained throughout the program
(or at least until the next encountered SELECT or EXCLUDE
command).   So if we run the following code

 ods listing select BasicMeasures (persist);
 proc univariate data='A:/meddat';
 run;
 proc univariate data='A;/meddat';
 run;

the BasicMeasures statistics will be selected for both PROC
UNIVARIATEs.  The PERSIST option can also be used for an HTML
or Printer list, for example:

  ods html select BasicMeasures (persist);
The PERSIST syntax for the Output destination is more involved, and is
explained in the Output destination section of this paper.

Resetting Lists for RUN-Group Processing
In the previous examples, a RUN statement would end the PROC and
reset the SELECTION/EXCLUSION list to the default value if the
PERSIST option was not specified. However, there are several
procedures that are not terminated by a RUN statement (RUN-Group
processing), such as PROC DATASETS, PROC GLM, and PROC REG.
In these cases, unless a QUIT statement is encountered, the PROC will
continue to run. This may produce some unexpected results on your
SELECTION/EXCLUSION list.  For example, consider the following
code, (the FILE= option is discussed below in “file types”):

  ods html file='A:/new.htm';
  ods html select Anova;
  proc reg data='A:/aggrec';
     model inpdol=age;
  run;
  ods html select FitStatistics;
  proc reg data='A:/aggrec';
     model outpdol=age;
  run;
  ods html close;
In the program above, ODS would create “Anova” statistics for the first
PROC REG.  This would remain intact through the RUN statement
because a RUN statement does not end a running PROC REG.  When
ODS reaches the second PROC REG, it would end the first PROC and
set the SELECTION list to its default value of SELECT ALL.
Therefore, rather than having the desired “FitStatistics” for the last
PROC REG, ODS would create ALL the statistics.  The simple solution
is to specifically end the first PROC REG with a QUIT statement as
follows (the SHOW statement is discussed below):

  ods html file='A:/new.htm';
  ods html select Anova;
  proc reg data='A:/aggrec';
     model inpdol=age;
  run;
  ods html show;
  quit;
  ods html show;
  ods html select FitStatistics;
  proc reg data='A:/aggrec';
     model outpdol=age;
  run;
  ods html show;
  quit;
  ods html close;
This program produces the desired results: “Anova” statistics for the
first PROC REG and “FitStatistics” for the second PROC REG.

ODS SHOW STATEMENT
At any point in your program, you can use the ODS SHOW to see what
ODS has on the SELECTION/EXCLUSION list for a specific
destination.  The following syntax,

  ods <destination> show;
requests that the SELECTION/EXCLUSION list for a particular
destination appear in the log.  If no destination is specified, the
OVERALL list is displayed.  In the example immediately above, the log
would contain



  Current HTML select list is:
  1. Anova

after the first SHOW statement, and

  Current HTML select list is:
  1. FitStatistics

after the last one.

ODS TRACE STATEMENT
Part of the power of ODS is that you can indicate which output objects
to create, and even tell ODS to send the output objects created by the
same procedure to different destinations. For example, rather than all of
the statistics, you may want only the mean, standard deviation, and
median generated by the PROC UNIVARIATE.  However, in order to
specify which output objects to select, you must know the name of the
object produced by your SAS program.  ODS provides a method of
viewing the name of each output object created. The syntax,

  ods trace on < / listing | label > ;
displays a "trace record" of the name and other information about each
output object produced by the program in the SAS log. The LISTING
option instructs ODS to put the trace record directly above the output to
which it refers.  This is extremely useful for determining the name and
path of the output objects of interest.  The LABEL option instructs ODS
to include the label path in the trace record.  The code below illustrates
both the TRACE statement and the LABEL option:

 ods trace on / label;
 proc univariate;
     var meddol;
 run:
 ods trace off;
The SAS Log that results from this program is shown below.  Note that
you not only get the name of the output object, but since you specified
the label option, you also get the label path of the output object:

 Output Added:
 -------------
 Name: Moments
 Label: Moments
 Template: base.univariate.Moments
 Path: Univariate.meddol.Moments
 Label Path:"The Univariate Procedure"."meddol".

"Moments"
 -------------
 Output Added:
 -------------
 Name: BasicMeasures
 Label: Basic Measures of Location and

Variability
 Template: base.univariate.Measures
 Path: Univariate.meddol.BasicMeasures
 Label Path:"The Univariate Procedure"."meddol".

"Basic Measures of Location and
Variability"

 -------------
 Output Added:
 -------------
 Name: TestsForLocation
 Label: Tests For Location
 Template: base.univariate.Location
 Path: Univariate.meddol.TestsForLocation
 Label Path:"The Univariate Procedure"."meddol".

"Tests For Location"
 -------------

 Output Added:
 -------------
 Name: Quantiles
 Label: Quantiles
 Template: base.univariate.Quantiles
 Path: Univariate.meddol.Quantiles
 Label Path:"The Univariate Procedure"."meddol".

"Quantiles"
 -------------
 Output Added:
 -------------
 Name: ExtremeObs
 Label: Extreme Observations
 Template: base.univariate.ExtObs
 Path: Univariate.meddol.ExtremeObs
 Label Path:"The Univariate Procedure"."meddol".

"Extreme Observations"
 -------------
Fortunately, although you can then specify the output object by using
the full path name, you can also specify the output object by using any
part of the path that begins immediately after a period and continuing to
the end. For example, if you want to send the Quantiles and Moments
for all variables to a web page, you could enter,

  ods html select quantiles moments;

or if you just want the Quantiles and Moments for the MEDDOL
variable only:

  ods html select meddol.quantiles
                  meddol.moments;

The label path can be used in the same way. You can also specify an
output object with a mixture of labels and paths, such as

  ods html select meddol."quantiles";
Often it is easier to select the variables in the PROC step, and the
desired statistics in the ODS step.  For example, rather than typing,

  ods html select meddol.quantiles
                inpdol.quantiles
                hosp.quantiles
                ambul.quantiles;
  proc univariate;
  run;
an easier method that gives the same results would be

  ods html select quantiles;
  proc univariate;
     var meddol inpdol hosp ambul;
  run;

Note, once you "turn on" the ODS TRACE ON statement in your SAS
session, ODS will continue to write trace records until you issue the
statement ODS TRACE OFF. This means that if you start a new
procedure or even a new program in the same SAS session, TRACE ON
will be in effect, until you turn it off.  Also note that you must have a
run statement between the TRACE ON and TRACE OFF statements in
order for the trace record to be created.

ODS HTML DESTINATION
File types
The HTML destination can produce four kinds of files (web pages):

1) BODY file:  This is a required file that contains the output object(s)
generated from the PROCs or DATA steps. Basically, this is where you
store the results that will ultimately be displayed on your HTML report
or web site. If your SAS job creates an output object that is routed to an
HTML destination, ODS places the results within HTML <TABLE>



tags, where they are stored as one or more HTML tables. If your SAS
job creates a graphic object, the BODY file has an <IMG> (image) tag
that references graphic output objects.  Note that the BODY file can be
specified with either the BODY= or the FILE= parameter.

2) CONTENTS file:  The CONTENTS file contains a link to each of
the output objects that are stored in the BODY file, and is specified by
the CONTENTS= parameter.

3) PAGE file: This is useful if you have a lot of output, and you do not
want it to all be stored on one long page.  The PAGE file contains a link
to each separate page (of the BODY file) of HTML output that ODS
creates from a PROC or DATA step. The PAGE file is similar to the
CONTENTS file, except that the CONTENTS file has a link to each
output object, whereas the PAGE file has a link to each page of output
that is created.  The CONTENTS and PAGE files will be identical if you
specify in the NEWFILE parameter that you would like each output
object placed on a separate BODY file. An example that illustrates the
NEWFILE parameter is presented later in this paper. You specify the
PAGE file with the PAGE= parameter.

4) FRAME file:  Provides a simultaneous view of all files included in
the ODS HTML statement.  You specify the FRAME file with the
FRAME= parameter.

The syntax for creating these files is

  ods html file-type = 'file-specification'
                        <(parameters)>;
Here is an example of ODS HTML statements which generate a BODY
file and a CONTENTS file:

  ods html body     = 'c:\temp\body.htm'
           contents = 'c:\temp\contents.htm';

In the above code, the BODY file could also have been specified with a
FILE= parameter.  Note that the BODY file, and only the BODY file, is
required as an HTML output destination.

Additional HTML Parmeters
1) PATH= :  As mentioned, you use the BODY= parameter to tell ODS
where to store an HTML file.  In addition, you can use PATH=  to tell
ODS in what directory  to store all the HTML files that you create. The
PATH= option may refer to an external (quoted) file specification, a
SAS fileref or a SAS libname.catalog.   For example,

 ods html path = 'C:\MyDocuments'
          body = 'body.htm'
          contents = 'contents.htm';
Note that if you use the PATH= statement, you must do so before
specifying the HTML pages.

2) URL= sub-parameter:  You can improve on PATH=  by including
a Uniform-Resource-Locator (URL) sub-parameter that will use the
given URL instead of the file name for all the links and references that it
creates to the file. This is helpful if you want to create a FRAME file,
and/or will be moving the files around. For example:

  ods html path = 'C:\MyDocuments'
           (url = 'http://www.unc.edu/~jismith')
           body = 'body.htm'
           contents = 'contents.htm';
Note  that the URL= sub-parameter of the PATH=  option is enclosed in
parentheses.  You can also specify the URL= sub-parameter
in the parameter for the BODY file, as in the following:   
  ods html path ='C:\MyDocuments '
           body ='body.htm'
          (url ='http://www.unc.edu/~jismith');

The results will be identical.

3) ANCHOR= :  Each output object in the BODY file is identified by
an HTML <ANCHOR> tag. These anchor tags allow the CONTENTS,
PAGE and FRAME files to link to, or reference the output objects in the
BODY file. You can change the base name for the HTML anchor tags
with the ANCHOR= parameter. The syntax for this option is:

  anchor = 'anchor-name';
Since each anchor name in a file must be unique, ODS will
automatically “increment” the name that you specify.  For example, if
you specify

  anchor = 'tabulate';
ODS names the first anchor TABULATE. The second anchor is named
TABULATE1; the third is named TABULATE2, and so on. The anchor
names are only of interest to you if you need to write to the HTML page;
otherwise you need not concern yourself with them.  However, you do
need to remember to always specify a new anchor name each time you
open the BODY file so that the same anchor tags are not written to the
file again.

4) NO_TOP_MATTER and NO_BOTTOM_MATTER parameters:
These parameters circumvent the default action of writing some HTML
to the top and bottom of the file that is open for HTML output. The
benefit of these parameters is that the HTML BODY page is “cleaner”
when viewed by the browser.

5) Descriptive text parameter:  This parameter allows you to include
comments in between the output of your PROCs.    You specify the
descriptive text inside parentheses next to the BODY=, CONTENTS=,
PAGE=, or  FRAME= options. Adding comments to your HTML page
is helpful for many reasons. For example, you might like to point out
some of the interesting results you obtained.

EXAMPLE 1,  Putting it all together. The following code places
output from several procedures on the same HTML page and uses many
of the HTML parameters discussed above - including incorporating
descriptive text between the output objects.  The SAS statements are
numbered for comments following the code:

 1)  libname  health 'C:Data’;
 2)  filename web    'C:\Data\body.htm';
 3)  ods listing close;
 4)  ods html path = 'C:\Data’
          (url = 'http://www.unc.edu/~jismith/')
          body = web (no_bottom_matter);
 5)  proc univariate data=health.meddat;
        var inpdol outpdol;
 6)  run;
 7)  ods html close;
 8)  filename web 'C:\Data\body.htm' mod;
 9)  data _null_;
 10)    file web;
 11)    put '<h3> We want to put comments in

         after the first procedure. </h3>';
 12) run;
 13) ods html body   = web (no_top_matter
                            no_bottom_matter)
              anchor = 'univ';
 14) proc freq data=health.meddat;
        table site;
 15) run;
 16) ods html close;
 17) data _null_;
        file Web;
        put '<h3> We also want comments after
             the second procedure is run.</h3>’;
 18) run;
 19) ods html body   = web (no_top_matter)
              anchor = 'freq';
 20) ods html close;



And now the comments:

(1) Identifies the location of the SAS catalog (C\:Data) containing the
SAS data set used for the PROCS.

(2) The FILENAME statement creates a fileref (WEB) for the BODY
file, where all the output will be stored.  Recall the default list for
HTML is SELECT ALL.  Since no selection commands are specified,
everything included in the program will be sent to the HTML file at
‘C:\Data\body.htm’

(3) The Listing destination is closed to free up resources.

(4) The NO_BOTTOM_MATTER option suppresses any default HTML
at the bottom of ' C:/Data/body.htm'

(5) All statistics created by PROC UNIVARIATE will be generated for
the variables INPDOL and OUTPDOL.

(6) Remember that a RUN statement goes after the PROC, and before
closing the HTML destination.

(7) The HTML destination must be closed to append to it later.

(8) This references the BODY file used above, and MOD indicates that
we want to append to  the file.

(9) This DATA _NULL_ step writes some descriptive HTML code to
the BODY file via the PUT and FILE statements.

(13) This opens the HTML destination ‘C:\Data\body.htm’ as identified
by the fileref WEB, and suppresses any default HTML code on the top
and bottom of the file.  The ANCHOR= option creates a base name for
the HTML anchor tags.  You should always specify a new anchor name
each time you open the BODY location so that the same anchor tags are
not written to the file again.

(19) Open the HTML destination again in order for the new output to be
written to the HTML file.  The ANCHOR statement provides a new base
name.

The resulting HTML page is shown below.  The name of the HTML file
that is created is ‘body.htm’ and it is stored in ‘C:\Data’.  Since we did
not specify a template, the default template is used.

The UNIVARIATE Procedure
Variable: INPDOL

Moments
N 1000 Sum Weights 1000
Mean 247.50903 Sum Observations 247509.03
Std Deviation 1354.43565 Variance 1834495.93
Skewness 9.68499218 Kurtosis 119.342445
Uncorrected SS 1893922159 Corrected SS 1832661439
Coeff Variation 547.226762 Std Error Mean 42.831016

Basic Statistical Measures
Location Variability

Mean 247.5090 Std Deviation 1354
Median 0.0000 Variance 1834496
Mode 0.0000 Range 23018
  Interquartile Range 0

Tests for Location: Mu0=0
Test Statistic p Value
Student's t T 5.778734 Pr > |t| <.0001
Sign M 43.5 Pr >= |M| <.0001
Signed Rank S 1914 Pr >= |S| <.0001

Quantiles (Definition 5)
Quantile Estimate
100% Max 23018.39
99% 5618.30
95% 1538.71
90% 0.00
75% Q3 0.00
50% Median 0.00



25% Q1 0.00
10% 0.00
5% 0.00
1% 0.00
0% Min 0.00

Extreme Observations
Lowest Highest

Value Obs Value Obs
0 1000 11367.8 722
0 999 12175.4 983
0 998 13119.0 162

The UNIVARIATE Procedure
Variable: OUTPDOL

Moments
N 1000 Sum Weights 1000
Mean 111.39919 Sum Observations 111399.19
Std Deviation 248.217815 Variance 61612.0838
Skewness 9.53237587 Kurtosis 139.188553
Uncorrected SS 73960251.2 Corrected SS 61550471.7
Coeff Variation 222.81833 Std Error Mean 7.84933652

Basic Statistical Measures
Location Variability

Mean 111.3992 Std Deviation 248.21782
Median 44.0000 Variance 61612
Mode 0.0000 Range 4523
  Interquartile Range 107.15000

Tests for Location: Mu0=0
Test Statistic p Value
Student's t t 14.19218 Pr > |t| <.0001
Sign M 390.5 Pr >= |M| <.0001
Signed Rank S 152685.5 Pr >= |S| <.0001

Quantiles (Definition 5)
Quantile Estimate
100% Max 4522.680
99% 970.105
95% 412.975
90% 267.525
75% Q3 117.150
50% Median 44.000
25% Q1 10.000
10% 0.000
5% 0.000



1% 0.000
0% Min 0.000

Extreme Observations
Lowest Highest

Value Obs Value Obs
0 998 1338.90 221
0 997 1415.49 58
0 989 1627.62 147
0 978 3535.44 414
0 975 4522.68 415

We want to put comments in after the first procedure.

The FREQ Procedure

SITE Frequency Percent
Cumulative
Frequency

Cumulative
Percent

1 1000 100.00 1000 100.00

We also want comments after the second procedure is run.

(Continued Additional HTML Parmeters)
6) NEWFILE= parameter: In the HTML output shown above, you
might have wanted a separate page (file) for each table, rather than
having all tables on the same page.  For this purpose, you can use
NEWFILE=  to specify the starting point for each new BODY file. The
syntax for this option is,

  newfile = <starting point>;
where a starting point can be:

NONE - write all output to the BODY file that is currently open
OUTPUT - start a new BODY file for each output object
PAGE - start a new BODY file for each page of output
PROC - start a new BODY file for each new procedure
BYGROUP – start a new BODY file for each new bygroup.

Just as ODS “increments” the name of the anchor, ODS will also
automatically  increment the names of the new files.  For example, if the
original BODY file is named RESULTS, each new BODY file that is
created based on the NEWFILE parameter will be called RESULTS1,
RESULTS2, etc.

7) PAGE= parameter:  If the NEWFILE= parameter is specified, you
may also want to include the PAGE= parameter in your HTML
statements:

   page=<file-specification> ;

The file specified will contain a description of each page of the BODY
file as well as links to the BODY files.

EXAMPLE 2,  Putting it all together (again).  The following
program illustrates the NEWFILE= parameter and the PAGE=
parameter, as well as some HTML options already discussed.

     libname health 'C:/Data';
  1) ods listing close;
  2) ods html
         path    ='C:/Data'

         (url    ='http://www.unc.edu/~jismith')
         file    ='file.htm'
         contents='contents.htm'
         frame   ='frame.htm'
         page    ='page.htm' (no_top_matter)
         newfile =page;
  3) ods html select Moments;
     proc univariate data=health.meddat;
        var dentdol drugdol ;
     run;
     proc print data=health.meddat;
        var site person contyr;
     run;
  4) ods html close;
(1) The first ODS statement closes LISTING as a destination for output.
This is done to conserve resources

(2) The following things happen in this ODS statement:
      -       the PATH=  specifies where to store your HTML files;

- the URL= sub-parameter tells ODS to use this URL for links
and references;

      -        the FILE=  tells ODS the location of the body file;
- the CONTENTS=  tells ODS to use this file for links to the

body file for every HTML table that is created in a PROC or
DATA  step.

- the FRAME= parameter puts all files included in the ODS
HTML  statement on one screen.

- the PAGE= parameter tells ODS to use this file to store links
to the BODY file for  every page of HTML that ODS creates
from a PROC or DATA step.

- the NEWFILE= option tells ODS to create a new BODY file
for each  new page of output.  In this case this would mean a
new file of output for each variable in the UNIVARIATE
procedure and a new file for the PROC PRINT output.  The
name of each new file is based on the name specified by
FILE= option.  The BODY files that are created in this
example are FILE.HTM, FILE1.HTM, and FILE2.HTM.

(3) This ODS statement instructs ODS to send only the ‘Moments’
statistics from the PROC UNIVARIATE to the HTML output



destination.

(4) The final ODS statement closes the HTML destination in order for
output to be  sent there.

Results of EXAMPLE 2
All files created from the above example are shown on the next page.
The Table of Contents file comes from the CONTENTS=
'CONTENTS.HTM' parameter.  Each of the references under the
procedure titles is a hypertext link to the location of the respective table
in the BODY file.

Below the Table of Contents file is the Table of Pages file created from
the PAGE= 'PAGE.HTM' (NO_TOP_MATTER) option.  Each page
reference (PAGE 1, PAGE 2, PAGE 3) is a hypertext link to that page in
the BODY file.

Next to the Table of Contents file and the Table of Pages file are each of
the BODY files that are created.  The first BODY file that is created is
called FILE.HTM, and it contains the Moments data for the variable
DENTDOL.  This page is created first because DENTDOL is the first
variable listed in the PROC UNIVARIATE, and PROC UNIVARIATE
is the first PROC in the program.  The second BODY file created is
called FILE2.HTM and it contains the Moments data for DRUGDOL.
The last page, FILE3.HTM is from the PROC PRINT   (note: not all
observations are included in order to conserve space).

By clicking on a reference on either the Table of Contents display or the
Page file display, we can link to each of the BODY files. The Frame
page, FRAME.HTM, combines the PAGE file, CONTENTS file, and
whichever BODY file you create, onto one page.

We have reviewed a few of the parameters used with the HTML
destination.  Others can be found in the “The Complete Guide to the
SAS® Output Delivery System, Version 8.”

ODS OUTPUT DESTINATION
The ODS OUTPUT statement is used to specify an action, or to create
one or more data sets.  When you first start SAS Version 7 or Version 8,
the Output destination is closed and the exclusion list is set to
EXCLUDE ALL.  You can change these default actions with the ODS
OUTPUT statement.

Specifying an action
When used to specify an action, the syntax of the ODS OUTPUT
statement is

  ods output <action>;
where the action choices are

CLEAR - set the list for the OUTPUT destination to EXCLUDE ALL.
SHOW - display the selection or exclusion list that apply at this point

  in  the program in the SAS log
CLOSE - close the OUTPUT destination. Once the destination is

  closed, you cannot send output to this destination.

Creating output data sets
You open the Output destination by specifying the data set(s) that you
would like created. To create a single output data set, the syntax is,

  ods output <output-object> = <sas data set>;
where the output-object can be identified with the use of the ODS
TRACE statement.  This example illustrates creating an Output file:

  ods listing;
  ods trace on / listing;
  ods output BasicMeasures = measures;
  proc univariate data = meddat;
        var meddol suppdol;
  run;
  ods trace off;
Here we have both the Listing destination and the Output destination
open..  Although all the PROC UNIVARIATE statistics will be sent to
the Listing destination (whose default value is SELECT ALL), only the
BasicMeasures statistics will be sent to the Output destination.  You can
look in the log or in the SAS Explorer window (in this case in the
WORK library), to see that ODS has created the MEASURES data set.
This newly created SAS data set will have the BasicMeasures statistics
for both the MEDDOL and SUPPDOL variables.  By looking in the
Results window and clicking on BasicMeasures, you will see in the
Output window the BasicMeasures statistics.  Unlike the HTML
destination, you do not have to close the Output destination to have
objects sent there.

To create a separate output data set for each variable used in a procedure
or data step, use the following syntax:

  ods output <output-object> (match_all)
             = <sas data set>;
For example, the following code will select the OneWayFreqs statistics
from the PROC FREQ.  The OUTPUT statement creates a different data
set for each variable in the PROC FREQ procedure because of the
MATCH_ALL option, and bases the name of these data sets on the
name STATS:

  ods output onewayfreqs (match_all) = stats;
  proc freq data='A:/test';
  run;
  ods output close;
  run;

When this program is run, the data sets created are STATS, STATS1,
STATS2 ... STATSN for however many variables there are in the data
set TEST. You may find, however, that you would like to combine the
data sets for each variable into one data set. This is easily done.



contents.htm:

Table of Contents

� The Univariate Procedure

·DENTDOL

·Moments

·DRUGDOL

·Moments

� The Print Procedure

·Data Set IN.AGGREC

page.htm:

Table of Pages

� The Univariate Procedure

·Page 1

·Page 2

� The Print Procedure

·Page 3

  file.htm:

The UNIVARIATE Procedure
Variable: DENTDOL

Moments
N 100 Sum Weights 100
Mean 52.38 Sum Observations 5238
Std Deviation 226.742535 Variance 51412.1774
Skewness 8.17753631 Kurtosis 73.6960078
Uncorrected SS 5364172 Corrected SS 5089805.56
Coeff Variation 432.879984 Std Error Mean 22.6742535

  file2.htm:
The UNIVARIATE Procedure

Variable: DRUGDOL
Moments
N 100 Sum Weights 100
Mean 14.8721 Sum Observations 1487.21
Std Deviation 34.3546782 Variance 1180.24391
Skewness 3.32771071 Kurtosis 13.1047585
Uncorrected SS 138962.083 Corrected SS 116844.147
Coeff Variation 231.000855 Std Error Mean 3.43546782

  file3.htm:

Obs SITE PERSON CONTYR
1 1 MA250247 01
2 1 MA250247 02
3 1 MA250247 03
4 1 MA250247 04
5 1 MA250247 05
6 1 MA250255 01
7 1 MA250255 02
8 1 MA250255 03
9 1 MA250255 04

10 1 MA250255 05
11 1 MA250263 01

. . . .

. . . .

. . . .
93 1 MA25162A 05
94 1 MA251638 01
95 1 MA251638 02
96 1 MA251638 03
97 1 MA251638 04
98 1 MA251638 05
99 1 MA251646 01

100 1 MA251646 02



First you create a macro variable, which  stores a list of the data sets that
are created in the ODS OUTPUT statement.  In a separate DATA step,
you combine the data sets by concatenation. This is illustrated in the
example below.

  ods output OneWayFreqs (match_all=name)=stats;
 To concatenate the data sets, you specify

  data all;
     set &name;
  run;

A little advice about using the MATCH_ALL option. In the following
program, separate data sets are created for the Moments data, but not for
the Basic Measures data.  All the variables are included in one data set
for the Basic Measures statistics.

  ods output BasicMeasures Moments
             (match_all)=moments;
To create output separate output data sets for both sets of statistics, we
would need to specify:

  ods output BasicMeasures (match_all)= measures
             Moments (match_all) = moments;
To create a permanent data set with the OUTPUT statement, use the
following syntax:

  libname in 'A:/';
  ods output BasicMeasures = in.measures;

OUTPUT Parameters
PERSIST parameter: This parameter is useful if you are creating output
data set and want the data set definition to endure even when the
procedure or DATA step ends, until you explicitly modify the list.   The
syntax is:

  ods output
  output-object<(MATCH_ALL<=macro-var-name>
  PERSIST=PROC|RUN)>=<SAS-data-set> ;

The PERSIST parameter specifies when to close any data sets that are
being created, and when to remove output objects from the
SELECTION list for the OUTPUT destination.   The PERSIST
parameter can only be used in conjunction with the MATCH_ALL
parameter.

PROC argument:  The PROC argument to the PERSIST parameter
preserves the list of definitions that are specified in the ODS OUTPUT
statement across step boundaries. This means that the list of output
objects specified in the ODS OUTPUT statement is preserved even after
the procedures or DATA steps have completed.  You must explicitly
modify the list to change the definitions;  e.g. with

  ods output exclude all;

RUN argument:  The RUN argument to the PERSIST parameter
serves exactly the same function as the PROC statement, as it also keeps
the data sets open.  The following is an example of a program that
implicitly uses the RUN argument but does not specify the PERSIST
option (although it was intended to).

  ods output OneWayFreqs(MATCH_ALL=name)=stats;
  proc freq data=health.test;
  run;
  proc freq data=health.test2;
  run;
In this case, the data sets are not created for the second PROC FREQ.
Without the PERSIST option, the second procedure is treated as a step
boundary, and a data set for the variables in HEALTH.TEST2 is not
created. This is easily corrected by explicitly specifying:

  ods output OneWayFreqs(match_all=name
             persist=proc) = stats;

CONCLUSION
The purpose of this paper was to help you get started using the Output
Delivery System.  Our examples illustrate that you can create web pages
with the addition of as little as one line of code to your existing SAS
program.  With the addition of a single OUTPUT statement you can also
create one or more SAS data sets.   With a few additional words you can
select your object objects and send them to more than one destination at
a time.  The best way to convince yourself, though, is to visit our
website and submit the examples presented in this paper for yourself.
The website can be found at:

http:// www.unc.edu/~lkbryant/odsworkshop

REFERENCES
SAS®  Version 8 Software.
SAS® Institute, The Complete Guide to the SAS® Output Delivery
System, Version 8

ACKNOWLEDGEMENTS
We wish to thank Paul Kent, Base SAS R&D Director, and Chris
Olinger, Base SAS Software Manager, for teaching classes on these
subjects at  our UNC site and at local SAS users group meetings.  We
also wish to thank the SAS Technical Support Division for answering
our questions so promptly regarding items in this paper.

CONTACT INFORMATION
Your comments and questions are valued and encouraged.  Contact the
authors at:

Lara K. Bryant Sally S. Muller
Jordan Institute for Families Jordan Institute for Families
CB 3550 CB 3550
301 Pittsboro St. 301 Pittsboro St.
Chapel Hill, NC  27599 Chapel Hill, NC  27599
Email: lbryant@email.unc.edu Email: sally@email.unc.edu

Work: 919-843-7798
Fax:    919-967-7015

Ray Pass
Ray Pass Consulting
5 Sinclair Place
Hartsdale, NY 10530
Email: raypass@att.net
Work: 914-693-5553
eFax:  914-206-3780



Changes & Enhancements for ODS by Example (through Version 8.2)
Sandy McNeill, SAS®, Cary, NC

Presented by David Kelley

ABSTRACT
The purpose of this paper is to show through example some of
the new ODS features and options that have been added for SAS
Version 8.2.   Some of the highlights are:  production PDF
destination; template options which allow the invocation of a
macro or evaluation of an expression using values from other
columns on the same row; in-line formatting for the PRINTER
and RTF destinations which allows a finer control over page
breaks, subscripting, superscripting, formatting of particular
words in a cell instead of the entire cell; and style control for titles
and footnotes for the PRINTER and RTF destinations.  This
paper will talk about each of these topics along with some
examples.

INTRODUCTION
With each new version of SAS, the ODS developers stay hard at
work adding new features or improving existing features to
hopefully make your jobs easier at producing output the way you
need it from SAS®.  This paper will describe and show examples
of some of these new features that we have added for the latest
version of SAS Software®.

PDF DESTINATION
I debated calling this a new production destination since some
users have been using this in its experimental form, but PDF is
now a production destination.   This is native PDF without the
need for the Adobe Acrobat Distiller.   Prior to Version 8.2, you
could obtain PDF output by outputting to a postscript file and then
invoking the Adobe Acrobat Distiller to distill the postscript into
PDF.  However, now there is no need for the distiller since we
write the native PDF code.  The syntax for this is very easy:

ods Printer PDF file=’foo.pdf’

Where foo is, of course, the filename.

Even though you no longer need a distiller, you will still need
some type of viewer to view the PDF output.  A common viewer
for the PCs is Adobe® Acrobat Reader and a common viewer for
Unix is ghostview.

STYLE CONTROL FOR TITLE/FOOTNOTE STATEMENTS
In SAS Version 8.1, some of the graph options allowed on the
title and footnote statements were passed on to HTML.  What this
allowed was the stylistic customization of your title and footnote
statements such as changing the font, color, height, and
justification.  Keep in mind that I am talking about titles and
footnotes in HTML located OUTSIDE the graph image.  If indeed
you are running a graph proc, use the options NOGTITLE and
NOGFOOTER to place the titles and footnotes outside of the
graph image.

In addition to the options on the title/footnote statement, some of
the GOPTIONS  were also respected.   Unfortunately, we ran out
of time for Version 8.1 and did not get to add this functionality into
all the destinations.  The good news is that this same capability is
now available in Version 8.2 for the Printer and RTF destinations.
The graph options that are respected on the title/footnote
statements are:  COLOR, FONT, HEIGHT, and UNDERLIN.  The
GOPTIONS that are supported are:  FTITLE, FTEXT, GUNIT,
HTITLE, and HTEXT.

Here is an example using the PDF destination with several of
these options being used:

Title font=courier height=8pt color=blue
j=left ‘Catch the ‘ font=times
height=12pt ‘Wave’;

ods printer pdf file=’catch.pdf’;
proc print data=sashelp.class;run;
ods printer close;

The GOPTIONS work as documented in the SAS/Graph®
documentation.  The values set in the GOPTIONS will be used
unless the corresponding style attribute is specified on the
title/footnote statement.  In that case, the value actually specified
on the title/footnote statement will win.  For example, if I set the
GOPTION HTITLE=5pt, this is setting the HEIGHT style attribute.
If you do not specify a HEIGHT option on your TITLE statement,
then the height of your text will be 5 points. However, if you
specify HEIGHT=10pt on the TITLE statement, then the HEIGHT
option on the TITLE statement supercedes the GOPTION.  Now
if you are familiar with ODS and style templates, you are probably
asking yourself “But what about the style attributes specified in
the style template?  The order of precedence is:

Style template
Goptions
Option specified on the title/footnote statement

Here’s what this means:  Say you are using a style with a
particular font size for titles and footnotes (the default font size for
titles is 5 for HTML (styles.default) and 13pt for the PRINTER
destinations (styles.printer)).  So let’s say we are using the
PRINTER destination with a default font size of 13pt.   If you do
not specify HTITLE in the goptions and if you do not specify
HEIGHT on the title statement, then the title will be in 13pt.
However, if you specify HEIGHT=8pt on the title statement, then
the font size for the title will be 8 pt.  If you use GOPTIONS
HTITLE=8pt and do not use a HEIGHT option on the title
statement, then the size will be retrieved from the goptions
statement.  The goptions HTITLE overrides the font size in the
ODS style that is being used.

One caveat to the interaction with the ODS styles:  by default, the
font for the titles and the footers in the default ODS style template
is BOLD and ITALIC.  We received some feedback from
SAS/GRAPH users that since there is no option on the title or
footnote statement to remove the BOLD or ITALIC, but there are
options to turn on those attributes, they would like the BOLD and
ITALIC turned off automatically when a FONT is specified.  This
only is in effect when you use the options NOGTITLE or
NOGFOOTER on the ODS statement.  You can, of course, turn
off the BOLD and ITALIC for all your titles and footnotes by
modifying the style template.

Here’s an example of using the default style and specifying a font
which will turn off the BOLD and ITALIC that is received from the
default style.  :

Ods html file=’foo.html’ nogtitle ;
Title font=COURIER ‘This is a title’;



proc gchart data=sashelp.class;
vbar sex;
run;
ods html close;

If you want to change the font for a particular title, but you still
want BOLD and ITALIC, then just use those options on the title
statement.

Ods html file=’foo2.html’ nogtitle;
Title font=courier bold italic ‘Bolded
Title’;
Proc gchart data=sashelp.class;
Vbar sex;
Run;
Ods html close;

Now on to other examples.

Here is an example in which I am creating a new style called
SmallTFfont.  I am going to be using the RTF destination, so this
style will inherit from Styles.RTF and it will specify a font size of 6
pt for both the title and the footnote statements.

Proc template ;
Define style SmallTFfont;
Parent = Styles.RTF;

Style SystemTitle from SystemTitle /
    Font = ("Arial, Helvetica", 6pt, bold );
Style SystemFooter from systemFooter /
    Font = (“Arial, Helvetica”, 6pt, bold );
End;
Run;

TITLE CUSTOMIZATION EXAMPLE 1
The font size of the title statement will be 6pt  because we are
using the new smallTFfont that we defined above.  There are two
text strings with one of them left justified and the other one right
justified.  We did not specify a font, so the font weight will be
BOLD because it is picking up the BOLD from the SmallTFfont.
The foreground color of the text will be BLACK, which the style
SmallTFfont inherits from Styles.RTF which inherits from
Styles.Printer.

Title j=right ‘WAVE’  j=left ‘Catch the’;
Ods rtf file=’titles1.rtf’ style=smallTFfont;
Proc Print data=sashelp.class; run;
Ods rtf close;

TITLE CUSTOMIZATION EXAMPE 2
The font size of the title statement will be 9pt because now we
are specifying a HEIGHT option on the title statement.  This
HEIGHT option will override the font size that was specified in the
style SmallTFfont.  All the rest of the attributes will remain the
same as in Title Example 1. The height attribute remains 9pt until
the end of the statement or until another height option is
specified.

title HEIGHT=9pt  j=right ‘WAVE’ j=left
‘Catch the’;

Ods rtf file=’titles2.rtf’ style=smallTFfont;
Proc Print data=sashelp.class; run;
Ods rtf close;

TITLE CUSTOMIZATION EXAMPLE 3
Now we are using a font option.  Because of this, the BOLD font
weight will be cleared.  The only attributes that change in this

example are the font name and the font weight which is no longer
BOLD.

title HEIGHT=9pt FONT=courier j=right
‘WAVE’ j=left ‘Catch the’;

Ods rtf file=’titles3.rtf’ style=smallTFfont;
Proc Print data=sashelp.class; run;
Ods rtf close;

TITLE CUSTOMIZATION EXAMPLE 4
We don’t like a title statement that is not bolded, so we are going
to turn the font weight BOLD back on.  The rest of the attributes
will remain the same.  There is no option to turn the bold off, so
once you turn it on, it is on for the remainder of the statement.

title BOLD HEIGHT=9pt FONT=courier j=right
‘WAVE’ j=left ‘Catch the’;

Ods rtf file=’titles4.rtf’ style=smallTFfont;
Proc Print data=sashelp.class; run;
Ods rtf close;

TITLE CUSTOMIZATION EXAMPLE 5
Better example of interaction between the style template and the
title statement.  Create a new style and modify the
SYSTEMTITLE style element such that the text of the titles will
be the color blue.  Then use some options on the title statement
and see how the color of the titles is blue unless the color is
overridden on the statement.  “Catch” is blue from the blue
foreground set in the SystemTitle.  ‘the’ is green from the title
statement color option.  ‘WAVE’ is blue again from the style
template and the varying heights from the title2 statement

proc template;
define style ex5; parent = styles.rtf;
style SystemTitle from SystemTitle /
     foreground = blue;
end;
run;

title j=left font=’Comic Sans MS’
‘Catch ‘ color=green ‘the’;

title2 j=center font=’Comic Sans MS’
height=24pt ‘W’
height=20pt ‘A’
height=16pt ‘V’
height=12pt ‘E’;

ods rtf file=’titles5.rtf’ style=ex5;
Proc Print data=sashelp.class;run;
Ods rtf close;

IN-LINE FORMATTING AND PAGE BREAK CONTROL
The PRINTER and RTF destinations now support the ability to
insert simple formatting text within a given cell or paragraph.
The types of formatting available are:  specifying a style option to
customize the font, color, etc; specifying a superscript and
subscript; specifying a dagger or sigma character; specifying raw
text to be inserted into the document for the open destination or
you can specify that the raw text be targeted to a particular
destination.

To use any of these special formatting tricks, you need to use an
escape character.  By default, ‘03’x is expected as the escape
character.  However, using this everywhere you want special
formatting is a pain, so we added a special ODS statement just
for specifying the escape character that you would like to use.

Ods escapechar = ‘\’;
This statement above would specify the backslash character as
the escape character to be used when specifying the use of in-
line formatting.

Assuming we are using the above statement and have specified
the backslash as our escape character, here is a table of the
formatting codes and their definitions.



\w Preferred line break. If the line breaks, it
breaks there; but if there’s enough room,
it won’t break

\z Error code. Formats the output like a
SAS error message. Also available:
\1z  = error
\2z  = warning
\3z  = note
\4z  = fatal

\m Set a mark.  The position is remembered
and if the line wraps, it will wrap to this
position.

\-2n Wrap to mark
\n Wrap to left margin
\[arg]n Wrap where the value specified for the

arg indicates how far to advance
vertically.

\S = {style attributes} Lets you specify style attributes. See
discussion about the style option in this
paper under New Template Features, or
see the Style statement documentation
for Proc Template in the on-line
documentation.

\{super text} Superscript what is denoted by text
\{sub text} Subscript what is denoted by text
\R</tag>”raw-text” Insert raw text into document for the

current output destination.  The tag is
optional and represents a particular
destination.  If the tag value is present,
then the raw text only appears in the
output for the specified destination.  The
values for tag would be:  RTF, PDF, PS

I am going to go over an example, but for more information see
the paper written by Brian Schellenberger (the in-line formatting
guru) at http://www.sas.com/rnd/base/topics/odsprinter/qual.pdf.

IN-LINE FORMATTING EXAMPLE
Example of In-Line formatting using both the Postscript
destination and the RTF destination.  This example demonstrates
the ability to subscript, superscript, and change the formatting of
words within a particular cell.

data b;
   x= "\3z\mIn 8.2, you can put " ||
      "\S={font_weight=bold}bold\S={} " ||
      "and " ||
      "\S={font_style=italic}italic\S={} " ||
      "text into your cells. It’s " ||
      "\S={font_style=italic}n\S={}" ||
      "\{super 2} the fun." ||
      "\-2nWhere do we end up?";

      y=2;
   z=3;
   run;

proc template;
define style foo;
parent = styles.rtf;
style systemtitle from systemtitle /
   protectspecialchars = off;
end;
run;

ods escapechar = ’\’;

ods printer ps file=’InLineFormatEx.ps’;
ods rtf file=’InLineFormatEx.rtf’

style = foo;

proc report nowd data=b;

title2 ’001 PROC REPORT: Using Functions’;
title3 ’In a title too:

\{super super} \{sub sub}’;
title4 ’\{dagger} \{sigma}’;
run;

ods rtf close;
ods printer close;

A couple things are worth pointing out about this example.  This
example uses the MARK (escapechar m) formatting; however,
this will currently only work for the PRINTER destinations such as
postscript and PDF.   If you run this example and look at the RTF
output, you’ll see that the second line “Where do we end up” is
not indented, but it IS indented in the PRINTER destinations.
Another difference with the destinations is that for RTF, you must
tweak the SystemTitle style element and turn off the
PROTECTSPECIALCHARS attribute if you want to use the in-line
formatting in the title statement (or tweak SystemFooter for
footnote statements).  You don’t, however, have to do this for the
PRINTER destinations.  We are looking into making this more
consistent for Version 9.

CONTROLLING PAGEBREAKS FOR RTF AND PRINTER
Another option that has been added to the PRINTER and the
RTF destinations is the ability to control page breaks.  Currently,
each procedure call starts a new page.  Sometimes you don’t
want that, and with the number of questions that we have
received asking if it is possible to control the page breaks, I’d say
the number of you wanting this functionality is pretty high.

The option to control page breaks for the PRINTER and the RTF
destinations is STARTPAGE= and is an option on the ODS
statement.  The values for this option are:  NOW, ON, OFF.  So if
you use
Ods printer ps file=’foo.ps’  startpage=no;
The implicit page breaks before each procedure will be
suppressed.   We will, however, still go to a new page when we
run out of room on the page.

PAGE BREAK CONTROL EXAMPLE
This example is to demonstrate the usage of the STARTPAGE
option to control page breaking.  On our initial ODS statement,
we specify STARTPAGE=NO which tells ODS to suppress the
page breaks which you would normally get for each procedure
invocation.  Before the third PROC PRINT, we issue another
ODS statement, but this time with STARTPAGE=NOW.  This will
start a new page at the next procedure call, but after that the
page breaks are still suppressed until a STARTPAGE=YES or a
STARTPAGE=NOW is processed.

Data x;a=1;b=2;c=3;run;
Ods printer ps file=’PrinterPageBreakEx.ps’

Startpage = no;
/* Page 1 */
Proc print data=x; run;
Proc Print data=x; run;
Ods printer startpage = now;
/* Page 2 */
Proc print data=sashelp.class; run;
Proc print data=x; run;
Ods printer startpage = yes;
/* Page 3 */
Proc print data=x; run;
/* Page 4 */
Proc print data=x; run;
Ods printer close;

TEMPLATE OPTIONS
Several new options have been added to Proc Template for
Version 8.2.  One of these options is the ability to use a format
name as the attribute value in the STYLE option.  This
functionality has been available in Proc Tabulate in Version 8.1,



but for consistency this has now been made available in Proc
Report, Proc Template, and in the new Proc Print styles.  The
nice this about this is that you can write your user-defined formats
for traffic lighting, and then use these formats across several
different procedures.

Here is a Proc Template example to illustrate the use of creating
a user-defined format and then using that format as the value for
a style attribute.  One of the reasons for using this technique is to
perform traffic lighting.  This example uses the dataset exprev
and the formats found under Proc Print style example 3.

proc template;
   define table RegionReport;
      define column Region; end;
      define column State;end;
      define column month;end;
      define column revenues;
         style = {background=revfmt.

 flyover=revfly.};
      end;
   end;
run;

ods html file=’TemplateEx1.html’;
ods listing close;

title ’Regional Activity’;
data _null_;
   set work.exprev;
   file print ods=(template=’RegionReport’
       columns=(region

    state
 month
 revenues));

   put _ODS_;
run;

ods html close;
ods listing;

A second new functionality available in Proc Template is the
EXPRESSION function which can be used to evaluate an
expression which is given as the value for a style attribute.  The
expression to be evaluated within the parentheses follows the
same rules as expressions used in the TRANSLATE and the
CELLSTYLE…AS functions. The powerful thing about this is that
you can get to the values in other columns on the same row
instead of just being able to use the global symbol _VAL_ to
access the value of the current cell.

Here’s a second Proc Template example which illustrates the use
of the EXPRESSION function.  In this example, we use both an
expression and the global symbol _VAL_ as parameters in the
EXPRESSION function.  The global symbol _VAL_ is the current
value of the cell.   Notice in the expression how we are accessing
the values from other columns.

ods listing close;

ods html file=’TemplateEx2.html’;

data colors;
  length lightness saturation hue $ 20;
  input lightness $ & saturation $ & hue $ &;
  datalines;
dark  grayish  blue
moderate  reddish  purple
dark  moderate  red
medium  strong  orange
light  greenish  yellow
strong  bluish  green

;

proc template;
   define table colortab;
   define header tabhd;
      text ’Expression function’;
      style={foreground=#FF00FF};
   end;
   column lightness saturation hue

  lightnesshue lightnessSaturHue;
   define lightness;
      header=’Lightness’;
   end;

   define saturation;
      header=’Saturation’;
   end;

   define hue;
      header=’Hue’;
      style={background=expression("_val_")};
   end;

   define lightnesshue;
      compute as lightness||’ ’||hue;
      header=’Foreground is lightness and
                  hue’;
      style = {background =
         expression("lightness||’ ’||hue")};
   end;

   define lightnessSaturHue;
      compute as lightness || ‘ ‘ ||
                saturation || ' ' || hue;
      header='Background is lightness

  saturation hue';
      style = {background =
              expression("lightness ||
                  ' ' || saturation ||
                  ' ' || hue")};
   end;
end;

data _null_;
   set colors;
   file print ods=
     ( template='colortab'
       columns=(
         lightness
         saturation
         hue
        )
      );

   put _ods_;
run;

ods _all_ close; /* closes ALL the open */
         /* destinations – even listing */
ods listing;     /* reopen the listing */

A third new functionality that’s very cool is the ability to invoke a
macro by using the RESOLVE function.  &_Val_  is a global
macro variable which is set with the value of the current cell
before the call to the macro.   This lets you use the value of the
current cell within the macro.

This third Proc Template example illustrates the invocation of a
macro called DOURL which is evaluated and create the attribute
value for the URL style attribute.   After running this example, you
should see that each of the columns headers is a unique link.



Column A will have a link to http://www.yourcompany.com/a,
column B will have a link to http://www.yourcompany.com/b, and
column C will have a link to http://www.yourcompany.com/c.

data x;
   a=1;
   b=2;
   c=3;
   run;

%macro dourl;
   http://www.yourcompany.com/&_val_
%mend;

proc template;
   define table testit;
   column a b c;

   define a;
      define header hdra;
         style={url = resolve(’%dourl’)};
      end;
      header = hdra;
   end;

   define b;
      define header hdrb;
         style={url = resolve(’%dourl’)};
      end;
      header = hdrb;
   end;

   define c;
      define header hdrc;
         style={url = resolve(’%dourl’)};
      end;
      header = hdrc;
   end;
end;
run;

ods listing close;
ods html file=’TemplateEx3.html’;
data _null_;
   set x;

   file print ods=
     ( template=’testit’
       columns=(
         a
         b
         c
        )
      );

   put _ods_;
 run;

ods html close;
ods listing;

PROC PRINT STYLE OPTION
For Version 8.2, Proc Print now has a style option which allows
style customizations just like Proc Report, Proc Tabulate, and
Proc Template.   The general form of the style option is exactly
the same as for the other Procedures:
     STYLE<(location-name(s))> =
            <style-element-name>[style-attribute-specification(s)]

Where  style-attribute-specification(s) is:
Style-attribute-name = Style-attribute-value

Here are tables which show the values that can be used for the
LOCATION-NAMES and also the default style element that is in
effect if you do not specify any STYLE-ELEMENT-NAME.   These
tables are broken down by what is valid for different statements,
so there is a table for the Proc Print statement, a table for the
VAR statement, a table for the ID statement, and a table for the
SUM statement.

Location-Names and Default-Style-Element-Names for the
PROC PRINT Statement
Location Name(s) Affects Default Style

Element
DATA
COLUMN
COL

Default for all data
cells of all columns

Data

HEADER
HEAD
HDR

Default for all
header cells of all
columns

Header

OBS
OBSDATA
OBSCOLUM
N
OBSCOL

Data cells of OBS
column

RowHeader

OBSHEADER
OBSHEAD
OBSHDR

Header of OBS
column

Header

TOTAL
TOT
BYSUMLINE
BYLINE
BYSUM

The SUM line
containing totals for
each BY group

Header

BYLABEL
BYSUMLABEL
BYLBL
BYSUMLBL

The label for the
by-variable on the
line containing
SUM totals

Header

GRANDTOTAL
GRANDTOT
GRAND
GTOTAL
GTOT

The SUM line
containing the
grand totals for the
whole report

Header

TABLE
REPORT

Output data table
(not byline)

Table

Location-Names and Default-Style-Element-Names for the
VAR Statement
Location Name(s) Affects Default Style

Element
DATA
COLUMN
COL

Data Cells Data

HEADER
HEAD
HDR

The column header
cell

Header

Location-Names and Default-Style-Element-Names for the
ID Statement
Location Name(s) Affects Default Style

Element
DATA
COLUMN
COL

Data Cells RowHeader

HEADER
HEAD

The column header
cell

Header



HDR

Location-Names and Default-Style-Element-Names for the
SUM Statement
Location Name(s) Affects Default Style

Element
DATA
COLUMN
COL

Data cells Data

HEADER
HEAD
HDR

The column header
cell

Header

TOTAL
TOT
BYSUMLINE
BYLINE
BYSUM

Data cell containing
sum

Header

GRANDTOTAL
GRANDTOT
GRAND
GTOTAL
GTOT

Data cell containing
sum over whole
report

Header

Some of the more widely used style-attribute-names are:
• Font
• Font_face
• Font_size
• Font_style
• Font_width
• Foreground
• Background
• URL
• Just
• Preimage
• Postimage

A complete list of the style-attribute-names is documented in
“The Complete Guide to the SAS Output Delivery System”,
specifically within the Style Statement section under The
TEMPLATE Procedure.  These style-attribute-names are the
same attribute names used wherever you might see the STYLE
statement.

So what does all this mean?  How do you use it?  Better to
explain this with examples. I am going to use the HTML
destination for these examples.

PROC PRINT STYLE EXAMPLE 1
Make the background of the OBS column and the background of
the column headers the color blue.

ods html file=’PrintStyleEx1.htm’;
Proc Print data=sashelp.class
   style(OBS HEADER OBSHEADER) =
            {background=blue};
Run;
Ods html close;

PROC PRINT STYLE EXAMPLE 2
A little fancier.  Shows output using by and pageby.

proc sort data=sashelp.class out=class;
by sex age;

run;

ods html file='PrintStyleEx2.htm’;

proc print data=class n='Number of
observations for the sex and age '
     style(N)={foreground=black
               font_weight=bold}
     style(OBS HEADER OBSHEADER) =

{background = mediumred
 foreground = black}

     /*TOTAL makes the whole TOTAL line red*/
     style(TOTAL) = {background = white

      foreground = mediumred}
     style(GRANDTOTAL) = {background = BLACK

   foreground = white}
     style(BYSUMLABEL)= {background=mediumred
        foreground = white

font_weight = bold};
var name height weight ;
sum height weight;
by sex age ;
pageby sex;
run;
ods html close;

PROC PRINT STYLE EXAMPLE 3
Since the by-line is generated outside of Proc Print, the style of
the by-line is not controllable from Proc Print.  You would have to
modify the style element ByLine in the style template that you are
using.  In these HTML examples, the default style template is
styles.default.   However, a way around this with Proc Print is to
use the ID statement and use the same variables on the ID
statement as on your BY statement.

Use ID statement, which gets rid of the byline. Notice that I
removed the style for the OBS and the OBSHEADER and placed
a style on the ID statement.

proc sort data=sashelp.class out=class;
by sex age;

run;
ods html file='PrintStyleEx3.htm';
proc print data=class n='Number of
observations for the sex and age '
     style(N)={foreground=black

   font_weight=bold}
     style(HEADER)={background=mediumred

foreground=black}
/* TOTAL makes the whole TOTAL line red */
     style(TOTAL)={background=white

   foreground=mediumred}
     style(BYSUMLABEL)={background=mediumred

           foreground=white
   font_weight=bold};

var name height weight ;
sum height weight;
by sex age ;
id sex age / style(HEADER DATA) =

{background=mediumred
 foreground=black};

pageby sex;
run;
ods html close;

PROC PRINT STYLE EXAMPLE 4
This last example shows how to do traffic lighting with Proc Print.
This capability is possible now through the use of the style
statement and user-defined formats.  Once the formats are
defined to bind a particular style (in this case a background) to a
range of values, then the format is used as the attribute’s value.



In this example, we have four user-defined formats:
Revfmt  – format for revenue numbers
Expfmt  -- format for expense numbers
Revfly   – format for revenue flyover (popup msg when

hovering over the cell )
Expfly  – format for the revenue flyover

Their color schemes are just the opposite from each other:  the
lower revenue numbers are shaded red to point out the fact that
the revenues were not so good, but the lower expense numbers
are indicated as green.

data exprev;
   input Region $ State $ Month monyy5.
         Expenses Revenues;
   format month monyy5.;
   datalines;
Southern GA JAN95 2000  8000
Southern GA FEB95 1200  6000
Southern FL FEB95 8500 11000
Northern NY FEB95 3000  4000
Northern NY MAR95 6000  5000
Southern FL MAR95 9800 13500
Northern MA MAR95 1500  1000
;

options nodate pageno=1 linesize=70
pagesize=60 nobyline;

proc sort data=exprev;
   by region;
run;

proc format;
 value revfmt

low-5000   = ’light red’
     5000-10000 = ’yellow’
     other      = ’green’;
 value revfly

low-5000   = ’Your revenues are
dangerously low’

5000-10000 = ’Your revenues are all 
right’

other      = ’GREAT JOB! Keep up the good
work’;

 value expfmt
low-5000   = ’green’
5000-8000  = ’yellow’
other      = ’red’;

 value expfly
low-5000   = ’Great job controlling those

expenses’
5000-8000  = ’You had better start

controlling expenses’
other      = ’I’’m bringing in the

comptroller’;
run;

ods html file=’PrintStyleEx4.htm’;
proc print data=exprev noobs
   n=’Number of observations for the state: ’
 ’Number of observations for the data set: ’;
var revenues /

style(COLUMN) = {background=revfmt.
 flyover=revfly.};

var expenses /
style(COLUMN) = {background=expfmt.

 flyover=expfly.};
sum expenses revenues ;
by region;
id region;

run;

ods html close;

I will admit that there is a small defect in Version 8.2 with using
the user-defined formats as style attribute values.  If you use a
format as a style attribute value, then you cannot define another
format for that variable.  For instance, in the example above
where I use the format revfmt, you could not also have a format
statement for revenues, such as:

Format revenues comma9.;
This problem will definitely be fixed at Version 9.

CONCLUSION
I hope that this paper has given you an insight into some of the
new features awaiting your use in SAS Version 8.2.    ODS
continues to grow from input from YOU, the valued users, as we
strive to make SAS an invaluable tool to help you in your jobs.

REFERENCES
SAS Institute, Inc., The Complete Guide to the SAS® Output
Delivery System, Version 8, Cary, NC: SAS Institute, Inc., 1999.
310 pp.

Schellenberger, Brian., Presentation-Quality Tabular Output via
ODS., SAS Institute, Inc., 2000.
http://www.sas.com/rnd/base/topics/odsprinter/qual.pdf  

CONTACT INFORMATION
Your comments and questions are valued and encouraged.
Contact the author at:

Mrs. Sandy McNeill
SAS Institute, Inc.
Cary, NC 27513
Email:  Sandy.McNeill@sas.com  
ODS specific questions can be directed to:

ods@sas.com  

SAS is a registered trademark or trademark of  SAS Institute Inc.
in the USA and other countries.  ® indicates USA registration.



SAS® on the Web: How do I get There from Here?

Carol Martell, UNC Highway Safety Research Center, Chapel Hill, NC
Ruth Marinshaw, UNC Academic Technology and Networking, Chapel Hill, NC

Eric Rodgman, UNC Highway Safety Research Center, Chapel Hill, NC

ABSTRACT

Do you ever wonder what it would take to start using those SAS®
skills in a web application?  Several pieces have to be in place if
you want to play. This tutorial will tell you what those pieces are
and how to either ask for them or implement them yourself. Your
system and web server administrators may not be SAS users.
Being informed will help you make friends while asking for what
you need!

INTRODUCTION

SAS/IntrNet® software, one of the SAS web technology products,
is a set of CGI tools. We examine two of the available tools,
Application Dispatcher and htmSQL, in the Solaris environment.
For each tool there must be a machine functioning as the Web
Server and a machine function as the SAS Server. The Web
Server and SAS Server may be on one machine or two different
machines. Configuration options are plentiful. For this paper we
simply choose one option for each tool and describe the
installation and configuration steps. You should read the
documentation available on the SAS Web site:
http://www.sas.com/rnd/web/intrnet/doc.

APPLICATION DISPATCHER

The Application Dispatcher is, in a sense, exactly what its name
implies.  A request to run an application is dispatched, or sent,
from a browser window through a broker to a SAS session and
the results are returned to the browser window. Configurations tell
the broker where the SAS session(s) and application libraries are.
In some situations, the SAS session is not yet running and must
be launched.  In others, SAS is already running and session
communication is via a port. These various modalities of
sessions are defined as named services in the broker
configuration file, and the desired service name is included in the
web request. Each service is started, whether by request or in
advance, by SAS code that includes specification of the program
library locations.
Using the Application Dispatcher allows SAS to be the back end
for an HTML-based interface that returns the results from a SAS
job to the browser window.  For example, you might present in
the browser window an HTML page that displays the names of all
variables from a SAS data set. The end user might select the
variables of interest to him, then select procedures of interest,
and submit those choices.  This input is sent to a CGI program
(broker) on a web server. The broker takes this information and
passes it on to a SAS Application Server. The Application Server
is running SAS; it takes the input passed from the Broker and
invokes the requested SAS program. SAS output is then passed
back to the broker and streamed to the user's browser window.
The end user does not have to know how to use SAS; indeed, the

end user does not need to know that SAS was run. What the end
user sees is that he requested information, and it was displayed
for him.
The Application Dispatcher has three basic component
requirements: the browser; a CGI program, referred to as the
broker; and a SAS Application Server. To use the Application
Dispatcher, you must have a web server available, and you
must also have SAS running on a server. For the purposes of
this paper, we are using SAS 8.2 and an Apache web server,
both running in a Solaris environment.

INSTALLATION AND CONFIGURATION STEPS

BRIEFLY

SAS Server:
1. Install SAS/IntrNet components from the Version 8 installation
media.
2. Add a service to the /etc/services file
3. Configure and start the service, using inetcfg.pl

Web Server:
1. Install the Application Broker, contained in the CGI Tools,
downloadable from the SAS Web site.
2. Add the service definition to the broker.cfg file

IN-DEPTH

The steps to configuring Application Dispatcher Services as a
socket service follow:

1. Install SAS 8.2 on your SAS server. Be sure to install the
SAS/IntrNet components with this installation.

2. Make sure that you have a web server running and available
for use. You will need to know the URL for accessing files on the
web server. From or with your web server administrator,
determine where the web server's cgi scripts are stored. For
installation of SAS/IntrNet components on the web server, the
person doing the installation will need to have write permission to
that cgi script directory. On many servers, this will be /cgi-bin in
the directory where the web server software is installed.  In
addition, determine what the document root is on your web server
(typically, /htdocs in the directory where the web server software
is installed).

3. On your SAS server, download the latest CGI tools for Release
8.2 of SAS/IntrNet software from
http://www.sas.com/rnd/web/intrnet/index.html. You will be
instructed to download them to a temporary directory on your
SAS server.

4. Extract the files from the compressed download file and run the
INSTALL script that was included in the download. As noted
earlier, the user running this script must have write access to
directories on the web server and the SAS server.  As part of the
INSTALL process, you will specify a location for sample files, the
path for cgi scripts, and the URL for those.  The INSTALL
process puts the Application Broker and broker configuration files



in the cg-bin directory on the web server.

5. On the SAS server, run the inetcfg.pl utility in
!SASROOT/utilities/bin . The script will prompt you for a location
to store SAS/IntrNet service files (for example, /local/pkg/default).
Select the socket type of service, and use the service name of
default. For the most basic installation, only create one service to
run on one server.   Since you are setting up a socket service,
you will be prompted to identify a particular port to use. After
consulting with your system administrator, identify a port number.

6. Ask your system administrator to create an entry in
/etc/services that identifies the port number you referenced in
inetcfg.pl and also names the service (as above, this name is
default). For example, if you specified port 5228 for service
default, a line such as the following would be added to
/etc/services on your SAS server:

default 5228/tcp #SAS socket srvc

7. After running inetcfg.pl and modifying /etc/services,
your web server administrator should modify the
broker.cfg  file in the /cgi-bin directory on the web
server. Several different parameters in this file will need
to be changed. First, you will need to modify the socket
service entry to reflect the appropriate parameters for your
system. For example, your entry might look like this if you
specified to use Port 5228 on the SAS server named
myserver.unc.edu:

SocketService default "Reuse existing
session"
ServiceDescription "Pages reference this
generic server when they don't care which
service is used."
       ServiceAdmin "Your Name"
       ServiceAdminMail your_name@wherever
       Server myserver.unc.edu
       Port 5228
      #  Remove the following line for any
servers before V8.1
      FullDuplex   True

Also modify broker.cfg to change the SelfURL entry to the URL
for your web server and broker. For example, if I used webserver
mywebserver.unc.edu and my cgi scripts are stored in the cgi-bin
directory, my entry would be

    SelfURL http://mywebserver.unc.edu/cgi-bin/broker

You can also change the Administrator and AdministratorMail
entries in broker.cfg to identify the person responsible for the
service.
You should also modify the entry DefaultService to show the
service you defined (for us, default):

DefaultService  default

Many other settings are configurable in this broker.cfg file. You
and your administrators should read the document
http://www.sas.com/rnd/web/intrnet/doc/dispatch.pdf to discuss
what other options to modify. But the options shown above are
the most basic.

Start your socket service by running the start.pl script on
the SAS server. This script was created when you ran
inetcfg.pl . The start.pl script will be in the directory that

you identified in inetcfg.pl as the root directory for
SAS/IntrNet services. (In my example above, I used ,
/local/pkg/default  for my root location, so I would find
start.pl in /local/pkg/default.)
Test whether your service is available by pointing your
browser to  http://yourwebserver/cgi-bin/broker?   (Note
that the question mark is part of the URL!!)

8. At this point, you are not finished with your configuration. In
that same root directory for SAS/IntrNet services, inetcfg.pl
created a file, appstart.sas.  You now need to configure that file
to include the librefs and associated paths for programs that will
be run through the Application Dispatcher.  The way the
Application Dispatcher works is that the end user displays an
HTML-coded page. The end-user uses check boxes, text entry
fields, or other features to select information that SAS will
process. The information is passed to the broker (on the web
server). Coded in the information sent to the broker is a reference
to the appropriate SAS program to run on the SAS server. That
reference typically is libref.program.sas.  In the appstart.sas file,
you must have those librefs defined to SAS will know where to
find the requested program.  We recommend that you define
program libraries here, not data libraries. It is a better practice to
define data libraries with librefs in the SAS programs that run for
a given request, rather than defining them in the appstart.sas file.
The appstart.sas file can be modified at any time, but if you are
running a socket service, you should stop and restart your service
when you modify appstart.sas .

9. You will want to work with your system administrator to ensure
that the start.pl script, which starts the Application Dispatcher
services, is run whenever the system is rebooted. Your system
administrator can automate this process. You should also
discuss ways to verify that the service is running normally. SAS
provides some utilities for administrative functions like this.

htmSQL

With htmSQL, the program  and results are together in one file.
A query selects items to display. Query execution is triggered
with a browser request and results are displayed in the format
dictated by the developer. Input files contain a mix of HTML and
htmSQL directives. When a browser requests one of these input
files, the htmSQL directives are processed, yielding results that
are displayed in the browser window. Viewing the page source
will not reveal the htmSQL directive code, since only the results
are sent to the browser window. Access to data is through a
SAS/SHARE® server.

INSTALLATION AND CONFIGURATION STEPS

SAS Server installation and configuration steps:
1. Define a service on the SAS application server
2. Start a SAS/SHARE server

Web Server installation and configuration steps:
1. Install the htmSQL CGI tool on the Web server
2. Configure the installation by modifying htmSQL.cfg
2. If the SAS Server is a different machine, define a service
identical to that defined on the SAS Server

Documentation for htmSQL is on the SAS Web site:



http://www.sas.com/rnd/web/intrnet/htmSQL

IN-DEPTH

THE SAS SERVER AND htmSQL

Data is accessed in htmSQL through a SAS/SHARE® server.
SAS/SHARE is a sophisticated product not covered in the scope
of this paper. We describe a minimal configuration in the
following three steps and encourage the reader to further
investigate SAS/SHARE capabilities.

1. Each SAS/SHARE server uses a defined service on the SAS
application server. In the Solaris environment, a service is
defined by adding a line to the /etc/services file (your UNIX
administrator has ‘write’ permission)

myshare   5555/tcp   # SAS/SHARE server

The /etc/services line above defines a service named ‘myshare’
on port 5555, an arbitrarily chosen unused port.  (When the Web
server is a different machine, the same entry should appear in
/etc/services on both machines)

2. The SAS/SHARE server references the defined service.
Submit the following SAS code to start a SHARE server named
‘myshare’. For our example, we choose to define a library when
we start the server by preceding PROC SERVER with the
LIBNAME statement.

LIBNAME mylib ‘path to my library’;
PROC SERVER ID=myshare AUTHENTICATE=OPT
COMAMID=TCP;

AUTHENTICATE=OPT prevents us from having to provide
authentication with each htmSQL page. The COMAMID
parameter sets the communication access method for the
SHARE server.

3. Because the SHARE server must be running to respond to
data requests, some form of automatic resubmission of the
PROC SERVER is a good idea.
Suppose the PROC SERVER job is named servit.sas.
A script, scheduled to run periodically, could look for the process
named servit and resubmit the job if that process did not exist:

#!/bin/sh
# looking for job named servit
if (ps -ef | grep servit | grep -vc grep)
then
 echo "need not run job"
 exit 1
else
 echo "must run job"

 /bin/sas /path/servit.sas
 exit 1
fi

If the preceding script were stored in the executable file named
restartit, the crontab entry to check every minute would be:

* * * * * /…/restartit > /dev/null 2>&1

THE WEB SERVER AND htmSQL

Files to be installed on the Web server may be downloaded from
the SAS Web site. All of the CGI Tools for SAS/IntrNet are
included in a single tar file named websrv.tar.
The executable file, named htmSQL, belongs in the Web server
directory for CGI executables. The Web server administrator will
know the location.
The execution of htmSQL is configured by the file htmSQL.cfg,
which belongs in cgi-bin directory. A default template named
htmSQL.cfg_v8 is included in websrv.tar. Copy the template to
htmSQL.cfg. Helpful documentation comments are included in
the file, which can be modified with a text editor. Most options can
remain at the default setting. The DATASRCFILE option points to
a file of predefined data sources and associated data libraries.
This data source file is not required and we do not use it for our
example, since we define a libref in the PROC SERVER code.
We ensure that the DATASRCFILE option is commented out in
htmSQL.cfg.
It is convenient to have the Web server automatically recognize
htmSQL files by the filename extension. The Web server
administrator can do this by adding two lines to httpd.conf for an
Apache Web server. The first line causes files with extension
.hsql to be processed with htmSQL. The second line provides the
path to the htmSQL executable:

AddHandler htmSQL .hsql
Action htmSQL /exepath/htmSQL

When the Web server is not the same machine as the SAS
server, ask the Web server administrator to duplicate (exactly)
the service definition in /etc/services.

USING htmSQL

Directives are enclosed in curly braces. Most function in pairs to
delimit sections of code: {query}…{/query}. A {query} section
contains one or more {sql} sections. Each {sql} section can have
one associated {eachrow} section to format the results and one
{norows} section for different action if the query results are empty.
While the {query} section is for read access, the {update} section
allows write access. Each {update} section contains one or more
{sql} sections, each of which may have an associated {success}
and {error} section.
Variables are preceded by & and enclosed in curly braces:
{&var1}. Variables may be passed in as name-value pairs with
the browser request or come into existence in {sql} sections.
There are automatic variables as well.

OTHER INSTALLATION POSSIBILITIES

SAS provides you with three types of Application Dispatcher
services:  launch (a new SAS session is begun whenever a
request is made), socket (SAS is running all the time, waiting for
a request) and pool (multiple SAS servers are available).  You
should read about these in detail before configuring your
installation. The choice of service type may be influenced by how
your web and SAS services are structured. For example, a launch



service requires that the web server and SAS server be on the
same machine.  For a pool service, the web and SAS server may
or may not be the same machine.

The most basic htmSQL setup does not include the use of a data
source file. Consider the following issues to decide your
requirements. Using the file can provide extra security in several
ways by hiding the server name and port, the SHARE server user
access password, or the userid and password for a secure mode
server from the developer. The server name, port or service, and
authentication elements can be placed directly into htmSQL
code, sidestepping the need for the data source file. If
authentication is required, it is more convenient to have a data
source file and avoid having to authenticate for each query or
update. Another consideration is that htmSQL referencing a
predefined data source need not be updated if the mapping
behind that data source changes. One would create a data
source file use the dsdef script in websrv.tar.

SAMPLE CODE

We begin with a simple listing of a variable from the first 10
observations of a table.

Application Dispatcher code:

libname cps ‘path/to/data’;
data _null_ ;
set cps.countyofservice(obs=10) ;
file _webout ;
if _n_ =1 then do ;
  put '<br>' ;
  put '<br>'
   'List of first 10 CPS Service Counties'
   '<br><br>' ;
end ;
put servicecounty '<br>' ;
run ;

Having saved this code in a file named ex1.sas in the program
library ‘mylib’, we can invoke this from a browser window by
entering (substituting the web server name and path for …):

http://…/broker8?_program=mylib.ex1.sas

This could be placed on a web page as a hyperlink:

<a href=
http://…/broker8?_program=mylib.ex1.sas>
run the job</a>

It could be the action for a web form:

<form action=http://…/broker8 method=”post”>
<input type=”hidden” name=”_program”
    value=”mylib.ex1.sas”>

The results come to the browser window and look like this:

The htmSQL code to do the same thing:

List of first 10 CPS Service Counties<br><br>

{query server="myshareserver"}

{sql}
   select servicecounty
   from mylib.countyofservice(obs=10)
{/sql}

{eachrow}
   {&servicecounty} <br>
{/eachrow}

{/query}

This code, placed in a file named ‘ex1.hsql’ in a web server
directory and displayed in a browser window, yields identical
results:

One obvious advantage to htmSQL is that put statements do not
come into play. Suppose your results needed to have a hyperlink
to a file and the name of that file is found in a variable named
var1. Also suppose that you want the visible text for the link to be
var1. In the Application Dispatcher coding put statements can get
complicated:

Put
‘<a href=”pathtodirectory/’ var1 ‘”>’ var1
‘</a>’;

The equivalent code in htmSQL would be:

<a href=”pathtodirectory/{&var1}”>{&var1}</a>

SAS procedure output can be dynamically produced using the
Application Dispatcher but not htmSQL.



DATA step coding can be used in the Application Dispatcher, but
only SQL queries may be used in htmSQL.

ODS HTML can be used with the Application Dispatcher but not
with htmSQL.

These sorts of differences will come under consideration as you
plan your web applications.

CONCLUSION

Given a programming goal, SAS provides numerous pathways to
that goal. Environmental circumstances can bring your goal
closer or make it a little harder to reach. We have discussed
installation, configuration and use of two SAS/IntrNet CGI tools.
Your programming skills and your web and SAS server
environment can influence the product mix you choose for your
web application.

CONTACT INFORMATION
Your comments and questions are valued and encouraged.
Contact the authors at:

Carol Martell
UNC Highway Safety Research Center
730 Airport Rd, CB# 3430
Chapel Hill NC 27599-3430
Work Phone: 919-962-8713 
Fax: 919-962-8710
Email: carol_martell@unc.edu

 Web: www.hsrc.unc.edu

Ruth Marinshaw
Applications Support Group
Academic Technology & Networks
38 Phillips Hall, CB #3455
Chapel Hill NC 27599-3455
Work Phone: 919-962-4314 
Fax: 919-962-5664
Email: ruth@unc.edu

                Web:  http://help.unc.edu

Eric Rodgman
UNC Highway Safety Research Center
730 Airport Rd, CB# 3430
Chapel Hill NC 27599-3430
Work Phone: 919-962-8709 
Fax: 919-962-8710
Email: eric_rodgman@unc.edu

 Web: http://www.hsrc.unc.edu



 

XML and SAS®:  An Advanced Tutorial 
Greg Barnes Nelson, STATPROBE Technologies, Cary, NC 

 
 

ABSTRACT 
One of the goals for SAS applications developers has been to 
develop three-tier and n-tier applications where the application 
logic (business rules) is separate from the data, which, in turn, is 
isolated from the user interface.  In a previous paper (Barnes 
Nelson, 1999)1 we discussed how to implement this logic 
separation using the SAS Component Language.  This paper 
extends that line of thinking by introducing SAS developers to 
XML.  eXtensible Markup Language, or XML, is a protocol of 
sorts that can be described as a technique for separating data 
from its presentation.  In this paper, we will discuss XML in the 
context of SAS applications and how it can be used in the 
preparation and presentation of data.  We will explore some of the 
features of XML that makes it a good partner for SAS-based 
applications. 

INTRODUCTION TO XML 
XML has been referred as the next ASCII; kind of like HTML; a 
boon to corporate information exchange and technologies’ next 
savior.  This paper is an attempt to look beyond the hype and 
begin to understand the ideas behind XML, its purpose and 
implications for technology and business improvements.  There 
have been 100’s of articles written about its benefits, and yes we’ll 
cover some of those here as well, however the focus of this paper 
is to discuss the role of XML in SAS applications.  Specifically, we 
will discuss XML and related TLAs♣; the benefits of XML; common 
tasks that can benefit from an XML architecture; and wrap it all 
within the context of SAS.  By the time we are finished here, you 
should benefit from the practical uses of XML and the SAS code 
that we used to produce them. 

DEFINITIONS 
As people are introduced to new technology, it is often confusing 
when terms are introduced before they are defined.  Yet, when 
definitions come before they are used in context, the full benefit of 
the term is not realized.  Throughout this paper, we will do our 
best to define terms within the context that they are used.  We 
will also provide an annotated glossary at the end which, not only 
explains the term or phrase, but identifies its context and 
implications, if any.  If you see a term in bold text, you can rest 
assured that we will provide greater depth to its meaning in the 
glossary at the end of this paper. 

An obvious place to start in a paper about XML is with XML itself.  
XML stands for eXtensible Markup Language.  XML is a 
language that is used to create other “languages”.  Many people 
have taken XML, for example, and created a standard “language” 
to describe an industry vocabulary (see for example, BizTalk.com 
and HRMML).    

RELATIONSHIP TO SGML 
XML has its roots in a more complicated meta-language called 
SGML, or the Standard Generalized Markup Language.  SGML was 
formally approved as a standard in 1986 but had been in use at 
IBM for several years in the production of their technical 
publications.  SGML is the father of another widely used standard 
that propelled the Internet into widespread adoption:  HTML.  
SGML is a language that publishers, technical writers and library 
automation personnel have been using to create “documents” 
such as museum catalogs, technical publications and product 
catalogs from manufacturing specifications. 

SGML is, by definition, a markup language.  Markup refers to the 
additional information that is added to the text of a document to 
enrich either its meaning or presentation.  In word processing 
packages, for example, markup is used to control the way 

                                                           
1 Barnes-Nelson, G.S. (April, 1999) Extending the Life of Your AF Application: 
Exploiting the Model-Viewer Paradigm. Invited paper at the annual convention of the 
International SAS Users Group (SUGI), Miami Beach, FL. 
♣ Three letter acronyms ✪  

information is presented (or how it looks when viewed or printed.)  
But we don’t always have to use markup to control the way the 
document is presented.  In the case of XML, markup is used to 
describe the actual contents – that is, to enrich the data by 
describing its use, context or definition. 

RELATIONSHIP TO HTML 
If we remember back to our first HTML lesson, you will recall that 
if you wanted to display the words “Hello World” in a browser, you 
had to markup the contents of the HTML with special tags. 

<HTML>

<HEAD>

<TITLE>My First HTML Document</TITLE>

</HEAD>

<BODY>

<P>Hello World</P>

</BODY>

</HTML>

We needed that much HTML simply display the text “Hello World”.  
We soon realized that by adding additional tags, we could change 
the characteristics of the text – making it bigger, bolded, blinking, 
and blue.  The challenge that faced content providers soon 
became – “how do we write this simple passage without having to 
know the nuances of the markup language”? – the solution:  the 
HTML editor.  Not yet satisfied, we wanted it more interactive – 
the solution:  JavaScript.  Ah yes, now we need someone else to 
write the code – the solution: SAS HTML formatting macros.  
Faster, better, easier! – the solution: SAS/IntrNet (Application 
Dispatcher & htmSQL) and Java Server Pages.   

HTML IS OLD, XML IS COOL! 
HTML has and will continue to serve a very important role in 
delivering information across the globe.  HTML won’t go away 
anytime soon, just like printed books will not disappear.  We 
accept HTML for the gifts that it has brought us – displaying static 
information on our web browsers.  But what about my cell phone 
or PalmPilot  - my webTV or web-enabled refrigerator?  What 
about getting real data like stock quotes, movie times and SAS 
output!  XML was designed from the ground up to help us 
describe, transfer and deliver data.  Similar to its cousin, HTML, 
XML is a markup language.  XML’s markup doesn’t tell us how the 
data should be presented, rather it tells us what it is, how it can 
be used – its role is to describe the content, rather than how to 
display it.   

The Problem with HTML 
HTML was designed primarily for delivering information over the 
web.  It is, at its roots, a language used to describe what 
information will look like when rendered through a web browser.  
Both the content and formatting of the information is tied together 
in the HTML language tags. 

In HTML, we have a finite number of tags that we can use to 
markup our documents.  These tags are used for controlling how 
the document should be presented.  For example, in our previous 
example, we could have made the text “Hello World” bolded by 
added the <B> tag. 

 

<P><B>Hello World</B</P>

In XML we are not limited by the number of tags that someone 
else has thought of to describe our data – that’s our job!  We use 
the tags as we see fit to describe the content and context of the 
data.  For example, the following is XML document describes the 
first observations from some data that we may have about our 
customers. 



 

 

<?xml version="1.0" ?>  
<customer-data> 
<contact-information> 

 <cust-id>137000</cust-id>  
 <name>Kraft, Ms. Rose</name>  
 <gender>Female</gender>  
 <age>34</age>  
 <income>32,340</income>  
 <status>Married</status>  

<address> 
  <street ORDER="1">869 

Veterans Blvd.</street>  
  <street 

ORDER="2">Business 
Research</street>  

  <city>Rutherford</city>  
  <state>NJ</state>  
  <zip>70702</zip>  
 < region 

>NORTHEAST</region>  
 </address> 

 </contact-information> 
 </customer-data> 

XML Document 1.  XML document produced with a SAS 
DATA STEP. 

This XML document was produced dynamically from a SAS DATA 
Step2.  But notice that instead of the usual tags like <B>, <P>, 
<A HREF> and so on, we have custom tags that we have used to 
describe our data.  The first line tells us that we are dealing with 
an XML document.  The second line has a tag called  <customer-
data>, which tells us that we are dealing with our customers.  
Within this, we find that we have some customer information, 
designated with the <customer-information> tag.  Within each 
customer, we have collected a variety of information – for 
example, their name <name>, gender <gender>, income 
<income>, marital status <status>and another section that 
contains their address <address>.   

Although not a terribly complicated example, we have exposed 
one of the key benefits of XML: simplicity.  This document 
represents a hierarchy of information with easily understood 
patterns.  Because of this simplicity, both humans and the 
computers can access it, understand it, and translate it into useful 
information. 

In our example, the hierarchy dives only 3 levels deep: Customer 
Data, one or more customers (customer-information) and one 
more level for address information.  There is no reason that an 
XML document could not represent a complex hierarchy with 
multiple, nested levels of information.  We will explore a more 
complicated example later in this paper where we pull information 
from multiple tables to create a complete customer history profile. 

INFORMATION TECHNOLOGY CHALLENGES 
Despite incredible advances in technology, there are some 
persistent challenges that face us as technologists trying to solve 
real-world business problems. 

XML will likely not be the technology that saves us from 
painstaking processes to make our data cleaner, more accessible 
or provide a richer context for information and its delivery across 
the web or across the room.  However, if applied appropriately, 
XML can help solve some common barriers to productivity. 

Multiple Views of the Same Data 
A common challenge faced by many organizations requires data to 
be formatted differently depending upon its use.  For example, 
account history or a customer’s profile may be generated for the 
Customer Service department in order to interact with customers 
on the phone.  The Finance department, however, may require a 
different view of the data in order to invoice the customer.  The 
Sales and Marketing departments need yet a different view of the 

                                                           
2 See Appendix A for an example of producing XML using a SAS Data Step. 

customer – requiring both granular data for each customer as well 
as highly summarized data for database marketing (buying history 
and cross-selling campaigns).  Each department requires a similar, 
but different view of the data.  In addition, data for each of these 
applications may be housed in different systems and defined 
somewhat differently.   

XML can help us by providing a framework for understanding the 
customer in terms of a patterned hierarchy  -- essentially giving 
us a common definition of a “customer”.  By defining a standard 
such as this, departments can exchange information about a 
customer easily and quickly -- regardless of where and how the 
data was stored.  Additions or modifications to the source data 
have little impact on the XML document if care is taken to retain 
the way that the customer is defined according to the XML 
document.  Because the data is separated from the way that it is 
presented, any changes in process or business rules, wont cause 
the systems to break -- especially when those systems cross-
organizational boundaries.  In addition, new views or 
representations of the data that are required can be generated 
without changing the underlying XML data. 

We will explore later different methods to render or display XML 
data, but one of the benefits of XML is that once data has been 
delivered to the client application, it can be manipulated, 
transformed and presented in a variety of ways – all without 
having to request the XML document from the server a second or 
third time. 

Application Integration 
Implicit in the first point above is the idea that data can be 
integrated from disparate sources and/ or multiple applications.  
In our case, for example, we may have data that is housed in one 
or more source systems (e.g., ERP systems, billing systems, 
Sales-Force Automation, database marketing/ data mining 
databases).  Despite this “separateness”, data from these diverse 
sources and/ or applications can be brought together using a 
common meta-language that defines our customer.  In our 
fictitious customer application, we have various applications 
connected over a network.  When one application wants to access 
information from another application, an XML-formatted document 
is sent across the wire to the requesting application. 

Because the definition of customer has been defined as a 
standard, information about the customer can be exchanged 
among companies much more easily as the mechanism for data 
interchange doesn’t rely on, nor expose, the internal business 
systems.  Data can be sent, for example, to a partner with only 
parts of the “customer” that they care to have the partner see.  
Invoicing might be shared with your billing supplier or the 
customer directly through the web, e-mail or other electronic 
means (PDAs, Cell Phones, etc.). 

Information Optimization 
Another business challenge that is often faced is the assimilation 
of huge amounts of unstructured data into meaningful context.  
As humans, we can process data very efficiently when the data 
doesn’t appear to have a pattern to it.  In our customer 
application, we may want to include all sorts of information about 
our customers from diverse data sources outside of our firewalls.  
Take for instance the following scenario: 

As we cruise the web, we find an article about a new product that 
a potential customer is developing.  Our company creates 
products and services that would be a good fit for this new 
potential client.  As we read this article, we can parse the text, 
assimilate its meaning and make judgments about what we have 
read. Next, we decide to get an independent assessment of their 
company – we request information from Dunn & Bradstreet that 
will show us how they have done financially, who holds senior 
management positions, where they have offices, etc. 

A trip to their web site affords us an opportunity to get another 
perspective: to get a sense of their culture – from the words they 
use to describe their company to the opinions they have about 
their own products.  Finally, we incorporate some of what we have 
learned about this company into our own Sales Forces Automation 
system so that our sales representatives will be more 
knowledgeable as they interact with this new potential customer. 

XML to the Rescue 
Much of what we have described above can be best characterized 



 

 

as unstructured data.  A contemporary solution to this problem 
would be a Knowledge Management system.  A non-technology 
solution would be to create new positions whose job would be to 
“surf and assimilate”.  But XML does offer some key advantages to 
this problem. 

Smart Agents.  Suppose instead of you sitting behind the 
terminal searching for documents, you tell the computer the kinds 
of things you were interested in and have a computer do the work 
for you – filtering, cataloging and storing the retrieved 
information.  The XML paradigm keeps the information separate 
from the presentation rules, allowing for intelligent agents to scan 
through a document’s content and ignore the style sheet if one is 
present.  

Meaningful Searches. HTML-based search tools use keywords 
and text to manage the information about the millions of web sites 
in existence.  XML-based search tools, however, use the inherent 
data structure in the XML documents themselves as well as the 
meta-data contained both in the XML document as well as the 
Document Type Definition (DTD).  Given the amount of 
information on the web, technology that gives us more precise 
control over searches should help sift through information more 
cleanly than before.  If we were to conduct a search on the web 
today – say on SAS – we would get between 268,000 and over a 
million hits depending on the HTML-based search engine we used.  
The topics returned range from SAS Institute to Scandinavian 
Airlines to Surfers Against Sewage.  Because XML provides a 
context for our searching, we could specify SAS in the context of 
<company>, <software> or other relevant elements. 

Granular Updates.  Since the structure of an XML document is a 
known hierarchy of information, we are able to update information 
by sending only parts of the document each time there is a 
change.  By using this feature of XML, we don’t have to resend 
the entire hierarchy to the requesting application. 

Technology Optimization 
At the time of the writing of this paper, there are literally billions 
of pages of information available on the web on over millions of 
web sites globally.  Most of the web pages are written using HTML.  
As we have learned earlier, HTML is a great tool for constructing 
documents to be displayed over the web. As you surf the web, 
you request a document from a web server using a Uniform 
Resource Locator (URL).  Assuming the document can be located 
on the specific server, the page is downloaded to your browser for 
rendering.  Once downloaded, the communication between your 
machine and the web server is essentially broken.  That is, the 
relationship between the browser and the server is 
connectionless. 

Continuing with our customer scenario, let’s assume that we have 
downloaded a table of information that lists all of our customers, 
what products they have purchased, how much they have spent 
with us, where their home office is, who their sales rep is and so 
on.  If we wanted to sort the information by any of the data that 
we have in the table, we would have to send a request back to the 
web server to have it re-processed and re-rendered.  This 
approach places a tremendous burden on the web server to 
handle fairly simple requests.  A more efficient approach would be 
to have the client machine handle the local manipulation of the 
data where it could be sliced-and-diced, sorted, filtered and 
rendered differently.  

By combining XML and XSL (eXtensible Stylesheet Language), 
we can achieve this goal of local computation and manipulation 
(more on XLS later.)  Once an XML document is downloaded, we 
can achieve this level of interactivity on the client side with a 
single request from the web server.  Figure 1 shows an example 
of an interactive document that is built entirely of XML data 
delivered to the client by a single request to the server.  For more 
information on this example, refer to the article entitle “Transform 
Your Data with XSL” found at 

 http://www.xml-zone.com/articles.asp  

 

Figure 1.  Dynamic XML application. 

In addition to the flexibility gained through local processing and 
manipulation, we can realize efficiency gains by off-loading the 
requests from the server.  As the above example shows, data can 
be translated from this interactive version into a print version or 
XML only version so others who can process this XML can 
incorporate the data into their applications.  In fact, there is a 
movement to unify the format of resumes so that human 
resources information can be shared universally (see the Human 
Resources Management Markup Language in the glossary for 
more information.) 

UNDERSTANDING THE XML LANDSCAPE 
So what?  We have an XML document that is self-describing.  We 
still can’t print invoices, e-mail with it or build applications with it, 
right?  What we have discovered thus far in our exploration of 
XML is the simple case of the XML document.  The beauty of an 
XML document is that it can be written, read and rendered by 
countless applications.  These three, oversimplified, tasks help 
define some of the technologies that surround XML.  Before we 
discuss these three tasks and how to perform these tasks with the 
SAS System, it is important to understand the rules that govern 
XML documents. 

Rules to Live By 
Unlike HTML, XML has a rigorous set of rules that govern how a 
document should be constructed.  A well-formed XML document is 
one that has all of the characteristics that it is supposed to have.  
There are a few simple rules about how an XML document should 
be constructed. 

� Beginning and ending tags must match.  That is, you cannot 
have an <ADDRESS> tag without one that ends the expression 
</ADRESS>. 

� Elements can be nested within each other, but they cannot 
cross boundaries.  For example, we can have  

 

<Customer>

<ID>109</ID>

<Name>Greg Barnes Nelson</Name>

</Customer>

but not: 

<Customer>

<ID>109

<Name>Greg Barnes Nelson</ID>

</Name>

</Customer>

� XML tags are case sensitive.  Each of the following, for 
example, is considered a different element. 

 

<Customer> <CUSTOMER> <customer>



 

 

� Because each element must have a beginning and ending tag, 
empty elements are signaled by either a closing tag or a />.  
These two lines are equivalent: 

 

<Customer/>

<Customer></Customer>

� Just like in HTML, there are some reserved characters that 
cannot be used.  These include: 

<  &lt;  & &amp; 

> &gt;  “ &quot; 

‘ &apos; 

 

Each XML document must have a root element that denotes the 
top of the hierarchy or root.  In our example <customer-data> 
represents the root element and cannot occur anywhere else in 
the document. 

Assuming an XML document follows all of these rules, browsers or 
other parsers that can read XML are guaranteed to be able to 
read your document.  This is one of the primary differences from 
HTML.  Because all of these rules are adhered to, our XML 
document is said to be well-formed.   

In addition to being well-formed, documents that have something 
called a Document Type Definition (DTD) and are well-formed 
are valid.  Although it is not necessary that a document be valid 
(i.e., have a DTD), is it often useful to document them in a DTD 
so that other people or applications can benefit from knowing how 
they are supposed to be used. 

A DTD essentially describes the document’s rules – that is, which 
elements are present and the relationship among the elements.  
DTDs, although optional, help to validate the incoming XML 
document when the application doesn’t have a built-in definition of 
the XML document. 

Writing XML 
As SAS applications developers, one of our primary tasks in the 
near future will be to learn how to create an XML document.  Just 
as we have learned how to write HTML from our SAS applications, 
XML documents can be created programmatically using the SAS 
language. 

In SAS Version 8.0 (M01), there exist several lightly documented 
methods for writing XML natively.  We can write XML from a Data 
Step (see Appendices A and B for examples), from output that we 
generate using SAS’ Output Delivery System (ODS) or using the 
Version 8 XML libname engine.  Let’s discuss each of these with an 
example of each. 

SAS DATA STEP 
In addition to providing a very powerful engine for creating 
complex documents, the DATA STEP will be perhaps the most 
familiar method to most SAS programmers.  As depicted in 
Appendix B, we can programmatically create an XML document 
from a SAS data set.  Despite its simplicity, we can extend this 
example to combine a much richer XML document by combining 
multiple data sets to create the patterned, hierarchical output that 
characterizes the XML document.  In Appendix B, we find a more 
complicated example of this as we pull in data from multiple data 
sources. 

In our simple case (see XML Document 1 shown earlier), we 
created a simple XML document that displayed our customer data 
with basic name and contact information as well as some brief 
demographics.  But there is no reason that you couldn’t extend 
the example to include past orders, billing and shipping address or 
marketing constructs such as Life-Time Value, Segmentation, etc.  
By using the power of the SAS Data Step, we can 
programmatically include additional content as well as metadata 
from SAS’ dictionary tables and formats.  The example shown 
below was created to show how we would create a complete 
customer history from multiple tables (see Appendix B.)  Here we 
show an XML document that contains several customers, their 
contact information, demographics and all of their past invoices.  
We have collapsed the view to show only the high-level portion of 
the invoices.  Below, we show an expanded invoice section. 

<?xml version="1.0" ?>  
<customer-data> 

<cust-info> 
 <cust-id>137000</cust-id>  
 <name>Kraft, Ms. Rose</name>  

<demographics> 
 <gender>Female</gender>  
 <age>34</age>  
 <income>32,340</income>  
 <status>Married</status>  

 </demographics> 
<address> 

 <street ORDER="1">869 
Veterans Blvd.</street>  

 <street ORDER="2">Business 
Research</street>  

 <city>Rutherford</city>  
 <state>NJ</state>  
 <zip-code>70702</zip-code>  
 <region>NORTHEAST</region>  

 </address> 
<invoices> 

<invoice INVOICE-ID=">107707" 
INVOICE-
DATE="07MAR1994"> 

.. .. .. .. 
<invoice INVOICE-ID=">135872" 

INVOICE-
DATE="08AUG1994"> 

.. .. .. .. 
<invoice INVOICE-ID=">243377" 

INVOICE-
DATE="24APR1998"> 

 </invoices> 
 </cust-info> 

<cust-info> 
.. .. .. .. 

 </customer-data> 

XML Document 2.  Customer History XML document. 

Here we show one particular invoice for August 8, 1994. 
 
<invoice INVOICE-ID=">135872" INVOICE-

DATE="08AUG1994"> 
<lineitems> 
   <line-item ID="Item1"> 

     <product-code CAT="Toys">TY1200</product-code>  
         <quantity>4</quantity>  

</line-item> 
   <line-item ID="Item2"> 
        <product-code CAT="Toys">TY2100</product-code>  
        <quantity>1</quantity>  

</line-item> 
   <line-item ID="Item3"> 
        <product-code CAT="Toys">TY2300</product-code>  
       <quantity>1</quantity>  

</line-item> 
   <line-item ID="Item4"> 
       <product-code CAT="Toys">TY4100</product-code>  
      <quantity>1</quantity>  

</line-item> 
 </lineitems> 
</invoice> 

XML Document 3.  Customer history XML document with 
expanded view of an invoice. 

ODS 
Starting with Version 7, SAS programmers were able to take full 
advantage of the Output Delivery System or ODS.  The goal of 
ODS was to rules that governed what output should contain 
versus how it should be presented.  Although experimental in 
Version 8.00, we can now direct any output that can be created 
and send it to an XML document.  The default XML engine for ODS 
in Version 8.0 (M01) produces a proprietary XML document that 



 

 

adheres to SAS Institute’s Version 8.0 DTD.  The code to create a 
sample XML document with PROC TABULATE is shown below.  The 
XML document that is created as a result of this contains a 
tremendous amount of metadata, which can be used to describe 
the output and its potential relationship to other output objects. 

 
ods xml file="c:\xmltabulate.xml"; 
                                                                                                                                                                                                                         
  proc tabulate data=SASUSER.CLASS  ;                                                                                                                               
     table   ALL                                                                                                                                       
        ,(sex age height weight) * n =' '                                                                                                                                                                   
        ;                                                                                                                                                           
     class  sex age height weight;                                                                                                                                  
  run;   
ods xml close; 
 

In Version 8.01, additional experimental engines will be developed 
that support the DocBook3 standard as well as a few variants of 
HTML output (with CSS and a bare-bones HTML version).  By 
combining SAS Institute’s raw XML documents with the 
appropriate DTD, we have a powerful method for transforming 
and filtering output in other applications that can read, write and 
render XML documents. 

XML Libname Engine 
Although experimental in Version 8.0 (M01), the XML LIBNAME 
engine provides an easy method of writing XML documents 
directly from libname references.  Those tasks that you can 
perform with a standard libname such as updating data are 
available through this engine. The development at SAS Institute is 
ongoing in this area, but we can see a simple example of taking a 
SAS dataset and writing it out to an XML document. 

 
libname sampdata 'C:\mylib' ; 
libname DestXML XML 'output.xml'; 
 
data DestXML.dsetanything ;   
  set sampdata.customer  

(label="My customer information"); 
  addr1=urlencode(addr1); 
  label custnum ="Customer-Information"; 

run; 

The first row of the XML document that is produced from these 
statements is presented below.  We had to use the urlencode 
function in our code to encode any special XML element names 
such as the ampersand found in one of our addresses (see “Rules 
the Live By” section above for examples of these.)  When we 
created the XML files, we specified a data set name just like we 
would for a permanenet SAS data set (dsetanything).  This name 
is used in the XML as a descriptor for the document.  However, 
with the default engine, which is generic mode XML4, variable 
labels, formats and lengths are not written to the document.  We 
can use a different engine by using the XMLTYPE= option and 
specify the values values of GENERIC|ORACLE or HTML or 
OIMDBM5. 

 
<?xml version="1.0" ?>  
<TABLE> 

<ROW> 
 <CUSTNUM>137000</CUSTNUM>  
 <NAME>Kraft, Ms. Rose</NAME>  
 

<ADDR1>869%20Veterans%20Bl
vd.%20%20%20%20%2</ADDR
1>  

 <ADDR2>Business Research</ADDR2>  
 <CITY>Rutherford</CITY>  
 <STATE>NJ</STATE>  
 <PHONE>201-507-2211</PHONE>  
 <REGION>NORTHEAST</REGION>  
 <AGE>34</AGE>  

                                                           
3  For more information about DocBook, see http://www.oasis-open.org/docbook/  
4  This is compatible with the Oracle8i XML implementation. 
5   The OIMDBM is an industry standardization and attempts to express formatting 
information in its output.  see http://www.mdcinfo.com/OIM/OIM10.html  

 <INCOME>32340</INCOME>  
 <MARRIED>1</MARRIED>  
 <SEX>0</SEX>  
 <ZIP>70702</ZIP>  

 </ROW> 
.. .. .. 
</TABLE> 

 

XML Document 5.  XML document Created with the XML 
Libname Engine (Version 8.0 M01). 

Reading XML 
The primary value of an XML document is that it can be easily 
interpreted by someone else – especially by computer.  The 
exchange of information through XML as the medium requires that 
the recipient be able to read, process and possibly transform the 
information into something usable.  There are a variety of XML 
parsers available which can read and interpret an XML document 
(see for example IBM, Microsoft and Sun Microsystems.) 

A parser, or engine that reads an XML document is typically 
embedded in an application.  Its job is to read the document and 
convert the content into constructs that the application 
understands.  For SAS application developers, we can write our 
own parser using SCL or Base SAS, but it would be much simpler 
to use an XML parser that was written by someone else.  IBM’s 
parser is one of the most powerful and is available as a Java 
applet.   

Which parser you use will depend on your application.  A likely 
scenario for SAS application developers would include a back-end 
or middle-ware parser would interpret the document and apply 
programming logic to load a database, construct an HTML page or 
render a PDF document.   

Through the use of the XML Libname engine, we demonstrate 
below the conversion of an XML document to a SAS dataset.  
Once parsed, we can then use our traditional SAS programming 
constructs to develop robust client/ server or web-based 
applications.  The general form of the XML syntax for reading an 
XML document is given here. (Remember, this is experimental!) 

 
libname myXML XML 'C:\mylib\class.xml'; 
proc datasets dd=myXML; run; 
 
data readback; 
  set myXML.row; 
run; 
 
Proc print data=readback; 

run; 

Rendering XML 
Although XML was designed primarily as a way to solve the 
problem of exchanging web documents, it is clear that XML has 
potential for solving other sorts of data exchange problems that 
are not limited to the web.  In Version 8.1 of the SAS System, we 
will see support for WAP (Wireless Application Protocol) that 
will enable XML documents to be sent over wireless protocols to 
such devices as PDAs and cellular telephones. 

Despite its youth, XML already has a rich set of tools, which allow 
us to render XML documents in a variety of ways.  If our browser 
supports the viewing of XML documents, we can open them 
directly.  IE 5 is currently the only browser that supports XML 
natively.  Because of this fact, rendering HTML on the server and 
pushing it to the client will probably be the most common method 
of rendering XML until there is a larger base of browser support 
for XML.   

Other types of transformations include: 

� Converting XML into Scalable Vector Graphics (SVG) based on 
the W3C’s SVG markup language to produce pie charts and 
other graphical formats from XML documents. 

� Rendering XML into PDF documents using James Tauber’s FOP 
(Formatting Objects into PDF). 

� Converting XML documents into TeX files which can be 



 

 

rendered on a variety of platforms. 

� Converting XML into speech (VoiceXML) which can be used 
create audio tracks by a variety of software tools. 

� Rendering XML into an HTML document. 

Microsoft Internet Explorer 5.0 
Because we are most familiar with the visual presentation of the 
web, we will explore rendering XML documents in a web browser 
using Microsoft’s Internet Explorer (IE5).  This first example 
shows the use of Microsoft’s XML Data Source Object (DSO), 
which is a Java applet that can be used to bind an XML data 
source to a web page (in IE5).   

The HTML used to produce this page is fairly straightforward.  The 
key to this page is the APPLET reference where we pass it a 
parameter pointing it to the proper XML data source.  This 
example shows XML’s simplicity – we have not done anything else 
to this document to make it appear in the table except what you 
see below.  The XML document referenced here is the same one 
that we showed in XML Document 1 above. 

 

 

Figure 2.  XML Document rendered through Microsoft's DSO. 

<html><head></head><body> 

<h2> Sample XML Object - IE 5</h2> 

 <center> 

<APPLET code=com.ms.xml.dso.XMLDSO.class id=Customer 
width=0 height=0 MAYSCRIPT="true"> 

<PARAM NAME="url" VALUE="http://localhost/customer.xml"> 

</APPLET> 

<table border=1 datasrc=#Customer> 

  <tr> <td><span datafld="name"></span></td> 

 <td><span datafld="gender"></span></td> 

 <td><span datafld="age"></span></td> 

 <td>$<span datafld="income"></span></td> 

 <td><span datafld="status"></span></td> 

  </tr></table></center></body></html> 

HTML Segment 1.  HTML code for binding and XML data 
source to a web page.

Expanding on this simple example where we bind our customer 
XML document to a web browser, we could also display it in a form 
view with navigations that allow us to move through the dataset 
(forward, backward) as well as add/ modify and delete records.  
For more information on the XML Data Source Object (DSO), 
please refer to the glossary at the end.  Here we provide 
references to on-line resources. 

Doing it in Style 
Those familiar with HTML may also be familiar with Cascading 

Style Sheets (CSS).  CSS was an early attempt at separating the 
information contained in HTML from how it was presented.  
Instead of marking up a page header with font specifications that 
control the size, orientation and other font characteristics, we can 
use Cascading Style Sheets and a class definition to control this.  
This allowed us to create basic HTML documents whose look and 
feel could be controlled by an external style sheet. 

XML has a similar construct for handling the complex presentation 
requirements of the web.  In XML, one can either use Cascading 
Style Sheets (CSS) or the Extensible Stylesheet Language 
(XSL) to present data in a browser.  Figure 3 shows an XML 
document formatted with a CSS (left) and an XSL (right).   

 

 

 

 

XML Document rendered with a 
CSS. 

 XML Document rendered 
with an XLS. 

Figure 3.  XML Document rendered with Cascading Style 
Sheets versus an Extensible Style Sheet. 

Despite the fact that Cascading Style Sheets were designed for 
HTML, it is just as good at formatting XML documents for the web.   
The XML document that was used was identical to that described 
in XML Document 1 referenced earlier in this paper.  The only 
difference was the addition of a header describing where we can 
find the CSS.  The CSS can be found in Appendix D. 

 

<?xml version="1.0" ?> 

<?xml-stylesheet type="text/css" href="Labels.css"?> 

<customer-data> and so on ... ...

 

XLS (extensible Style Sheet) is a style sheet technology designed 
specifically for XML.  With XSL, we are able to control our 
document’s presentation much more than before.  As 
demonstrated here (one in Figure 3-Right and again in Figure 4), 
we have two XML documents that are identical except for the 
reference to its XSL style sheet.  Note the clear separation of the 
content (XML document) from its presentation (through its XSL 
reference.) 

The XML header for this document is shown here: 

  <?xml version="1.0" ?> 

  <?xml-stylesheet href="Labels.xsl" type="text/xsl"?> 

This second rendering below shows the exact same document – 
the only difference:  the XML header points us to a different XSL 
document. 

  <?xml version="1.0" ?> 



 

 

  <?xml-stylesheet href="Table.xsl" type="text/xsl"?> 

 

 

Figure 4.  XML Document rendered with Table.xls. 

Transformation Through XSL and XSLT 
In addition to being able to render XML documents, XML provides 
us with a rich toolset for transforming documents as the style 
sheet is applied.  Through the use of both XSL and XSTL (XML 
Transformation Language) we can move text from one place in 
an XML document to another (for example, moving the value of 
first name and last name around); sorting elements (see, for 
example Figures 3 and 4 – note the order of the names in each); 
generating text and performing calculations (such as the count of 
all of the line items in an invoice); and numbering items in a list.  
Both XSL and XSTL provide a rich set of tools for manipulating and 
managing the information contained within an XML document. 

CONCLUSION 
XML brings a tremendous amount of power and flexibility to both 
client/ server and web-based applications.  As we have seen in 
this paper, there are a number of compelling benefits to both 
developers and to the organizations they serve.  For the SAS 
developer, XML offers a rich toolset for communication across 
application and organizational boundaries.  We are able to 
structure data in the context of meaningful hierarchy in a way that 
other people and software can easily understand.  Because of its 
patterned structure, data can be shared literally with any 
application or user that requires it.  As data and its corresponding 
structure changes, the XML document and its structure change 
with it. 

THE FUTURE OF XML AND SAS 
Although no production SAS Institute applications have been 
delivered to date using XML, we can easily incorporate XML into 
our applications by using common programming elements such as 
SCL and the DATA Step or combining other technologies in 
concert with the SAS System.   

As more vendors, like SAS Institute, incorporate XML into both 
applications and lower level language support, we should expect 
to see a wide variety of uses for XML in our applications.  In the 
short term, we can expect to see more experimental engines in 
BASE SAS with ODS and the LIBNAME engines in Version 8.1. 

Potential Applications 
Beyond simple tasks like reading and writing, we would hope to 
see a variety of application level support for XML.  Here are just a 
few ideas. 

Native SAS XML Tree-Viewer.  Having a built-in editor for viewing/ 
editing XML documents that have been created within SAS.  For example, 

one could pull up an XML document from the File -> Open Menu to display a 
tree-view for editing/ viewing the XML structure.   

SAS/IntrNet Extensions.  For web-based applications, native support for 
both parsing XML and writing XML to the Application Dispatcher sessions for 
use in subsequent pages would be a logical extension of this technology.  
The XSL language is common in many regards to what we see in htmSQL as 
it handles a records sets in the {eachrow} directive.  I would expect native 
htmSQL to be able to navigate an XML document hierarchy.   

Messaging Transport.  With respect to messaging, we should be able to 
expect will provide a transport mechanism (both receiving and sending) 
XML-based messages between both SAS and non-SAS based clients and 
servers. 

Balanced Scorecard.  For applications, like Balanced Scorecard, we could 
use XML to deliver metrics from throughout the organization in a single, 
common format. 

In general, XML can be used wherever data is being exchanged 
between multiple applications and/or organizations to facilitate the 
understanding and assimilation of the data in its new context. 

By allowing SAS developers to fully exploit the benefits of XML, 
the SAS System will continue its leadership role in the integration, 
analysis, presentation and decision support for years to come. 

ACKNOWLEDGMENTS 
The author would like to sincerely thank several people for their 
rule in gentle and thoughtful review of this manuscript.  
Specifically, we would like to thank Ian Whitlock, Don Henderson, 
Chris Olinger and Anthony Friebel for their support. 

CONTACT INFORMATION 
Your comments and questions are valued and encouraged.  Please 
feel free to contact the author at: 

 
<?xml version="1.0" ?>  
<business-card> 

<author> 
<name> 

  <first-name>Greg</first-name>  
  <middle-initial>S.</middle-initial>  
  <last-name>Barnes Nelson</last-name>  

  </name> 
  <title>Director</title>  
<company> 

  <comp-name>STATPROBE Technologies</comp-name>  
  <web-site>www.statprobetechnologies.com</web-site>  
<address> 

  <street>117 Edinburgh South, Suite 202</street>  
  <city>Cary</city>  
  <state>NC</state>  
  <zip-code>27511</zip-code>  

  </address> 
  </company> 
<contact-methods> 

  <business-phone>919-465-0322 x351</business-phone>  
  <business-fax>919.465.0323</business-fax>  
  <b-email>greg.barnesnelson@statprobe.com</b-email>  
  <personal-email>gregbn@ix.netcom.com</personal-email>  

  </contact-methods> 
  </author> 

  </business-card> 

 

…or simply email me at greg.barnesnelson@statprobe.com. 

APPENDICES 
Appendix A.  Producing a simple XML document from a SAS 
Data Set 
 
Simplecustomerview.sas .........................................  

 
filename outxml "c:\simplecustomer.xml";

Data _null_;
file outxml;
set sampdata.cust10 NOBS=Lst;
length gender $6. marital_status $11.;

%let tab=" ";
addr1=htmlencode(addr1);
addr2=htmlencode(addr2);

if sex=0 then gender='Female';



 

 

else gender='Male';

if married=0 then marital_status="Not Married";
else marital_status="Married";

if _n_=1 then do;
put '<?xml version="1.0" ?>';
put '<customer-data>';

end;

put '<contact-information>';

put &tab'<cust-id>' custnum '</cust-id>';
put &tab'<name>' name '</name>';
put &tab'<gender>' gender '</gender>';
put &tab'<age>' age '</age>';
put &tab'<income>' income '</income>';
put &tab'<status>' marital_status '</status>';
put &tab &tab '<address>';
put &tab &tab '<street ORDER="1">'

addr1 '</street>';
put &tab &tab '<street ORDER="2">'

addr2 '</street>';
put &tab &tab '<city>' city '</city>';
put &tab &tab '<state>' state '</state>';
put &tab &tab '<zip-code>' zip '</zip-code>';
put &tab &tab '<region>' region '</region>';
put &tab &tab '</address>';

put '</contact-information>';

if _n_ = lst then do;
put '</customer-data>';

end;
run;

 

 

Appendix B.  Producing a simple XML document from 
Multiple Data sets 

CustomerInvoiceView.sas .......................................  

Because of the length of this program, the
code for this example can be found on-line
at http://www.statprobetechnologies.com/XML
 

 

Appendix C. Cascading Style Sheet used to format an XML 
document 
 
Labels.css ................................................................  

 
contact-information { 
  display: block;   width: 350px;   padding: 10px;   margin-bottom: 10px;   
border: 4px double black;   background-color: white;   color: black;  text-
align: center;} 
 
name { 
  display: block;  font-family: Times, serif;  font-size: 16pt; 
  font-weight: bold;} 
 
street { 
  display: block;  font-family: Times, serif;  font-size: 14pt;} 
city, state, zip-code { 
  display: inline;  font-family: Times, serif;  font-size: 14pt;} 
 
cust-id, gender, age, income, status { 
  display: none;} 
 

 

Appendix D. eXtensible Style Sheet used to format an XML 
document as Mailing labels 
 
Labels.xls.................................................................  
 
<?xml version="1.0"?> 
<xsl:stylesheet xmlns:xsl="http://www.w3.org/TR/WD-xsl"> 
  <xsl:template match="/"> 
    <html><head><title>Customer Address Book XML 
Example</title></head> 
      <body bgcolor="#FFFFFF"> 
    <xsl:for-each order-by="+ name" select="customer-data/contact-
information"> 
          <xsl:apply-templates select="name"/> 

            <xsl:for-each select="address"> 
           <xsl:apply-templates select="street"/> 
           <xsl:apply-templates select="city"/> 
           <xsl:apply-templates select="state"/> 
           <xsl:apply-templates select="zip-code"/> 
            </xsl:for-each> 
        </xsl:for-each> 
      </body> 
    </html> 
  </xsl:template> 
 
  <xsl:template match="name"><h2><xsl:value-of/></h2> 
  </xsl:template> 
 
  <xsl:template match="street"><xsl:value-of/><br/> 
  </xsl:template> 
 
  <xsl:template match="city"><xsl:value-of/>,  
  </xsl:template> 
 
  <xsl:template match="state"><xsl:value-of/> 
  </xsl:template> 
 
  <xsl:template match="zip-code"><xsl:value-of/><br/> 
  </xsl:template> 
 
</xsl:stylesheet> 
 

 

Appendix E. eXtensible Style Sheet used to format an XML 
document as a Table 
 
Table.xls ..................................................................  
 
<?xml version="1.0"?> 
<xsl:stylesheet xmlns:xsl="http://www.w3.org/TR/WD-xsl"> 
  <xsl:template match="/"> 
    <html><head><title>Customer Address Table Example</title></head> 
      <body bgcolor="#FFFFFF"> 
<h1> <font color="blue">Sorted in decending order</font> </h1><p/> 
<table align="center" border="1"> 
 <tr> 
   <th>Name</th> 
   <th>Address</th> 
   <th>City</th> 
   <th>State</th> 
   <th>Zip</th> 
 </tr> 
<xsl:for-each order-by="- name" select="customer-data/contact-
information"> 
 <tr> 
          <td><xsl:apply-templates select="name"/></td> 
            <xsl:for-each select="address"> 
                <td><xsl:apply-templates select="street"/></td> 
           <td><xsl:apply-templates select="city"/></td> 
           <td><xsl:apply-templates select="state"/></td> 
           <td><xsl:apply-templates select="zip-code"/></td> 
            </xsl:for-each> 
 </tr> 
        </xsl:for-each> 
 
 </table> 
      </body> 
    </html> 
  </xsl:template> 
 
  <xsl:template match="name"><h3><xsl:value-of/></h3> 
</xsl:template> 
 
  <xsl:template match="street"><xsl:value-of/><br/> 
  </xsl:template> 
 
  <xsl:template match="city"><xsl:value-of/>,  
  </xsl:template> 
 
  <xsl:template match="state"><xsl:value-of/> 
  </xsl:template> 
 
  <xsl:template match="zip-code"><xsl:value-of/><br/> 
  </xsl:template> 
</xsl:stylesheet> 
 



 

 

APPENDIX B.  ANNOTATED GLOSSARY AND BIBLIOGRAPHY 
This glossary provides some of the most common terms and phrases used in the context of creating, processing and rendering XML documents.  An up-to-date version of this table can be found 
at http://www.statprobetechnologies.com/XML  

 

Term Acronym Description/ Purpose References 

Cascading Style 
Sheet 

CSS CSS is a style sheet language designed as an early attempt to help 
developers separate the content in HTML from the way that it was 
presented.  CSS can use tag definitions such as <H1> to apply formatting 
across a document or to sections that are specifically identified within a 
document.  CSS can be used to format an HTML document as well as an 
XML document. 

http://webreview.com/guides/style/style.html 

http://www.w3.org/Style/  

Data Source Object DSO Data Source Objects (DSOs) are objects that can imbed structured data, 
including XML, into HTML pages.  This is a proprietary technology that is 
embedded into Microsoft’s browsers. 

http://msdn.microsoft.com/workshop/Author/databind/datasources.asp  

 

Dynamic HTML DHTML Dynamic HTML provides a mechanism to control client- or browser-based 
interactivity through programmatic access to the HTML elements.  Programs 
are typically written in client-side scripting languages like JavaScript and 
VBScript 

http://msdn.microsoft.com/library/backgrnd/html/msdn_dynhtml.htm  

Document Object 
Model 

DOM The document object model is a standard objected oriented application 
programming interface (API) that gives developers programmatic control of 
XML document content, structure, formats, etc.  The XML DOM is a 
recommendation from the W3C and provides access through scripting 
languages like VBScript and JavaScript. 

http://www.w3c.org/TR/REC-DOM-Level-1  

http://www.w3.org/DOM/  

Document Type 
Definition 

DTD The document type definition defines the valid syntax for a class of XML 
documents.  It provides a list of the element names, which elements can 
appear in combination with which other ones and so on. 

http://www.whatis.com/dtd.htm  

eXtensible Markup 
Language 

XML XML is the new language of the web.  It provides a framework for delivering 
structured data from a wide-variety of applications to the desktop for local 
computation and presentation.  It is an ideal format for exchanging data 
within and between applications and organizations. 

http://www.ucc.ie/xml/faq.html  

http://www.oasis-open.org/cover/xml.html  

http://www.w3.org/XML 

http://msdn.microsoft.com/xml/general/xmlfaq.asp 

http://www.alphaworks.ibm.com  

http://www.xml.com/pub/98/10/guide0.html  

http://www.webdeveloper.com/html/html_xml_1.html  

Extensible 
Stylesheet Language 

XSL A working draft that describes a language that can be used to provide 
flexible document presentation rules.  Similar to CSS, it applies formatting 
rules to a document that is separate from the XML document itself.  Written 
in XML, XSL contains instructions for getting data out of a document and 
converting it into another. 

http://www.xmlmag.com/upload/free/features/xml/1999/01win99/kc2win99.asp 

http://www-4.ibm.com/software/developer/education/transforming-xml  

http://www.w3.org/Style/  

Human Resources 
Management Markup 
Language 

HRMML HRMML, created by Structure Methods, Inc., is an application whose aim is 
to unify the manner in which human resource information is represented 
and shared. 

http://www.structuredmethods.com/hrxml  

Hyper Text Markup 
Language 

HTML The language of the web.  HTML is used to format documents so that they 
can be viewed over the web through a browser such as Internet Explorer or 
Netscape. 

For the differences between XHTML and HTML see: 

http://webreview.com/wr/pub/1999/07/16/feature/index2.html  

Metadata  “Data about data”.  Metadata is that which describes data in terms of its 
meaning or use.  In SAS, we have the SQL dictionary tables, which describe 
tables, variables, etc.  These dictionary tables could be described as 
metadata. 

http://www.mdcinfo.com/  



 

 

Term Acronym Description/ Purpose References 

Meta-Language  A language that is used to describe or create other languages.  XML isn’t 
really a language at all, but rather a language the allows people to create 
languages. 

http://www.whatis.com/meta.htm  

Standard 
Generalized Markup 
Language 

SGML SGML is the international standard for defining the structure and content in 
electronic documentation.  XML is a simplified version of SGML and was 
designed to take some of the complexity out of SGML for web-delivery. 

http://www.whatis.com/sgml.htm  

Tags  In a document markup language a tag is used to describe some 
information.  For example, the tag <b> tells us that what follows should be 
bolded.  In XML, we create our own tags like <customer> or <invoice>. 

http://k12unix.larc.nasa.gov/training/tags.html  

Valid  In addition to being well-formed, a valid XML document has a DTD or XML 
schema that defines its content and use. 

http://www.xml.com/pub/98/10/guide3.html 

 

Well formed  An XML document is said to be well formed if it follows all of the rules 
defined by the XML specification.  Although well formed documents 
essentially follow the rules, they don’t have a DTD associated with them. 

http://msdn.microsoft.com/xml/general/what-is-xml.asp 

 

Wireless Application 
Protocol 

WAP A new technology, originating in Europe, which maintains the specifications 
for how data should be encoded, transferred and processed with wireless 
applications.  An example would be data transferred from a web server to a 
PalmPilot . 

http://www.wapforum.org/  

http://www.wapforum.org/faqs/index.htm  

XHTML XHTML XHTML is a specification approved by the W3C that allows users to create 
documents in HTML, but use some XML tags for embedding things like 
mathematical equations. 

http://www.w3c.org/TR/xhtml1  

http://webreview.com/wr/pub/1999/07/16/feature/index.html?wwwrrr_19990716.tx  

XML Linking 
Language 

Xlink A draft language specification that describes how XML documents can be 
linked to one another (similar to HTML’s linking <A HREF>.) 

http://www.w3.org/TR/1998/WD-xptr-19980303 

 

XML Namespaces Namespaces Currently a recommendation from the W3C as a standard to prevent the 
overlap of names used by different software vendors and/ or applications. 
For example, we may use the element name <status> to mean marital 
status whereas in our invoice, the name <status> may refer to whether the 
account is active or not.  Namespaces help provide context to the names of 
the elements used. 

http://www.w3c.org/TR/REC--xml-names  

XML Parser  An XML parser reads a string of XML data and generates a structured tree 
(hierarchy).  Some parsers validate the document against a DTD or 
schema. 

http://www.zdnet.com/pcmag/features/xml98/parsers.html  

XML Schema  Similar to an XML DTD but its rules are more rigorous.  An XML schema 
provides a definition for how an XML document should be interpreted. 

http://www.schema.net  

XML Transformations XSLT A working draft from the W3C that describes ad language that can be used 
to transform XML content from one data format to another. 

http://www.xmlmag.com/upload/free/features/xml/1999/01win99/kc2win99.asp  

 



Multiprocessing with Version 8 of the SAS System

Cheryl Doninger, SAS® Institute Inc.

INTRODUCTION

With the ever increasing need to get more done in the same
amount of time, naturally we want our computer applications
to take advantage of the multi-processors available in many
of today’s desktop and server platforms as well as to be able
to multi-process across platforms available in a network.  By
dividing time-consuming tasks into multiple independent
units of work and executing these independent units of work
in parallel, a job can be performed in substantially less time
than if each task is performed sequentially.  A new feature
has been added to Version 8 of the SAS System that allows
your SAS jobs to take advantage of SMP hardware and to
also allow parallel processing with the remote hosts in your
network.  This feature is part of the SAS/CONNECT®
product and is called MP CONNECT.  MP CONNECT allows
you to perform disjoint units of work in parallel and
coordinate all of the results into your original SAS session for
the purpose of reducing the total elapsed time necessary to
execute a particular application.

This paper will introduce the concept of multiprocessing and
illustrate its benefits.  Test results will be presented to show
tangible proof of the time savings that are possible by
modifying your existing jobs as well as designing new jobs to
use MP CONNECT for multiprocessing.  The syntax and
options that enable MP CONNECT will be covered.  And
finally, the test case that was used to collect the results
presented in this paper will be included in an appendix.

WHY MULTIPROCESSING

In this paper the term multiprocessing refers to dividing an
application into independent sub-units of work that can be
executed simultaneously.  The primary purpose of multi- or
parallel processing is to complete a job in less total elapsed
time than it would take to execute the same job serially. With
this capability IT staffs are challenged to have their
applications take advantage of the multiple processors
available in today’s server platforms.  In addition to exploiting
standalone machines, IT staffs also benefit by
multiprocessing across their networks.  However, generally,
the SAS System is a single-threaded application that
executes on a single processor or single machine at a time.

Independent parallelism  is possible when the execution of
Task A and Task B do not have any interdependencies.  An
example of this in SAS procedure terms would be if an
application needed to run PROC SORT against two different
SAS data sets and then merge the sorted data sets into one
final data set.  Because there is no dependency between the
two data sets that initially need to be sorted, the two PROC
SORTs can be performed in parallel and when they both
finish, the merge can take place.  It is this type of parallelism
that is addressed by MP CONNECT.    MP CONNECT

provides a convenient interface for spawning n SAS
sessions to simultaneously execute n tasks as independent
processes and coordinate the execution and results of all n
tasks into the original SAS session.  The n  SAS sessions or
processes can either all execute on the same machine with
each session or process running on a separate processor or
they can be directed to any number of remote machines.
The remote machines can have either single or
multiprocessor capabilities.

The following scenarios are meant to present real life
applications that are ideally suited for independent
parallelism and therefore MP CONNECT.  Hopefully, these
scenarios will help you to think of similar or additional SAS
tasks which you could modify or develop to benefit from MP
CONNECT.

Figure 1 illustrates a data warehouse scenario which
requires extracting data from three unique and possibly
remote data sources, combining that data, and then
processing it.  By performing the three extractions in parallel
and then merging the three resulting data sets, you
effectively decrease the time it takes to complete the entire
task to the time of the longest extraction plus the time to
perform the merge.

Figure 1. Data Warehouse Scenario

Figure 2 illustrates a SAS analysis example which requires
running several independent SAS procedures against a
single or possibly multiple data sources.  Running these
procedures in parallel can drastically reduce the total amount
of time required to execute the whole job.  Essentially, the
time needed to execute the job now becomes the execution
time of the longest running procedure.

Oracle
extraction

read/summ
SAS dataset

read/summ flat file

merge

time



Figure 2.  Multiple Analyses of Single SAS Data Set

Figure 3 is a HOLAP scenario which requires the creation of
multiple MDDBs.  Since the creation of an MDDB is an
independent task and one which can require a significant
amount of processing time, running the creation of multiple
MDDBs in parallel is an excellent application for MP
CONNECT.  Depending on the number and size of the
MDDBs that you create, the benefit of running these tasks in
parallel with MP CONNECT could be very substantial.

Figure 3. Parallel creation of Multiple MDDBs

TEST RESULTS SHOW THE BENEFIT

The test that was used to create the results presented in this
section consists of a variety of Base SAS procedures run
against data sets that vary in size.  This test was first run
using MP CONNECT to spawn n SAS processes and each
process executed one instance of the test simultaneously.
Then the test was run by executing n serial iterations of the
same test.  It was implemented using the macro facility so
that the size of the data set and the number of processes
created by the test (or in the case of serial execution, the
number of times the test was re-iterated) could be easily
varied.   These tests were all run on a multi-processor

machine, rather than remote machines on a network, in
order to have a more consistent environment for the purpose
of collecting test results.  Version 8.0 of the SAS System
was used to collect these results.

In the following graphs the x-axis represents time.  The
y-axis represents the number of parallel SAS processes or
the number of iterations of the serial test.

The first set of tests was run on a Sun Enterprise 10000 with
twelve 400 MHZ Ultrasparc processors and the results are
summarized in Graph 1.

Graph 1.  Sun Enterprise 10000 Test Results

These test results show a remarkable time savings using MP
CONNECT instead of serial execution.  These results are
also extremely positive with respect to scalability.  For the
serial case, increasing the number of iterations of the test
produced a linear increase in the time necessary to complete
the job.  With MP CONNECT, however, there was a
negligible increase in elapsed time as additional SAS
processes were added.

The second set of similar tests was run on a Compaq
ProLiant 8000 8 way server with 550 Mhz, 1 MB cache cpus
running Windows NT.  The results are summarized in
Graph 2.

Graph 2.  Compaq ProLiant Test Results

PROC
 FREQ

PROC
TABULATE

PROC
UNIVARIATE

further
processing

create MDDB 1

create MDDB 2

create MDDB n

time

time



These results also show a remarkable time savings using
MP CONNECT instead of serial execution. And, these
results are very positive with respect to scalability.  For the
serial case, adding additional iterations to the test resulted in
a linear increase in the time necessary to complete the job.
With MP CONNECT, however, there was only a small
increase in elapsed time as additional SAS processes were
added.

GUIDELINES

It is important to note that not all applications are good
candidates for the independent parallelism that MP
CONNECT provides.  Here are a few guidelines to help you
determine if a particular application, or portions of it, can
benefit by using MP CONNECT:

1. Determine if your data source(s) can be processed
separately and independently.  It may be worth while to
duplicate some data in order to achieve this
independence.

2. Look for ways to segment your job, or some portion of
it, into sub-tasks that do not access joint non-sharable
resources.

3. Ensure that your I/O subsystem can handle the
additional data requirements introduced by parallel
execution.  You may need to spread your I/O across
physical disks and/or I/O channels.

However, for those jobs that can be separated into
independent units of work, the time it takes to complete the
entire job can be drastically reduced by using MP
CONNECT.

MP CONNECT – THE DETAILS

Prior to Version 8, SAS/CONNECT was a synchronous
client/server tool with the emphasis on the ability to connect
a SAS session running on a local machine to a SAS session
running on a remote machine.   With Version 8, MP
CONNECT allows you to perform multi-processing with the
SAS System by establishing a connection between multiple
SAS sessions and enabling each of the sessions to
asynchronously execute tasks in parallel.  You also have the
ability to merge the async tasks back into your local
execution stream at the appropriate time.  In addition,
establishing connections to processes on the same local
machine has been greatly simplified.  This gives you the
ability to exploit MP/SMP hardware as well as network
resources to perform parallel processing of self-contained
tasks and easily coordinate all the results into the original
SAS session.

You can use MP CONNECT to spawn n SAS processes
where n is the number of independent units of work that you
wish to perform in parallel.  SAS processes that are
spawned on a single multi-processor machine are
independent unique processes just as they are if they are
initiated on a remote host.  On Windows and Unix, for
example, each SAS session is a separate process having it’s
own unique SASWORK library.  Each process also assumes
the user context of the parent, or the user that invoked the
original SAS session, and possesses all of the rights and
privileges associated with that parent.  On MVS each SAS

session is an MVS BPX address space that inherits the
same STEPLIB and USERID as the client address space.
The client’s SASHELP, SASMSG, SASAUTOS, and
CONFIG allocations are passed to the new session as SAS
option values.

Normally, with SAS/CONNECT, the SIGNON command or
statement is used to establish a connection between two
SAS sessions. The SIGNON interface has been simplified to
facilitate establishing connections to SAS sessions on the
same machine.  This is possible because less information is
required for communication between processes on a single
machine versus inter-process communication across a
network.  This new SIGNON interface eliminates the need
for a script file on the local host, the need to re-specify
userid/password information, the need to have a spawner
running, and the need to perform any access method file
configuration such as transaction programs, etc.  The only
parameters that you are required to specify with the
SIGNON statement is the command to be used to invoke the
SAS session and a name to associate with this new SAS
process.  A new option, SASCMD, is used to specify the
SAS command that is used to invoke the “remote” SAS
session.  The SASCMD option can be specified in a global
options statement as well.  In addition, the NOTIFY option
can be used on the SIGNON command or statement to
request the display of a notification message window to
report the completion of any subsequent asynchronous
RSUBMITs.

Once the SIGNON has been executed and a connection
established to one or more SAS sessions, either on the
same machine or a remote machine, then the RSUBMIT
command or statement can be used to asynchronously
execute multiple independent tasks and reduce the overall
execution time of your SAS job.  In fact, the autosignon
feature of RSUBMIT can be exploited to reduce the required
syntax for spawning a new SAS session, sending it a unit of
work, and terminating this session on completion to just a
single RSUBMIT/ENDRSUBMIT block.  This is possible
because the RSUBMIT statement now accepts all the same
parameters that the SIGNON statement does.  The exact
syntax and an example of this will be given in the next
section.

The RSUBMIT statement is used along with the WAIT=NO
option to identify that a unit of work should be
asynchronously executed by the newly spawned SAS
session.  By executing the RSUBMIT asynchronously, you
can start a long running task in one new SAS session and
immediately be able to begin another task in another SAS
session rather than wait until the first remote task is
complete before regaining control of your original SAS
session.   And if NOTIFY=YES was specified during the
signon process, a notification message window will be
displayed in the local session when the asynchronous task
completes execution.

For each asynchronous process, the default action is for
SAS/CONNECT to spool the accumulated log and output
lines from the remote process until you request the data by
using the RGET command, executing a synchronous
RSUBMIT, or issuing a SIGNOFF to terminate the remote
SAS process.  The RDISPLAY command can be used to
view the current contents of the spooled log and output
windows without merging the contents into the local log and
output windows. Once the RGET command is issued, the
accumulated log and output lines are retrieved and merged
with the local log and output lines.  Alternatively, you can use



the LOG= and OUTPUT= options on the RSUBMIT to either
direct the log and output lines to a file or to purge them.

Another very important piece to this asynchronous multi-
processing is the ability to synchronize any or all of your
asynchronously executing tasks with subsequent local
execution.  This capability is provided with the WAITFOR
statement which lets you suspend your local SAS processing
pending the completion of any or all of your asynchronous
tasks.  For example, if you initiated two SAS sessions to
simultaneously sort two data sources and then need to
merge the sorted output, you could issue the WAITFOR
statement in your original SAS session subsequent to the
two async sorts and prior to the final data step used to
merge the data.

The LISTTASK statement can be used to view the state of
any or all active connections.  It is most useful for viewing
the state of asynchronously executing tasks.
And finally, the KILLTASK statement lets you maintain
complete control by enabling you to terminate any or all
asynchronous tasks with a single statement.

The following sections detail the statements and options that
enable multi-processing with the SAS System.

SIGNON Command/Statement

The SIGNON command and the SIGNON statement are
used to invoke another SAS session and establish a
connection between the two SAS sessions.  The newly
created SAS session can be created either on the same
machine or on a machine that is remote with respect to the
parent or client SAS session.  If the SAS session is being
invoked on a remote machine, either a spawner and/or a
script file can be used to provide the information necessary
to invoke this new SAS session.  If the SAS session is being
spawned on the same machine as the originating or parent
SAS session, then the new SASCMD option can be
specified to provide the command necessary to invoke SAS.
This option can be specified either with a global options
statement, with SIGNON or, if the autosignon feature is
being used, with RSUBMIT.

 SASCMD=”SAScmd”;

where SAScmd specifies the command to be used to spawn
a new SAS process.  Additional SAS options can be
specified within the quotes.  If you need to execute additional
host commands prior to the SAS invocation, it is
recommended that you write a host specific script that
contains your host commands and the SAS invocation, and
specify this script as the SASCMD value.

On OS/390 hosts the SASCMD option is specified as
follows:

SASCMD=”:SAS-system-options”;

where specifying any non-blank value will cause the UNIX
fork command to spawn an MVS BPX address space which
inherits the same STEPLIB and USERID as the client
address space.  The client’s SASHELP, SASMSG,
SASAUTOS, and CONFIG allocations are passed to the
spawned SAS session as SAS option values.  Any additional
SAS invocation options can be specified following the colon.
The XMS access method is used by the two sessions for
communication.

The NOTIFY option can be used to request the display of a
notification message window upon completion of an
asynchronous RSUBMIT.

NOTIFY=YES|NO

where a value of YES causes a notification window to be
displayed with the following message:

Asynchronous task JOB has completed.

where JOB is the remote session identifier.  To acknowledge
the message and to close the window, click the OK button.

RSUBMIT Command/Statement

The RSUBMIT command and the RSUBMIT statement
cause SAS programming statements that are entered in the
local environment to execute in a remote SAS session. Even
though the statements execute in the remote environment,
all responses and output are displayed in your local SAS log
and output windows as they would be if you executed the
program in the local SAS session.

RSUBMITs are processed in either synchronous or
asynchronous mode.

Synchronous mode means that the remote processing must
complete before the local session can continue processing.
Therefore, the RSUBMIT must run to completion before you
regain control. Synchronous processing is the default
processing mode.

Asynchronous mode allows you to start an RSUBMIT in the
background to a remote host and to regain local control
immediately to continue with local processing or remote
processing to another host.

The following RSUBMIT options enable asynchronous
RSUBMITs:

CONNECTWAIT | CWAIT | WAIT=value

where value specifies whether this particular RSUBMIT is to
be executed synchronously or asynchronously. This can also
be specified with the CWAIT global option by submitting the
following options statement:

      OPTIONS CWAIT=NO;

The valid values for the WAIT= option are:

YES | Y indicates a synchronous
RSUBMIT.

NO | N indicates an asynchronous
RSUBMIT.

If WAIT=NO is specified, it may also be useful to specify the
MACVAR= option. This will allow you to programmatically
test the status of the current asynchronous RSUBMIT by
determining whether it has completed or is still in progress.

CMACVAR | MACVAR=value

where value specifies the name of the macro variable to
associate with this remote session. If specified on the



RSUBMIT command/statement, the MACVAR= option
overrides any previous MACVAR= specifications for this
remote session. The macro variable is NOT set if the
RSUBMIT command fails due to incorrect syntax. Other than
this one exception, the macro variable (value) is set to one of
the following values:

0 Indicates that the RSUBMIT
is complete.

1 Indicates that the RSUBMIT
failed to execute.

2 Indicates that the RSUBMIT
is still in progress.

Note: If a synchronous RSUBMIT (WAIT=YES) is issued
while an asynchronous RSUBMIT (WAIT=NO) is still in
progress, all spooled log and output statements are merged
into the local log and output windows and the RSUBMIT
continues as if it were synchronous. That is, you do not
regain local control until the RSUBMIT has completed. If you
don’t want this to happen, use the MACVAR= option in the
SIGNON or the RSUBMIT statements so that you can check
the progress of RSUBMIT without causing it to execute
synchronously.

LOG=KEEP | PURGE | filename | fileref
OUTPUT=KEEP | PURGE | filename | fileref

directs the SAS log or the SAS output that is generated by
an asynchronous remote submit to the backing store, to be
purged, or to a specified file.

KEEP spools log or output lines to the backing store for later
retrieval with the RGET, RDISPLAY, or SIGNOFF
statements. This is the default.

PURGE deletes all of the log or output lines that are
generated by the current remote session. PURGE is used for
economizing disk resources. If you can anticipate a large
volume of log data or output data to the backing store that
you do not want to receive, and you want to preserve disk
space, setting PURGE can be useful.

filename | fileref specifies a file that is the destination for
the log or output lines. The file is opened for output at the
beginning of the asynchronous RSUBMIT and is closed at
the conclusion of the asynchronous RSUBMIT. A
subsequent RSUBMIT to the same file that you specify by
using the LOG= or the OUTPUT= option overwrites the
previous contents of that file with the contents of the current
RSUBMIT.

WAITFOR Statement

The WAITFOR statement is used to make the local SAS
session wait for the completion of one or more
asynchronously executing tasks.  If more than one task is
specified, then the WAITFOR statement can include either
the __ANY__ or the __ALL__ option.  The __ANY__ option
suspends the SAS session until the completion of any of the
specified tasks (a logical OR).  The __ALL__ option
suspends the SAS session until the completion of all of the
specified tasks (a logical AND).  You can also specify a
timeout value with the TIMEOUT option.  If the specified
tasks have not finished processing by the timeout value
specified, the local session regains control and the tasks
continue to execute asynchronously.  In addition, the

&SYSRC macro variable is set to indicate that a timeout
occurred.  If the specified tasks finish processing before the
timeout value specified, the WAITFOR statement returns
control to the local SAS session.

RGET Command/Statement

The RGET command and the RGET statement cause the
spooled log and output from the execution of an
asynchronous remote submit to be merged into the local log
and output windows. When an asynchronous remote submit
executes, the log and output statements are not merged into
the local log and output windows.  By default, they are
spooled for retrieval at a later time.  However, if the LOG or
OUTPUT options have been used on the RSUBMIT to
redirect the lines to an external file or to purge them, they will
not be available for the RGET statement to merge into the
local log and output windows.

If the RGET command or RGET statement is executed while
the asynchronous remote submit is still in progress, all
currently spooled log and output lines are retrieved and
merged into the local log and output windows, and the
remote submit continues processing as if it had been
submitted synchronously. That is, you will NOT regain
control in your local SAS session until the remote submit has
completed. If you don’t want the remote submit to become
synchronous, but you want to check its progress, use the
MACVAR option in the SIGNON or the RSUBMIT statement.
This allows you to check the progress of an asynchronous
remote submit without causing it to execute synchronously.
Or, if you are running interactively, you could use the
LISTTASK statement to check the status of the
asynchronous remote submit before issuing the RGET
statement.

RDISPLAY Command /Statement

The RDISPLAY command and the RDISPLAY statement
create two windows for each asynchronous process that is
executing to display the spooled log and output lines that
have been generated. One window displays the log lines and
the other window displays the output lines.

When an asynchronous remote submit executes, the log and
output lines are not merged into the local log and output
windows.  By default, they are spooled to disk for retrieval at
a later time.  RDISPLAY allows you to view the spooled log
and output lines created by the asynchronous remote submit
without merging them into the local log and output windows.
The log and output lines continue to scroll into the windows
created by the RDISPLAY command as they are produced
by the remote processing. The RGET command or
statement, a synchronous RSUBMIT, or the SIGNOFF
command or statement must be executed to actually merge
the spooled lines into the local log and output windows.
However, if the LOG or OUTPUT options have been used on
the RSUBMIT to redirect the lines to an external file or to
purge them, they will not be available for the RDISPLAY
statement to display.

LISTTASK Statement

The LISTTASK statement lists information about any or all
active connections.  The LISTTASK statement displays



information such as the task name and it’s current state of
execution.  A task can be in one of the following states of
execution:
• READY
• RUNNING SYNCHRONOUSLY
• RUNNING ASYNCHRONOUSLY
• COMPLETE
When you SIGNOFF from a remote session or task it is
removed from the list of tasks that LISTTASK maintains.

KILLTASK Statement

The KILLTASK statement is used to immediately terminate
one or more asynchronously executing tasks.  You can
either specify a list of task names separated by spaces or
the keyword __ALL__ if you want to terminate all of the
asynchronously executing tasks.  This statement is valid for
tasks that are executing asynchronously on the same host
and for tasks and SAS sessions that are executing
asynchronously on remote hosts. KILLTASK causes any log
or output lines that have accumulated in the backing store to
be flushed to the parent or local Log and Output windows.

CONNECT Monitor Window

The SAS Explorer now provides a menu selection that
enables you to monitor SAS/CONNECT tasks.  Use the
following path to access the SAS/CONNECT Monitor
window from the SAS Explorer:

View -> SAS/Connect Monitor

The SAS/CONNECT Monitor window displays information
about the tasks in two columns: Name and Status. An
example follows:

Name               Status

Task1              Complete
Task2              Running Asynchronously
Task3              Running Synchronously

The list of tasks is dynamically updated as new tasks start,
and the Status field changes from "Running" to "Complete,"
as appropriate. When you use the SIGNOFF statement to
terminate a connection, the task is automatically removed
from the window.

You may also terminate a task that is running
asynchronously by clicking the task in the monitor window
and selecting the Kill option from the menu that displays
when you right-click the mouse button. Similarly, you can
select the Rdisplay option from the menu to display LOG and
OUTPUT windows for a task that is running asynchronously.

Example 1

The following example is a simplistic illustration of 2-way
multiprocessing; the original SAS session executes a data
step in parallel with an additional SAS session which
executes a PROC SORT.

First, an asynchronous rsubmit is executed using the
autosignon feature in order to spawn an additional SAS
session and instruct it to execute the PROC SORT.

OPTIONS AUTOSIGNON=YES;
RSUBMIT SORTASK WAIT=NO SASCMD=’SAS’;
LIBNAME ANNUAL ‘path to annual sales lib’;
PROC SORT DATA=ANNUAL.SALES
          OUT=ANNUAL.SORT1;
   BY REGION;
RUN;
ENDRSUBMIT;

The local SAS session can then be used to simultaneously
perform additional processing because the above PROC
SORT is being processed asynchronously by a separate
SAS session. In the following section, a data set is created
and then the WAITFOR statement is used to synchronize the
completion of the above PROC SORT with a subsequent
data step to merge the two data sets.

LIBNAME LOC ‘path to monthly sales lib’;
DATA LOC.MARCH;
DO I = 1 TO NREGIONS;
/* create local data set */
END;
RUN;

WAITFOR SORTASK;

LIBNAME ANNUAL ‘path to annual sales lib’;

DATA TOTAL;
SET ANNUAL.SORT1 LOC.MARCH;
RUN;

Example 2

The following example assumes that you have a multi-
processor machine on which you would like to run MP
CONNECT tasks in parallel.  You do not have direct access
to this machine but are able to signon to it from your local
workstation.  The following code is a template that could be
used to signon to a multi-processor server and then remote
submit several tasks to run in parallel on that server.

FILENAME RLINK <script file for server>;
%LET HOST1=<my.smp.server.box>;
/* signon from workstation to server */
SIGNON HOST1;

/* rsub multiple tasks to server */
RSUBMIT;

  OPTIONS AUTOSIGNON=YES SASCMD="SAS";
  RSUBMIT TASK1 WAIT=NO;
     /* stmts processed by TASK1 */
  ENDRSUBMIT;

  RSUBMIT TASK2 WAIT=NO;
     /* stmts processed by TASK2 */
  ENDRSUBMIT;

  . . .
  RSUBMIT TASKn WAIT=NO;
     /* stmts processed by TASKn */
  ENDRSUBMIT;



  WAITFOR __ALL__ TASK1 TASK2 TASKn;

ENDRSUBMIT;

FUTURE RESEARCH & DEVELOPMENT

We are currently working on several enhancements to
facilitate the use of MP CONNECT including but not limited
to:
• specifying a remote session id on %syslput statements

to direct execution to a specific remote session,
• detecting active asynchronous tasks upon normal SAS

termination and prompting for the appropriate action to
take, and

• allowing spawned or remote SAS sessions to have
easy access to libraries defined to the local or parent
SAS session.

In addition, we have prototyped an implementation of
pipeline parallelism.  Pipeline parallelism is possible when
Task B requires output from task A, but it does not require all
of the output before it can begin execution.  In SAS terms,
this means that two SAS procedures could run in parallel
such that one proc feeds it’s output to the next proc as input.
For example, a SAS data step could feed observations, as
they are created, to PROC SORT allowing the SORT
procedure to run in parallel with the data step minimizing the
total time required to complete both steps.  In other words, a
procedure does not write it’s output to disk, but rather pipes it
as input to the next procedure.  We are currently researching
the benefits and considerations for this type of parallelism.

CONCLUSION

This paper presents the new Version 8 MP CONNECT
feature that enables you to perform parallel- or multi-
processing with the SAS System.  This feature provides you
with a straight forward syntax to allow you to make minimal
modifications/additions to your existing or new SAS jobs in
order to substantially decrease the total elapsed time
necessary to execute a job.

It is strongly recommended that each SAS application be
evaluated for potential benefits before implementing the MP
CONNECT feature.  For those jobs that perform time
consuming tasks that can be separated into independent
units of work, MP CONNECT can be used to decrease the
time of execution to a fraction of what is required to execute
the same job serially.   MP CONNECT is also extremely
scalable which means that you will continue to recognize
tremendous time savings as the number of SAS processes
running in parallel approaches the number of processors on
your system or in your network.

SAS and SAS/CONNECT are registered trademarks or
trademarks of SAS Institute Inc. in the USA and other
countries.

Author
Cheryl Doninger
SAS Institute Inc.
SAS Campus Drive
Cary, NC 27513
(919) 677-8000
Cheryl.Doninger@sas.com

APPENDIX –  THE TEST CASE

This appendix contains the SAS job that was run to collect
the test results that are presented in this paper.  This test
was originally used for another purpose and was run serially.
The test was modified to use MP CONNECT for the purpose
of collecting results for this paper.  The statements that were
required by MP CONNECT have been highlighted with bold
font in order to illustrate just how minimal the changes were
to this particular test.  Notice that there are only six such
statements.  Similar minor additions could be made to your
existing SAS jobs to take advantage of your MP/SMP
hardware as well as remote hosts on your network to
dramatically reduce the total execution time of your jobs.

options fullstimer ;
options autosignon=yes;
options sascmd=’sasv8’;

data _null_ ;
 host=sysget(’HOST’) ;

 call
symput(’numloop’,compress(trim(scan("&syspar
m",1,"."))));
 call symput(’datsz’,trim(scan("&sysparm",2,".")))
;
 call symput(’host’,trim(host)) ;

run ;

%macro benchds(numrecs);
  libname foo v8 ’/tmp’;
  data foo.tstdata;
   /* create a data set with 110 variables and obs
equal
        value of numrecs passed into the macro
*/
  %mend ;

%benchds(&datsz) ;

%global time1;
%macro pretime;
   data _null_;
      time=put(time(),6.);
      call symput(’time1’,time);
   run ;
%mend;

%macro postime(sec);
   data _null_;
      time=time()- %str(&time1);
      put ’*’;



      put "******time elapsed(&sec) = " time 6.;
      put ’*’;
run ;
%mend;

%macro shutdown() ;
  %local runid;
  %let runid=1 ;
  %let remsessions=;
  %do %while(&runid le &numloop);
     %let remsessions=&remsessions rem&runid;
     %let runid=%eval(&runid+1) ;
  %end;

waitfor _all_ &remsessions;

%postime(0);

  %let runid=1 ;
  %do %while(&runid le &numloop);
       proc printto log="mploop&runid..log"
                  print="mploop&runid..lst" new ; run;
       rget rem&runid;
       signoff rem&runid;
       %let runid=%eval(&runid+1) ;
       proc printto; run;
  %end;

%mend ;

%macro startup(subsys) ;
%pretime;

proc datasets library=work ;
  delete stats1 stats2;
quit;

   %put APR HEADER os=&sysscp;
   %put APR HEADER host=&host;
   %put APR HEADER ver=&sysvlong;
   %put APR HEADER subsys=&subsys;
   %put APR HEADER numobs=&datsz;
   %put APR HEADER duration=&numloop;

%mend ;

%macro runtest(runid) ;
/****************************************
  *    create a new MP CONNECT session to
 *    handle this iteration
 ****************************************/
   rsubmit rem&runid wait=no;
   libname foo v8 ’/tmp’;

/****************************************
*    Step CONTENTS_2
****************************************/

   proc contents data=foo.tstdata;

/****************************************
 *   STEP SORT_3
  ***************************************/

   proc sort data=foo.tstdata out=out1 tagsort ;
    by descending x1_10 stname8 ;
   run ;

/****************************************
  *   STEP FREQ_4
  ****************************************/

   proc freq data=foo.tstdata;
    tables stname20 onein10 onein100 onein1k ;
    title ’proc freq ’;
   run ;

/****************************************
 *   STEP SUMMARY_5
  ****************************************/

   proc summary data=foo.tstdata print ;
    title ’proc summary full data set ’ ;
    var _numeric_ ;
   run ;

/****************************************
  *   STEP SUMMARY_6
 ****************************************/

   proc summary data=foo.tstdata print ;
    title ’proc summary three state names
subsetted by where clause’ ;
    var _numeric_ ;
    where stname20=’ALABAMA’ or
stname20=’CALIFORNIA’ or stname20=’TEXAS’
;
   run ;

/****************************************
  *  STEP DATA_7
  ****************************************/

   data temp;
    set foo.tstdata;
    if stname20=’ALABAMA’ or
stname20=’CALIFORNIA’ or
stname20=’TEXAS’;
   run ;



/****************************************
  *   STEP SUMMARY_8
  ****************************************/

   proc summary data=temp print ;
    title ’proc summary three state names
subsetted by data set’ ;
    var _numeric_ ;
   run ;

/****************************************
  *  STEP DATA_9
 ****************************************/

   data _null_;
    set foo.tstdata;
    where onein100=’y’;
   run ;

/****************************************
*   STEP DATA_10
  ****************************************/

   data _null_ ;
    set foo.tstdata;
    if onein100=’y’ ;
   run ;

/****************************************
*   STEP DATA_11
  ****************************************/

   data _null_ ;
    set foo.tstdata;
    where x1_1000=9 or x1_1000=99 or
x1_1000=999 ;
   run ;

/****************************************
*   STEP DATA_12
  ****************************************/

   data _null_ ;
    set foo.tstdata;
   run ;

/****************************************
  *   STEP TRANSPOSE_13
 ****************************************/

   proc transpose data=foo.tstdata (keep=f1
x1_10) out=trans ;
    by x1_10 notsorted ;
    var f1 ;
   run ;

/****************************************
  *   STEP SORT_15
  ****************************************

   proc sort data=foo.tstdata out=out1 ;
    by x1_100 stname8 ;
   run ;

 ****************************************
  *   STEP SUMMARY_16
  ****************************************/

   proc summary data=foo.tstdata;
    title ’proc summary full data set ’ ;
    var _numeric_ ;
    output out=stats1 ;
   run ;

/****************************************
*   STEP SUMMARY_17
  ****************************************/

   proc summary data=foo.tstdata;
    title ’proc summary three state names’ ;
    var _numeric_ ;
    where stname20=’ALABAMA’ or
stname20=’CALIFORNIA’ or stname20=’TEXAS’
;
    output out=stats2 ;
   run ;

/****************************************
*   STEP SUMMARY_18
****************************************/

   proc summary data=temp  ;
    title ’proc summary three state names’ ;
    var _numeric_ ;
    output out=stats2 ;
   run ;
endrsubmit;
%mend ;

%macro duration();
  %local runid ;
  %let runid=1 ;
  %do %while(&runid le &numloop);
          %runtest(&runid) ;
          %let runid=%eval(&runid+1) ;
   %end;
%mend;

%startup(Perf);
%duration ;



%shutdown;



The Metamorphosis of a Study Design
Marge Scerbo, CHPDM/UMBC

Craig Dickstein, Intellicisions Data Inc.

Abstract

In a perfect world, there would be perfect data,
perfect analysts, and perfect programmers
creating perfect outcomes to every possible
study. Unfortunately, one, two, or all of these
factors are usually imperfect. Data are, especially
data in large volumes, rarely flawless.
Researchers and analysts designing studies may
have great ideas of studies to undertake, but may
have little idea of whether it can be done or how
to do it. Programmers may be incredibly facile
with the software, but rarely comprehend all the
intricacies needed to complete a study. Thus,
study designs are not often etched in stone. Most
likely, they are the outcome of a long and tedious
process of checks and balances.

This paper will take the reader through the
process of developing a study design, using SAS
software to provide results on which to base
outcomes. A health care policy issue will be used
as the basis for the discussion, but the ideas
should carry across many industries.

Introduction

A good programmer analyst must work with a
variety of methodologies within a single project.
The 'programmer' portion of the brain is
organized, methodical, and logical. The 'analyst'
is quite a different story; patience, foresight, and
a depth of understanding of both the data and the
outcome, beyond merely understanding code
structures, is required. In a sense, the analyst
must be a mind reader and a magician.

Health care data are a world unto themselves.
There are vast amounts of administrative (billing)
data produced daily. Except for the payment
and/or collection of bills, these data are largely
underused or misused.

Note that the study discussed in this paper is
fictional, and that none of the data can be
associated with any state or institution.

Background

Health care billing data are in three primary
formats: HCFA-1500, Pharmacy, and UB-92.

HCFA-1500 records contain professional service
information provided by an 'individual'
practitioner. The place of service for these claims
and encounters can encompass many venues,
including doctor's offices, laboratories, and

hospitals. Usually, one record is analagous to
one procedure in a physician’s office, and so one
visit may include multiple records.

Pharmacy data are the cleanest, most efficient,
and easiest to manipulate. Most pharmacy data
are collected at the 'point of sale' (POS), right in
the drug store. These records contain information
about the drug, the prescription, the provider, and
the patient. One record is essentially one
prescription.

On the other hand, although they represent the
largest percent of health care dollars, UB-92 data
are not easy to use.  These files are uniquely
produced by facilities: acute care hospitals,
hospices, nursing homes, emergency rooms, and
outpatient clinics. These data are far more
complicated when used for analysis. There is no
clear definition for an inpatient data record; this
depends on the database design of the keeper of
the data.

Initial Study Design Proposal

HMOs (Health Maintenance Organizations) and
MCOs (Managed Care Organizations) are based
on the premise that by providing good preventive
care and case management, fewer facility
charges will be incurred and overall cost will
decline. In this vein, HMO and MCO
management is always looking at the bottom line
for possible savings.

One HMO administrator was asked to identify
methods of saving money on hospitalizations. He
reviewed the various monthly and quarterly
reports relating to this subject. After several
weeks of review, he decided that it might be
possible to save money by transferring patients
from a hospital into a nursing home setting more
quickly than was presently the case.

Hence, a new study is launched…

Under the present HMO contract with a large
corporation, the HMO was responsible to pay for
the first 31 days in a nursing facility.

A meeting took place between the administrator,
an analyst, and a programmer. In order to best
understand what analysis should be undertaken
to get the best results, the analyst prepared a list
of questions (the administrator’s responses are
shown in italics):

� What type of data should be studied?



� Inpatient
� As inpatient data are requested, can you

specify exactly what type of facility should be
studied? Inpatient facilities include acute care
hospitals, rehabilitation centers, chronic
hospitals, hospices, and other special settings.
� Acute Care Hospitals

� Nursing homes are classified as three different
types: ICF (Intermediate Care Facility), SNF
(Skilled Nursing Facility), and ICF-MR
(Intermediate Care Facility for the Mentally
Retarded).  Are you interested in all types or
specific ones?
� ICF only

� For acute care services, can we narrow the
population studied by other criteria?
� Include only those patients that can be

identified as still hospitalized for over 5 days.
� Are these same criteria to be imposed on the

ICF population?
� No

� To continue, what type of information would be
useful?
� The number of patients
� The total dollar amount
� The total number of days
� The average cost per day

� In addition, what information do you want from
the ICF file?
� Same as that from the acute care file

� Finally, is there a specific set of dates of
services you are interested in?
� Whatever file is the most current and yet the

most complete.

The analyst identified calendar year 2000 data as
the most complete and the most current. The first
step proposed in the study design is to count the
number of patients at the close of calendar year
2000 who remain in the hospital and the number
of patients who were in an ICF during calendar
year 2000.

The initial programming request includes the
following:

� Obtain a frequency count on discharge
status in the UB-92 year 2000 acute care
summary file

� Select those patients who are still
hospitalized

� Select those patients who have been
hospitalized over 5 days

� Calculate their cost per day

� Calculate the cost per day for patients who
are in an ICF

� Calculate the difference in costs
� Produce tabular reports on the demographic

(age and gender) identifiers of selected
populations

These reports are to be delivered within one
week of the initial proposal.

Overview of the Data

UB-92 data are both complicated and extensive.
These data files are not comparable to a hospital
medical record, which contains notations on
every drug, laboratory test, physician visit,
procedure, etc. that is incurred during a patient
stay. Rather, these files contain billing data.
Services are collapsed into revenue codes with
units of service and charges attached. For
example, multiple laboratory services may be
grouped under the revenue code 300,
'Laboratory, General Classification'.  In addition,
one inpatient hospital stay may in fact be billed
across several UB-92 records, some with
charges and others with adjustments, some
across a particular date range and others across
the date range from admission to discharge.

This HMO’s IS department, in order to better
utilize UB-92 files, had written SAS programs to
create discharge summaries; where all possible
records associated with a unique patient stay
were stored in one large record.  Charges, units,
and days are totaled under this file structure
design.  These data sets have been validated for
quality and are sorted by the recipient identifier
(RECIPID) to allow for ease in merging
processes. In this situation, the discharge
summary data set for acute care inpatient
discharges (ACUTE00) and a separate discharge
summary data set for nursing home facilities
(LTC00) will be used. Both of these data sets
also contain two important fields for analysis: the
length of stay (LOS) field containing the total
number of days of the stay and the payment
(PAYMENT) field containing the total cost of the
stay.

The demographic information on each patient
(AGE, GENDER) is stored in an annual
enrollment file that contains one record per
patient.

Preliminary Analysis

In order to satisfy the first request, the
programmer ran a frequency analysis of the
discharge status (DISCHSTATUS) in the acute
care discharge summary file (ACUTE00). There
exists a format for the discharge status



(STATUS.) that is used to produce more
readable results:

    proc freq data = acute00;
tables dischstatus;
format dischstatus status.;

    run;

The results are shown in Table A.  This
frequency analysis demonstrates that 1,021
patients were transferred to an ICF in calendar
year 2000 while 844 patients were still in the
hospital at the end of the year. Code 30 is
defined as  'still in the hospital' and code 5,
'transferred to ICF'.

The analyst, stepping beyond the exact
specifications, request frequency counts on the
length of stay field found in the acute care file.
Rather than producing a report that showed the
count of each length of stay, the programmer
grouped the days to provide a more concise
report:

    proc format;
value days

0-5     = '0-5'
6-high  = '> 5'

    run;
    proc freq data = acute00;

tables los;
format los days.;
where dischstatus = 30;

   run;

The output of this report is shown in Table B. It
clearly shows that of the 844 patients still in the
hospital, only 32.7% of the patients (276 people)
had stays of over 5 days.  This table serves
several purposes, the most important being a
checkpoint for the files to be created in the next
steps of the study.

The programmer then proceeds to create the
requested data set containing only those patients
still in the hospital and with a stay greater than 5
days:

  data stillin;
      set acute00 (where = (los gt 5

    and dischstatus = 30));
  run;

The LOG reports:

NOTE: The data set WORK.STILLIN has 276
      observations and 59 variables.

This data step allows the analyst a double check
that 276 patients fell into this category, as was

reported on the discharge status frequency
analysis. In addition, this data set can now be
used for further studies.

The average cost per day of these 276 patients is
then calculated using PROC SUMMARY. (Note
that PROC MEANS also provides similar output.)

   proc summary data = stillin;
var payments los;
output out= inptcost

sum= inptdol inptdays;
   run;
   data results;

set inptcost;
costperday = inptdol/inptdays;

   run;
   proc print;

var _freq_ inptdol inptdays
    costperday;

   run;

Output of this routine (Table C) demonstrates the
following:

� The number of patients (_FREQ_) is 276
� A total cost (INPTDOL) of  $15,779,690
� A total number of days (INPTDAYS) of 6,053
� Thus, the average cost per day is $2,606

(INPTDOL/INPTDAYS)

A similar process is then used to calculate the
number of people in ICFs. Since there are
several types of long term care facilities
contained in this file and the request specified
that only ICFs were to be included, a provider
type (PROVTYPE) code of 57 is used to identify
ICFs:

  data nursinghome;
             set ltc00  (where= (provtype = 57));
  run;

NOTE: The data set WORK.NURSINGHOME has
      5983 observations and 43 variables.

The total costs are calculated thus:

   proc summary data = nursinghome;
var payments los;
output out = nhcost

sum = nhdol nhdays;
   run;
   data results;

set nhcost;
costperday = nhdol/nhdays;

   run;
   proc print;



var nhdol nhdays _freq_
   costperday;

   run;

Table D.1, containing the output of this
procedure, shows:

� The number of patients (_FREQ_) is 5,983
� A total cost (NHDOL) of  $876,121,178
� A total number of days (NHDAYS) of

1,143,242
� Thus an average cost per day is $767

(NHDOL/NHDAYS)

Thus, the difference of cost per day between the
inpatient hospital and the nursing home is $1,839
($2,606 - $767).

Warning – Inconsistency Detected

Although the programmer had followed the
specifications, certain inaccuracies were
apparent when this information was presented to
the  analyst:

� There are 1,021 patients identified in Table A
as transferred from an inpatient hospital to
an ICF.  The results of the ICF study showed
5,983 patients in nursing homes.  What
caused this discrepancy?

� The HMO administrator had stated that the
HMO is required to pay only up to 31 days in
a nursing home facility.  Should this be
included in the design?

Before completing the final tasks listed in the
initial study design, updates were required to the
study.

Revised Study Design

The study design is now revised to include
additional subset criteria:

� Include only patients who can be identified
as having transferred from a hospital to an
ICF (discharge status of 5)

� Of those patients, select only those with a
length of stay of 31 days or less

Additional Analysis

The first step to be completed is the selection of
those patients who were transferred from a
hospital to an ICF:

   data icf;
merge acute00 (in = hosp keep=

      recipid dischstatus
   where=(dischstatus=5))

      nursinghome (in = ltc
   where=(los le 31));

by recipid;
if hosp and ltc;

   run;

NOTE: The data set WORK.ICF has 1021
      observations and 44 variables.

This process identifies the desired 1,021 patients
who have been transferred from a hospital to a
nursing home. The next step is to summarize the
payments for this group of patients:

   proc summary data = icf;
 var payments los;

output out = icfcost
sum = icfdol icfdays;

   run;
   data results;

set icfcost;
costperday = icfdol/icfdays;

   run;
   proc print;

var _freq_ icfdol icfdays
    costperday;

   run

The output (Table D.2) contains this information:

� The number of patients (_FREQ_) is 1,021
� A total cost (ICFDOL) of $8,592,300
� A total number of days (ICFDAYS) of 5,242
� Thus, an average cost per day of $1,639

(ICFDOL/ICFDAYS).

Consequently, the difference in cost per day
between the inpatient hospital and the nursing
home is $967 ($2,606 - $1,639). Note that the
number of patients now matches the number
identified in the original frequency analysis (276
patients still in the hospital and 1,021 patients
transferred from a hospital to an ICF).

With the populations of both facilities correctly
identified, the programmer needs to add the
demographic information to the newly created
data sets:

   data stillin;
merge stillin (in = hosp)
      enrollment00 (keep= recipid

      age gender);
by recipid;
if hosp;

   run;



Once the new variables have been added to the
data set, the programmer produces the
demographic tables requested using this simple
code:

   proc format;
value ages

0  - 18   = ‘Children’
19 - high = ‘Adults’;

   run;
   proc freq data = stillin;

tables age * gender / list;
format age ages. gender $sex.;
title ‘Demographic Identifiers

for Still in Hospital’;
   run;

The demographic studies can be found in Tables
E and F.

Review of  the Materials Produced

A meeting took place with the original team and a
clinical specialist to provide further insight. Each
report was studied carefully. Although there were
clearly differences between the per day cost of a
hospital and a nursing home, the clinician did not
believe there was enough information to
implement policy changes. The demographic
tables (E and F) did not provide any significant
decision-making information.

Without further studies to assess the diagnoses
involved or the clinical appropriateness of
transfers from a hospital to an ICF, no action plan
could be set in place. Was it possible there were
other areas of study that might provide clearer
results?

After discussion, additional studies were
requested that included:

� Produce a report of the 15 top primary
diagnoses associated with those patients still
hospitalized

� Produce a report of the 15 top primary
diagnoses associated with those patients in
ICFs

� Create a list of the top five costliest hospitals
for those patients still in the hospital

� Create a list of the top five costliest nursing
homes to which hospital patients were
transferred

Additional Coding

In order to complete the final programming
request, the programmer created various SAS
programs.  The first task was to create a report

showing the top 15 diagnoses for patients still in
the hospital as defined by the study design:

   proc freq data = stillin order = freq;
tables primarydx / noprint

   out = acutedxs;
   run;
   proc print data = acutedxs (obs = 15);

var primarydx count;
title ‘Top 15 Diagnoses for

Still in Hospital’;
format primarydx $icdcode.;

   run;

The results of these studies are displayed in
Table G.  This code can be edited to create the
same report (Table H) on patients in an ICF.

The next step is to produce a listing of the top 5
hospitals and nursing homes. This code was
written:

   proc summary data = stillin nway;
class hospital;
var payment;
output out = hospcost

sum = totcost;
   run;
   proc sort data = hospcost;

by descending totcost;
   run;
   proc print data = hospcost (obs=5);

var hospital totcost;
format totcost dollar15.;

   title ‘Top 5 Hospitals’;
   run;

The results of this analysis are shown in Table I,
with the corresponding information on ICF costs
in Table J.

Final Study Design

The final study design is written to include all the
steps necessary to produce the required results:

� Obtain a frequency count on discharge
status in the UB-92 year 2000 acute care
summary file

� Select those patients who are still
hospitalized

� Select those patients who have been
hospitalized over 5 days

� Calculate their cost per day
� Identify patients who have been transferred

from a hospital to an ICF (discharge status of
5)



� Of those patients include only those with a
length of stay of 31 days or less

� Calculate the cost per day for patients who
are in an ICF

� Calculate of the difference in per day costs
between hospital and ICF facilities

� Produce tabular reports on the demographic
(age and gender) identifiers of the selected
populations

� Produce a report of the 15 top primary
diagnoses associated with those patients still
hospitalized

� Produce a report of the 15 top primary
diagnoses associated with those patients in
ICFs

� Create a list of the top five costliest hospitals
for those patients still in the hospital

� Create a list of the top five costliest nursing
homes to which hospital patients were
transferred

Conclusion - Outcome of Study

As shown, this study was implemented as simple
frequencies and iteratively enhanced as each
resulting table was available.  Since this analysis
might have direct impact on patients' treatments,
it was important that clinical input was requested.

During the wrap-up meeting of the study team,
one surprising and unexpected result was
identified. Although there could be no final
decision to move patients after 5 days from a
hospital to a nursing home, it was clear from
Table I (Top 5 Hospitals), that one hospital,
University Center, accrued the largest dollar
amount for patients hospitalized for over 5 days.

The clinician was aware of the variations of
specialties across the hospitals, but could not
explain the wide variation in total costs. It was
determined that a meeting between the HMO and
hospital administrators was needed. At that time,
discussions as to the length of stay of patients in
the hospital were discussed. The possibility of
medical record review was proposed to assess
this issue.

In addition, there were still several questions
pending. Is this truly the final study or is this all
that is available in the time alloted? Can any
requirements be placed on physicians concerning
length of stay that are clinically sound?

Should additional analysis take place? For
example:

� Does the type of condition and the status of
the patient control the outcome?

� What other factors may affect overall length
of stay?

� Do patients recover more quickly in
hospitals?

Complete study designs are imperative to valid
analyses. They are created over time and may in
fact present unexpected results. Programmers
and analysts who can work within the variation of
needs and personalities fill an invaluable role in
any organization.

For more information on study designs, check the
case study discussed in Health Care Data and
the SAS System.

References

Scerbo, M., Dickstein, C., and Wilson, A. (2001).
Health Care Data and the SAS System, Cary,
NC: SAS Institute, Inc.

Contact Information

For more information contact:
Marge Scerbo
CHPDM/UMBC
1000 Hilltop Circle
Social Science Room 309
Baltimore, MD 21250
Email: scerbo@chpdm.umbc.edu

Craig Dickstein
Intellicisions Data Inc.
P.O. Box 502
Weare, NH  03281
Email: cdickstein@att.net



Table A - Frequency of Patient Status, CY2000

StatusStatusStatusStatus FrequencyFrequencyFrequencyFrequency PercentPercentPercentPercent Cum. FrequencyCum. FrequencyCum. FrequencyCum. Frequency Cum. PercentCum. PercentCum. PercentCum. Percent
Disch/Trans to Home or Self Care 87,219 85.4 87,219 85.4
Disch/Trans to Other Hospital 1,688 1.6 88,907 87.0
Disch/Trans to SNF 5,619 5.5 94,526 92.5
Disch/Trans to ICF 1,021 1.0 95,547 93.5
Disch/Trans to Other Institution 2,420 2.3 97,967 95.9
Left Against Medical Advice 1,397 1.3 99,364 97.2
Patient Died 1,901 1.8 101,265 99.1
Still in the Hospital 844 0.8 102,109 100.0

Table B - Formatted Frequency of Total Days - Still in Hospital

TotaldaysTotaldaysTotaldaysTotaldays FrequencyFrequencyFrequencyFrequency PercentPercentPercentPercent Cum. FrequencyCum. FrequencyCum. FrequencyCum. Frequency Cum. PercentCum. PercentCum. PercentCum. Percent
0-5 568 67.3 568 67.4
> 5 276 32.7 844 100.0

 Table C - Output of Summary on Acute Care Patients

# of Patients (_FREQ_)# of Patients (_FREQ_)# of Patients (_FREQ_)# of Patients (_FREQ_) Total DollarsTotal DollarsTotal DollarsTotal Dollars Total DaysTotal DaysTotal DaysTotal Days Average Cost per DayAverage Cost per DayAverage Cost per DayAverage Cost per Day
276 $15,779,690 6,053 $2,606

Table D.1- Output of Summary on ICF Patients

# of Patients (_FREQ_)# of Patients (_FREQ_)# of Patients (_FREQ_)# of Patients (_FREQ_) Total DollarsTotal DollarsTotal DollarsTotal Dollars Total DaysTotal DaysTotal DaysTotal Days Average Cost per DayAverage Cost per DayAverage Cost per DayAverage Cost per Day
5,983 $876,121,178 1,143,242 $767

Table D.2 - Output of Summary on ICF Patients - Amended

# of Patients (_FREQ_)# of Patients (_FREQ_)# of Patients (_FREQ_)# of Patients (_FREQ_) Total DollarsTotal DollarsTotal DollarsTotal Dollars Total DaysTotal DaysTotal DaysTotal Days Average Cost per DayAverage Cost per DayAverage Cost per DayAverage Cost per Day
1,021 $8,592,300 5,242 $1,639

Table E - Demographic Identifiers for  Still in Hospital

Female Male

Children AdultAdultAdultAdult ChildrenChildrenChildrenChildren AdultAdultAdultAdult
26 99999999 43434343 108108108108

Table F - Demographic Identifiers of  Transferred to ICF

FemaleFemaleFemaleFemale MaleMaleMaleMale

ChildrenChildrenChildrenChildren AdultAdultAdultAdult ChildrenChildrenChildrenChildren AdultAdultAdultAdult
56 452 65 448



Table G – Top 15 Diagnoses for Still in Hospital

Primary DiagnosisPrimary DiagnosisPrimary DiagnosisPrimary Diagnosis CountCountCountCount
Schizoaffective Disorder 32
Congestive Heart Failure 28
HIV Aids 23
Pneumonia 23
Respiratory Distress 23
Hypovolemia 16
Septicemia 16
Rehabilitation Procedure 15
Depress Psychosis 12
Extreme Immaturity 12
Food/Vomiting 12
Paranoid Schizophrenia 12
Staphyloccal Pneumonia 10
Bipolar Affective Disorder 9
Decubitus Ulcers 9

Table H – Top 15 Diagnoses for ICF

Primary DiagnosisPrimary DiagnosisPrimary DiagnosisPrimary Diagnosis CountCountCountCount
Senile Dementia 240
CVA 198
Cardiovascular Disease 99
Alzheimers 76
Cerebrovascular Disorder 32
Hip Replacement 26
Hypertension 24
Psychosis 18
Paralysis Agitans 17
Multiple Sclerosis 14
Diabetes 14
Decubitus Ulcers 9
Presenile Dementia 7
Depressive Disorder 7
Neoplasm 5



Table I - Top 5 Hospitals

HospitalHospitalHospitalHospital Total PaymentsTotal PaymentsTotal PaymentsTotal Payments
University Center $2,187,634
Ben Franklin Hospital $1,506,123
Union Square Hospital $414,168
Childrens Center $361,421
St. Johns $310,448

Table J - Top 5 ICFs

HospitalHospitalHospitalHospital Total PaymentsTotal PaymentsTotal PaymentsTotal Payments
Freetown Rehabilitation Center $146,940
Morristown Center $121,461
Main Eldercare $98,821
Northeast Convalescent Home $96,503
St. Michaels Nursing Center $87,606



Introduction to the SAS���� Macro Language
Thomas J. Winn, Jr.

Texas State Auditor’s Office,  Austin, Texas

[SAS  is a registered trademark of SAS Institute Inc. in the  USA and other countries.   � indicates USA registration.]

Why bother learning about macros?

Have you ever wanted to “package” blocks of SAS code
into components that could be invoked with a single
command? This would be desirable, for instance, in
repetitive coding situations involving the processing of
numerous, similar data sets in identical ways.

Have you ever wanted to write a SAS program that
modifies itself while it is running? Perhaps you wanted
to write flexible SAS code with the ability to
accommodate itself to certain changeable details -- for
instance, to check for data requiring special processing,
to dynamically generate data-dependent lines in a
report, or to communicate particular information
between the steps in a program.

Have you ever wanted to be able to build and utilize a
customized “toolbox” of frequently-used programming
modules, without having to explicitly list them in each
program in which they are used?

For these situations, and for many others, use of the
SAS macro language can produce the desired results.
The SAS macro language is a powerful tool for
producing flexible or repetitive code by using a
modularized approach.   It is particularly useful in
applications development.

What are Macros?

Macros are stored text which contain entire blocks of
SAS code, and which are identified by a name.  The
stored text can include SAS statements, literals,
numbers, macro variables, macro functions, macro
expressions, or calls to other macros.
Macro variables are used to facilitate symbolic
substitution of strings of text, whereas macros can be
used to manipulate SAS source statements.

Macro information can be inserted at any point in a SAS
program simply by referring to the macro entity by
name, preceded by a special character, which
distinguishes macro statements from ordinary SAS
code.   Macro variables are identified using the
ampersand (&), and macros are identified using the
percent sign (%).   These special characters (& and %)
are “macro triggers.”  If either of these triggers are
followed by a non-blank character, the macro facility
takes control over processing.

The macro facility constructs and edits SAS source
statements by substituting the currently-defined values
of macro variables, and also by replacing macro names
with the stored text which is associated with each of
them.

So, what does “macro” do?

Standard SAS code (that is, SAS code which does not
contain any macro content) is passed directly from the
input stack to the SAS processor.

On the other hand, pieces of SAS code that contain any
macro information are intercepted, and are passed to
the macro facility for interpretation before they are
executed.

The SAS Macro Language is a programming
language.

The macro facility follows instructions that are written
using a special language.  The SAS macro language
has variables, statements, functions, expressions, and
syntax.  It works in conjunction with the SAS
programming language.

Macro Variables

Macro variables are used to facilitate symbolic
substitution of strings of text.   Macro variables are
named following the usual rules for SAS names.   A
macro variable can be referenced by placing an
ampersand immediately before the macro variable
name and, optionally, by placing a period after the
macro variable name.   A macro variable reference
causes the macro facility to substitute the current value
of  the macro variable for the reference.

There are two types of macro variables: automatic
macro variables, which are defined by the SAS
Supervisor, and those, which are defined by the
programmer.    Once it has been appropriately defined,
a macro variable may be used repeatedly in the SAS
job.    Automatic macro variables are created by the
SAS Supervisor when the SAS System is invoked.
They include information such as the time, day, and
date on which the job began executing, and the name
of the most recently created SAS data set.   Automatic



macro variables are available for the duration of a SAS
job and can be referenced anywhere in any SAS
program.

The %LET statement is the most common way to
create user-defined macro variables, and to assign
values to those variables.

The value assigned to a macro variable is treated as a
character string by the macro facility, but it isn’t
necessary to enclose the string in quotes.  If quotes are
used, the quotes become part of the string.

There is no such thing as a numeric macro variable.  In
the macro language, everything is stored text.
Here is the general syntax for %LET:

%LET macrovariablename = value ;

The name of a macro variable must conform to the
customary rules for names in SAS.

Here is a particular example:
%LET OPT = N OBS UNIFORM;

Then, the statement
PROC PRINT &OPT;

would resolve as (that is, would be replaced by)
PROC PRINT N OBS UNIFORM;

Macros

Macros are used to manipulate SAS source statements.
A macro is defined by enclosing its text between a
%MACRO statement and a %MEND statement.  The
%MACRO statement may include a parameter list
(either positional or keyword type) to define special
macro variables that can be referenced within the
macro.

Here is the general syntax which is most commonly
used:

%MACRO macroname(parameters);
     . . . macrotext . . .
%MEND macroname;

Macro variables that are defined within a macro
generally cannot be resolved outside of the macro.
It is possible to invoke a macro from within another
macro.  When this happens, the macros are said to be
“nested.”    In general, a macro variable can be
resolved in the macro within which it is defined, and in
all other macros that are nested within that macro.

Macro Programming Statements and Macro
Functions

Most macro programming statements appear similarly,
and are used in the same way, as corresponding
ordinary-SAS programming statements, except that
they begin with a percent sign (%).   For example, the
%IF-%THEN-%ELSE, %DO, %DO %WHILE, %DO
%UNTIL, %END, and %GOTO statements are used in
precisely the same manner as the familiar IF-THEN-
ELSE, DO, DO WHILE, DO UNTIL, END, and GOTO
statements.   These statements facilitate conditional
code generation, iterative processing, and branching
within a macro.

The SAS macro language includes several functions for
manipulating strings that are similar to character string
functions which might be used in a DATA step in
ordinary SAS.   %LENGTH, %SUBSTR, %INDEX, and
%SCAN work just as you might suppose.

Single quotes (‘  ’) and double quotes (“  ”) don’t have
the same effect in the SAS macro language as in
ordinary SAS.
If a macro reference is placed within single quotes, it
will not resolve (that is, it will be treated as constant
text, and no symbolic substitution will occur).
However, macro variable references enclosed in double
quotes will resolve.
The SAS language uses quotes to indicate character
constants.  However, since quotes are considered part
of the text in the SAS macro language, quoting
functions take the place of quotes in macro
expressions.
Quoting functions are very useful for removing the
customary syntactical meanings of special characters
(like semicolons, unmatched parentheses, apostrophes,
operators, and mnemonics) in character strings.
Consult the SAS documentation for further information.

A Few Examples of the Use of Macros

Here is an example of a macro, named REPET, which
uses keyword-type parameters in an iterative loop to
generate multiple DATA and PROC steps:

%MACRO REPET(FIRST=, LAST=);
     %LOCAL I;
     %DO I=&FIRST %TO &LAST;
           DATA NET&I;

INFILE IN&I;
    INPUT DEPT $ INCOME EXPENSE;
    PROFIT = INCOME - EXPENSE;

           PROC PRINT;
    TITLE “REPORT OF INCOME & EXPENSE FOR &I”;
     %END;
     RUN;
%MEND REPET;

Simply defining a macro does not cause it to execute.
Here is how to invoke the previously-defined macro:
           %REPET(FIRST=1990, LAST=2000)
Notice that the null default values of the parameters are
replaced with desired values.  Also notice that the
statement does not end with a semicolon.

Following is an example in which macro variables are
used for the start date of the time period under
consideration in a batch reporting job which normally
would be run each Monday morning.   Before
submitting the program, the appropriate date elements
are inserted as arguments in the MDY function for a
variable named START.   If the program is run on a
Monday, and if the desired time period is the preceding
week, then it isn’t necessary to do anything to START.
This program is easy to maintain and use, since the
start date is only entered once at the beginning of the
program, and the macro facility automatically
substitutes values for two different forms of the date as
often as they are required.

DATA _NULL_;
    START = MDY(10,20,2000);
    %GLOBAL STRTDA1 STRTDA2;
     IF &SYSDAY=Monday THEN DO;



         START2 = &SYSDATE - 7;
         CALL SYMPUT(“STRTDA1”,
                            LEFT(PUT(START2,WORDDATE.)));
         CALL SYMPUT(“STRTDA2”,
                            LEFT(PUT(START2,DATE.)));
     END;
    ELSE DO;
        CALL SYMPUT(“STRTDA1”,
                        LEFT(PUT(START,WORDDATE.)));
        CALL SYMPUT(“STRTDA2”,
                        LEFT(PUT(START,DATE.)));
     END;

DATA A;
      INFILE IN1;
      INPUT  @1   VAR1         PD6.
                   @7   VAR2            $2.
                   @9   VAR3            $4.
                   @13  DATEVAR  MMDDYY10.;
      IF VAR2 = ‘02;
      IF DATEVAR  GE “&STRTDA2”D;
PROC PRINT;
      VAR   VAR1  VAR3;
      TITLE “Records Processed Since &STRTDA1”;

The preceding program makes use of two automatic
macro variables, SYSDAY and SYSDATE, which are
created when the SAS System is invoked.    The
SYMPUT routine is used to transfer information from
the DATA step to macro variables, during the execution
phase of the DATA step.

Sometimes, I use SAS to perform the same kind of
statistical analysis and/or reporting on data files which
share the same general structure, but which differ
according to agency number, industry grouping, or
economic region.  Macros are ideal for this situation!
Following is an outline of a typical case.

%MACRO ANLYS(REGN);
      DATA &REGN.2;
          SET &REGN;
          BY INDGRP;
          . . . (SAS programming statements)
      PROC . . . . ;
          . . . (SAS programming statements)
          TITLE “Analysis for &REGN Region”;
      DATA . . . . ;
          . . . (SAS programming statements)
      PROC . . . . ;
      RUN;
%MEND ANLYS;

Notice the use of the parameter REGN.  Macro
parameters are special macro variables which are
defined with the macro, and which are assigned a value
when the macro is invoked.  Also notice the use of a
period as a macro variable delimiter in the first DATA
step.   Here is how the preceding macro would be
called -- notice that each invocation includes a value for
the parameter REGN:
      %ANLYS(PLAINS)
       %ANLYS(METROPL)
       %ANLYS(EASTEX)
       %ANLYS(GULFC)
       %ANLYS(CENTRAL)
       %ANLYS(BORDER)
       %ANLYS(OUTSTA)

Autocall Libraries

Macros can be stored in, and accessed from, macro
libraries.  The autocall facility is a way of making one or
more libraries of commonly-used SAS macros
available, without having to explicitly include them in
each SAS program in which they are used.  This allows
SAS programmers to create macros for customized
functions, and to have access to them whenever they
are needed. There could be personal macro libraries, or
departmental macro libraries for macros to be shared
by many persons.

On MVS systems, autocall libraries are partitioned data
sets.  On a CMS system, an autocall library is a maclib.
On a PC, an autocall library is a directory consisting of
files with a ‘sas’ extension. The macros are stored as
members in the library, where the name of the macro is
the same as the name of the member.  The libraries are
concatenated, using the fileref SASAUTOS.  Then, the
autocall facility will automatically define and execute a
stored macro whenever it is called in the SAS session,
provided that the MAUTOSOURCE system option is in
effect.

Suggestions for Further Reading

Art Carpenter,  Carpenter’s Complete Guide to the SAS
Macro Language, Cary, NC: SAS Institute Inc.,
1998.

SAS Institute Inc.,  SAS Guide to Macro Processing,
Version 6, Second Edition,  Cary, NC: SAS Institute
Inc., 1990.

SAS Institute Inc.,  SAS Macro Facility Tips and
Techniques, Version 6, First Edition,  Cary, NC:
SAS Institute Inc., 1994.

SAS Institute Inc.,  SAS Macro Language: Reference,
First Edition,  Cary, NC: SAS Institute Inc., 1997.

Thomas J. Winn Jr., “The SAS Macro Language: An
Overview,” Proceedings of SCSUG ‘91, pp. 267-
272.

Thomas J. Winn Jr., “Introduction to the SAS Macro
Language,” Proceedings of SCSUG 2000, pp. 377-
395.

Thomas J. Winn Jr., “Debugging SAS Macros,”
Proceedings of SCSUG ‘94, pp. 212-229;
and SUGI-20 Conference Proceedings,1995, pp.
346-352.

Thomas J. Winn Jr., “Debugging SAS Macros,
Revised,” Proceedings of SCSUG ‘99, pp. 249-255.

Conclusion

The SAS Macro Language is a powerful tool for
simplifying repetitive coding, for communicating
information between program steps, for generating
data-dependent SAS statements, for permitting
conditional execution of SAS code, and for dynamically
importing certain information from the SAS Supervisor.
In macro programming, a modularized approach is
used.  In this presentation, we have seen, or referred
to, a few of the basic uses.   And we also have listed
several references for further study.



Author Information

Tom Winn
Texas State Auditor’s Office
P.O. Box 12067
Austin, TX  78711-2067

Telephone:  512 / 936-9735
E-Mail:  twinn@sao.state.tx.us



Paper P809

A Beginner’s Tour of a Project using SAS® Macros
Led by SAS-L’s Macro Maven

Ronald Fehd, Centers for Disease Control and Prevention, Atlanta, GA, USA

ABSTRACT
SAS® Macros and the SAS®Macro Language are simple yet
powerful tools. Once you understand how to use and write macros,
your next task is to understand how to you use them consistently
and more importantly, intelligently, from a programmer's point of
view. This tutorial presents the basics of project design with an
overview of macro usage across programs. Topics include
communicating between programs, using system variables, use of
the config.sas, autoexec.sas, %includes, etc. Expected audience are
beginner and intermediate SAS programmers.

INTRODUCTION
This paper explains how I began using macros and have progressed
over the years. I think it is important to illustrate the thought
progression of beginning macro usage and progressing to more
complicated and then back to more simple usage. The program
examples illustrate the differing styles of using macros. Most have
been generalized for this paper in order to highlight the concepts and
the differences between user-written and data-supplied macro
usage.

TABLE OF CONTENTS
* Eight D’s of any Scientific Investigation
* programming considerations

* naming conventions
* directory structure
* data dictionary and formats

* notes on a style sheet
* three steps in writing macros

* write twice
* parameterize
* make macro

* getting started: %global macro variable usage
* autoexec
* utilities: titles, nobs

* example using proc FREQ

8 D's OF SCIENTIFIC INVESTIGATION
Documentation:
Determine Goals
Study Design: data collection instrument
Data Collection: data dictionary
Data Entry
Data Management: SAS programs
Data Analysis: number-crunching, bean counting,
Disseminate Results: publish

Where do you work? Hopefully you’re consulted on the design of the
data collection instrument. Certainly you want to be familiar with the
data dictionary, as it contains what you need to know to program:
format definitions, variable type, length, and label.

PROGRAMMING CONSIDERATIONS
These programs are examples from a typical project. The main
reason I learned to use macro variables was to be able to reuse
programs developed in one project in the others. This exercise, in
turn, lead me to consider the organizational programming issues of
naming conventions and directory structure.

NAMING CONVENTIONS
I manage projects for two Research Groups:
* PEP: Performance Evaluation Project
* TB : Tuberculosis

Each of those groups has several projects
PEP: HIV: Human Immunodeficiency Virus

HTL: Human T-Lymphocyte Virus
TB: NAA: Nucleic Acid Amplification

NTM: Non-Tuberculosis Mycobacteria

These projects have biannual shipments, e.g.:
NAA-2000-Jan NAA-2000-Aug

Over the years I developed these data set naming conventions:

col name range explanation
1 ID: P: Panel

S: Sample
2:5 yymm Year+Month: 2000-Jan
6 data A:Z Study: A=Any-Other, E=EIA, ...
7 DT D,T data, text
8 ver 0:3 version: 0=final, 1=master,

2=clean, 3=with corrections

example:
P0001AD0 Panel data for Any-Other
P0001AD1 \
P0001AD2 > versions one thru three
P0001AD3 /
P0001AT0 text data set
S0001AD0 Samples, transposed from Panel

See the macro TITLES below and the global macro variable
DATA_SET which implements this data set naming convention.

DIRECTORY STRUCTURE
A directory for an individual shipment includes these sub-directories
under MS-Windows:
c:\...\NAA\p0008 parent directory
..\doc data collection form, data dictionary
..\htm HyperText Mark-Up Language from SAS ODS
..\pgm SAS programs
..\ssd SAS data sets
..\xls Excel, written from summary data sets

Note that each directory contains a specific set of file types. See the
use of the macro-variable PATH below in pointing to each directory.

DATA DICTIONARY
Early in my career I depended on a print-out of proc CONTENTS as
my data dictionary. Developing a good workable data dictionary is
very important. Getting the people whose data I manage to
understand how important it is to them and that it should therefore
be, not only their priority but also their responsibility occupied me in
many meetings over several years. There are two very important
items in a good data dictionary: format definitions and data
definitions.



Here is an abbreviated example from one of my projects:

Data Dictionary: PEP HIV-1 Results Panel 2001-01
CDC: programmer/analyst: Ronald Fehd
Shipment ID : 9
Shipment date: January 29, 2001

Contents:
I. Sample Identification look-up table
I. Deliverables Description
II. Editing Instructions
III. Abbreviations
IV. Formats
V. Variable Descriptions
. . .
IV. Formats

value HIV9SN /*Sample-Nmbr to Sample-Name */
.,0 = “&BLANK.”
1 = '9-1'
...[snip]
5 = '9-5'

other = "&INVALID.";
. . .
V. Variable Descriptions

Char/
Num

Variable :len Format Label/Description
-------- ---- ------- -----------------
IDNmbr C:3 $char3. ID range:001--999
SmplNmbr N:4 HIV9SN. Sample Number

Note that the format name HIV9SN has a prefix which is the project
identifier: HIV and an infix of the shipment ID: 9. I use this
convention to separate the format definitions that are unique to a
shipment. This is helpful when concatenating many shipments.

Refer to the program Autoexec-Basic, lines 11 and 12, and note the
global macro variables BLANK and INVALID. Note that when the
macro variables are referenced in the data dictionary and programs
that they have a dot as suffix delimiter.

The use of BLANK and INVALID in format descriptions is a key
feature to understand when reviewing the FREQ program examples
because they are used to exclude those values from reports.

A Venn diagram of the values in any variable would contain first the
set of valid values indicating no answer was provided. Next would be
the set of expected and therefore valid values, which have been
correctly and completely defined in the formats sections of the data
dictionary. The remainder is the set of invalid values. What do you
do with these meaningless values? Include and explain? Or exclude
and reduce the number of observations reported as responding?

BLANK: labeling dot=missing and zero as BLANK is a convenient
way of identifying acceptable values outside of the expected range
that are valid. For a character format the statement identifying space
and dot would be: ‘ ’,’.’ = “&BLANK.”

INVALID: labeling unspecified values and ranges with the value
statement option <other = “&INVALID.”> is the prerequisite to
identifying and excluding these values both in data review and in
preparing summary data sets. See the FREQ programs for usage.

NOTES ON A STYLE SHEET
These programming examples illustrate and expand Fehd (2000)
Writing for Reading SAS® Style Sheet (W4R) which addressed
conventions used to differentiate SAS statements from macro
statements. Here is a short summary:
;/* precede a slash-asterisk block at column one with a

semicolon to avoid problems when copying to mainframe
MACRO statements in UPPER CASE
sas® statement in lower case
Variable names in Mixed Case
%THEN always use %DO;+%END; block to avoid confusing

macro semicolon with SAS semicolon
&J. use dot as suffix delimiter for macro variables
“&J.” always quote macro variables in conditions to avoid

testing a macro variable with the value of the logical
comparison operator ‘OR’, the two-letter state abbreviation
for Oregon
e.g.: %IF “&STATE.” eq “OR” %THEN

dot use as suffix delimiter in macro variables
dot-dot infix in two-step data set names &LIBRARY..DATANAME

infix in filename.ext: &FILENAME..SAS
suffix for formats: $char&WIDTH..

DATA placement of data step statements on page
left: information, unconditionally executed:

attrib array drop format keep, etc.
control statements: if, do,

middle: conditionally executed
right: closure: end

proc use hanging indent
center: keywords
right: user-supplied options or parameters

MACRO VARIABLE USAGE
There are two ways of creating and initializing macro variables:
the first is a user-defined macro variable and the second is using
data to supply a value.

The simple and direct way to create a macro variable is:
%LET MACVAR = blank for now;

Note that the keyword and name are in upper case; this is a
reminder that this statement operates in the global programming
environment, the same as title, footnote, and option statements.

In addition, it is important to realize that every macro variable is a
character string, even when the value contains only digits and may
conform to the appearance of a real number:
%LET PI = 3.1416; %LET SUM = &PI. + 1;%PUT SUM<&SUM>;
yields this note in the log: SUM<3.1416 + 1>;
%LET SUM =%eval( &PI. + 1);%PUT SUM<&SUM>;
we’re getting closer: SUM<4>; because the %eval function does
only integer arithmetic!

Remember: macro variable values are always strings!

The indirect way to create a macro variable from data is to use a pair
of statements:
1. call symput(‘MACVAR’,<character expression>);
2. RUN;

The RUN statement is a step boundary, and only after a step
boundary is the macro variable available to the next step. See usage
in program INOBS, lines 8 and 9, below.

THREE STEPS IN WRITING MACROS
1. Recognize a pattern: In developing macros I notice when I have
written two similar SAS paragraphs: two similar sets of statements.
Once I have two different paragraphs working correctly, then I begin
to review and identify the commonalities and differences, which are
the parameters of the first version of a potentially reusable program.

2. Prepare a parameterized %include file. I use global macro
variables for the parameters. The major benefit of this intermediate
step, especially for beginners, is that you still have line numbers
available in your SAS log. Those line numbers are so valuable in
debugging because they tell you where your SAS errors are located.
This point is important! Line numbers are no longer available from
within macros!

3. Define a macro and convert the list of global macro variables used
to macro parameters. Kiss the line numbers in the log goodby; now
you have to guess where the errors are occurring: somewhere inside
your macro! These steps are illustrated in the examples below .



Project Set-up: three examples of autoexec.sas

123456789012345678901234567890123456789012345678901234567890123456789012
01 ;/* AUTOEXEC - - - - - - - - - - - - - - - - - - - - - - - - - - - - */ 01
02 libname LIBRARY ‘C:\SAS\PEP\HIV\P200101\SSD’; 02
03 TITLE1 ‘HIV-1 shipment A: 2001-Jan-31’; 03

This is as simple as it gets: where is the data stored and what is the main title to be used in reports.

01 ;/* AUTOEXEC basic - - - - - - - - - - - - - - - - - - - - - - - - - */ 01
02 %LET PROJECT = HIV; %*(HIV,HTL,NAA,NTM): directory PATH-name ; 02
03 %LET PROJNAME = HIV-1; %*PROJECT expanded: TITLEs ; 03
04 %LET SHIP_ID = A; %*(0:9,A:Z) : infix in format names; 04
05 %LET SHIPYYMM = 200101; %*ccYYMM : names: data set, PATH; 05
06 %LET SHIPDATE = Jan 29, 2001; %*Mon dd, ccYY : report TITLEs ; 06
07 ;/* AUTOEXEC begin execution - - - - - - - - - - - - - - - - - - - - -*/ 07
08 TITLE "&PROJNAME. Shipment: &SHIP_ID: &SHIPYYMM. &SHIPDATE."; 08
09 %LET LIBRARY = LIBRARY; %*default library; 09
10 %LET DATA_SET = A&SHIPYYMM.D0;%*default data set, reset by macro TITLES; 10
11 %LET BLANK = BLANK; %*numeric: missing and character: blank; 11
12 %LET INVALID = INVALID; %*out of expected range: see formats; 12
13 %LET PATH = C:\SAS\PEP\&PROJECT.\P&SHIPYYMM.\; 13
14 %LET PATH_HTM = &PATH.HTM; %*HyperText Markup; 14
15 %PUT _USER_; %*checking; 15
16 16
17 libname LIBRARY "&PATH.SSD"; 17
18 %INCLUDE SASAUTOS(Titles); %*load fan-in macro(s); 18
19 options details noCenter source2; 19
20 20
21 run;%* . . . . . . . . . . . . . . . . . . . . . . . . . . AUTOEXEC end; 21

Now we’re using macro variables, perhaps a little too much!

This is a basic autoexec with global macro variables. It is useful
when programming with parameterized %include files.

Refer to the data dictionary and note the project description macro
variables defined in lines 02:06 are used in the title in line 08. Lines
11:12 are first used in a proc FORMAT program, – which would be
cut and pasted from the data dictionary example above – later in

data review, and finally in excluding observations before creating
summary data sets. PATH is defined in line 13 and concatenated in
references in line 14 and 17. Any other directory could be pointed to
using this style; see reference to PATH_HTM in the FREQ1VAR
ODS example and PATH_XLS in the macro SAS2XLS. The
statement %PUT USER in line 15 shows the user-defined macro
variables in the session. The option source2 in line 19 shows all
lines from %included files, and is an essential aid in debugging.

01 ;/* AUTOEXEC intermediate - - - - - - - - - - - - - - - - - - - - - */ 01
02 %LET PROJECT = HIV; %*(HIV,HTL,TB) : directory PATH-name; 02
03 %LET PROJNAME = HIV-1; %*PROJECT expanded: TITLEs; 03
04 %LET SHIP_ID = A; %*(0:9,A:Z) : infix in format names; 04
05 %LET SHIPYYMM = 200101; %*ccYYMM : names: data set, PATH; 05
06 %LET SHIPDATE = Jan. 24, 2001;%*Mon dd, ccYY : report TITLEs; 06
07 /* AUTOEXEC begin execution - - - - - - - - - - - - - - - - - - - - - */ 07
08 TITLE "&PROJNAME.: Shipment: &SHIP_ID: &SHIPYYMM. &SHIPDATE."; 08
09 09
10 %LET PATH = C:\SAS\PEP\&PROJECT.\P&SHIPYYMM.\; 10
11 %LET LIBRARY = LIBRARY; ;%*default libname; 11
12 %LET DATA_SET = A&SHIPYYMM.D0;%*default data set, reset by macro TITLES; 12
13 %PUT _USER_; %*checking; 13
14 14
15 filename SASAUTOS ("%sysfunc(getoption(SASUSER))" 15
16 );%*add program directory to search-path for macros; 16
17 filename SASAUTOS list; %*checking; 17
18 18
19 %TITLES(); %*checking; 19
20 20
21 libname LIBRARY "&PATH.SSD"; 21
22 22
23 options details noCenter MautoSource; 23
24 24
25 dm log 'awsmaximize on;log;zoom on;up max;down max' log;%*view log; 25
26 26
27 run;%*. . . . . . . . . . . . . . . . . . . . . . . . . . AUTOEXEC end; 27

In this intermediate autoexec global macro variables have been
moved to small files. See LetFrmt and LetPath below.

General purpose macros are stored in a separate file with the name
of the macro as the file name, e.g.: the macro TITLES is stored in
file TITLES.SAS. In line 15 the fileref SASAUTOS points to the
program directory: SASUSER, which is defined in your SAS

invocation. A review of your proc OPTIONS will show
sasautos=sasautos. The fileref SASAUTOS is the autocall library,
that is it contains macros within same-named files; these macros are
called autocall macros. The option MautoSource enables searching
of the SASAUTOS fileref for the autocall macros which are then
%included. See the macros Nobs and Freq1Var below.



01 ;/*letFrmt %GLOBAL mac-vars used in formats, exception reports, summary*/01
02 %LET BLANK = BLANK; %LET INVALID = INVALID; 02

01 ;/*letPath %GLOBAL mac-vars used in writing reports to other files */ 01
02 %LET PATH_HTM = &PATH.HTM; %LET PATH_XLS = &PATH.XLS; 02

Lest we forget: having identified BLANK, INVALID, and PATH_HTM
as global macro variables used in few programs, remove them to
their own files and%include them only when needed.

See usage in the Freq programs.

+ 1 + 2 + 3 + 4 + 5 + 6 + 7
123456789012345678901234567890123456789012345678901234567890123456789012

01 ;/*TITLES Basic . . . . . . . . . . . . . . . . . . . . . . . . . . . */ 01
02 %MACRO TITLES(PFX /*PreFiX */ 02
03 ,NFX /* InFiX */ 03
04 ,SFX=0/*SufFiX in 0:4 */ 04
05 ); 05
07 %GLOBAL DATA_SET TITLEN; 07
08 %LET TITLEN = 2; 08
10 %LET DATA_SET = &PFX.&SHIPYYMM.&NFX.&SFX.; %*concatenation; 10
11 11
12 TITLE&TITLEN. 12
13 %IF "&PFX." = "P" %THEN %DO; 'Panel ' %END; 13
14 %ELSE %IF "&PFX." = "S" %THEN %DO; 'Samples ' 14
15 %IF "&NFX." = "A" %THEN %DO; 'Abbot' %END; 15
16 %ELSE %IF "&NFX." = "I" %THEN %DO; 'In-house' %END; 16
17 %ELSE %DO; "invalid NFX &NFX." %END; 17
18 %*IF PFX=S; %END; 18
19 %ELSE %DO; "invalid PFX &PFX." %END; 19
20 %*titleN end;; 20
21 %put @@TITLES: DATA_SET<&DATA_SET>; 21
22 footnote;options pageno=1; %* . . . . . . . . . . . . . *TITLES; %MEND; 22
23 ;/*************************** to enable end this line with a slash (/) * 23
24 %TITLES(Z);%*see error msg in TITLE2; 24
25 %TITLES(P); 25
26 %TITLES(S,A); 26
27 %TITLES(S,I); 27
28 DATA _NULL_;FILE PRINT;PUT 'XXXXXX';STOP;RUN; 28
29 ;/******************************************/ 29

The TITLES macro is a fan-in routine: it is called by many other
programs. It serves two main purposes:

1. returns %global macro variable DATA_SET, declared in line 07
and set in line 10; it is concatenated from its various parts according
to either your site’s or the individual project’s data set naming
conventions, discussed above.

2. sets global environment variable title2. Note carefully that the
statement begins on line 12 and ends with the second semicolon on
line 20 in column 72. Note also that the macro control statements
%IF and %ELSE in lines 13:19 do not generate any SAS
semicolons; their only result is string literals for the title statement.

The secondary effects – line 22 – are footnotes are cleared and
page number is reset to one.

Further titles in a program may be placed after calling the TITLES
macro using this example statement:

Title%eval(&TITLEN.+1) ‘More information’;
After using this convention, extra titles throughout the entire project
may be adjusted by adding title2 to the autoexec and changing the
value of TITLEN to 3 in line 08.

W4R: Note the macro control statements in lines 13:20:
1. the one-character indent showing the NFX tests are subordinate
to the PFX=S test.
2. alignment of all %THEN %DO in columns 26:35
3. columns 37:54 optional literals for TITLE statement
4. columns 67:72

closure of %DO block: %END;
closure of TITLE: semicolon
closure of macro: %MEND;

When copying this macro to another project to use, it is easy to
modify because the values to change – PFX, NFX, and title literals
are aligned vertically.



NOBS: number of observations of a data set, two utilities used
in the FREQ examples:

+ 1 + 2 + 3 + 4 + 5 + 6 + 7
123456789012345678901234567890123456789012345678901234567890123456789012

01 ;/* iNobs: Include Nobs 01
02 parameters: %GLOBAL LIBRARY DATA_SET 02
03 from: SAS Guide to Macro Processing, V6, 2nd ed., pg 263 03
04 note: call symput + RUN; NOBS has no value until loaded at step boundary 04
05 returns %GLOBAL macro-var NOBS: number of observations;/* . . . . . . */ 05
06 DATA _NULL_; 06
07 if 0 then set &LIBRARY..&DATA_SET. nobs = Count; 07
08 call symput('NOBS',compress(put(Count,32.))); stop; 08
09 run;%PUT @@iNobs: &DATA_SET. has <&NOBS.> observations; 09

Remember what I said about using the pair of statements:
call symput+run?. Examine this program closely and understand not
only what but also when NOBS is happening. As a test insert this
line between line 08 and 09:
%put NOBS<&NOBS.>;
You’ll receive this message:
WARNING: Apparent symbolic reference NOBS not resolved.

because NOBS is uninitialized until the second statement of the pair
in line 09.

Note snake eyes – double dots – in line 07. Remember that macro
variables are delimited with a dot as suffix; the second dot is the infix
in a two-level data set name.

01 ;/*macro NOBS - - - - - - - - - - - - - - - - - - - - - - - - 1999Jun03 01
02 NOBS returns macro-var with number of observations of data set 02
03 from SAS Macro Language Reference, 1e, pg 242 03
04 note: test data shows calling macro must have RUN; 04
05 and declare _MAC_VAR %local 05
06 note: compare arguments to attrn: NOBS, NLOBS, NLOBSF /* . . . . . */ 06
07 %MACRO NOBS(_MAC_VAR /* macro-var name default=NOBS */ 07
08 ,DATA =./* data set name default=&SYSLAST.*/ 08
09 ,_GLOBAL_=0/* return %GLOBAL mac-var? default=%LOCAL */ 09
10 );%LOCAL DSN; run; 10
11 %IF "&_MAC_VAR" = "" %THEN %LET _MAC_VAR = NOBS; 11
12 %IF &_GLOBAL_ %THEN %DO; %GLOBAL &_MAC_VAR.; %END; 12
13 %IF "&DATA." = "." %THEN %LET DSN = &SYSLAST.;%*resolve mac-var; 13
14 %ELSE %LET DSN = &DATA.; 14
15 %LET DSID = %sysfunc(open(&DSN.)); 15
16 %IF &DSID %THEN %DO; %LET &_MAC_VAR. = %sysfunc(attrn(&DSID.,NLOBS)); 16
17 %LET RC = %sysfunc(close(&DSID.)); %END; 17
18 %ELSE %PUT Open for &DATA. failed:%sysfunc(sysmsg()); 18
19 %PUT NOBS: "&_MAC_VAR."=<&&&_MAC_VAR.> data=&DSN.; %* . . .*NOBS; %MEND; 19
20 ;/*************************** to enable end this line with a slash (/) * 20
21 data X;do I = 1 to 10;output;stop;run; 21
22 %NOBS();%PUT _USER_;%PUT NOBS=<&NOBS.>; 22
23 %MACRO TESTING(DATA); DATA &DATA.;do I = 1 to 12;output;stop;run; 23
24 %local NOBS_Y; 24
25 %NOBS(NOBS_Y);RUN;%PUT _LOCAL_;%*see DATA and NOBS_Y; 25
26 %MEND; 26
27 %TESTING(DATA1); 27
28 %PUT NOBS_Y=<&NOBS_Y.>;%*see error message: NOBS_Y does not exist; 28
29 ;/***************************************************TEST DATA closure*/ 29

The macro NOBS differs essentially from iNOBS in that it uses the
set of system functions and does not end with a run statement.
Since this is a fan-in macro, the calling macros declare a local
macro variable in their macro symbol table, that is: in their scope.
Each calling macro has a run statement after the call to NOBS,
which allocates the macro variable within its scope. Examine the test

data provided and note the call in FREQ1VAR, line 16.

W4R: NOBS is useful in showing the style sheet in use: note how
easy it is to scan the control statements on the left – LINES 11:18 --,
then the conditionally executed statements in the center; and finally
all closures on the right side, where they are not distracting.



123456789012345678901234567890123456789012345678901234567890123456789012
01 ;/* FREQ program */ 01
02 02
03 proc FREQ data = LIBRARY.P200101AD0; 03
04 format Var_A Fmt_A.; 04
05 tables Var_A; 05
06 TITLE2 ‘FREQ of p2001-Jan VAR_A LabType’; 06
07 07
08 proc FREQ data = LIBRARY.P200101AD0; 08
09 format Var_B Fmt_B.; 09
10 tables Var_B; 10
11 TITLE2 ‘FREQ of p2001-Jan VAR_B NumSpecimens’; 11
12 RUN; 12

Review this first program example and notice the two similar
paragraphs. SAS-L’s Ian Whitlock refers to this type of program as
wallpaper: lots of repetition with little variation. Recognize the same
library, same data set, same identifier, different variables, different
formats and different titles.

W4R: Note the hanging indent of the options after the proc PRINT.
Columns 11:16 contain the control statements for the procedure and

its options. User-supplied information is placed in columns 18:72.
This placement on the page is the key of the W4R style sheet:
vertical alignment of keywords enables quick scanning to locate
phrases or statements to examine and change.

With two examples in view, what is a template into which you can
insert the common elements?

01 ;/* iFreqPrnt include FREQ Print output w/title 01
02 parameters: LIBRARY : libname in (LIBRARY,WORK) 02
03 DATA_SET: set in TITLES 03
04 VAR : variable 04
05 FORMAT : format name including dot as suffix;/* . . . . */ 05
06 %INCLUDE SASAUTOS(INOBS); 06
07 07
08 proc FREQ data = &LIBRARY..&DATA_SET.; 08
09 format &VAR. &FORMAT.; 09
10 tables &VAR.; 10
11 TITLE2 "FREQ of &DATA_SET. obs:&NOBS. &VAR format: &FORMAT."; 11

This template is derived from the FREQ program above. Lines 08:11
are the essential statements from lines 03:06 and 08:11 in the
FREQ program. Note the documentation in lines 02:05; that is an
important reminder of what you are doing.

Next we need a driver: a calling program to execute this as an
%included file.

01 ;/* call FREQ Basic demo program */ 01
02 %TITLES(P,A); %*returns %GLOBAL DATA_SET; 02
03 03
04 %LET VAR = Var_A; 04
05 %LET FORMAT = Fmt_A.; 05
06 %INCLUDE SASAUTOS(IFREQPRNT); 06
07 %LET VAR = Var_B; 07
08 %LET FORMAT = Fmt_B.; 08
09 %INCLUDE SASAUTOS(IFREQPRNT); 09
10 RUN; 10

Call FREQ Basic is the driver that calls the simple FREQ program
iFreqPrnt.

Review Autoexec Basic, line 09 to see the global macro variable
LIBRARY. Review line 19, and see the option source2; this option
enables the log to show line numbers of the %included files which is
very important for debugging your statements!

Note the TITLES macro – called in line 02 – defines the global

macro variable DATA_SET.

W4R: Control statements on the left:
1. TITLES which sets DATA_SET
2. VAR and FORMAT declarations.
Conditionally-executed %include statements in the center. When
copying to a new project, the items to change – parameters to
TITLES and VAR and FORMAT declarations – are aligned.

01 ;/* iFreqSmry Include FREQ Summary 01
02 parameters: LIBRARY : LIBRARY, WORK 02
03 note output data set written to same LIBRARY 03
04 note snake-eyes in &LIBRARY..&DATA_SET 04
05 &LIBRARY. has suffix delimiter of dot 05
06 + second dot is two-level name delimiter 06
07 DATA_SET: set in TITLES 07
08 VAR : variable 08
09 FORMAT : format name including dot as suffix 09
10 BLANK+INVALID: see LETFRMT, 10
11 %INCLUDE SASAUTOS(LETFRMT);%*calling program must load fan-in module; 11
12 output object data set structure: Label Value Count Percent /*.*/ 12
13 %INCLUDE SASAUTOS(INOBS); 13
14 14
15 proc FREQ data = &LIBRARY..&DATA_SET. 15



16 (where = (put(&VAR.,&FORMAT.) 16
17 not in ("&BLANK.","&INVALID."))); 17
18 format &VAR. &FORMAT.; 18
19 tables &VAR. 19
20 / noprint 20
21 out = FREQ1VAR; 21
22 22
23 DATA &LIBRARY..&VAR. (label = “N=&NOBS. &LIBRARY..&DATA_SET” 23
24 rename = (&VAR. = Value)); 24
25 attrib Label length = $ 40 25
26 Count length = 4 label = “N=&NOBS.”; 26
27 retain N_Obs &NOBS.; 27
28 set FREQ1VAR; 28
29 Label = put(&VAR.,&FORMAT.); 29

Change happens! And new requirements specifications need to be
implemented. IFreqPrnt was a print routine; module iFreqSmry
saves a summary data set with information in a standard data set
structure – a summary object.

Note that the NOBS macro variables is the number of observations
of the whole data set and that the where clause may exclude
observations that are blank or invalid. The result could be that the

sum of Count might not equal the number of observations.

W4R: Note the where clause in lines 16:17, which is a data step
option; it is placed in the central control column because it is a
keyword. Likewise with the slash and out= options of the tables
statement in lines 19:21, keywords in the center, user-supplied
optional tokens to the right.

01 ;/* call FREQ Intermediate demo program */ 01
02 %LET WHICH = PRNT; 02
03 %LET WHICH = SMRY; 03
04 %INCLUDE SASAUTOS(LETFRMT); %*mac-vars used by IFREQSMRY; 04
05 05
06 %TITLES(P,A); %*returns %GLOBAL DATA_SET; 06
07 07
08 %LET VAR = VAR_A; 08
09 %LET FORMAT = LabType.; 09
10 %INCLUDE SASAUTOS(IFREQ&WHICH.); 10
11 %LET VAR = VAR_B; 11
12 %LET FORMAT = NumSpec.; 12
13 %INCLUDE SASAUTOS(IFREQ&WHICH.); 13
14 RUN; 14

Change has happened! In this driver, we want to be able to switch
between the old program iFreqPrnt, which produce only a print, and
the new iFreqSmry which produces a summary data set.

Conditional execution of %include files: To enable the use of the

print routine, disable line 03 with an asterisk:
*LET WHICH = SMRY;
This leaves the macro variable WHICH with the value of PRNT,
which yields an include filename of (IFREQPRNT).

01 %MACRO SAS2XLS(DSN 01
02 ,LIBRARY = LIBRARY 02
03 ,OUT = . 03
04 ,PATH = &PATH_XLS.); 04
05 %IF "&OUT." = "." %THEN %LET OUT = &DSN.; 05
06 filename FILE2DEL "&PATH.\&OUT..XLS"; 06
07 data _NULL_; 07
08 Rc = fdelete('FILE2DEL'); 08
09 SysMsg = sysmsg(); 09
10 put Rc = SysMsg =; 10
11 PROC DBLOAD dbms = EXCEL 11
12 data = &LIBRARY..&DSN.; 12
13 path = "&PATH.\&OUT..XLS"; 13
14 putnames yes; 14
15 limit = 0; 15
16 load; 16
17 filename FILE2DEL clear; 17
18 run;%* . . . . . . . . . . . . . . . . . . . . . . . . . . . . .; %MEND; 18
19 %*SAS2XLS(TBL8F); 19

SAS2XLS is a short fan-in utility macro. Note in line 04 that PATH
defaults to a global macro variable PATH_XLS, which is defined in a

the LETPATH include file. This routine will not overwrite an existing
file; lines 09:11delete a previous file.



Converting %includes to macros:
Ok, so you’ve been writing for two years or have written ten thousand
statements, whichever milestone came first for you. You are
comfortable writing flawless paragraphs, even chapters, of SAS
statements. You figure you’re ready to lose the line numbers, write

macro statements in ALL CAPS, in order to remind yourself that you
are switching gears between the number-crunching paradigm of
SAS and the really simple string-handling of the macro language.
Let’s look at a conversion:

01 ;/* macro FREQ1VAR FREQ of One Variable 01
02 NOTE: need %GLOBAL mac-vars: BLANK INVALID 02
03 usage: 03
04 %FREQ1VAR(VAR1,FORMAT1); 04
05 %FREQ1VAR(VAR2,FORMAT2,DATA=P0001AD3); 05
06 %FREQ1VAR(VAR3,FORMAT3,LIBRARY=WORK); 06
07 output data set structure: N_Obs Label Value* Count Percent;/*. . . . */ 07
08 %macro FREQ1VAR(VAR /* variable name */ 08
09 ,FORMAT /* format with dot as suffix */ 09
10 ,LIBRARY = LIBRARY /* or LIBRARY=WORK */ 10
11 ,DATA = &DATA_SET./* NOTE: %GLOBAL mac-var */ 11
12 ,OUT = . /* default is &VAR */ 12
13 ,HTM_PATH = &PATH_HTM./* default to %GLOBAL mac-var */ 13
14 );%local NOBS; 14
15 %IF "&OUT." eq "." %THEN %LET OUT = &VARIABLE.; 15
16 %NOBS(data=&LIBRARY..&DATA.);run; 16
17 17
18 proc FREQ data = &LIBRARY..&DATA. 18
19 (where = (put(&VAR.,&FORMAT.) 19
20 not in ("&BLANK.","&INVALID.")); 20
21 format &VAR. &FORMAT.; 21
22 tables &VAR. 22
23 / noprint 23
24 out = FREQ1VAR; 24
25 25
26 DATA &LIBRARY..&OUT.(label = “&LIBRARY..&OUT.” 26
27 rename = (&VAR. = 27
28 %IF "%substr(&FORMAT.,1,1)" eq "$" %THEN %DO; ValueChr %END; 28
29 %ELSE %DO; ValueNum %END; 29
30 %* DATA closure; )); 30
31 attrib N_Obs length = 4 31
32 Label length =$40 32
33 Count length = 4 label = “N=&NOBS.”; 33
34 retain N_Obs &NOBS.; 34
35 set FREQ1VAR; 35
36 Label = put(&VAR.,&FORMAT.); 36
37 37
38 %SAS2XLS(&OUT.); 38
39 39
40 ods listing close; %*SAS.list OFF; 40
41 ods html body = "&HTM_PATH.\&OUT..HTM"; 41
42 proc PRINT data = &LIBRARY..&OUT.; 42
43 ods html close; 43
44 ods listing; %*SAS.list ON; 44
45 run;%* . . . . . . . . . . . . . . . . . . . . . . . . .FREQ1VAR; %MEND; 45

The FREQ1VAR macro illustrates several conversion issues:
1. Parameter list: VAR and FORMAT are positional parameters
because they follow the order of macro variable declarations in the
previous calling programs.
Named parameters: LIBRARY is hard coded to default to the name
LIBRARY, but DATA defaults to the global macro variable
DATA_SET, which is set by the fan-in macro TITLES.

Avoid this error: setting a local variable equal to a global variable of
the same name: DATA_SET = &DATA_SET. This generates a
circular reference, which leaves your session in an infinite loop!

2. local macro variables: The macro variable NOBS was global when
generated by the include file iNOBS. In line 13 it is declared local in
order to reduce the number of global macro variables. Note the run
statement after the call of the macro NOBS; this step boundary in
FREQ1VAR enables macro variable NOBS to be local to
FREQ1VAR. If the step boundary were in the macro NOBS, the
macro variable NOBS would be in the global symbol table.

Similarly OUT has a default value of blank – line 12 – but is
immediately tested and reset to the value of VAR when blank. Note
the quotes around the values being compared. This is a mnemonic

that reminds you the macro language is a string-processing
language. Why use a default value of dot? Because you can see it!
You want to avoid this test:
%IF &OUT = %THEN ...
This expands to: %IF &OUT. eq blank %THEN ...
I recommend: %IF “&OUT.” eq “dot” %THEN ... because it’s more
readable.

3. %THEN %DO lines 28:29 ValueChr and ValueNum are the new
names of the FREQ tables variable. This construct shows the macro
language inserting the appropriate token in the data statement
rename phrase which starts on line 27 and ends on line 30. Without
the %DO ... %END bracket, there would be a semicolon after each
of the two tokens; these are the closure of the %IF and %ELSE
macro statements, not to be confused as closure of the data
statement.

4. use of global macro variables as default values of parameters:
DATA and PATH_HTM. Note that the macro SAS2XLS uses the
global macro variable PATH_XLS.

This macro is a shortened version of Fehd (1999) %FREQ1VAR.



01 ;/* call FREQ macro demo program */ 01
02 %INCLUDE SASAUTOS(LETFRMT); %*mac-vars used by IFREQSMRY; 02
03 03
04 %TITLES(P,A); %*returns %GLOBAL DATA_SET; 04
05 05
06 %FREQ1VA4(Var_A,Fmt_A.); 06
07 %FREQ1VA4(Var_B,Fmt_B.); 07
08 RUN; 08

Change! Notice that the calling programs are getting shorter. And now, let us have SAS eliminate our typing of variable names and formats.

01 ;/* call FREQ macro demo program */ 01
02 %INCLUDE SASAUTOS(LETFRMT); 02
03 03
04 %TITLES(P,A); %*returns %GLOBAL DATA_SET; 04
05 05
06 proc CONTENTS data = &LIBRARY..&DATA_SET 06
07 out = CONTENTS 07
08 (keep = Name Format); 08
09 09
10 filename TEMPTEXT catalog 'sasuser.profile.sasinp.source'; 10
11 11
12 data _NULL_; 12
13 Set CONTENTS; 13
14 put ‘%FREQ1VAR(‘ Name ‘,’ trim(Format) ‘.);’; 14
15 run; 15
16 %include TEMPTEXT /source2; 16
17 run; 17
18 file TEMPTEXT clear;run; 18

Where is a list of variable names and formats? In a correctly-written
data structure, which was thoroughly and complete described in a
data dictionary. Proc CONTENTS provides an object with variable

name and format, which can be used to write a series of macro calls
as in Call-FREQ-macro, above.

CONCLUSION
There are several important issues to consider when using macros:
* Maintenance: what is the skill level of the maintenance
programmer?
* Global macro variable usage: where do changes occur? As an
example, changing the value of the macro variable LIBRARY from
LIBRARY to WORK, would cause all subsequent programs to
abend with a ‘data set not found’ error message.
* Ensuring local macro variable usage
* Programming style: ad hoc, planned, or revised and revisited?

Here ends the tour of a decade-long process of converting programs
with many repetitive paragraphs, to the simpler style of using
%ncludes. The simple modules developed are reusable. The
%nclude style is expensive in its use of global macro variables.

Moving from %ncludes to macros is expensive in terms of
development because of the moderate learning curve for the macro
language. In the long run, macro usage is simpler, and less
expensive in terms of global macro variable usage. In addition new
project development is quicker because of reusable modules and the
minimal changes necessary to customize copied programs.

REFERENCES
Fehd, Ronald (1999),”%FREQ1VAR: Frequency of one variable with
format: a macro to standardize proc FREQ output data sets,”
Proceedings of the Twenty-Fourth Annual SAS Users Group
International, 24: paper 234, pg 1373.

Fehd, Ronald (2000), “The Writing for Reading SAS® Style Sheet:
Tricks, Traps & Tips from SAS-L’s Macro Maven,” Proceedings of
the Twenty-Fifth Annual SAS Users Group International, 25: paper
38-25, pg 217.

SAS Institute Inc. (1990), SAS® Guide to Macro Processing,
Version 6, Second Edition, Cary, NC: SAS Institute Inc.

SAS Institute Inc. (1997), SAS® Macro Language Reference, First
Edition, Cary, NC: SAS Institute Inc.

ACKNOWLEDGMENTS
I thank my colleague and comrade on SAS-L, Dianne L. Rhodes for
her critique and encouragement. My thanks to my greatest asset:
SAS-L contributors who regularly contribute good program ideas.

CONTACT INFORMATION
Your comments and questions are valued and encouraged.
Contact the author at:
Author Name Ronald Fehd
Company Centers for Disease Control MS:G25
Address 4770 Buford Hwy NE
City, State ZIP Atlanta GA 30341-3724
Work Phone: 770/488-8102
Fax: 770/488-8282
Email: RJF2@cdc.gov



Are Strings Tying You in Knots?
Deb Cassidy

Cardinal Distribution, Dublin, OH

ABSTRACT

If the answer to the title questions is “YE”, then this
presentation is for you.  You will learn how to make
sure you get the entire string “YES” when creating a
new variable.  But that is just the beginning of some
of the fun you can have with character data.  This
presentation will walk through examples of cleaning
up your character data before you can use procedures
such as PROC FREQ.  Some of the functions to be
covered are SCAN, TRIM, LEFT, INDEX,
COMPRESS, COMPBL, DEQUOTE and
TRANWRD.  This presentation uses BASE SAS�
and is aimed at beginning users although all users
may learn a new, helpful function.

PROBLEM

You have been given a dataset with information about
some of the SSU attendees.  You have been asked to
supply the following summary information.

- # of people in each region
- # of people interested in each subject area
- list of people sorted by last name
- verify ZIPCODE is a valid United States code

The requirements seem easy and you think you will
just need the following PROCs: FREQ, SORT,  and
PRINT.  Since you were not given the variable
names, you first do a PROC CONTENTS and a
PROC PRINT on the first 5 observations.  You
discover a few complications.

EXAMPLE DATA

The results of PROC CONTENTS and PROC PRINT
are shown at the end of the paper.  PROC
CONTENTS reveals that the data does not even have
the fields ZIPCODE, region or last name.  At least it
does have a variable for interest.  When you look at a
few records as shown in the PROC PRINT, you see
the missing information is really there but not in the
form you need. (Please note that the data are fictitious
and any resemblance to real attendees is entirely a
figment of the author's imagination.)

THE REAL PROBLEM

Now that you have seen the data, you know you really
need to do several things before you can run your
PROCs.
- Create region from state after state is extracted from

ADD2
- Separate INTEREST into only one interest per

record
- Separate first and last names from NAME
- Separate ZIPCODE from ADD2

CREATING NEW VARIABLES

The easiest task is to create region from state. (In real
life, you have to extract state from ADD2 first but in
a tutorial the presenter gets to rearrange things.)
There are several ways to do this. In fact, you could
actually use PROC FORMAT and avoid the creation
of the new variable region. However, we are going to
assume you have a reason for adding the new
variable.  There are also cases where the logic is more
complicated and an IF/THEN or CASE logic solution
is the only one feasible.  The code would be similar to
the following sample section.

DATA STATE_REG;
 SET ORIGINAL;
IF STATE IN ('CA', 'OR',...) THEN
   REGION='WEST';
ELSE IF STATE IN ('FL','TN',’NC’...) THEN
  REGION='SOUTH';
ELSE IF STATE IN ('OH'...) THEN
  REGION='MIDWEST';
... REST OF STATES...
ELSE REGION='INVALID';
RUN;

PROC FREQ DATA=STATE_REG;
 TABLES REGION / NOCUM NOPERCENT;
RUN;

The results give you:

REGION FREQUENCY
INVA 1
MIDW 1
SOUT 2
WEST 1



While the counts are right, you notice the regions are
truncated at 4 characters. You have heard that PROC
FREQ had a limitation but upon further investigation
you discover that it used to be limited to the first 16
characters but this limitation no longer exists.  So
what happened? Run another  PROC CONTENTS
and you will see the REGION variable was created as
character variable with a length of 4.  SAS determines
the length based on the first time it sees the variable.
Since your first value was "WEST", the variable was
created with a length of 4.  One solution would be to
put the longest value first.  Unfortunately the longest
value is "INVALID" but it always needs to be last.
Another choice would be to pad your first value with
blanks - "WEST    " would solve the problem.  This
works but is very susceptible to future problems if
you need to add values.  The better alternative is to
use a length statement.

LENGTH REGION $7.;
...put IF statements AFTER length statement

Your new results are:

REGION FREQUENCY
INVALID 1
MIDWEST 1
SOUTH 2
WEST 1

Of course, someone will want "INVALID" to appear
at the end.  They might also want the other values to
appear in a specific order.  PROC FREQ does have
several options that will control order but
unfortunately there is not one for "how I typed them."
One alternative is to use lead blanks since blanks will
sort first.  However, that could get quite confusing
and would look rather strange. This time PROC
FORMAT is probably the best way to solve the
problem.  Instead of creating the region as a character
variable you will want to create it as a numeric
variable with the regions in the order that you want to
see in your output.  PROC FORMAT is used to show
the complete region name for the numeric variable.

PROC FORMAT;
 VALUE REGNAME
 1='WEST'
 2='SOUTH'
 3='MIDWEST'
 4='NORTH'
 5='INVALID';

PROC FREQ;
 TABLES REGION/NOCUM NOPERCENT;
 FORMAT REGION REGNAME.;
RUN;

The results are:

REGION FREQUENCY
WEST 1
SOUTH 2
MIDWEST 1
INVALID 1

EXTRACTING VALUES FROM EXISTING
VARIABLES

The rest of the presentation shows many of the
functions that SAS has included for working with
character data.  How do we get STATE and
ZIPCODE from ADD2?  Fortunately, when you
looked at your observations you see that all ADD2
lines were entered in the form  “CITY, STATE
ZIPCODE”.  The comma and blank between CITY
and STATE and the blank between STATE and
ZIPCODE are important.  STATE is a 2-character
postal code.  Some ZIPCODEs were entered as 5
characters while others are in the ZIP+4 FORMAT.
This difference will not cause a problem but other
differences might.  If some observations had been
entered in a different form, you might still be able to
do the processing but it would be more complicated.
There may be times when you have no choice except
to edit each observation.

The first observation is:
Raleigh, NC 23232-2222

There are actually several ways to extract STATE and
ZIPCODE.  The method that will be shown later for
last name could also be used here.  The SCAN
function will break a string into “words” based on the
delimiters.

WORD1=SCAN(ADD2,1,’,’);
WORD2=SCAN(ADD2,2,’,’);

The above code will break ADD2 into words using a
comma as the delimiter.   The first word will be
characters up to the first comma but not including the
comma.  The second word will be everything after the
first comma up to the second comma.  In this case,
there is no second comma in ADD2 so it will be to
the end of the string.  If you asked for a third word,
you would get a blank.



You can specify one or more delimiters or use the
defaults.  You must put the delimiter(s) in quotes or
SAS will think you are using a variable name (, is not
a valid variable name so you will really have an
error).  Do not put any variable names in quotes or
SAS with think you want the string “ADD2” scanned
rather than the value of the variable.

For the first observation the results are:

WORD1=Raleigh
WORD2= NC, 23232-2222

PROC CONTENTS will reveal a characteristic of the
SCAN function that will often cause problems
although it does not in this case. Variables created
with a SCAN function will always have a length of
200 unless you specify a length before you use the
function.

To separate WORD2 into STATE and ZIPCODE, we
will use the SUBSTR function.  It extracts a “subset”
of a string based on the positions you specify.

STATE=SUBSTR(WORD2,1,2);
ZIPCODE=SUBSTR(WORD2,4);

STATE is created by extracting 2 characters from
WORD2 starting at position 1 in the string.
ZIPCODE is created by starting at position 4.  Since
the number of characters was not specified, all
characters through the end of the string will be
extracted.  The starting position is required but the
number of characters to extract is not.  The results
are:

STATE= N ZIPCODE=23232-2222

Why did ZIPCODE work but not STATE?  Actually
neither one is what you might think.  The blank
between the comma and the state code caused the
problem. The first and fourth characters of WORD2
are both blanks and SUBSTR counted them.
ZIPCODE actually starts with a blank.  To solve this
problem you can either change your SUBSTR
function or use another function first to eliminate any
lead blanks.  The second method is safer because you
never know when you will have 2 or more lead
blanks.

WORD2=LEFT(WORD2);

This code will left-justify the string and eliminate any
lead blanks.  You would then follow this code with
the SUBSTR function statements.  The following

code will give you correct results.

WORD1=SCAN(ADD2,1,’,’);
WORD2=LEFT(SCAN(ADD2,2,’,’));
STATE=SUBSTR(WORD2,1,2);
ZIPCODE=SUBSTR(WORD2,4);

Someone might ask why we didn’t use a comma and
blank as the delimiters in the SCAN function.
ZIPCODE would then be the third word and the
blanks would not be a problem because delimiters do
not appear in the words from SCAN.  This would
work for our first example but it would not work for

San   Francisco, CA 99494

In this case, WORD1 would be “San”, WORD2
would be “Francisco” and WORD3 would be “CA”
with ZIPCODE being the fourth word.  There are
even some cities with three words in the name.

One other thing that you noticed in reviewing your
data was that “San   Francisco” was incorrectly typed
with two blanks instead of one.  Fortunately there is
now a function to fix that problem.

CITY=COMPBL(CITY);

The COMPBL (compress blanks) function will
compress multiple blanks into a single blank.  It you
wanted to remove all the blanks you would use the
COMPRESS function.

CITY=COMPRESS(CITY);

Too bad we can not use the same logic for extracting
last name because there is not a pattern – or is there?
Did you notice that the last name occurs after the last
blank?  But how do you find the last blank?  There is
not a SCAN from the right function but there is a
REVERSE function.

REVNAME=REVERSE(NAME));

The reversed names are:

               nosleN yenraB
               taogiluK ydnA
                kcuB naV beD
            tebbiR hpesoJ .S
                 HTROW NEROL

It is obvious there are lead blanks since the names are
right-aligned but SAS prints character variables as
left-aligned.  NAME was created with a length of 30



so any name with less than 30 characters will have
blanks added to make it 30.  The trailing blanks are
now lead blanks when the REVERSE function is
used.  PROC PRINT will actually drop off the lead
blanks that are common to all the values but you will
see them if you use FSVIEW.

Now that you have REVERSEd the string, you can
use SCAN to break REVNAME into first and last
names.  When there are several delimiters together,
they will be treated as one. If the first character is a
delimiter, it is ignored. You will need to remember to
type in an actual blank in the SCAN function to
specify the delimiter.  The length is specified so you
do not end up with 200 characters.  Although the
length could be shorter, I used the same as the
original variable to ensure there were not any people
with a single name which happened to be 30-
characters (we have Cher, Madonna and John-Boy so
why not David-Joseph-Andrew-GregoryBob).

LENGTH REVNAME LASTNAME REST_NAME
$30;

REVNAME=REVERSE(NAME);
LASTNAME1=SCAN(REVNAME,1,' ');
LEFTNAME1=LEFT(REVNAME);
Z=INDEX(LEFTNAME1,' ');
REST_NAME1=SUBSTR(LEFTNAME1,Z);

The name is reversed as shown above.  SCAN is used
to get the first word from the reversed name so you
will end up with the last name.  Getting the rest of the
name is a little trickier because you need to account
for people like “S. Joseph Ribbet”.  You can simply
select the second word because that would only give
you “Joseph”.   The LEFT function will get rid of the
leading blanks.  The INDEX function returns the
location of the specified character. In the examples of

nosleN yenraB
taogiluK ydnA

the first blanks are the 7th character and 9th character,
respectively.  You then use these results as part of the
parameters for your SUBSTR function.  Earlier we
specified a specific number for the starting point of
the substring function and it applied to all
observations.  In this example, the starting point will
be specific to each observation. You will end up with:

NAME            LASTNAME1 REST_NAME1
Andy Kuligoat       taogiluK    ydnA
Deb Van Buck        kcuB        naV beD
S. Joseph Ribbet    tebbiR      hpesoJ .S

LOREN WORTH         HTROW       NEROL

Now you just need to reverse them back.  Do not
forget to left-justify them, too.  So you have

LASTNAME=LEFT(REVERSE(LASTNAME1));
FIRSTNAME=LEFT(REVERSE(REST_NAME1));

Although it wasn’t explicitly request, you are also
going to assume the names need to be in the form
“last name, first name”.  But first, you noticed that
Loren Worth was all capital letters and you really
want mixed case. There are UPCASE and
LOWCASE functions.  You just need to separate out
the first letter and UPCASE it while using
LOWCASE on the rest of the letters.  The following
code should accomplish this and put everything back
together again in the desired form.

LENGTH FIRSTLTR LASTLTR $1;
FIRSTLTR=
   UPCASE(SUBSTR(FIRSTNAME,1,1));
FIRST_REM=
   LOWCASE(SUBSTR(FIRSTNAME,2));
LASTLTR=
   UPCASE(SUBSTR(LASTNAME,1,1));
LAST_REM=
   LOWCASE(SUBSTR(LASTNAME,2));
NEWNAME=
   LASTLTR || TRIM (LAST_REM)||
   ', ' ||
   FIRSTLTR || FIRST_REM;

The | | is the concatenate symbol.  Sometimes finding
this on your keyboard is the hardest part about writing
the code. You may need to check your keyboard
mapping to find the right keys.  Your final results are:

Nelson, Barney
Kuligoat, Andy
Buck, Deb van
Ribbet, S. joseph
Worth, Loren

You will notice that everything looks fine except for
the two people that really had three part names.  You
have a couple options and which is most appropriate
will depend upon your situation.  You could write
additional code similar to the above code that would
check for 3 or even 4-part names.  But what if you
have a name like “Dr. John Jacob Wizehimer III”?
The possibilities are really endless.  You need to
decide if having a few wrong cases is worth the effort
to try to identify everything.  Another option is to
simply identify the observations that did not have the



standard 2-part name and edit these by hand. This can
be done easily by using SCAN to see if the third word
is not blank.   In my case, this has been the best
solution because I only had 4 or 5 special cases out of
30,000 observations.  One other thing to consider is
the case of Deb Van Buck.  Is “Van” really her
middle name or is her last name “Van Buck”. How do
you know which of the following is the correct result?

Buck, Deb Van
Van Buck, Deb

The next step is to process the INTEREST variable.
The requester wanted to know how many people were
interested in each subject area.  A quick PROC FREQ
would seem to give you the answer.  However, people
have multiple interests so you need to account for
each one.  Just like you have before, you can use
SCAN to break the variable into individual words.
The difference this time is that the new variable will
have the same variable name for the different words
and you will use an OUTPUT statement after you
create each word.  The OUTPUT statement will result
in one record per word per original record.

NEW_INTEREST=SCAN(INTEREST,1,',');
OUTPUT;
NEW_INTEREST=SCAN(INTEREST,2,',');
OUTPUT;
... continue until you have accounted for the
maximum number of words...

How do you know the maximum number of words?
You do not want the people with fewer intereststo
have blank records. The easiest way to do this is to
count the number of commas.  You will need to add 1
to the count since the last word will not be followed
by a comma.

The LENGTH function is used to determine the
actual length of a value excluding any trailing blanks.
Do not confuse this with the LENGTH statement
which sets the length for the variable for all
observations.  The COMPRESS function is used to
eliminate certain characters from a string.  To count
the occurrences of a character, find the length of the
original value and subtract the length after you have
eliminated that character.

INTEREST_COUNT=LENGTH(INTEREST) -
LENGTH(COMPRESS(INTEREST,',')) + 1;

You now have an accurate count of the interests for
each observation.  You can now use a DO LOOP to
write your statements.

DO I=1 TO INTEREST_COUNT;
NEW_INTEREST=
LEFT(UPCASE(SCAN(INTEREST,I,',')));
   OUTPUT;
END;

You will notice I also put in the LEFT and UPCASE
functions.  LEFT will eliminate any leading blanks
that might have been between the comma and the
interest value while UPCASE will ensure the case is
consistent across observations.  However, you still
have the problem where people used differently
terminology for the same thing.  You could use
IF/THEN statements , CASE logic or PROC
FORMAT to change the values.  Another method is
to use the TRANWRD function.

LENGTH NEW_INTEREST2 $30;
NEW_INTEREST2=
    TRANWRD
    (NEW_INTEREST,’AUDIO/VISUAL’,’A/V’);

This will change the string “AUDIO/VISUAL”  to the
shorter string “A/V”.  The LENGTH statement is
needed or you end up with a 200-byte field.   Do not
confuse this function with TRANSLATE which has
been available longer.  TRANSLATE changes
individual letters.  It also has you specify the outcome
before the original value.  If you attempted to use

TEST= TRANSLATE
    (NEW_INTEREST,’AUDIO/VISUAL’,’A/V’);

you would get “AUDIOUDISUAL” when the original
value was “AUDIO/VISUAL”.  This is because all
“A”s translated to “A”, “/” translated to “U” and “V”
translated to “D”.

Just when you think you are finished, you also notice
the observation which had quotes around the person’s
interests.  You can now easily eliminate the quotes

INTEREST=DEQUOTE(INTEREST);

You can also do the opposite with the QUOTE
function.  The latter is helpful if you will be writing
your data to a file so it can be read with other
software.  A primary use is when you need to write a
comma-separated file but your data happens to have
commas in it.  By using quotes around the entire
value, the embedded commas will be ignored.

The requester also wanted to know if everyone
provided a legitimate ZIPCODE and how many



provided the ZIP+4 version.  To determine if the
ZIPCODE is a numeric or a numeric with a dash, you
can use the verify function:

CHECK=VERIFY(ZIPCODE,’0123456789- ’);

If the only characters are the ones specified, then the
variable CHECK will have a value of 0. Otherwise, it
will have the position of the first character which was
not specified.   You must include the blank because
observations with a 5-digit code rather than ZIP+4
will have a value of 6 since the 6th –10th characters
are blank.

OTHER FUNCTIONS

Believe it or not, there are even more character
functions.  The above examples used INDEX.  There
is also  INDEXC and INDEXW functions.  INDEXC
looks for any character while INDEXW looks for the
entire word.  For example,  the data has observations
with interests for

Data warehousing, a/v, food

logistic regression, data mining

If you look for “housing”,  INDEX will find it at
position 10 in the first record and will not find it in
the second.  INDEXW will not find it in either record
because it looks for an entire word rather than a
partial word. You also need to note that a comma
immediately after the desired string will prevent
INDEXW from finding it.  INDEXC will return a 10
for the first record a 2 for the second record. You
might wonder how this is possible since ‘housing’ is
not in the second record.  While the entire word is not
there, the letter ‘o’ is indeed in the second position.

There is also a RIGHT function which right-justifies
data just like the LEFT function.  In fact, we could
have used it in the above code when we were
reversing name to avoid getting the lead blanks.

TRIMN is similar to TRIM but it returns a null string
if the expression is missing.

There are also several functions which I have not yet
had the need to use.  These are listed at the end of the
paper following the code.

SUMMARY

There is a lot of information here but you should be
able to handle almost any character data that you
might encounter.  I said almost because I did not
cover things like non-printable characters or fields
that are too wide to be printed or viewed.  When you
work with character data, you should remember to:

-  Use PROC CONTENTS to verify lengths
-  Specify lengths for new variables
-  Look for patterns to use to break up strings
- Watch out for leading and trailing blanks
- Remember there can be more than one way to

accomplish the same results
- Sometimes you have to be satistified with incorrect

results or edit the data by hand

The final code and output are shown at the end of the
paper.  In  some places, the code is different that in
the body of the paper because I combined steps.

TRADEMARK INFORMATION
SAS is a registered trademark of SAS Institute, Inc. in
the USA and other countries. � indicates USA
registration.

CONTACT INFO
Deb Cassidy
Cardinal Distribution
7000 Cardinal Place
Dublin, OH 43017
deb.cassidy@cardinal.com
614-757-7136



PART OF PROC CONTENTS
-----Alphabetic List of Variables and Attributes-----

#    Variable      Type    Len    Pos
ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒ
2    add1          Char     30     38
3    add2          Char     30     68
4    interest      Char     60     98
1    name          Char     30      8
5    num_papers    Num       8      0

FIRST 5 OBSERVATIONS

Obs        name        add1                         add2

 1   Barney Nelson     953 Probe Way                Raleigh, NC 23232-2222
 2   Andy Kuligoat     23134 Indianpaint Road       Chattanooga, TN 37204
 3   Deb Van Buck      1524 Patty Lane              Franklinton, OH 43222-6028
 4   S. Joseph Ribbet  Georgia Street, PO Box 4321  Sierra, CA 95474
 5   LOREN WORTH       Nucleic Way                  San   Francisco, CR 99494

                                                              num_
Obs  interest                                                papers

 1   "Emerging Technologies, WEB pages"                        51
 2   Data warehousing, a/v, food                               17
 3   Training                                                   1
 4   logistic regression, data mining                           8
 5   data presentation, Audio/Visual, logistic regression       .

FINAL OUTPUT
REGIONS AND ZIPCODE CHECK

The FREQ Procedure

 region    Frequency
ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒ
WEST              1
SOUTH             2
MIDWEST           1
INVALID           1

CHECK    Frequency
ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒ

0 5



LIST OF PARTICIPANTS

Obs          NAME

 1     Kuligoat, Andy
 2     Nelson, Barney
 3     Ribbet, S. Joseph
 4     Van Buck, Deb
5 Worth, Loren

Interests After Combining for Spelling Differences

The FREQ Procedure

interest2                Frequency
___________________________________
A/V                             2
DATA MINING                     1
DATA PRESENTATION               1
DATA WAREHOUSING                1
EMERGING TECHNOLOGIES           1
FOOD                            1
LOGISTIC REGRESSION             2
TRAINING                        1
WEB PAGES                       1

FINAL CODE

PROC CONTENTS DATA=ORIGINAL;
TITLE 'ORIGINAL DATA';
RUN;

PROC PRINT DATA=ORIGINAL;
TITLE 'ORIGINAL DATA';

DATA FINAL;
 SET ORIGINAL;
 LENGTH REVNAME $30 FIRSTLTR LASTLTR $1  NEWNAME $31 ;
 REVNAME=LEFT(REVERSE(NAME));
 LASTNAME1=SCAN(REVNAME,1,' ');
 THIRD_NAME=SCAN(REVNAME,3,' ');
 FIRST_SPACE=INDEX(REVNAME,' ');
 REST_NAME=SUBSTR(REVNAME,FIRST_SPACE);

 LASTNAME=LEFT(REVERSE(LASTNAME1));
 FIRSTNAME=LEFT(REVERSE(REST_NAME));

 FIRSTLTR=UPCASE(SUBSTR(FIRSTNAME,1,1));
 LASTLTR=UPCASE(SUBSTR(LASTNAME,1,1));



 FIRST_REM=LOWCASE(SUBSTR(FIRSTNAME,2));
 LAST_REM=LOWCASE(SUBSTR(LASTNAME,2));

 NEWNAME=LASTLTR || TRIM(LAST_REM) || ', ' || FIRSTLTR || FIRST_REM;

CITY=COMPBL(SCAN(ADD2,1,','));
STATE_ZIP=LEFT(SCAN(ADD2,2,','));
STATE=SUBSTR(STATE_ZIP,1,2);
ZIPCODE=SUBSTR(STATE_ZIP,4);

            IF STATE IN ('CA', 'OR') THEN REGION=1;
  ELSE IF STATE IN ('TN', 'NC') THEN REGION=2;
  ELSE IF STATE IN ('OH') THEN REGION=3;
  ELSE REGION=5;
   **** INCLUDE REST OF STATES HERE. ;

CHECK=VERIFY(ZIPCODE,'0123456789- ');

RUN;

*** NOTE THAT ANY NAMES WITH 3 OR MORE PARTS WILL BE EDITED BY HAND AT THIS POINT;

PROC FORMAT;
 VALUE REGNAME
 1='WEST'
 2='SOUTH'
 3='MIDWEST'
 4='NORTH'
 5='INVALID';
 RUN;

PROC FREQ DATA=FINAL;
  TABLES REGION CHECK/NOCUM NOPERCENT;
  FORMAT REGION REGNAME.;
  TITLE 'REGIONS AND ZIPCODE CHECK';
  RUN;

PROC SORT DATA=FINAL;
 BY NEWNAME;
RUN;

PROC PRINT DATA=FINAL SPLIT='*';
 VAR NEWNAME;
 LABEL NEWNAME='NAME';
 TITLE 'LIST OF PARTICIPANTS';
 RUN;

 DATA ALL_INTEREST;
   SET FINAL (KEEP=INTEREST);
   INTEREST=DEQUOTE(UPCASE(INTEREST));
   NUM_COMMAS=LENGTH(INTEREST) - LENGTH(COMPRESS(INTEREST,',')) + 1;
   DO I=1 TO NUM_COMMAS;



     INTEREST2=LEFT(SCAN(INTEREST,I,','));
     OUTPUT;
     END;
    RUN;

PROC FREQ DATA=ALL_INTEREST;
 TABLES INTEREST2/NOCUM NOPERCENT;
 TITLE 'FIRST PASS FORINTERESTS';
 RUN;

  *** COMBINE INTERESTS WHICH WERE SPELLED DIFFERENTLY;
DATA ALL_INTEREST2;
     SET ALL_INTEREST;
     INTEREST2=TRANWRD(INTEREST2,'AUDIO/VISUAL','A/V');
RUN;

PROC FREQ DATA=ALL_INTEREST2;
 TABLES INTEREST2/NOCUM NOPERCENT;
 TITLE 'INTERESTS AFTER COMBINING FOR SPELLING DIFFERENCES';
 RUN;

OTHER FUNCTIONS FOR CHARACTER DATA

Byte(n) Returns one character in the ASCII or EBCDIC sequence where
n is an integer representing a specific ASCII or EBCDIC
character

COLLATE(start-position<,end-position>) |
(start-position<,,length>)

Returns and ASCII or EBCDIC collating sequence character
string

RANK(x) Returns the position of a character in the ASCII or EBCDIC
collating sequence

REPEAT(argument,n) Repeats a character expression

SOUNDEX(argument) Encodes a string to facilitate searching

SUBSTR(argument, position<,n>)=characters-
to-replace

Replaces character value contents



Paper P811

INVALID: a Data Review Macro
Using PROC FORMAT Option OTHER=INVALID to Identify and List Outliers

Ronald Fehd, Centers for Disease Control and Prevention, Atlanta GA

ABSTRACT

Data cleansing, or as it is more euphemistically known: data
review, often occupies too much of a programmer's time and
energy. With a properly written data dictionary, a data set will
contain appropriate formats for each variable; one can then cut
and paste the format definitions into proc FORMAT value
statements and label all outliers with the value statement option:
other="INVALID". This routine combines a FORMATS catalogue
and CONTENTS data set, then uses that information to write data
steps which select all outliers. Reports are written, by identifier,
for print review and to file, for later use as includes for updating
purposes. Expected audience is intermediate and advanced
programmers and macro users.

INTRODUCTION

Data review consists of several steps:
1. Determining acceptable values
2. Finding unacceptable values
3. Comparing unacceptable values with data collection form
4. Deciding whether to change the data
5. Recording changes
6. Updating the data

This macro is a method for a data set. Its necessary parameters
are a data set name, and a list of identifiers. It is assumed that
variables have formats assigned to them, and that the formats
have the option other=”&INVALID.”. Output from the macro
includes both summary and detail reports. The primary detail
report is written to a file. This file can be edited to record changes
to the data and then used as a %include file to update the data.

This macro facilitates step 2: finding all unacceptable and invalid
values. However these errant values must be identified in their
respective proc FORMAT values statements with the option:
other=”&INVALID.”.

Decisions as to whether to change data – step 4 – are eased by
macro INVALID, with its summary reports. Frequencies of both
variables and identifiers provide an overview of difficulties in the
data set. In addition, a percentage-of-invalid report is attached to
the detail, by identifier, report.

Editing the detail, by identifier, report, which is written to a file,
addresses the difficulties inherent in step 5. where variable names
may be spelled incorrectly, etc.

Finally, updating the data – step 6 –  is accomplished easily,
using the edited detail report file as a %include file.

DISCUSSION

There must be 50 ways to review variables. Both Fehd (1998)
DemoXrpt and Cody(1999) demonstrate using the proc FORMAT
value option other=’INVALID’. Fehd ensures standardization of
the label by using a global macro variable INVALID. Cody and
Handsfield (1998) provide ways to mathematically find outliers of
numerical variables. McQuown (2000) offers his experience in
writing a data review of a large survey.

These authors provide ideas and tools to write customized data
review. This macro automates half of that task: it does intra-
variablechecking, but not inter-variable checking: Doing logic
checks between pairs of variables, is a task left for another paper.

The report writer section of INVALID follows that developed in
Fehd (1998) DemoXrpt and Fehd (1998) COMPARWS.

The relation of data dictionary and the proc FORMAT program is
discussed in Fehd (2001) Beginner’s Tour.

How it works
The pseudo-code for macro %INVALID is:
1. For all variables of a data set
2. Choose all observations with invalid values
3. Print summary and detail reports

1. For all variables of a data set
Proc CONTENTS output data set provides variable names,
formats and type. This information is also available from
SASHELP.VCOLUMN and proc SQL: DICTIONARY.COLUMNS.
Refer to lines 164:167.

2. Choose all observations with invalid values
Invalid values are defined in each value statement of a proc
FORMAT program. Refer to the Test Data beginning at line 425.
This routine depends on having a global macro variable defined
as:
%LET INVALID = INVALID;%LET INVALID = INVALID;%LET INVALID = INVALID;%LET INVALID = INVALID;
This is used to standardize all the value statement options:
other = ‘‘&INVALID.’’other = ‘‘&INVALID.’’other = ‘‘&INVALID.’’other = ‘‘&INVALID.’’
Macro INVALID identifies all format values with that label in the
Control-Out output data set of proc FORMAT. This list of format
names is used to create a format in the WORK library named
$INVALID. Lines 192:220.

The CONTENTS data set is used to write a series of macro calls
to the data review macro: CHK4NVLD in lines 224:243. Before
these calls are executed, the report data set INVALID structure is
created at lines 249:262.

This CHK4NVLD macro implements a choose with the phrase:
put(put(put(put(Var,Format.) Var,Format.) Var,Format.) Var,Format.) eq ‘‘&INVALID.’’eq ‘‘&INVALID.’’eq ‘‘&INVALID.’’eq ‘‘&INVALID.’’
at line 413. If any invalid observations are output to the DETAILS
data se, then the DETAILS data set is appended to the report
data set INVALID. See line 421:423.

3. Print summary and detail reports
Four reports are provided, with parameters to enable each:
    Report at lines: parameter
1. Summary: Identifiers 340:344 SMRYIDS
2. Summary: Variables 346:350 SMRYVARS
3. Details: by Variable 352:362 SMRYNAME
4. Details: by Identifiers 292:337 DETAILS
Examples of the parameters and reports are given in the Test
Data.

Assumptions



INVALID provides named parameters for the location of the data
set and the format library. These are both assumed to be in
LIBNAME LIBRARY ‘<libref>’;LIBNAME LIBRARY ‘<libref>’;LIBNAME LIBRARY ‘<libref>’;LIBNAME LIBRARY ‘<libref>’;
The Test Data section – lines 450:467 – illustrates accessing a
data set and formats in the WORK library.

Gotcha! Step 0: Checking assumptions
As I began testing on my production data I found that reports from
INVALID did not match my custom-written exception reports.
Imagine my surprise when I examined my data sets and found
that variables had formats that were not in the data dictionary and
there were formats present in the proc FORMAT program that
were not attributed to any variable. In order to compare the data
set formats with the format in the format library I have added a
special report at lines 106:155. Refer to the Test Data section for
an example.

Notes
The macro is written according to Fehd (2000) Writing for
Reading SAS Style Sheet. Fehd (1997) %ARRAY contains the
ARRAY macro. Fehd (2001) Beginner’s Tour contains the NOBS
macro.

Summary
The routine depends on the value of a global macro variable
INVALID. This macro variable is appropriately set in
autoexec.sas. See Fehd (2001) Macro Tour for further discussion.
Two separate programs use this macro variable: one containing
proc FORMAT value statements, and another which calls
%INVALID.

CONCLUSION

A properly written data dictionary contains the other='INVALID'
option on all format values. This facilitates data review.

Date review was and is time consuming. This routine provides a
comprehensive report of invalid values in a data set. The
summary reports provide a valuable overview of which variables
and which identifiers have invalid values. If data cleansing is
necessary, the detail report can be edited and %included to
perform an update. This file then contains a record of the updates
for later referral.

REFERENCES

Cody, Ron, Cody's Data Cleaning Techniques Using SAS®
Software, Cary, NC: SAS Institute Inc., 1999. 226 pp.

Fehd, Ronald, %ARRAY: construction and usage of arrays of
macro variables. Proceedings of the 22nd Annual SAS® Users
Group International Conference, Cary, NC: SAS Institute Inc.,
1997.
http://www2.sas.com/proceedings/sugi22/CODERS/PAPER80.PD
F

Fehd, Ronald, %COMPARWS: Compare with summary: a macro
using proc COMPARE to write a file of differences to edit and use
for updates. Proceedings of the 23rd Annual SAS® Users Group
International Conference, Cary, NC: SAS Institute Inc., 1998.
http://www2.sas.com/proceedings/sugi23/Posters/p170.pdf

Fehd, Ronald, DEMOXRPT: macros for writing Exception
Reports: perform range and logic checks on a data set; write file
of exceptions to edit and use for updates. Proceedings of the 23rd
Annual SAS® Users Group International Conference, Cary, NC:
SAS Institute Inc., 1998.
http://www2.sas.com/proceedings/sugi23/Appdevel/p7.pdf

Fehd, Ronald, A Beginner’s Tour of a Project using SAS® Macros
Led by SAS-L’s Macro Maven, Proceedings of the 26th Annual
SAS® Users Group International Conference, Cary, NC: SAS
Institute Inc., 2001.
http://www2.sas.com/proceedings/sugi26/p066-26.pdf

Handsfield, James, CHEKOUT: A SAS® Program to Screen for
Outliers. Proceedings of the 23rd Annual SAS® Users Group
International Conference, Cary, NC: SAS Institute Inc., 1998.
http://www2.sas.com/proceedings/sugi23/Posters/p197.pdf

McQuown, Gary, SAS® Macros Are the Cure for Quality Control
Pains. Proceedings of the 13th Annual Northeast SAS® Users
Group Conference Cary, NC: SAS Institute Inc., 2000.

SAS® is a registered trademark of SAS® Institute, Inc. In the USA
and other countries, ® indicates USA registration.

Author:  Ronald Fehd                e-mail: RJF2@cdc.gov
Centers for Disease Control   MS-G25
4770 Buford Hwy NE
Atlanta  GA  30341-3724                  voice: 770/488-8102

ACKNOWLEDGMENTS

This macro is the result of a decade of data cleaning efforts. I’d
like to thank my colleagues at CDC for all their dirty data. I
couldn’t have done it without you.



001 ;/* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *2001May19 001001 ;/* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *2001May19 001001 ;/* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *2001May19 001001 ;/* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *2001May19 001
002 MACRO: 002 MACRO: 002 MACRO: 002 MACRO: INVALID                         NOTE: uses macros ARRAY, NOBS     002INVALID                         NOTE: uses macros ARRAY, NOBS     002INVALID                         NOTE: uses macros ARRAY, NOBS     002INVALID                         NOTE: uses macros ARRAY, NOBS     002
003                                        NOTE: uses global 003                                        NOTE: uses global 003                                        NOTE: uses global 003                                        NOTE: uses global mac-var INVALID 003mac-var INVALID 003mac-var INVALID 003mac-var INVALID 003
004          method for data set + format library                            004004          method for data set + format library                            004004          method for data set + format library                            004004          method for data set + format library                            004
005          where user-written formats have OTHER="&INVALID."               005005          where user-written formats have OTHER="&INVALID."               005005          where user-written formats have OTHER="&INVALID."               005005          where user-written formats have OTHER="&INVALID."               005
006                                                                          006                                                                          006                                                                          006                                                                          006006006006
007  USAGE: 1.1 %INVALID();    %*list formats: &LIBRARY.._ALL_ and &FMTLIB007  USAGE: 1.1 %INVALID();    %*list formats: &LIBRARY.._ALL_ and &FMTLIB007  USAGE: 1.1 %INVALID();    %*list formats: &LIBRARY.._ALL_ and &FMTLIB007  USAGE: 1.1 %INVALID();    %*list formats: &LIBRARY.._ALL_ and &FMTLIB;  007;  007;  007;  007
008         1.2 %INVALID(DATA);%*list formats: &LIBRARY..008         1.2 %INVALID(DATA);%*list formats: &LIBRARY..008         1.2 %INVALID(DATA);%*list formats: &LIBRARY..008         1.2 %INVALID(DATA);%*list formats: &LIBRARY..DATA  and &FMTLIB;  008DATA  and &FMTLIB;  008DATA  and &FMTLIB;  008DATA  and &FMTLIB;  008
009         2.1 %INVALID(DATA,ID0);                   one ID                 009009         2.1 %INVALID(DATA,ID0);                   one ID                 009009         2.1 %INVALID(DATA,ID0);                   one ID                 009009         2.1 %INVALID(DATA,ID0);                   one ID                 009
010         2.2 %INVALID(DATA,ID1 ID2);               two IDs                010010         2.2 %INVALID(DATA,ID1 ID2);               two IDs                010010         2.2 %INVALID(DATA,ID1 ID2);               two IDs                010010         2.2 %INVALID(DATA,ID1 ID2);               two IDs                010
011         2.3 %INVALID(DATA,ID0,PRNTFILE=<fileref>);write report to file   011011         2.3 %INVALID(DATA,ID0,PRNTFILE=<fileref>);write report to file   011011         2.3 %INVALID(DATA,ID0,PRNTFILE=<fileref>);write report to file   011011         2.3 %INVALID(DATA,ID0,PRNTFILE=<fileref>);write report to file   011
012         2.4 %INVALID(DATA,ID0,TESTING=1);         testing                012012         2.4 %INVALID(DATA,ID0,TESTING=1);         testing                012012         2.4 %INVALID(DATA,ID0,TESTING=1);         testing                012012         2.4 %INVALID(DATA,ID0,TESTING=1);         testing                012
013         2.5 TITLE1 'title for this project';                             013013         2.5 TITLE1 'title for this project';                             013013         2.5 TITLE1 'title for this project';                             013013         2.5 TITLE1 'title for this project';                             013
014             %014             %014             %014             %INVALID(DATA,ID0,TITLEN=2);                                 014INVALID(DATA,ID0,TITLEN=2);                                 014INVALID(DATA,ID0,TITLEN=2);                                 014INVALID(DATA,ID0,TITLEN=2);                                 014
015                                                                          015                                                                          015                                                                          015                                                                          015015015015
016  DESCRIPTION: read   all formats in FMTLIB                               016016  DESCRIPTION: read   all formats in FMTLIB                               016016  DESCRIPTION: read   all formats in FMTLIB                               016016  DESCRIPTION: read   all formats in FMTLIB                               016
017               choose formats with OTHER="&INVALID."                      017017               choose formats with OTHER="&INVALID."                      017017               choose formats with OTHER="&INVALID."                      017017               choose formats with OTHER="&INVALID."                      017
018               make   format $INVALID                                     018018               make   format $INVALID                                     018018               make   format $INVALID                                     018018               make   format $INVALID                                     018
019               review all variables/columns in data set                   019019               review all variables/columns in data set                   019019               review all variables/columns in data set                   019019               review all variables/columns in data set                   019
020               choose invalid values                                      020020               choose invalid values                                      020020               choose invalid values                                      020020               choose invalid values                                      020
021               write  file of invalid values                              021021               write  file of invalid values                              021021               write  file of invalid values                              021021               write  file of invalid values                              021
022                      to be used later as an %INCLUDE file for updates    022022                      to be used later as an %INCLUDE file for updates    022022                      to be used later as an %INCLUDE file for updates    022022                      to be used later as an %INCLUDE file for updates    022
023               read   and print file of invalid values                    023023               read   and print file of invalid values                    023023               read   and print file of invalid values                    023023               read   and print file of invalid values                    023
024               print  summary report(s) of invalid values                 024024               print  summary report(s) of invalid values                 024024               print  summary report(s) of invalid values                 024024               print  summary report(s) of invalid values                 024
025  search for <%**>                                                        025025  search for <%**>                                                        025025  search for <%**>                                                        025025  search for <%**>                                                        025
026  PROCESS: 1. 026  PROCESS: 1. 026  PROCESS: 1. 026  PROCESS: 1. if IDLIST blank, print list of formats . . . . . . . . if IDLIST blank, print list of formats . . . . . . . . if IDLIST blank, print list of formats . . . . . . . . if IDLIST blank, print list of formats . . . . . . . . exit 026exit 026exit 026exit 026
027           2. 027           2. 027           2. 027           2. else: make %ARRAY of ID(s)                                  027else: make %ARRAY of ID(s)                                  027else: make %ARRAY of ID(s)                                  027else: make %ARRAY of ID(s)                                  027
028           3. 028           3. 028           3. 028           3. make %ARRAY of ID(s)'s attributes                           028make %ARRAY of ID(s)'s attributes                           028make %ARRAY of ID(s)'s attributes                           028make %ARRAY of ID(s)'s attributes                           028
029           4. 029           4. 029           4. 029           4. if not exist WORK.FORMATS.$INVALID then create:             029if not exist WORK.FORMATS.$INVALID then create:             029if not exist WORK.FORMATS.$INVALID then create:             029if not exist WORK.FORMATS.$INVALID then create:             029
030           4.1. 030           4.1. 030           4.1. 030           4.1. get all formats with get all formats with get all formats with get all formats with Label=INVALID                        030Label=INVALID                        030Label=INVALID                        030Label=INVALID                        030
031           4.2. 031           4.2. 031           4.2. 031           4.2. if none w/if none w/if none w/if none w/Label=INVALID, print exit-Label=INVALID, print exit-Label=INVALID, print exit-Label=INVALID, print exit-msg  . . . . . . msg  . . . . . . msg  . . . . . . msg  . . . . . . exit 031exit 031exit 031exit 031
032           4.3. 032           4.3. 032           4.3. 032           4.3. prepare prepare prepare prepare proc FORMAT CNTLIN data set for value $INVALID    032proc FORMAT CNTLIN data set for value $INVALID    032proc FORMAT CNTLIN data set for value $INVALID    032proc FORMAT CNTLIN data set for value $INVALID    032
033           4.4. 033           4.4. 033           4.4. 033           4.4. make make make make proc FORMAT value $INVALID                           033proc FORMAT value $INVALID                           033proc FORMAT value $INVALID                           033proc FORMAT value $INVALID                           033
034           5. 034           5. 034           5. 034           5. read CONTENTS, write macro calls                            034read CONTENTS, write macro calls                            034read CONTENTS, write macro calls                            034read CONTENTS, write macro calls                            034
035           6. 035           6. 035           6. 035           6. prepare empty data set INVALID for prepare empty data set INVALID for prepare empty data set INVALID for prepare empty data set INVALID for proc APPEND              035proc APPEND              035proc APPEND              035proc APPEND              035
036           7. 036           7. 036           7. 036           7. execute Check-for-Invalid: build data set INVALID           036execute Check-for-Invalid: build data set INVALID           036execute Check-for-Invalid: build data set INVALID           036execute Check-for-Invalid: build data set INVALID           036
037           8. 037           8. 037           8. 037           8. if INVALID empty, print exit-if INVALID empty, print exit-if INVALID empty, print exit-if INVALID empty, print exit-msg . . . . . . . . . . . msg . . . . . . . . . . . msg . . . . . . . . . . . msg . . . . . . . . . . . exit 037exit 037exit 037exit 037
038           9. 038           9. 038           9. 038           9. make values used in summary                                 038make values used in summary                                 038make values used in summary                                 038make values used in summary                                 038
039          10. 039          10. 039          10. 039          10. write write write write corex to PRNTFILE                                     039corex to PRNTFILE                                     039corex to PRNTFILE                                     039corex to PRNTFILE                                     039
040          11. 040          11. 040          11. 040          11. if wanted, print summary report(s)                          040if wanted, print summary report(s)                          040if wanted, print summary report(s)                          040if wanted, print summary report(s)                          040
041          12. 041          12. 041          12. 041          12. if wanted read and print PRNTFILE                           041if wanted read and print PRNTFILE                           041if wanted read and print PRNTFILE                           041if wanted read and print PRNTFILE                           041
042          13. 042          13. 042          13. 042          13. macro: Check-for-Invalid:                                   042macro: Check-for-Invalid:                                   042macro: Check-for-Invalid:                                   042macro: Check-for-Invalid:                                   042
043              if 043              if 043              if 043              if obs w/invalid values, append to data set INVALID         043obs w/invalid values, append to data set INVALID         043obs w/invalid values, append to data set INVALID         043obs w/invalid values, append to data set INVALID         043
044                                                                          044                                                                          044                                                                          044                                                                          044044044044
045  KEYWORDS: %ARRAY %NOBS                                                  045045  KEYWORDS: %ARRAY %NOBS                                                  045045  KEYWORDS: %ARRAY %NOBS                                                  045045  KEYWORDS: %ARRAY %NOBS                                                  045
046            "invalid values" "data review" "data checking046            "invalid values" "data review" "data checking046            "invalid values" "data review" "data checking046            "invalid values" "data review" "data checking"                046"                046"                046"                046
047            SESUG 2001: invalid 047            SESUG 2001: invalid 047            SESUG 2001: invalid 047            SESUG 2001: invalid outlier FORMAT outlier FORMAT outlier FORMAT outlier FORMAT fmtlib fmtlib fmtlib fmtlib other=              047other=              047other=              047other=              047
048                                                                          048                                                                          048                                                                          048                                                                          048048048048
049 NOTE: expected number of ID 049 NOTE: expected number of ID 049 NOTE: expected number of ID 049 NOTE: expected number of ID vars is 2, see %LOCAL DIM_IDS, need as vars is 2, see %LOCAL DIM_IDS, need as vars is 2, see %LOCAL DIM_IDS, need as vars is 2, see %LOCAL DIM_IDS, need as parm? 049parm? 049parm? 049parm? 049
050 NOTE: this warning is 050 NOTE: this warning is 050 NOTE: this warning is 050 NOTE: this warning is acceptable                                         050acceptable                                         050acceptable                                         050acceptable                                         050
051 WARNING: Variable VALUENUM has different lengths on BASE and DATA 051 WARNING: Variable VALUENUM has different lengths on BASE and DATA 051 WARNING: Variable VALUENUM has different lengths on BASE and DATA 051 WARNING: Variable VALUENUM has different lengths on BASE and DATA files  051files  051files  051files  051
052                                                         (BASE 8 DATA 4). 052052                                                         (BASE 8 DATA 4). 052052                                                         (BASE 8 DATA 4). 052052                                                         (BASE 8 DATA 4). 052
053                                                                          053                                                                          053                                                                          053                                                                          053053053053
054 Author: Ronald 054 Author: Ronald 054 Author: Ronald 054 Author: Ronald Fehd, Fehd, Fehd, Fehd, B.S. B.S. B.S. B.S. C.ScC.ScC.ScC.Sc                 e-mail: RJF2@cdc.gov      054                 e-mail: RJF2@cdc.gov      054                 e-mail: RJF2@cdc.gov      054                 e-mail: RJF2@cdc.gov      054
055         Centers for Disease Control  MS-G25                              055055         Centers for Disease Control  MS-G25                              055055         Centers for Disease Control  MS-G25                              055055         Centers for Disease Control  MS-G25                              055
056         4770 056         4770 056         4770 056         4770 Buford Hwy  NE                                              056Buford Hwy  NE                                              056Buford Hwy  NE                                              056Buford Hwy  NE                                              056
057         Atlanta  GA  30341-3724                 voice: 770/488-8102      057057         Atlanta  GA  30341-3724                 voice: 770/488-8102      057057         Atlanta  GA  30341-3724                 voice: 770/488-8102      057057         Atlanta  GA  30341-3724                 voice: 770/488-8102      057
058 RJF2 99Feb25 058 RJF2 99Feb25 058 RJF2 99Feb25 058 RJF2 99Feb25 begun                  NOTE: lines 059:080 change notes deletedbegun                  NOTE: lines 059:080 change notes deletedbegun                  NOTE: lines 059:080 change notes deletedbegun                  NOTE: lines 059:080 change notes deleted
081 ;/* . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . */ 081081 ;/* . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . */ 081081 ;/* . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . */ 081081 ;/* . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . */ 081
082 %MACRO 082 %MACRO 082 %MACRO 082 %MACRO INVALID(/* - - - - - - - - - - - - - - - - - - - - - - - - - - */ 082INVALID(/* - - - - - - - - - - - - - - - - - - - - - - - - - - */ 082INVALID(/* - - - - - - - - - - - - - - - - - - - - - - - - - - */ 082INVALID(/* - - - - - - - - - - - - - - - - - - - - - - - - - - */ 082
083  DATA            /*data set name                                      */ 083083  DATA            /*data set name                                      */ 083083  DATA            /*data set name                                      */ 083083  DATA            /*data set name                                      */ 083



084 ,IDLIST  =.      /* 084 ,IDLIST  =.      /* 084 ,IDLIST  =.      /* 084 ,IDLIST  =.      /* list of primary-key(s) == by-list of primary-key(s) == by-list of primary-key(s) == by-list of primary-key(s) == by-vars                 */ 084vars                 */ 084vars                 */ 084vars                 */ 084
085 ,LIBRARY =LIBRARY/085 ,LIBRARY =LIBRARY/085 ,LIBRARY =LIBRARY/085 ,LIBRARY =LIBRARY/*libname of DATA                                    */ 085*libname of DATA                                    */ 085*libname of DATA                                    */ 085*libname of DATA                                    */ 085
086 ,FMTLIB  =LIBRARY/086 ,FMTLIB  =LIBRARY/086 ,FMTLIB  =LIBRARY/086 ,FMTLIB  =LIBRARY/*libname of catalog FORMATS                         */ 086*libname of catalog FORMATS                         */ 086*libname of catalog FORMATS                         */ 086*libname of catalog FORMATS                         */ 086
087 ,PRNTFILE=PRINT  /*output destination, default = PRINT                ** 087087 ,PRNTFILE=PRINT  /*output destination, default = PRINT                ** 087087 ,PRNTFILE=PRINT  /*output destination, default = PRINT                ** 087087 ,PRNTFILE=PRINT  /*output destination, default = PRINT                ** 087
088                  /*may be 'external-file' -- note quotes -- or 088                  /*may be 'external-file' -- note quotes -- or 088                  /*may be 'external-file' -- note quotes -- or 088                  /*may be 'external-file' -- note quotes -- or fileref*/ 088fileref*/ 088fileref*/ 088fileref*/ 088
089 ,PRNTLIST=PRINT  /*turn off detail listing w/PRNTLIST=NULL            */ 089089 ,PRNTLIST=PRINT  /*turn off detail listing w/PRNTLIST=NULL            */ 089089 ,PRNTLIST=PRINT  /*turn off detail listing w/PRNTLIST=NULL            */ 089089 ,PRNTLIST=PRINT  /*turn off detail listing w/PRNTLIST=NULL            */ 089
090 ,DETAILS =1/*?print details? 090 ,DETAILS =1/*?print details? 090 ,DETAILS =1/*?print details? 090 ,DETAILS =1/*?print details? used when only summary wanted            */ 090used when only summary wanted            */ 090used when only summary wanted            */ 090used when only summary wanted            */ 090
091 ,SUMMARY =1/*?print any of SUMMARY report(s)?                         */ 091091 ,SUMMARY =1/*?print any of SUMMARY report(s)?                         */ 091091 ,SUMMARY =1/*?print any of SUMMARY report(s)?                         */ 091091 ,SUMMARY =1/*?print any of SUMMARY report(s)?                         */ 091
092 ,SMRYIDS =1/*?print FREQ of IDS?                                      */ 092092 ,SMRYIDS =1/*?print FREQ of IDS?                                      */ 092092 ,SMRYIDS =1/*?print FREQ of IDS?                                      */ 092092 ,SMRYIDS =1/*?print FREQ of IDS?                                      */ 092
093 ,SMRYNAME=1/*?print detail  of variables, by name?                    */ 093093 ,SMRYNAME=1/*?print detail  of variables, by name?                    */ 093093 ,SMRYNAME=1/*?print detail  of variables, by name?                    */ 093093 ,SMRYNAME=1/*?print detail  of variables, by name?                    */ 093
094 ,SMRYVARS=1/*?print FREQ of variables with invalid?                   */ 094094 ,SMRYVARS=1/*?print FREQ of variables with invalid?                   */ 094094 ,SMRYVARS=1/*?print FREQ of variables with invalid?                   */ 094094 ,SMRYVARS=1/*?print FREQ of variables with invalid?                   */ 094
095 ,TESTING =0/*?enable test 095 ,TESTING =0/*?enable test 095 ,TESTING =0/*?enable test 095 ,TESTING =0/*?enable test msg and prints?                             */ 095msg and prints?                             */ 095msg and prints?                             */ 095msg and prints?                             */ 095
096 ,TITLEN  =2/*TITLE line #                                             */ 096096 ,TITLEN  =2/*TITLE line #                                             */ 096096 ,TITLEN  =2/*TITLE line #                                             */ 096096 ,TITLEN  =2/*TITLE line #                                             */ 096
097 )/*store 097 )/*store 097 )/*store 097 )/*store des = 'method to list INVALID values in data set'/*..........*/ 097des = 'method to list INVALID values in data set'/*..........*/ 097des = 'method to list INVALID values in data set'/*..........*/ 097des = 'method to list INVALID values in data set'/*..........*/ 097
098 ;%LOCAL LENLABEL;             %LET LENLABEL=60;%*data INVALID & DETAILS; 098098 ;%LOCAL LENLABEL;             %LET LENLABEL=60;%*data INVALID & DETAILS; 098098 ;%LOCAL LENLABEL;             %LET LENLABEL=60;%*data INVALID & DETAILS; 098098 ;%LOCAL LENLABEL;             %LET LENLABEL=60;%*data INVALID & DETAILS; 098
099 %099 %099 %099 %LOCAL  DIM_IDS;              %LET DIM_IDS = 2;%*how many IDs?;          099LOCAL  DIM_IDS;              %LET DIM_IDS = 2;%*how many IDs?;          099LOCAL  DIM_IDS;              %LET DIM_IDS = 2;%*how many IDs?;          099LOCAL  DIM_IDS;              %LET DIM_IDS = 2;%*how many IDs?;          099
100 %100 %100 %100 %LOCAL  VALIDVARNAME;                          %*reset at exit;          100LOCAL  VALIDVARNAME;                          %*reset at exit;          100LOCAL  VALIDVARNAME;                          %*reset at exit;          100LOCAL  VALIDVARNAME;                          %*reset at exit;          100
101 %101 %101 %101 %LET    LET    LET    LET    VALIDVARNAMEVALIDVARNAMEVALIDVARNAMEVALIDVARNAME=%sysfunc(=%sysfunc(=%sysfunc(=%sysfunc(getoption(getoption(getoption(getoption(validvarname,keyword));          101validvarname,keyword));          101validvarname,keyword));          101validvarname,keyword));          101
102 OPTIONS 102 OPTIONS 102 OPTIONS 102 OPTIONS ValidVarName = ValidVarName = ValidVarName = ValidVarName = UPCASEUPCASEUPCASEUPCASE;%;%;%;%*align CONTENTS & user-supplied IDLIST;   102*align CONTENTS & user-supplied IDLIST;   102*align CONTENTS & user-supplied IDLIST;   102*align CONTENTS & user-supplied IDLIST;   102
103 %IF &TESTING %THEN %DO103 %IF &TESTING %THEN %DO103 %IF &TESTING %THEN %DO103 %IF &TESTING %THEN %DO;  OPTIONS   ;  OPTIONS   ;  OPTIONS   ;  OPTIONS   mprint;                         %END; 103mprint;                         %END; 103mprint;                         %END; 103mprint;                         %END; 103
104 %ELSE              %DO104 %ELSE              %DO104 %ELSE              %DO104 %ELSE              %DO;  OPTIONS ;  OPTIONS ;  OPTIONS ;  OPTIONS nomprint;                         %END; 104nomprint;                         %END; 104nomprint;                         %END; 104nomprint;                         %END; 104
105                                                                          105                                                                          105                                                                          105                                                                          105105105105
106 %**1. 106 %**1. 106 %**1. 106 %**1. if IDLIST blank, print list of formats w/INVALID, exit;            106if IDLIST blank, print list of formats w/INVALID, exit;            106if IDLIST blank, print list of formats w/INVALID, exit;            106if IDLIST blank, print list of formats w/INVALID, exit;            106
107 %IF "&IDLIST." 107 %IF "&IDLIST." 107 %IF "&IDLIST." 107 %IF "&IDLIST." eq "." %THEN %DOeq "." %THEN %DOeq "." %THEN %DOeq "." %THEN %DO;%*-------------------------------------; 107;%*-------------------------------------; 107;%*-------------------------------------; 107;%*-------------------------------------; 107
108 %IF "&DATA."   108 %IF "&DATA."   108 %IF "&DATA."   108 %IF "&DATA."   eq ""  %THEN %DO;  %LET DATA = _ALL_;               %END; 108eq ""  %THEN %DO;  %LET DATA = _ALL_;               %END; 108eq ""  %THEN %DO;  %LET DATA = _ALL_;               %END; 108eq ""  %THEN %DO;  %LET DATA = _ALL_;               %END; 108
109 109 109 109 proc CONTENTS data    = &LIBRARYproc CONTENTS data    = &LIBRARYproc CONTENTS data    = &LIBRARYproc CONTENTS data    = &LIBRARY..&DATA.                                 109..&DATA.                                 109..&DATA.                                 109..&DATA.                                 109
110               110               110               110               memtype = data                                             110memtype = data                                             110memtype = data                                             110memtype = data                                             110
111                         111                         111                         111                         noprint                                          111noprint                                          111noprint                                          111noprint                                          111
112               out     = CONTENTS                                         112112               out     = CONTENTS                                         112112               out     = CONTENTS                                         112112               out     = CONTENTS                                         112
113               (keep   = 113               (keep   = 113               (keep   = 113               (keep   = Format                                           113Format                                           113Format                                           113Format                                           113
114                where  = (Format not in (' ','$CHAR')));                  114114                where  = (Format not in (' ','$CHAR')));                  114114                where  = (Format not in (' ','$CHAR')));                  114114                where  = (Format not in (' ','$CHAR')));                  114
115 115 115 115 proc proc proc proc SORT     data    = CONTENTS                                         115SORT     data    = CONTENTS                                         115SORT     data    = CONTENTS                                         115SORT     data    = CONTENTS                                         115
116                         116                         116                         116                         nodupkey;                                        116nodupkey;                                        116nodupkey;                                        116nodupkey;                                        116
117               by        Format;                                          117117               by        Format;                                          117117               by        Format;                                          117117               by        Format;                                          117
118 118 118 118 proc proc proc proc FORMAT   library = &FMTLIB.                                         118FORMAT   library = &FMTLIB.                                         118FORMAT   library = &FMTLIB.                                         118FORMAT   library = &FMTLIB.                                         118
119               119               119               119               cntlout = FMTLIB                                           119cntlout = FMTLIB                                           119cntlout = FMTLIB                                           119cntlout = FMTLIB                                           119
120               (keep   = 120               (keep   = 120               (keep   = 120               (keep   = FmtName Label FmtName Label FmtName Label FmtName Label Type                               120Type                               120Type                               120Type                               120
121                where  = (Label   = "&INVALID.")                          121121                where  = (Label   = "&INVALID.")                          121121                where  = (Label   = "&INVALID.")                          121121                where  = (Label   = "&INVALID.")                          121
122                rename = (122                rename = (122                rename = (122                rename = (FmtName = Format     ) );                       122FmtName = Format     ) );                       122FmtName = Format     ) );                       122FmtName = Format     ) );                       122
123 %IF &TESTING %THEN %DO123 %IF &TESTING %THEN %DO123 %IF &TESTING %THEN %DO123 %IF &TESTING %THEN %DO;*PROC PRINT;%END;                                 123;*PROC PRINT;%END;                                 123;*PROC PRINT;%END;                                 123;*PROC PRINT;%END;                                 123
124 124 124 124 proc proc proc proc SORT     data    = FMTLIB                                           124SORT     data    = FMTLIB                                           124SORT     data    = FMTLIB                                           124SORT     data    = FMTLIB                                           124
125                         125                         125                         125                         nodupkey;                                        125nodupkey;                                        125nodupkey;                                        125nodupkey;                                        125
126               by        Format;                                          126126               by        Format;                                          126126               by        Format;                                          126126               by        Format;                                          126
127                                                                          127                                                                          127                                                                          127                                                                          127127127127
128 128 128 128 data    FMTLIB;                                                          128data    FMTLIB;                                                          128data    FMTLIB;                                                          128data    FMTLIB;                                                          128
129  drop   Label Type;                                                      129129  drop   Label Type;                                                      129129  drop   Label Type;                                                      129129  drop   Label Type;                                                      129
130 *length Format $ 9130 *length Format $ 9130 *length Format $ 9130 *length Format $ 9;                                                      130;                                                      130;                                                      130;                                                      130
131  set    FMTLIB;                                                          131131  set    FMTLIB;                                                          131131  set    FMTLIB;                                                          131131  set    FMTLIB;                                                          131
132  if Type = 'C' then Format = '$' !! Format132  if Type = 'C' then Format = '$' !! Format132  if Type = 'C' then Format = '$' !! Format132  if Type = 'C' then Format = '$' !! Format;                              132;                              132;                              132;                              132
133                                                                          133                                                                          133                                                                          133                                                                          133133133133
134 134 134 134 proc SORT data = FMTLIBproc SORT data = FMTLIBproc SORT data = FMTLIBproc SORT data = FMTLIB;                                                 134;                                                 134;                                                 134;                                                 134
135           by     Format;                                                 135135           by     Format;                                                 135135           by     Format;                                                 135135           by     Format;                                                 135
136                                                                          136                                                                          136                                                                          136                                                                          136136136136
137 137 137 137 DATA    FMTLIB;                                                          137DATA    FMTLIB;                                                          137DATA    FMTLIB;                                                          137DATA    FMTLIB;                                                          137
138  do until(138  do until(138  do until(138  do until(EndoFile);                                                     138EndoFile);                                                     138EndoFile);                                                     138EndoFile);                                                     138
139   merge CONTENTS(in = 139   merge CONTENTS(in = 139   merge CONTENTS(in = 139   merge CONTENTS(in = haveC)                                             139haveC)                                             139haveC)                                             139haveC)                                             139
140         FMTLIB  (in = 140         FMTLIB  (in = 140         FMTLIB  (in = 140         FMTLIB  (in = haveF)                                             140haveF)                                             140haveF)                                             140haveF)                                             140
141    end = 141    end = 141    end = 141    end = EndoFile;                                                       141EndoFile;                                                       141EndoFile;                                                       141EndoFile;                                                       141
142  by Format;                                                              142142  by Format;                                                              142142  by Format;                                                              142142  by Format;                                                              142
143  Data   = 143  Data   = 143  Data   = 143  Data   = HaveC;                                                         143HaveC;                                                         143HaveC;                                                         143HaveC;                                                         143
144  144  144  144  FmtLib = FmtLib = FmtLib = FmtLib = HaveF;                                                         144HaveF;                                                         144HaveF;                                                         144HaveF;                                                         144



145  if      145  if      145  if      145  if      haveC and     haveC and     haveC and     haveC and     haveF then  Ok = 'OK';                            145haveF then  Ok = 'OK';                            145haveF then  Ok = 'OK';                            145haveF then  Ok = 'OK';                            145
146  else if 146  else if 146  else if 146  else if haveC and not haveC and not haveC and not haveC and not haveF then  Ok = '??';                            146haveF then  Ok = '??';                            146haveF then  Ok = '??';                            146haveF then  Ok = '??';                            146
147  else                              Ok = '..';                            147147  else                              Ok = '..';                            147147  else                              Ok = '..';                            147147  else                              Ok = '..';                            147
148                                    output;                          end; 148148                                    output;                          end; 148148                                    output;                          end; 148148                                    output;                          end; 148
149                                                                    stop; 149149                                                                    stop; 149149                                                                    stop; 149149                                                                    stop; 149
150 150 150 150 proc proc proc proc PRINT    data = FMTLIB PRINT    data = FMTLIB PRINT    data = FMTLIB PRINT    data = FMTLIB noobs;                                       150noobs;                                       150noobs;                                       150noobs;                                       150
151               TITLE&TITLEN. "INVALID: compare formats in DATA:151               TITLE&TITLEN. "INVALID: compare formats in DATA:151               TITLE&TITLEN. "INVALID: compare formats in DATA:151               TITLE&TITLEN. "INVALID: compare formats in DATA:"          151"          151"          151"          151
152                             "&LIBRARY152                             "&LIBRARY152                             "&LIBRARY152                             "&LIBRARY..&DATA. ..&DATA. ..&DATA. ..&DATA. and FMTLIB:&FMTLIB.";      152and FMTLIB:&FMTLIB.";      152and FMTLIB:&FMTLIB.";      152and FMTLIB:&FMTLIB.";      152
153 153 153 153 proc DATASETS library  = WORK proc DATASETS library  = WORK proc DATASETS library  = WORK proc DATASETS library  = WORK nolistnolistnolistnolist;                                    153;                                    153;                                    153;                                    153
154               delete     CONTENTS FMTLIB (154               delete     CONTENTS FMTLIB (154               delete     CONTENTS FMTLIB (154               delete     CONTENTS FMTLIB (memtype = data);         quit; 154memtype = data);         quit; 154memtype = data);         quit; 154memtype = data);         quit; 154
155 %GOTO ENDOMACR155 %GOTO ENDOMACR155 %GOTO ENDOMACR155 %GOTO ENDOMACR;%*.............................. %IF IDLIST EQ "."; %END; 155;%*.............................. %IF IDLIST EQ "."; %END; 155;%*.............................. %IF IDLIST EQ "."; %END; 155;%*.............................. %IF IDLIST EQ "."; %END; 155
156 %*ELSE *DO: IDLIST not BLANK156 %*ELSE *DO: IDLIST not BLANK156 %*ELSE *DO: IDLIST not BLANK156 %*ELSE *DO: IDLIST not BLANK;                                            156;                                            156;                                            156;                                            156
157 %**2 make %ARRAY of ID(s);        %local I157 %**2 make %ARRAY of ID(s);        %local I157 %**2 make %ARRAY of ID(s);        %local I157 %**2 make %ARRAY of ID(s);        %local I;                              157;                              157;                              157;                              157
158 %DO I = 1 %TO &DIM_IDS;           %local IDS&I.;                   %END; 158158 %DO I = 1 %TO &DIM_IDS;           %local IDS&I.;                   %END; 158158 %DO I = 1 %TO &DIM_IDS;           %local IDS&I.;                   %END; 158158 %DO I = 1 %TO &DIM_IDS;           %local IDS&I.;                   %END; 158
159 %LET IDLIST = %159 %LET IDLIST = %159 %LET IDLIST = %159 %LET IDLIST = %upcaseupcaseupcaseupcase(&IDLIST.);  %*(&IDLIST.);  %*(&IDLIST.);  %*(&IDLIST.);  %*proc proc proc proc CONTENTS.Name is CONTENTS.Name is CONTENTS.Name is CONTENTS.Name is upcase *;      159upcase *;      159upcase *;      159upcase *;      159
160 %160 %160 %160 %ARRAY(IDS,&IDLIST);run;          %*ARRAY ARRAY(IDS,&IDLIST);run;          %*ARRAY ARRAY(IDS,&IDLIST);run;          %*ARRAY ARRAY(IDS,&IDLIST);run;          %*ARRAY mac-vars are local;            160mac-vars are local;            160mac-vars are local;            160mac-vars are local;            160
161 %DO I = 1 %TO &DIM_IDS;           %local TYPE&I. Q&I. LEN&I.;      %END; 161161 %DO I = 1 %TO &DIM_IDS;           %local TYPE&I. Q&I. LEN&I.;      %END; 161161 %DO I = 1 %TO &DIM_IDS;           %local TYPE&I. Q&I. LEN&I.;      %END; 161161 %DO I = 1 %TO &DIM_IDS;           %local TYPE&I. Q&I. LEN&I.;      %END; 161
162                                                                          162                                                                          162                                                                          162                                                                          162162162162
163 %**3 make %ARRAY of ID(s) attributes163 %**3 make %ARRAY of ID(s) attributes163 %**3 make %ARRAY of ID(s) attributes163 %**3 make %ARRAY of ID(s) attributes;                                    163;                                    163;                                    163;                                    163
164 164 164 164 proc CONTENTS data  = &LIBRARYproc CONTENTS data  = &LIBRARYproc CONTENTS data  = &LIBRARYproc CONTENTS data  = &LIBRARY..&DATA.                                   164..&DATA.                                   164..&DATA.                                   164..&DATA.                                   164
165                       165                       165                       165                       noprint                                            165noprint                                            165noprint                                            165noprint                                            165
166               out   = CONTENTS                                           166166               out   = CONTENTS                                           166166               out   = CONTENTS                                           166166               out   = CONTENTS                                           166
167               (keep = Format 167               (keep = Format 167               (keep = Format 167               (keep = Format Formatd Formatd Formatd Formatd Formatl Length Name Type Formatl Length Name Type Formatl Length Name Type Formatl Length Name Type VarNum)VarNum)VarNum)VarNum);   167;   167;   167;   167
168                                                                          168                                                                          168                                                                          168                                                                          168168168168
169 DATA    _NULL_169 DATA    _NULL_169 DATA    _NULL_169 DATA    _NULL_;                                                          169;                                                          169;                                                          169;                                                          169
170  length Q $ 1;                                                           170170  length Q $ 1;                                                           170170  length Q $ 1;                                                           170170  length Q $ 1;                                                           170
171  do until(171  do until(171  do until(171  do until(EndoFile);                                                     171EndoFile);                                                     171EndoFile);                                                     171EndoFile);                                                     171
172   set CONTENTS (172   set CONTENTS (172   set CONTENTS (172   set CONTENTS (where=(Name in (                                         172where=(Name in (                                         172where=(Name in (                                         172where=(Name in (                                         172
173    %DO I = 1 %TO &DIM_IDS173    %DO I = 1 %TO &DIM_IDS173    %DO I = 1 %TO &DIM_IDS173    %DO I = 1 %TO &DIM_IDS.;     "&&IDS&I"                                173.;     "&&IDS&I"                                173.;     "&&IDS&I"                                173.;     "&&IDS&I"                                173
174     %IF &I 174     %IF &I 174     %IF &I 174     %IF &I lt &DIM_IDS %lt &DIM_IDS %lt &DIM_IDS %lt &DIM_IDS %THEN             ,;                        %END; 174THEN             ,;                        %END; 174THEN             ,;                        %END; 174THEN             ,;                        %END; 174
175    ))) end = 175    ))) end = 175    ))) end = 175    ))) end = EndoFile;                                                   175EndoFile;                                                   175EndoFile;                                                   175EndoFile;                                                   175
176   %* Type176   %* Type176   %* Type176   %* Type::(1:numeric, 2:character) from ::(1:numeric, 2:character) from ::(1:numeric, 2:character) from ::(1:numeric, 2:character) from proc proc proc proc CONTENTS.Type*;            176CONTENTS.Type*;            176CONTENTS.Type*;            176CONTENTS.Type*;            176
177   if Type = 1 then do; C_N = ' 177   if Type = 1 then do; C_N = ' 177   if Type = 1 then do; C_N = ' 177   if Type = 1 then do; C_N = ' '; Q = ' '; Q = ' '; Q = ' '; Q = ' ';                          end; 177';                          end; 177';                          end; 177';                          end; 177
178   else             do; C_N = '$'; Q = "'";                          end; 178178   else             do; C_N = '$'; Q = "'";                          end; 178178   else             do; C_N = '$'; Q = "'";                          end; 178178   else             do; C_N = '$'; Q = "'";                          end; 178
179   %DO I = 1 %TO &DIM_IDS179   %DO I = 1 %TO &DIM_IDS179   %DO I = 1 %TO &DIM_IDS179   %DO I = 1 %TO &DIM_IDS.;                                               179.;                                               179.;                                               179.;                                               179
180    if Name = "&&IDS&I." then do; call 180    if Name = "&&IDS&I." then do; call 180    if Name = "&&IDS&I." then do; call 180    if Name = "&&IDS&I." then do; call symput("TYPE&I.",C_N);             180symput("TYPE&I.",C_N);             180symput("TYPE&I.",C_N);             180symput("TYPE&I.",C_N);             180
181                                  call 181                                  call 181                                  call 181                                  call symput(   "Q&I.",Q  );             181symput(   "Q&I.",Q  );             181symput(   "Q&I.",Q  );             181symput(   "Q&I.",Q  );             181
182                                  call 182                                  call 182                                  call 182                                  call symput( "LEN&I.",                  182symput( "LEN&I.",                  182symput( "LEN&I.",                  182symput( "LEN&I.",                  182
183                                          compress(put(Length,3.))); end; 183183                                          compress(put(Length,3.))); end; 183183                                          compress(put(Length,3.))); end; 183183                                          compress(put(Length,3.))); end; 183
184                                                         %*%DO I=1; %END; 184184                                                         %*%DO I=1; %END; 184184                                                         %*%DO I=1; %END; 184184                                                         %*%DO I=1; %END; 184
185  %*185  %*185  %*185  %*........................................... ........................................... ........................................... ........................................... do until(do until(do until(do until(EndoFile)*; end; 185EndoFile)*; end; 185EndoFile)*; end; 185EndoFile)*; end; 185
186                                                                    stop; 186186                                                                    stop; 186186                                                                    stop; 186186                                                                    stop; 186
187 %**4 does format $INVALID? 187 %**4 does format $INVALID? 187 %**4 does format $INVALID? 187 %**4 does format $INVALID? exist?, because of previous use of macro?;    187exist?, because of previous use of macro?;    187exist?, because of previous use of macro?;    187exist?, because of previous use of macro?;    187
188 %*188 %*188 %*188 %*func catalog-func catalog-func catalog-func catalog-exist(exist(exist(exist(LibName.MemName.ObjName.ObjType);                   188LibName.MemName.ObjName.ObjType);                   188LibName.MemName.ObjName.ObjType);                   188LibName.MemName.ObjName.ObjType);                   188
189 %IF not %189 %IF not %189 %IF not %189 %IF not %sysfuncsysfuncsysfuncsysfunc((((cexist(WORK.FORMATS.INVALID.FORMATC)) %THEN %DO;%*---*; 189cexist(WORK.FORMATS.INVALID.FORMATC)) %THEN %DO;%*---*; 189cexist(WORK.FORMATS.INVALID.FORMATC)) %THEN %DO;%*---*; 189cexist(WORK.FORMATS.INVALID.FORMATC)) %THEN %DO;%*---*; 189
190                                                                          190                                                                          190                                                                          190                                                                          190190190190
191 %**4.1 get all formats which have 191 %**4.1 get all formats which have 191 %**4.1 get all formats which have 191 %**4.1 get all formats which have Label=INVALIDLabel=INVALIDLabel=INVALIDLabel=INVALID;                         191;                         191;                         191;                         191
192 192 192 192 proc FORMAT library =&proc FORMAT library =&proc FORMAT library =&proc FORMAT library =&FMTLIB                                             192FMTLIB                                             192FMTLIB                                             192FMTLIB                                             192
193             193             193             193             cntlout = FORMAT_CNTL                                        193cntlout = FORMAT_CNTL                                        193cntlout = FORMAT_CNTL                                        193cntlout = FORMAT_CNTL                                        193
194             (keep   = 194             (keep   = 194             (keep   = 194             (keep   = FmtName Label FmtName Label FmtName Label FmtName Label Type                                 194Type                                 194Type                                 194Type                                 194
195             where   = (Label = "&INVALID."));                            195195             where   = (Label = "&INVALID."));                            195195             where   = (Label = "&INVALID."));                            195195             where   = (Label = "&INVALID."));                            195
196                  %*note: global &INVALID196                  %*note: global &INVALID196                  %*note: global &INVALID196                  %*note: global &INVALID;                                196;                                196;                                196;                                196
197 %**4.2 if none w/197 %**4.2 if none w/197 %**4.2 if none w/197 %**4.2 if none w/Label=INVALID, exitLabel=INVALID, exitLabel=INVALID, exitLabel=INVALID, exit;                                    197;                                    197;                                    197;                                    197
198 %198 %198 %198 %local   ANY_FRMT;            %NOBS(ANY_FRMT);run;                       198local   ANY_FRMT;            %NOBS(ANY_FRMT);run;                       198local   ANY_FRMT;            %NOBS(ANY_FRMT);run;                       198local   ANY_FRMT;            %NOBS(ANY_FRMT);run;                       198
199 %IF not &ANY_FRMT %THEN %DO;  %PUT no formats with 199 %IF not &ANY_FRMT %THEN %DO;  %PUT no formats with 199 %IF not &ANY_FRMT %THEN %DO;  %PUT no formats with 199 %IF not &ANY_FRMT %THEN %DO;  %PUT no formats with label=<&INVALIDlabel=<&INVALIDlabel=<&INVALIDlabel=<&INVALID.>;    199.>;    199.>;    199.>;    199
200                               %GOTO ENDOMACR;                      %END; 200200                               %GOTO ENDOMACR;                      %END; 200200                               %GOTO ENDOMACR;                      %END; 200200                               %GOTO ENDOMACR;                      %END; 200
201                                                                          201                                                                          201                                                                          201                                                                          201201201201
202 %**4.3 make 202 %**4.3 make 202 %**4.3 make 202 %**4.3 make proc FORMAT proc FORMAT proc FORMAT proc FORMAT CntlIn data set for value $INVALIDCntlIn data set for value $INVALIDCntlIn data set for value $INVALIDCntlIn data set for value $INVALID;              202;              202;              202;              202
203 203 203 203 DATA    FORMAT_CNTL           (DATA    FORMAT_CNTL           (DATA    FORMAT_CNTL           (DATA    FORMAT_CNTL           (drop=Type);                               203drop=Type);                               203drop=Type);                               203drop=Type);                               203
204  retain Label   '1'           %*204  retain Label   '1'           %*204  retain Label   '1'           %*204  retain Label   '1'           %*one==True;                               204one==True;                               204one==True;                               204one==True;                               204
205         205         205         205         FmtName '$INVALID'                                               205FmtName '$INVALID'                                               205FmtName '$INVALID'                                               205FmtName '$INVALID'                                               205



206         HLO     ' 206         HLO     ' 206         HLO     ' 206         HLO     ' ';                                                     206';                                                     206';                                                     206';                                                     206
207  do until(207  do until(207  do until(207  do until(EndoFile);                                                     207EndoFile);                                                     207EndoFile);                                                     207EndoFile);                                                     207
208   set FORMAT_CNTL (keep   =  208   set FORMAT_CNTL (keep   =  208   set FORMAT_CNTL (keep   =  208   set FORMAT_CNTL (keep   =  FmtName   Type                              208FmtName   Type                              208FmtName   Type                              208FmtName   Type                              208
209                    rename = (209                    rename = (209                    rename = (209                    rename = (FmtName = Start))                           209FmtName = Start))                           209FmtName = Start))                           209FmtName = Start))                           209
210                    end    =  210                    end    =  210                    end    =  210                    end    =  EndoFile;                                   210EndoFile;                                   210EndoFile;                                   210EndoFile;                                   210
211   if Type = 'C' then Start = '$' !! Start211   if Type = 'C' then Start = '$' !! Start211   if Type = 'C' then Start = '$' !! Start211   if Type = 'C' then Start = '$' !! Start;                               211;                               211;                               211;                               211
212   output;                                           %*do until(212   output;                                           %*do until(212   output;                                           %*do until(212   output;                                           %*do until(EoF);end; 212EoF);end; 212EoF);end; 212EoF);end; 212
213  HLO   = 'O';                 %*213  HLO   = 'O';                 %*213  HLO   = 'O';                 %*213  HLO   = 'O';                 %*Oh==Other;                               213Oh==Other;                               213Oh==Other;                               213Oh==Other;                               213
214  Label = '0';                 %*214  Label = '0';                 %*214  Label = '0';                 %*214  Label = '0';                 %*zero==False;                             214zero==False;                             214zero==False;                             214zero==False;                             214
215  Start = '**OTHER**';                                                    215215  Start = '**OTHER**';                                                    215215  Start = '**OTHER**';                                                    215215  Start = '**OTHER**';                                                    215
216  output;                                                           stop; 216216  output;                                                           stop; 216216  output;                                                           stop; 216216  output;                                                           stop; 216
217                                                                          217                                                                          217                                                                          217                                                                          217217217217
218 %**4.4 make FORMAT value $INVALID218 %**4.4 make FORMAT value $INVALID218 %**4.4 make FORMAT value $INVALID218 %**4.4 make FORMAT value $INVALID;                                       218;                                       218;                                       218;                                       218
219 219 219 219 proc FORMAT proc FORMAT proc FORMAT proc FORMAT cntlin  = FORMAT_cntlin  = FORMAT_cntlin  = FORMAT_cntlin  = FORMAT_CNTL                                        219CNTL                                        219CNTL                                        219CNTL                                        219
220             library = WORK;%* . . . . . . . . . . .%IF not 220             library = WORK;%* . . . . . . . . . . .%IF not 220             library = WORK;%* . . . . . . . . . . .%IF not 220             library = WORK;%* . . . . . . . . . . .%IF not cexist; %END; 220cexist; %END; 220cexist; %END; 220cexist; %END; 220
221                                                                          221                                                                          221                                                                          221                                                                          221221221221
222 filename TEMPTEXT catalog '222 filename TEMPTEXT catalog '222 filename TEMPTEXT catalog '222 filename TEMPTEXT catalog 'sasuser.profile.sasinp.source'sasuser.profile.sasinp.source'sasuser.profile.sasinp.source'sasuser.profile.sasinp.source';               222;               222;               222;               222
223                                                                          223                                                                          223                                                                          223                                                                          223223223223
224 %**5 read CONTENTS, write macro calls224 %**5 read CONTENTS, write macro calls224 %**5 read CONTENTS, write macro calls224 %**5 read CONTENTS, write macro calls;                                   224;                                   224;                                   224;                                   224
225 %local ANY_FRMT;              %LET ANY_FRMT=0225 %local ANY_FRMT;              %LET ANY_FRMT=0225 %local ANY_FRMT;              %LET ANY_FRMT=0225 %local ANY_FRMT;              %LET ANY_FRMT=0;%*flag for exit;           225;%*flag for exit;           225;%*flag for exit;           225;%*flag for exit;           225
226 %local CHARVLEN;              %LET CHARVLEN=0226 %local CHARVLEN;              %LET CHARVLEN=0226 %local CHARVLEN;              %LET CHARVLEN=0226 %local CHARVLEN;              %LET CHARVLEN=0;%*max char ;%*max char ;%*max char ;%*max char var length;     226var length;     226var length;     226var length;     226
227 data  _NULL_227 data  _NULL_227 data  _NULL_227 data  _NULL_;                                                            227;                                                            227;                                                            227;                                                            227
228  file %IF &TESTING %THEN %DO; PRINT                                %END; 228228  file %IF &TESTING %THEN %DO; PRINT                                %END; 228228  file %IF &TESTING %THEN %DO; PRINT                                %END; 228228  file %IF &TESTING %THEN %DO; PRINT                                %END; 228
229       %ELSE              %DO; TEMPTEXT                             %END; 229229       %ELSE              %DO; TEMPTEXT                             %END; 229229       %ELSE              %DO; TEMPTEXT                             %END; 229229       %ELSE              %DO; TEMPTEXT                             %END; 229
230                                                         %*file closure230                                                         %*file closure230                                                         %*file closure230                                                         %*file closure;; 230;; 230;; 230;; 230
231  retain 231  retain 231  retain 231  retain CharVLen  1                                                      231CharVLen  1                                                      231CharVLen  1                                                      231CharVLen  1                                                      231
232         232         232         232         AnyAnyAnyAny_Frmt '0';                                                    232_Frmt '0';                                                    232_Frmt '0';                                                    232_Frmt '0';                                                    232
233  do until(233  do until(233  do until(233  do until(EndoFile);                                                     233EndoFile);                                                     233EndoFile);                                                     233EndoFile);                                                     233
234   set CONTENTS                                                           234234   set CONTENTS                                                           234234   set CONTENTS                                                           234234   set CONTENTS                                                           234
235    (235    (235    (235    (where=(where=(where=(where=(input(put(input(put(input(put(input(put(Format,$INVALID.),1.)))                             235Format,$INVALID.),1.)))                             235Format,$INVALID.),1.)))                             235Format,$INVALID.),1.)))                             235
236    end = 236    end = 236    end = 236    end = EndoFile;                                                       236EndoFile;                                                       236EndoFile;                                                       236EndoFile;                                                       236
237   237   237   237   AnyAnyAnyAny_Frmt = '1';                                                        237_Frmt = '1';                                                        237_Frmt = '1';                                                        237_Frmt = '1';                                                        237
238   if Type = 2 then 238   if Type = 2 then 238   if Type = 2 then 238   if Type = 2 then CharVLen = max(CharVLen = max(CharVLen = max(CharVLen = max(CharVLen,Length);                      238CharVLen,Length);                      238CharVLen,Length);                      238CharVLen,Length);                      238
239   put '%CHK4NVLD(' "&DATA." ',' Name ',' Type ',' Format ',' 239   put '%CHK4NVLD(' "&DATA." ',' Name ',' Type ',' Format ',' 239   put '%CHK4NVLD(' "&DATA." ',' Name ',' Type ',' Format ',' 239   put '%CHK4NVLD(' "&DATA." ',' Name ',' Type ',' Format ',' VarNum ')'; 239VarNum ')'; 239VarNum ')'; 239VarNum ')'; 239
240  %*240  %*240  %*240  %*............................................ ............................................ ............................................ ............................................ do until(do until(do until(do until(EndoFile); end; 240EndoFile); end; 240EndoFile); end; 240EndoFile); end; 240
241  call 241  call 241  call 241  call symput('ANY_FRMT',             symput('ANY_FRMT',             symput('ANY_FRMT',             symput('ANY_FRMT',             Any_Frmt     );                     241Any_Frmt     );                     241Any_Frmt     );                     241Any_Frmt     );                     241
242  call 242  call 242  call 242  call symput('symput('symput('symput('CHARVLEN',compress(put(CharVLen,3.)));               stop; 242CHARVLEN',compress(put(CharVLen,3.)));               stop; 242CHARVLEN',compress(put(CharVLen,3.)));               stop; 242CHARVLEN',compress(put(CharVLen,3.)));               stop; 242
243  %*243  %*243  %*243  %*note       CHARVLEN used by CHK4NVLD;                            run; 243note       CHARVLEN used by CHK4NVLD;                            run; 243note       CHARVLEN used by CHK4NVLD;                            run; 243note       CHARVLEN used by CHK4NVLD;                            run; 243
244 %IF &TESTING %THEN %put ANY_FRMT<&ANY_FRMT244 %IF &TESTING %THEN %put ANY_FRMT<&ANY_FRMT244 %IF &TESTING %THEN %put ANY_FRMT<&ANY_FRMT244 %IF &TESTING %THEN %put ANY_FRMT<&ANY_FRMT.> CHARVLEN<&CHARVLEN.>;       244.> CHARVLEN<&CHARVLEN.>;       244.> CHARVLEN<&CHARVLEN.>;       244.> CHARVLEN<&CHARVLEN.>;       244
245                                                                          245                                                                          245                                                                          245                                                                          245245245245
246 %IF not &ANY_FRMT %THEN %DO246 %IF not &ANY_FRMT %THEN %DO246 %IF not &ANY_FRMT %THEN %DO246 %IF not &ANY_FRMT %THEN %DO;%PUT data &DATA has no formats w/&INVALID.;  246;%PUT data &DATA has no formats w/&INVALID.;  246;%PUT data &DATA has no formats w/&INVALID.;  246;%PUT data &DATA has no formats w/&INVALID.;  246
247                             %GOTO ENDOMACR;                        %END; 247247                             %GOTO ENDOMACR;                        %END; 247247                             %GOTO ENDOMACR;                        %END; 247247                             %GOTO ENDOMACR;                        %END; 247
248                                                                          248                                                                          248                                                                          248                                                                          248248248248
249 %**6 prepare empty data set for 249 %**6 prepare empty data set for 249 %**6 prepare empty data set for 249 %**6 prepare empty data set for proc APPENDproc APPENDproc APPENDproc APPEND;                             249;                             249;                             249;                             249
250 DATA INVALID250 DATA INVALID250 DATA INVALID250 DATA INVALID;                                                            250;                                                            250;                                                            250;                                                            250
251  length                                                                  251251  length                                                                  251251  length                                                                  251251  length                                                                  251
252   %DO I = 1 %TO &DIM_IDS252   %DO I = 1 %TO &DIM_IDS252   %DO I = 1 %TO &DIM_IDS252   %DO I = 1 %TO &DIM_IDS.; &&IDS&I &&TYPE&I &&LEN&I                %END; 252.; &&IDS&I &&TYPE&I &&LEN&I                %END; 252.; &&IDS&I &&TYPE&I &&LEN&I                %END; 252.; &&IDS&I &&TYPE&I &&LEN&I                %END; 252
253   253   253   253   Var      $ 32                                                          253Var      $ 32                                                          253Var      $ 32                                                          253Var      $ 32                                                          253
254   254   254   254   VarVarVarVar_Info $ 60                                                          254_Info $ 60                                                          254_Info $ 60                                                          254_Info $ 60                                                          254
255   Type     $  1 %*note: 255   Type     $  1 %*note: 255   Type     $  1 %*note: 255   Type     $  1 %*note: CONTENTS.Type is numeric;                        255CONTENTS.Type is numeric;                        255CONTENTS.Type is numeric;                        255CONTENTS.Type is numeric;                        255
256   256   256   256   ValueChr $  &CHARVLEN.                                                 256ValueChr $  &CHARVLEN.                                                 256ValueChr $  &CHARVLEN.                                                 256ValueChr $  &CHARVLEN.                                                 256
257   257   257   257   ValueNum    8 %*WARNING different lengths on BASE and DATA;            257ValueNum    8 %*WARNING different lengths on BASE and DATA;            257ValueNum    8 %*WARNING different lengths on BASE and DATA;            257ValueNum    8 %*WARNING different lengths on BASE and DATA;            257
258   258   258   258   VarNum      4                                                          258VarNum      4                                                          258VarNum      4                                                          258VarNum      4                                                          258
259   Label    $  &LENLABEL                                                  259259   Label    $  &LENLABEL                                                  259259   Label    $  &LENLABEL                                                  259259   Label    $  &LENLABEL                                                  259
260   N           4 %*use: report counter;                                   260260   N           4 %*use: report counter;                                   260260   N           4 %*use: report counter;                                   260260   N           4 %*use: report counter;                                   260
261   Format   $  8                                                          261261   Format   $  8                                                          261261   Format   $  8                                                          261261   Format   $  8                                                          261
262   ;                                                                stop; 262262   ;                                                                stop; 262262   ;                                                                stop; 262262   ;                                                                stop; 262
263                                                                          263                                                                          263                                                                          263                                                                          263263263263
264 %**7264 %**7264 %**7264 %**7;%include TEMPTEXT %IF &TESTING %THEN %DO; /source2            %END; 264;%include TEMPTEXT %IF &TESTING %THEN %DO; /source2            %END; 264;%include TEMPTEXT %IF &TESTING %THEN %DO; /source2            %END; 264;%include TEMPTEXT %IF &TESTING %THEN %DO; /source2            %END; 264
265                                                      %*include closure265                                                      %*include closure265                                                      %*include closure265                                                      %*include closure;; 265;; 265;; 265;; 265
266 filename TEMPTEXT clear266 filename TEMPTEXT clear266 filename TEMPTEXT clear266 filename TEMPTEXT clear;                                                 266;                                                 266;                                                 266;                                                 266



267                                                                          267                                                                          267                                                                          267                                                                          267267267267
268 %local DATANOBS; %268 %local DATANOBS; %268 %local DATANOBS; %268 %local DATANOBS; %NOBS(NOBS(NOBS(NOBS(DATANOBS,data = &LIBRARY..&DATA.)DATANOBS,data = &LIBRARY..&DATA.)DATANOBS,data = &LIBRARY..&DATA.)DATANOBS,data = &LIBRARY..&DATA.);                268;                268;                268;                268
269 %local NVLDCELS; %269 %local NVLDCELS; %269 %local NVLDCELS; %269 %local NVLDCELS; %NOBS(NOBS(NOBS(NOBS(NVLDCELS,data = INVALID);run;                     269NVLDCELS,data = INVALID);run;                     269NVLDCELS,data = INVALID);run;                     269NVLDCELS,data = INVALID);run;                     269
270                                                                          270                                                                          270                                                                          270                                                                          270270270270
271 TITLE&TITLEN. "271 TITLE&TITLEN. "271 TITLE&TITLEN. "271 TITLE&TITLEN. "invalid values in &DATA. invalid values in &DATA. invalid values in &DATA. invalid values in &DATA. ObsObsObsObs:&:&:&:&DATANOBS.";                 271DATANOBS.";                 271DATANOBS.";                 271DATANOBS.";                 271
272                                                                          272                                                                          272                                                                          272                                                                          272272272272
273 %**8273 %**8273 %**8273 %**8;%IF not &NVLDCELS %THEN %DO; DATA _NULL_;                           273;%IF not &NVLDCELS %THEN %DO; DATA _NULL_;                           273;%IF not &NVLDCELS %THEN %DO; DATA _NULL_;                           273;%IF not &NVLDCELS %THEN %DO; DATA _NULL_;                           273
274                                   file &PRNTFILE;                        274274                                   file &PRNTFILE;                        274274                                   file &PRNTFILE;                        274274                                   file &PRNTFILE;                        274
275                                   put '275                                   put '275                                   put '275                                   put '***no invalid values;';           275***no invalid values;';           275***no invalid values;';           275***no invalid values;';           275
276                                   %GOTO ENDOMACR;                  %END; 276276                                   %GOTO ENDOMACR;                  %END; 276276                                   %GOTO ENDOMACR;                  %END; 276276                                   %GOTO ENDOMACR;                  %END; 276
277 %**9 make values used in summary277 %**9 make values used in summary277 %**9 make values used in summary277 %**9 make values used in summary;                                        277;                                        277;                                        277;                                        277
278 278 278 278 proc FREQ data proc FREQ data proc FREQ data proc FREQ data =  INVALID;    %*do cross-tab of IDs;                     278=  INVALID;    %*do cross-tab of IDs;                     278=  INVALID;    %*do cross-tab of IDs;                     278=  INVALID;    %*do cross-tab of IDs;                     278
279           tables  &IDS1                                                  279279           tables  &IDS1                                                  279279           tables  &IDS1                                                  279279           tables  &IDS1                                                  279
280           %IF &DIM_IDS 280           %IF &DIM_IDS 280           %IF &DIM_IDS 280           %IF &DIM_IDS ge 2 %ge 2 %ge 2 %ge 2 %THEN                                        280THEN                                        280THEN                                        280THEN                                        280
281           %DO I = 2 %TO &DIM_IDS281           %DO I = 2 %TO &DIM_IDS281           %DO I = 2 %TO &DIM_IDS281           %DO I = 2 %TO &DIM_IDS;  * &&IDS&I.                      %END;  * &&IDS&I.                      %END;  * &&IDS&I.                      %END;  * &&IDS&I.                      %END; 281; 281; 281; 281
282           282           282           282           /       list /       list /       list /       list noprint                                           282noprint                                           282noprint                                           282noprint                                           282
283           out   = INVALID_IDS;                                           283283           out   = INVALID_IDS;                                           283283           out   = INVALID_IDS;                                           283283           out   = INVALID_IDS;                                           283
284           tables  284           tables  284           tables  284           tables  Var                                                    284Var                                                    284Var                                                    284Var                                                    284
285           285           285           285           /       list /       list /       list /       list noprint                                           285noprint                                           285noprint                                           285noprint                                           285
286           out   = INVALID_VARS;                                          286286           out   = INVALID_VARS;                                          286286           out   = INVALID_VARS;                                          286286           out   = INVALID_VARS;                                          286
287                                                                          287                                                                          287                                                                          287                                                                          287287287287
288 %local 288 %local 288 %local 288 %local NVLDIDS ; %NOBS(NVLDIDS ,data = INVALID_IDS );                    288NVLDIDS ; %NOBS(NVLDIDS ,data = INVALID_IDS );                    288NVLDIDS ; %NOBS(NVLDIDS ,data = INVALID_IDS );                    288NVLDIDS ; %NOBS(NVLDIDS ,data = INVALID_IDS );                    288
289 %local NVLDVARS; %289 %local NVLDVARS; %289 %local NVLDVARS; %289 %local NVLDVARS; %NOBS(NOBS(NOBS(NOBS(NVLDVARS,data = INVALID_VARS);                    289NVLDVARS,data = INVALID_VARS);                    289NVLDVARS,data = INVALID_VARS);                    289NVLDVARS,data = INVALID_VARS);                    289
290 %local DATAVARS; %290 %local DATAVARS; %290 %local DATAVARS; %290 %local DATAVARS; %NOBS(NOBS(NOBS(NOBS(DATAVARS,data = CONTENTS);run;                    290DATAVARS,data = CONTENTS);run;                    290DATAVARS,data = CONTENTS);run;                    290DATAVARS,data = CONTENTS);run;                    290
291                                                                          291                                                                          291                                                                          291                                                                          291291291291
292 %IF &DETAILS. %THEN %DO292 %IF &DETAILS. %THEN %DO292 %IF &DETAILS. %THEN %DO292 %IF &DETAILS. %THEN %DO;%*---------------------------------------------; 292;%*---------------------------------------------; 292;%*---------------------------------------------; 292;%*---------------------------------------------; 292
293 %**10 write 293 %**10 write 293 %**10 write 293 %**10 write corex to PRNTFILE; options pageno=1corex to PRNTFILE; options pageno=1corex to PRNTFILE; options pageno=1corex to PRNTFILE; options pageno=1;                         293;                         293;                         293;                         293
294 TITLE&TITLEN. "294 TITLE&TITLEN. "294 TITLE&TITLEN. "294 TITLE&TITLEN. "invalid values in &DATA. invalid values in &DATA. invalid values in &DATA. invalid values in &DATA. ObsObsObsObs:&:&:&:&DATANOBS.";                 294DATANOBS.";                 294DATANOBS.";                 294DATANOBS.";                 294
295                                                                          295                                                                          295                                                                          295                                                                          295295295295
296 PROC SORT data = INVALID296 PROC SORT data = INVALID296 PROC SORT data = INVALID296 PROC SORT data = INVALID;                                                296;                                                296;                                                296;                                                296
297           by     &IDLIST.;                                               297297           by     &IDLIST.;                                               297297           by     &IDLIST.;                                               297297           by     &IDLIST.;                                               297
298                                                                          298                                                                          298                                                                          298                                                                          298298298298
299 DATA    _NULL_299 DATA    _NULL_299 DATA    _NULL_299 DATA    _NULL_;                                                          299;                                                          299;                                                          299;                                                          299
300  file   &PRNTFILE;                                                       300300  file   &PRNTFILE;                                                       300300  file   &PRNTFILE;                                                       300300  file   &PRNTFILE;                                                       300
301  retain B -1                                                             301301  retain B -1                                                             301301  retain B -1                                                             301301  retain B -1                                                             301
302         Q "'";                %*302         Q "'";                %*302         Q "'";                %*302         Q "'";                %*squote;                                  302squote;                                  302squote;                                  302squote;                                  302
303  do until(303  do until(303  do until(303  do until(EndoFile);                                                     303EndoFile);                                                     303EndoFile);                                                     303EndoFile);                                                     303
304   set   INVALID  end = 304   set   INVALID  end = 304   set   INVALID  end = 304   set   INVALID  end = EndoFile;                                         304EndoFile;                                         304EndoFile;                                         304EndoFile;                                         304
305   by    &IDLIST;                                                         305305   by    &IDLIST;                                                         305305   by    &IDLIST;                                                         305305   by    &IDLIST;                                                         305
306   if 306   if 306   if 306   if first.&&IDS&DIM_IDS then do;                                        306first.&&IDS&DIM_IDS then do;                                        306first.&&IDS&DIM_IDS then do;                                        306first.&&IDS&DIM_IDS then do;                                        306
307                              put "*;if &IDS1 = &Q1"   &IDS1  +B  "&Q1."  307307                              put "*;if &IDS1 = &Q1"   &IDS1  +B  "&Q1."  307307                              put "*;if &IDS1 = &Q1"   &IDS1  +B  "&Q1."  307307                              put "*;if &IDS1 = &Q1"   &IDS1  +B  "&Q1."  307
308    %IF &DIM_IDS. 308    %IF &DIM_IDS. 308    %IF &DIM_IDS. 308    %IF &DIM_IDS. ge 2 %THEN                                              308ge 2 %THEN                                              308ge 2 %THEN                                              308ge 2 %THEN                                              308
309     %DO I = 2 %TO &DIM_IDS309     %DO I = 2 %TO &DIM_IDS309     %DO I = 2 %TO &DIM_IDS309     %DO I = 2 %TO &DIM_IDS.; " and &&IDS&I = &&Q&I." &&IDS&I +B "&&Q&I." 309.; " and &&IDS&I = &&Q&I." &&IDS&I +B "&&Q&I." 309.; " and &&IDS&I = &&Q&I." &&IDS&I +B "&&Q&I." 309.; " and &&IDS&I = &&Q&I." &&IDS&I +B "&&Q&I." 309
310                                                                    %END; 310310                                                                    %END; 310310                                                                    %END; 310310                                                                    %END; 310
311                              " then do;311                              " then do;311                              " then do;311                              " then do;";             %*if ";             %*if ";             %*if ";             %*if first.*; end; 311first.*; end; 311first.*; end; 311first.*; end; 311
312                                                                          312                                                                          312                                                                          312                                                                          312312312312
313   if Type 313   if Type 313   if Type 313   if Type eq '1' then put '* ' eq '1' then put '* ' eq '1' then put '* ' eq '1' then put '* ' Var @13 '=' @15      Var @13 '=' @15      Var @13 '=' @15      Var @13 '=' @15      ValueNum       ';';  313ValueNum       ';';  313ValueNum       ';';  313ValueNum       ';';  313
314   if Type 314   if Type 314   if Type 314   if Type eq '2' then put '* ' eq '2' then put '* ' eq '2' then put '* ' eq '2' then put '* ' Var @13 '=' @15 Q +B Var @13 '=' @15 Q +B Var @13 '=' @15 Q +B Var @13 '=' @15 Q +B ValueChr  +B Q ';';  314ValueChr  +B Q ';';  314ValueChr  +B Q ';';  314ValueChr  +B Q ';';  314
315                                                                          315                                                                          315                                                                          315                                                                          315315315315
316   if 316   if 316   if 316   if last.&&IDS&DIM_IDS then  put 'last.&&IDS&DIM_IDS then  put 'last.&&IDS&DIM_IDS then  put 'last.&&IDS&DIM_IDS then  put '*;end;';                              316*;end;';                              316*;end;';                              316*;end;';                              316
317  %*317  %*317  %*317  %*........................................... ........................................... ........................................... ........................................... do until(do until(do until(do until(EndoFile)*; end; 317EndoFile)*; end; 317EndoFile)*; end; 317EndoFile)*; end; 317
318 %**318 %**318 %**318 %**;%macro MAKEPCNT(VAR,NUM,DENOM);%*create % trim value to &D decimals; 318;%macro MAKEPCNT(VAR,NUM,DENOM);%*create % trim value to &D decimals; 318;%macro MAKEPCNT(VAR,NUM,DENOM);%*create % trim value to &D decimals; 318;%macro MAKEPCNT(VAR,NUM,DENOM);%*create % trim value to &D decimals; 318
319 %local D I TRIMLEN; %LET D = 3; %LET TRIMLEN = 0319 %local D I TRIMLEN; %LET D = 3; %LET TRIMLEN = 0319 %local D I TRIMLEN; %LET D = 3; %LET TRIMLEN = 0319 %local D I TRIMLEN; %LET D = 3; %LET TRIMLEN = 0;                        319;                        319;                        319;                        319
320 %LET &VAR = %320 %LET &VAR = %320 %LET &VAR = %320 %LET &VAR = %sysevalfsysevalfsysevalfsysevalf(100 * &&&NUM  / &&&DENOM);                         320(100 * &&&NUM  / &&&DENOM);                         320(100 * &&&NUM  / &&&DENOM);                         320(100 * &&&NUM  / &&&DENOM);                         320
321 %LET I    =  %321 %LET I    =  %321 %LET I    =  %321 %LET I    =  %index(&&&VAR,.);%*if dot in value trim number of decimals; 321index(&&&VAR,.);%*if dot in value trim number of decimals; 321index(&&&VAR,.);%*if dot in value trim number of decimals; 321index(&&&VAR,.);%*if dot in value trim number of decimals; 321
322 %IF &I %THEN %DO; %LET TRIMLEN = %322 %IF &I %THEN %DO; %LET TRIMLEN = %322 %IF &I %THEN %DO; %LET TRIMLEN = %322 %IF &I %THEN %DO; %LET TRIMLEN = %evalevalevaleval(%length(&&&VAR) - &I);            322(%length(&&&VAR) - &I);            322(%length(&&&VAR) - &I);            322(%length(&&&VAR) - &I);            322
323                   %IF &TRIMLEN 323                   %IF &TRIMLEN 323                   %IF &TRIMLEN 323                   %IF &TRIMLEN gt &D %THEN %LET TRIMLEN = &Dgt &D %THEN %LET TRIMLEN = &Dgt &D %THEN %LET TRIMLEN = &Dgt &D %THEN %LET TRIMLEN = &D;            323;            323;            323;            323
324                   %LET &VAR = %324                   %LET &VAR = %324                   %LET &VAR = %324                   %LET &VAR = %substrsubstrsubstrsubstr(&&&VAR,1,&I + &TRIMLEN);     %END; 324(&&&VAR,1,&I + &TRIMLEN);     %END; 324(&&&VAR,1,&I + &TRIMLEN);     %END; 324(&&&VAR,1,&I + &TRIMLEN);     %END; 324
325 %*PUT &VAR = &&&VAR325 %*PUT &VAR = &&&VAR325 %*PUT &VAR = &&&VAR325 %*PUT &VAR = &&&VAR;%*.................................MAKEPCNT*; %MEND; 325;%*.................................MAKEPCNT*; %MEND; 325;%*.................................MAKEPCNT*; %MEND; 325;%*.................................MAKEPCNT*; %MEND; 325
326 %** print summary percentages at end of file326 %** print summary percentages at end of file326 %** print summary percentages at end of file326 %** print summary percentages at end of file;                            326;                            326;                            326;                            326
327 %local DATACELS327 %local DATACELS327 %local DATACELS327 %local DATACELS;%LET DATACELS = %;%LET DATACELS = %;%LET DATACELS = %;%LET DATACELS = %eval(&DATANOBS * &DATAVARS);            327eval(&DATANOBS * &DATAVARS);            327eval(&DATANOBS * &DATAVARS);            327eval(&DATANOBS * &DATAVARS);            327



328 %local PCNTNOBS328 %local PCNTNOBS328 %local PCNTNOBS328 %local PCNTNOBS;%MAKEPCNT(PCNTNOBS,NVLDIDS ,DATANOBS);                   328;%MAKEPCNT(PCNTNOBS,NVLDIDS ,DATANOBS);                   328;%MAKEPCNT(PCNTNOBS,NVLDIDS ,DATANOBS);                   328;%MAKEPCNT(PCNTNOBS,NVLDIDS ,DATANOBS);                   328
329 %local PCNTVARS329 %local PCNTVARS329 %local PCNTVARS329 %local PCNTVARS;%MAKEPCNT(PCNTVARS,NVLDVARS,DATAVARS);                   329;%MAKEPCNT(PCNTVARS,NVLDVARS,DATAVARS);                   329;%MAKEPCNT(PCNTVARS,NVLDVARS,DATAVARS);                   329;%MAKEPCNT(PCNTVARS,NVLDVARS,DATAVARS);                   329
330 %local PCNTCELS330 %local PCNTCELS330 %local PCNTCELS330 %local PCNTCELS;%MAKEPCNT(PCNTCELS,NVLDCELS,DATACELS);                   330;%MAKEPCNT(PCNTCELS,NVLDCELS,DATACELS);                   330;%MAKEPCNT(PCNTCELS,NVLDCELS,DATACELS);                   330;%MAKEPCNT(PCNTCELS,NVLDCELS,DATACELS);                   330
331 331 331 331 retain           C1 12             C2 22            C3 32;               331retain           C1 12             C2 22            C3 32;               331retain           C1 12             C2 22            C3 32;               331retain           C1 12             C2 22            C3 32;               331
332 put "***332 put "***332 put "***332 put "***smrysmrysmrysmry :" @C1 "Ids"         @C2 " :" @C1 "Ids"         @C2 " :" @C1 "Ids"         @C2 " :" @C1 "Ids"         @C2 "Vars"       @C3 "Cells;";         332Vars"       @C3 "Cells;";         332Vars"       @C3 "Cells;";         332Vars"       @C3 "Cells;";         332
333 put "*** Base:" @C1 "&DATANOBS"   @C2"&DATAVARS"   @C3 "&DATACELS;333 put "*** Base:" @C1 "&DATANOBS"   @C2"&DATAVARS"   @C3 "&DATACELS;333 put "*** Base:" @C1 "&DATANOBS"   @C2"&DATAVARS"   @C3 "&DATACELS;333 put "*** Base:" @C1 "&DATANOBS"   @C2"&DATAVARS"   @C3 "&DATACELS;";     333";     333";     333";     333
334 put "*Invalid:" @C1 "&NVLDIDS"    @C2"&NVLDVARS"   @C3 "&NVLDCELS;334 put "*Invalid:" @C1 "&NVLDIDS"    @C2"&NVLDVARS"   @C3 "&NVLDCELS;334 put "*Invalid:" @C1 "&NVLDIDS"    @C2"&NVLDVARS"   @C3 "&NVLDCELS;334 put "*Invalid:" @C1 "&NVLDIDS"    @C2"&NVLDVARS"   @C3 "&NVLDCELS;";     334";     334";     334";     334
335 put "*** 335 put "*** 335 put "*** 335 put "*** Pcnt:" @C1 "&PCNTNOBS%"  @C2"&PCNTVARS%"  @C3 "&PCNTCELS%;Pcnt:" @C1 "&PCNTNOBS%"  @C2"&PCNTVARS%"  @C3 "&PCNTCELS%;Pcnt:" @C1 "&PCNTNOBS%"  @C2"&PCNTVARS%"  @C3 "&PCNTCELS%;Pcnt:" @C1 "&PCNTNOBS%"  @C2"&PCNTVARS%"  @C3 "&PCNTCELS%;";    335";    335";    335";    335
336                                                                    stop; 336336                                                                    stop; 336336                                                                    stop; 336336                                                                    stop; 336
337 %*337 %*337 %*337 %*................................................ %IF &DETAILS *; %END; 337................................................ %IF &DETAILS *; %END; 337................................................ %IF &DETAILS *; %END; 337................................................ %IF &DETAILS *; %END; 337
338 %**11 print desired summary report(s)338 %**11 print desired summary report(s)338 %**11 print desired summary report(s)338 %**11 print desired summary report(s);                                   338;                                   338;                                   338;                                   338
339 %IF &SUMMARY. %THEN %339 %IF &SUMMARY. %THEN %339 %IF &SUMMARY. %THEN %339 %IF &SUMMARY. %THEN %DODODODO;options pageno=1;%*----------------------------; 339;options pageno=1;%*----------------------------; 339;options pageno=1;%*----------------------------; 339;options pageno=1;%*----------------------------; 339
340 %IF &SMRYIDS %THEN %DO340 %IF &SMRYIDS %THEN %DO340 %IF &SMRYIDS %THEN %DO340 %IF &SMRYIDS %THEN %DO;                                                  340;                                                  340;                                                  340;                                                  340
341  341  341  341  proc PRINT data = INVALID_IDS;                                          341proc PRINT data = INVALID_IDS;                                          341proc PRINT data = INVALID_IDS;                                          341proc PRINT data = INVALID_IDS;                                          341
342             sum    Count;                                                342342             sum    Count;                                                342342             sum    Count;                                                342342             sum    Count;                                                342
343             343             343             343             TITLETITLETITLETITLE%eval(&TITLEN.+1) "summary: IDs listed "                343%eval(&TITLEN.+1) "summary: IDs listed "                343%eval(&TITLEN.+1) "summary: IDs listed "                343%eval(&TITLEN.+1) "summary: IDs listed "                343
344             "invalid<&NVLDIDS344             "invalid<&NVLDIDS344             "invalid<&NVLDIDS344             "invalid<&NVLDIDS.> / data<&DATANOBS.> = &PCNTNOBS.%"; %END; 344.> / data<&DATANOBS.> = &PCNTNOBS.%"; %END; 344.> / data<&DATANOBS.> = &PCNTNOBS.%"; %END; 344.> / data<&DATANOBS.> = &PCNTNOBS.%"; %END; 344
345                                                                          345                                                                          345                                                                          345                                                                          345345345345
346 %IF &SMRYVARS %THEN %DO346 %IF &SMRYVARS %THEN %DO346 %IF &SMRYVARS %THEN %DO346 %IF &SMRYVARS %THEN %DO;                                                 346;                                                 346;                                                 346;                                                 346
347  347  347  347  proc PRINT data = INVALID_VARS;                                         347proc PRINT data = INVALID_VARS;                                         347proc PRINT data = INVALID_VARS;                                         347proc PRINT data = INVALID_VARS;                                         347
348             sum    Count;                                                348348             sum    Count;                                                348348             sum    Count;                                                348348             sum    Count;                                                348
349             349             349             349             TITLETITLETITLETITLE%eval(&TITLEN.+1) "summary: Variables listed "          349%eval(&TITLEN.+1) "summary: Variables listed "          349%eval(&TITLEN.+1) "summary: Variables listed "          349%eval(&TITLEN.+1) "summary: Variables listed "          349
350             "invalid<&NVLDVARS350             "invalid<&NVLDVARS350             "invalid<&NVLDVARS350             "invalid<&NVLDVARS.> / data<&DATAVARS.> = &PCNTVARS.%";%END; 350.> / data<&DATAVARS.> = &PCNTVARS.%";%END; 350.> / data<&DATAVARS.> = &PCNTVARS.%";%END; 350.> / data<&DATAVARS.> = &PCNTVARS.%";%END; 350
351                                                                          351                                                                          351                                                                          351                                                                          351351351351
352 %IF &SMRYNAME %THEN %DO352 %IF &SMRYNAME %THEN %DO352 %IF &SMRYNAME %THEN %DO352 %IF &SMRYNAME %THEN %DO;                                                 352;                                                 352;                                                 352;                                                 352
353  353  353  353  proc SORT  data = INVALID;                                              353proc SORT  data = INVALID;                                              353proc SORT  data = INVALID;                                              353proc SORT  data = INVALID;                                              353
354             by     354             by     354             by     354             by     Var &IDLIST.;                                         354Var &IDLIST.;                                         354Var &IDLIST.;                                         354Var &IDLIST.;                                         354
355  355  355  355  proc PRINT data = INVALID  label ;*    (drop = Type proc PRINT data = INVALID  label ;*    (drop = Type proc PRINT data = INVALID  label ;*    (drop = Type proc PRINT data = INVALID  label ;*    (drop = Type VarNum Label);      355VarNum Label);      355VarNum Label);      355VarNum Label);      355
356             356             356             356             var    &IDLIST. Valuevar    &IDLIST. Valuevar    &IDLIST. Valuevar    &IDLIST. Value:;                                      356:;                                      356:;                                      356:;                                      356
357             sum    N;                                                    357357             sum    N;                                                    357357             sum    N;                                                    357357             sum    N;                                                    357
358             by     358             by     358             by     358             by     Var_Info;                                             358Var_Info;                                             358Var_Info;                                             358Var_Info;                                             358
359             id     359             id     359             id     359             id     Var_Info;                                             359Var_Info;                                             359Var_Info;                                             359Var_Info;                                             359
360             label  360             label  360             label  360             label  Var_Info = 'Var_Info = 'Var_Info = 'Var_Info = 'Var Format Label';                        360Var Format Label';                        360Var Format Label';                        360Var Format Label';                        360
361             361             361             361             TITLETITLETITLETITLE%eval(&TITLEN.+1) "detail: by %eval(&TITLEN.+1) "detail: by %eval(&TITLEN.+1) "detail: by %eval(&TITLEN.+1) "detail: by Var-Name "                361Var-Name "                361Var-Name "                361Var-Name "                361
362             "invalid<&NVLDCELS362             "invalid<&NVLDCELS362             "invalid<&NVLDCELS362             "invalid<&NVLDCELS.> / data<&DATACELS.> = &PCNTCELS.%";%END; 362.> / data<&DATACELS.> = &PCNTCELS.%";%END; 362.> / data<&DATACELS.> = &PCNTCELS.%";%END; 362.> / data<&DATACELS.> = &PCNTCELS.%";%END; 362
363 %**12363 %**12363 %**12363 %**12;%IF "&PRNTLIST" ;%IF "&PRNTLIST" ;%IF "&PRNTLIST" ;%IF "&PRNTLIST" eq "PRINT"                                         363eq "PRINT"                                         363eq "PRINT"                                         363eq "PRINT"                                         363
364       and "&PRNTFILE" 364       and "&PRNTFILE" 364       and "&PRNTFILE" 364       and "&PRNTFILE" ne "PRINT" %THEN %DO;%*--------------------------; 364ne "PRINT" %THEN %DO;%*--------------------------; 364ne "PRINT" %THEN %DO;%*--------------------------; 364ne "PRINT" %THEN %DO;%*--------------------------; 364
365 data _NULL_; %*print detail 365 data _NULL_; %*print detail 365 data _NULL_; %*print detail 365 data _NULL_; %*print detail list*; options pageno=1list*; options pageno=1list*; options pageno=1list*; options pageno=1;                     365;                     365;                     365;                     365
366  366  366  366  TITLETITLETITLETITLE%eval(&TITLEN.+1);                                                 366%eval(&TITLEN.+1);                                                 366%eval(&TITLEN.+1);                                                 366%eval(&TITLEN.+1);                                                 366
367  file PRINT;                                                             367367  file PRINT;                                                             367367  file PRINT;                                                             367367  file PRINT;                                                             367
368  do until(368  do until(368  do until(368  do until(EndoFile);%local LRECL;%LET LRECL = 72;                        368EndoFile);%local LRECL;%LET LRECL = 72;                        368EndoFile);%local LRECL;%LET LRECL = 72;                        368EndoFile);%local LRECL;%LET LRECL = 72;                        368
369   369   369   369   infile &PRNTFILE end = infile &PRNTFILE end = infile &PRNTFILE end = infile &PRNTFILE end = EndoFile pad EndoFile pad EndoFile pad EndoFile pad lrecl = &LRECL.;                   369lrecl = &LRECL.;                   369lrecl = &LRECL.;                   369lrecl = &LRECL.;                   369
370   input @1 Line $370   input @1 Line $370   input @1 Line $370   input @1 Line $char&LRECL..;                                           370char&LRECL..;                                           370char&LRECL..;                                           370char&LRECL..;                                           370
371   put   @1 Line $371   put   @1 Line $371   put   @1 Line $371   put   @1 Line $char&LRECL..;              %*do until(char&LRECL..;              %*do until(char&LRECL..;              %*do until(char&LRECL..;              %*do until(EndoFile)*;  end; 371EndoFile)*;  end; 371EndoFile)*;  end; 371EndoFile)*;  end; 371
372                                                                    stop; 372372                                                                    stop; 372372                                                                    stop; 372372                                                                    stop; 372
373 %*373 %*373 %*373 %*.................... %IF PRNTLIST .................... %IF PRNTLIST .................... %IF PRNTLIST .................... %IF PRNTLIST eq PRINT & PRNTFILE eq PRINT & PRNTFILE eq PRINT & PRNTFILE eq PRINT & PRNTFILE ne PRINT*; %END; 373ne PRINT*; %END; 373ne PRINT*; %END; 373ne PRINT*; %END; 373
374 %*374 %*374 %*374 %*................................................ %IF &SUMMARY *; %END; 374................................................ %IF &SUMMARY *; %END; 374................................................ %IF &SUMMARY *; %END; 374................................................ %IF &SUMMARY *; %END; 374
375 %ENDOMACR: 375 %ENDOMACR: 375 %ENDOMACR: 375 %ENDOMACR: runrunrunrun;TITLE;TITLE;TITLE;TITLE%eval(&TITLEN.);options &VALIDVARNAME.;              375%eval(&TITLEN.);options &VALIDVARNAME.;              375%eval(&TITLEN.);options &VALIDVARNAME.;              375%eval(&TITLEN.);options &VALIDVARNAME.;              375
376 %IF not &TESTING %THEN %DO376 %IF not &TESTING %THEN %DO376 %IF not &TESTING %THEN %DO376 %IF not &TESTING %THEN %DO;                                              376;                                              376;                                              376;                                              376
377 377 377 377 proc DATASETS library  = proc DATASETS library  = proc DATASETS library  = proc DATASETS library  = WORK     WORK     WORK     WORK     nolist;                                377nolist;                                377nolist;                                377nolist;                                377
378               delete     CONTENTS DETAILS     FORMAT_CNTL                378378               delete     CONTENTS DETAILS     FORMAT_CNTL                378378               delete     CONTENTS DETAILS     FORMAT_CNTL                378378               delete     CONTENTS DETAILS     FORMAT_CNTL                378
379                          INVALID  INVALID_IDS INVALID_VARS               379379                          INVALID  INVALID_IDS INVALID_VARS               379379                          INVALID  INVALID_IDS INVALID_VARS               379379                          INVALID  INVALID_IDS INVALID_VARS               379
380               (380               (380               (380               (memtype = data)memtype = data)memtype = data)memtype = data);                                    quit; 380;                                    quit; 380;                                    quit; 380;                                    quit; 380
381 %*381 %*381 %*381 %*............................................. %IF not &TESTING*; %END; 381............................................. %IF not &TESTING*; %END; 381............................................. %IF not &TESTING*; %END; 381............................................. %IF not &TESTING*; %END; 381
382 OPTIONS 382 OPTIONS 382 OPTIONS 382 OPTIONS nomprint; nomprint; nomprint; nomprint; runrunrunrun;%;%;%;%*................................INVALID*; %MEND; 382*................................INVALID*; %MEND; 382*................................INVALID*; %MEND; 382*................................INVALID*; %MEND; 382
383 %**13383 %**13383 %**13383 %**13;%macro CHK4NVLD(DATA,VAR,TYPE,FORMAT,VARNUM);%* - - - - - - - - -; 383;%macro CHK4NVLD(DATA,VAR,TYPE,FORMAT,VARNUM);%* - - - - - - - - -; 383;%macro CHK4NVLD(DATA,VAR,TYPE,FORMAT,VARNUM);%* - - - - - - - - -; 383;%macro CHK4NVLD(DATA,VAR,TYPE,FORMAT,VARNUM);%* - - - - - - - - -; 383
384 %*note CHARVLEN created by calling macro INVALID384 %*note CHARVLEN created by calling macro INVALID384 %*note CHARVLEN created by calling macro INVALID384 %*note CHARVLEN created by calling macro INVALID;                        384;                        384;                        384;                        384
385 %local HAVEDATA385 %local HAVEDATA385 %local HAVEDATA385 %local HAVEDATA;%LET HAVEDATA = 0;%*flag for append;                     385;%LET HAVEDATA = 0;%*flag for append;                     385;%LET HAVEDATA = 0;%*flag for append;                     385;%LET HAVEDATA = 0;%*flag for append;                     385
386                                                                          386                                                                          386                                                                          386                                                                          386386386386
387 data 387 data 387 data 387 data DETAILS(drop   = DETAILS(drop   = DETAILS(drop   = DETAILS(drop   = HaveData                                           387HaveData                                           387HaveData                                           387HaveData                                           387
388              rename = (&VAR =                                            388388              rename = (&VAR =                                            388388              rename = (&VAR =                                            388388              rename = (&VAR =                                            388



389              %IF "&TYPE" = "2" %THEN 389              %IF "&TYPE" = "2" %THEN 389              %IF "&TYPE" = "2" %THEN 389              %IF "&TYPE" = "2" %THEN ValueChrValueChrValueChrValueChr;                           389;                           389;                           389;                           389
390              %390              %390              %390              %ELSE                   ELSE                   ELSE                   ELSE                   ValueNum;                       )); 390ValueNum;                       )); 390ValueNum;                       )); 390ValueNum;                       )); 390
391  length 391  length 391  length 391  length Var      $ 32                                                    391Var      $ 32                                                    391Var      $ 32                                                    391Var      $ 32                                                    391
392         392         392         392         VarVarVarVar_Info $ 60                                                    392_Info $ 60                                                    392_Info $ 60                                                    392_Info $ 60                                                    392
393         Type     $  1  %*NOTE: 393         Type     $  1  %*NOTE: 393         Type     $  1  %*NOTE: 393         Type     $  1  %*NOTE: CONTENTS.Type is numeric;                 393CONTENTS.Type is numeric;                 393CONTENTS.Type is numeric;                 393CONTENTS.Type is numeric;                 393
394         %IF "&TYPE" = "2" %THEN %DO; 394         %IF "&TYPE" = "2" %THEN %DO; 394         %IF "&TYPE" = "2" %THEN %DO; 394         %IF "&TYPE" = "2" %THEN %DO; ValueNum 8                    %END; 394ValueNum 8                    %END; 394ValueNum 8                    %END; 394ValueNum 8                    %END; 394
395         %ELSE                   %DO395         %ELSE                   %DO395         %ELSE                   %DO395         %ELSE                   %DO; ; ; ; ValueChr $ &CHARVLEN.         %ENDValueChr $ &CHARVLEN.         %ENDValueChr $ &CHARVLEN.         %ENDValueChr $ &CHARVLEN.         %END; 395; 395; 395; 395
396         396         396         396         VarNum      4                                                    396VarNum      4                                                    396VarNum      4                                                    396VarNum      4                                                    396
397         Label    $  &LENLABEL                                            397397         Label    $  &LENLABEL                                            397397         Label    $  &LENLABEL                                            397397         Label    $  &LENLABEL                                            397
398         N           4  %*use: report counter;                            398398         N           4  %*use: report counter;                            398398         N           4  %*use: report counter;                            398398         N           4  %*use: report counter;                            398
399         Format   $  8;                                                   399399         Format   $  8;                                                   399399         Format   $  8;                                                   399399         Format   $  8;                                                   399
400  retain 400  retain 400  retain 400  retain Var      "&VAR."                                                 400Var      "&VAR."                                                 400Var      "&VAR."                                                 400Var      "&VAR."                                                 400
401         401         401         401         VarVarVarVar_Info "&VAR."                                                 401_Info "&VAR."                                                 401_Info "&VAR."                                                 401_Info "&VAR."                                                 401
402         402         402         402         HaveData '0'                                                     402HaveData '0'                                                     402HaveData '0'                                                     402HaveData '0'                                                     402
403         Type     "&TYPE."                                                403403         Type     "&TYPE."                                                403403         Type     "&TYPE."                                                403403         Type     "&TYPE."                                                403
404         %IF "&TYPE"="2" %THEN %DO; 404         %IF "&TYPE"="2" %THEN %DO; 404         %IF "&TYPE"="2" %THEN %DO; 404         %IF "&TYPE"="2" %THEN %DO; ValueNumValueNumValueNumValueNum .                      %END .                      %END .                      %END .                      %END; 404; 404; 404; 404
405         %ELSE                 %DO; 405         %ELSE                 %DO; 405         %ELSE                 %DO; 405         %ELSE                 %DO; ValueChr '.'                    %ENDValueChr '.'                    %ENDValueChr '.'                    %ENDValueChr '.'                    %END; 405; 405; 405; 405
406         406         406         406         VarNum    &VARNUM.                                               406VarNum    &VARNUM.                                               406VarNum    &VARNUM.                                               406VarNum    &VARNUM.                                               406
407         Label    "."                                                     407407         Label    "."                                                     407407         Label    "."                                                     407407         Label    "."                                                     407
408         N         1                                                      408408         N         1                                                      408408         N         1                                                      408408         N         1                                                      408
409         Format   "&FORMAT.";                                             409409         Format   "&FORMAT.";                                             409409         Format   "&FORMAT.";                                             409409         Format   "&FORMAT.";                                             409
410  do until(410  do until(410  do until(410  do until(EndoFile);                                                     410EndoFile);                                                     410EndoFile);                                                     410EndoFile);                                                     410
411   set &LIBRARY..&DATA.                                                   411411   set &LIBRARY..&DATA.                                                   411411   set &LIBRARY..&DATA.                                                   411411   set &LIBRARY..&DATA.                                                   411
412       (keep  = &IDLIST &VAR.                                             412412       (keep  = &IDLIST &VAR.                                             412412       (keep  = &IDLIST &VAR.                                             412412       (keep  = &IDLIST &VAR.                                             412
413        where = (put(&VAR.,&FORMAT..) 413        where = (put(&VAR.,&FORMAT..) 413        where = (put(&VAR.,&FORMAT..) 413        where = (put(&VAR.,&FORMAT..) eq "&INVALID.")                     413eq "&INVALID.")                     413eq "&INVALID.")                     413eq "&INVALID.")                     413
414       ) end  = 414       ) end  = 414       ) end  = 414       ) end  = EndoFile;                                                 414EndoFile;                                                 414EndoFile;                                                 414EndoFile;                                                 414
415   if Label 415   if Label 415   if Label 415   if Label eq '.' then do;   call label(&eq '.' then do;   call label(&eq '.' then do;   call label(&eq '.' then do;   call label(&VAR.,Label); %*load only once;  415VAR.,Label); %*load only once;  415VAR.,Label); %*load only once;  415VAR.,Label); %*load only once;  415
416                              416                              416                              416                              VarVarVarVar_Info = "&VAR. &FORMAT. " !! Label; end; 416_Info = "&VAR. &FORMAT. " !! Label; end; 416_Info = "&VAR. &FORMAT. " !! Label; end; 416_Info = "&VAR. &FORMAT. " !! Label; end; 416
417   HaveData='1';          %*417   HaveData='1';          %*417   HaveData='1';          %*417   HaveData='1';          %*HaveData updated when 1 HaveData updated when 1 HaveData updated when 1 HaveData updated when 1 obs meets where obs meets where obs meets where obs meets where cond; 417cond; 417cond; 417cond; 417
418   output;                                           %*do until(418   output;                                           %*do until(418   output;                                           %*do until(418   output;                                           %*do until(EoF);end; 418EoF);end; 418EoF);end; 418EoF);end; 418
419  call 419  call 419  call 419  call symput('symput('symput('symput('HAVEDATA',HaveData);                                 stop; 419HAVEDATA',HaveData);                                 stop; 419HAVEDATA',HaveData);                                 stop; 419HAVEDATA',HaveData);                                 stop; 419
420                                                                     run; 420420                                                                     run; 420420                                                                     run; 420420                                                                     run; 420
421 %IF &HAVEDATA %THEN %DO421 %IF &HAVEDATA %THEN %DO421 %IF &HAVEDATA %THEN %DO421 %IF &HAVEDATA %THEN %DO;                                                 421;                                                 421;                                                 421;                                                 421
422  422  422  422  proc APPEND base = INVALID                                              422proc APPEND base = INVALID                                              422proc APPEND base = INVALID                                              422proc APPEND base = INVALID                                              422
423              data = DETAILS;                                       %END; 423423              data = DETAILS;                                       %END; 423423              data = DETAILS;                                       %END; 423423              data = DETAILS;                                       %END; 423
424 424 424 424 runrunrunrun;%;%;%;%*..........................................................; %MEND; 424*..........................................................; %MEND; 424*..........................................................; %MEND; 424*..........................................................; %MEND; 424
425 ;/*TEST DATA *************** to enable, end this line with slash (/) **  425425 ;/*TEST DATA *************** to enable, end this line with slash (/) **  425425 ;/*TEST DATA *************** to enable, end this line with slash (/) **  425425 ;/*TEST DATA *************** to enable, end this line with slash (/) **  425
426 *PROC CATALOG 426 *PROC CATALOG 426 *PROC CATALOG 426 *PROC CATALOG catalog=WORK.FORMATS catalog=WORK.FORMATS catalog=WORK.FORMATS catalog=WORK.FORMATS killkillkillkill;quit;quit;quit;quit;%*zap previous;             426;%*zap previous;             426;%*zap previous;             426;%*zap previous;             426
427 %LET 427 %LET 427 %LET 427 %LET INVALID=INVALIDINVALID=INVALIDINVALID=INVALIDINVALID=INVALID;%;%;%;%*in either AUTOEXEC or LETFRMT;                    427*in either AUTOEXEC or LETFRMT;                    427*in either AUTOEXEC or LETFRMT;                    427*in either AUTOEXEC or LETFRMT;                    427
428 428 428 428 proc FORMATproc FORMATproc FORMATproc FORMAT;                                                             428;                                                             428;                                                             428;                                                             428
429  value one_3_    1,2,3         ='OK' 429  value one_3_    1,2,3         ='OK' 429  value one_3_    1,2,3         ='OK' 429  value one_3_    1,2,3         ='OK' other="&INVALID.";                  429other="&INVALID.";                  429other="&INVALID.";                  429other="&INVALID.";                  429
430  value two_4_      2,3 , 4     ='OK' 430  value two_4_      2,3 , 4     ='OK' 430  value two_4_      2,3 , 4     ='OK' 430  value two_4_      2,3 , 4     ='OK' other="&INVALID.";                  430other="&INVALID.";                  430other="&INVALID.";                  430other="&INVALID.";                  430
431  value $thre_5_     '3','4','5'='OK' 431  value $thre_5_     '3','4','5'='OK' 431  value $thre_5_     '3','4','5'='OK' 431  value $thre_5_     '3','4','5'='OK' other="&INVALID.";                  431other="&INVALID.";                  431other="&INVALID.";                  431other="&INVALID.";                  431
432  value 432  value 432  value 432  value no_chk    1,2,3 , 4 , 5 ='OK';                                    432no_chk    1,2,3 , 4 , 5 ='OK';                                    432no_chk    1,2,3 , 4 , 5 ='OK';                                    432no_chk    1,2,3 , 4 , 5 ='OK';                                    432
433  value $433  value $433  value $433  value $notused             '5'='OK' notused             '5'='OK' notused             '5'='OK' notused             '5'='OK' other="&INVALID.";                  433other="&INVALID.";                  433other="&INVALID.";                  433other="&INVALID.";                  433
434                                                                          434                                                                          434                                                                          434                                                                          434434434434
435 DATA TESTNVLD435 DATA TESTNVLD435 DATA TESTNVLD435 DATA TESTNVLD;                                                           435;                                                           435;                                                           435;                                                           435
436 436 436 436 attrib attrib attrib attrib IDChrIDChrIDChrIDChr                lengthlengthlengthlength= $ 3                  label = 'ID1Chr'            436= $ 3                  label = 'ID1Chr'            436= $ 3                  label = 'ID1Chr'            436= $ 3                  label = 'ID1Chr'            436
437        437        437        437        IDNmbr   IDNmbr   IDNmbr   IDNmbr   length=   4                  label = 'ID1Num'            437length=   4                  label = 'ID1Num'            437length=   4                  label = 'ID1Num'            437length=   4                  label = 'ID1Num'            437
438        438        438        438        FormNmbr FormNmbr FormNmbr FormNmbr length= $ 2                  label = 'ID2'               438length= $ 2                  label = 'ID2'               438length= $ 2                  label = 'ID2'               438length= $ 2                  label = 'ID2'               438
439        A        439        A        439        A        439        A        length=   4 format=one_3_.   length=   4 format=one_3_.   length=   4 format=one_3_.   length=   4 format=one_3_.   label = 'A: number 1'       439label = 'A: number 1'       439label = 'A: number 1'       439label = 'A: number 1'       439
440        B        440        B        440        B        440        B        length=   4 format=two_4_.   length=   4 format=two_4_.   length=   4 format=two_4_.   length=   4 format=two_4_.   label = 'B: number 2'       440label = 'B: number 2'       440label = 'B: number 2'       440label = 'B: number 2'       440
441        C        441        C        441        C        441        C        length= $ 1 format=$thre_5_. length= $ 1 format=$thre_5_. length= $ 1 format=$thre_5_. length= $ 1 format=$thre_5_. label = 'C: char label = 'C: char label = 'C: char label = 'C: char var'       441var'       441var'       441var'       441
442        I        442        I        442        I        442        I        length=   4 length=   4 length=   4 length=   4 format=no_chk.   format=no_chk.   format=no_chk.   format=no_chk.   label = 'loop counter'      442label = 'loop counter'      442label = 'loop counter'      442label = 'loop counter'      442
443        ;                                                                 443443        ;                                                                 443443        ;                                                                 443443        ;                                                                 443
444 retain 444 retain 444 retain 444 retain FormNmbr '01'FormNmbr '01'FormNmbr '01'FormNmbr '01';                                                    444;                                                    444;                                                    444;                                                    444
445 do I = 1 to 5445 do I = 1 to 5445 do I = 1 to 5445 do I = 1 to 5;  ;  ;  ;  IdChr  = put(I,z3.);  IdChr  = put(I,z3.);  IdChr  = put(I,z3.);  IdChr  = put(I,z3.);  IdNmbr =     I;                    445IdNmbr =     I;                    445IdNmbr =     I;                    445IdNmbr =     I;                    445
446                 A      =     I;       B      = sum(I,2);                 446446                 A      =     I;       B      = sum(I,2);                 446446                 A      =     I;       B      = sum(I,2);                 446446                 A      =     I;       B      = sum(I,2);                 446
447                 C      = put(I,1.);   output;                       end; 447447                 C      = put(I,1.);   output;                       end; 447447                 C      = put(I,1.);   output;                       end; 447447                 C      = put(I,1.);   output;                       end; 447
448                                                                    stop; 448448                                                                    stop; 448448                                                                    stop; 448448                                                                    stop; 448
449 %*Comparison report of formats in LIBRARY and FMTLIB449 %*Comparison report of formats in LIBRARY and FMTLIB449 %*Comparison report of formats in LIBRARY and FMTLIB449 %*Comparison report of formats in LIBRARY and FMTLIB;                    449;                    449;                    449;                    449



450 %450 %450 %450 %INVALID(,LIBRARY = WORK                                                 450INVALID(,LIBRARY = WORK                                                 450INVALID(,LIBRARY = WORK                                                 450INVALID(,LIBRARY = WORK                                                 450
451          ,FMTLIB  = WORK);                                               451451          ,FMTLIB  = WORK);                                               451451          ,FMTLIB  = WORK);                                               451451          ,FMTLIB  = WORK);                                               451
452 %*EXPECTED REPORT452 %*EXPECTED REPORT452 %*EXPECTED REPORT452 %*EXPECTED REPORT:                                                       452:                                                       452:                                                       452:                                                       452
453 INVALID: compare formats in DATA453 INVALID: compare formats in DATA453 INVALID: compare formats in DATA453 INVALID: compare formats in DATA:WORK._ALL_ and FMTLIB:WORK              453:WORK._ALL_ and FMTLIB:WORK              453:WORK._ALL_ and FMTLIB:WORK              453:WORK._ALL_ and FMTLIB:WORK              453
454 454 454 454 FORMAT      DATA    FMTLIB    OK   Comment                               454FORMAT      DATA    FMTLIB    OK   Comment                               454FORMAT      DATA    FMTLIB    OK   Comment                               454FORMAT      DATA    FMTLIB    OK   Comment                               454
455 $455 $455 $455 $NOTUSED      0        1      ..   NOTUSED      0        1      ..   NOTUSED      0        1      ..   NOTUSED      0        1      ..   no problem                            455no problem                            455no problem                            455no problem                            455
456 $THRE_5456 $THRE_5456 $THRE_5456 $THRE_5_      1        _      1        _      1        _      1        1      OK                                         4561      OK                                         4561      OK                                         4561      OK                                         456
457 NO_457 NO_457 NO_457 NO_CHK        1        0      ??   CHK        1        0      ??   CHK        1        0      ??   CHK        1        0      ??   no <no <no <no <other=INVALID>, is problem?       457other=INVALID>, is problem?       457other=INVALID>, is problem?       457other=INVALID>, is problem?       457
458 ONE_3458 ONE_3458 ONE_3458 ONE_3_        1        _        1        _        1        _        1        1      OK                                         4581      OK                                         4581      OK                                         4581      OK                                         458
459 TWO_4459 TWO_4459 TWO_4459 TWO_4_        1        _        1        _        1        _        1        1      OK                                         4591      OK                                         4591      OK                                         4591      OK                                         459
460 NOTE: only formats with CHK=OK will be used by this routine460 NOTE: only formats with CHK=OK will be used by this routine460 NOTE: only formats with CHK=OK will be used by this routine460 NOTE: only formats with CHK=OK will be used by this routine;             460;             460;             460;             460
461                                                                          461                                                                          461                                                                          461                                                                          461461461461
462 %462 %462 %462 %INVALID(TESTNVLD                                                        462INVALID(TESTNVLD                                                        462INVALID(TESTNVLD                                                        462INVALID(TESTNVLD                                                        462
463         ,IDLIST  =463         ,IDLIST  =463         ,IDLIST  =463         ,IDLIST  =IdChr IdChr IdChr IdChr FormNmbr                                         463FormNmbr                                         463FormNmbr                                         463FormNmbr                                         463
464         ,LIBRARY =WORK                                                   464464         ,LIBRARY =WORK                                                   464464         ,LIBRARY =WORK                                                   464464         ,LIBRARY =WORK                                                   464
465         ,FMTLIB  =WORK                                                   465465         ,FMTLIB  =WORK                                                   465465         ,FMTLIB  =WORK                                                   465465         ,FMTLIB  =WORK                                                   465
466         ,466         ,466         ,466         ,PRNTFILEPRNTFILEPRNTFILEPRNTFILE="ZIReport.SAS"                                         466="ZIReport.SAS"                                         466="ZIReport.SAS"                                         466="ZIReport.SAS"                                         466
467         );                                                               467467         );                                                               467467         );                                                               467467         );                                                               467
468 %*one detail line from the detail, by identifier, report468 %*one detail line from the detail, by identifier, report468 %*one detail line from the detail, by identifier, report468 %*one detail line from the detail, by identifier, report:                468:                468:                468:                468
469 %*EXPECTED OUTPUT469 %*EXPECTED OUTPUT469 %*EXPECTED OUTPUT469 %*EXPECTED OUTPUT:* if IDCHR = '00001' and FORMNMBR = '01' then do;      469:* if IDCHR = '00001' and FORMNMBR = '01' then do;      469:* if IDCHR = '00001' and FORMNMBR = '01' then do;      469:* if IDCHR = '00001' and FORMNMBR = '01' then do;      469
470 %470 %470 %470 %*                     char    ^     ^ quoted                            470*                     char    ^     ^ quoted                            470*                     char    ^     ^ quoted                            470*                     char    ^     ^ quoted                            470
471 %* summary written at end of detail report471 %* summary written at end of detail report471 %* summary written at end of detail report471 %* summary written at end of detail report:                              471:                              471:                              471:                              471
472 ***472 ***472 ***472 ***smrysmrysmrysmry :  Ids        :  Ids        :  Ids        :  Ids       Vars      Cell                                      472Vars      Cell                                      472Vars      Cell                                      472Vars      Cell                                      472
473 *** Base473 *** Base473 *** Base473 *** Base:  5         7         35                                        473:  5         7         35                                        473:  5         7         35                                        473:  5         7         35                                        473
474 *Invalid474 *Invalid474 *Invalid474 *Invalid:  5         3         7                                         474:  5         3         7                                         474:  5         3         7                                         474:  5         3         7                                         474
475 *** 475 *** 475 *** 475 *** PcntPcntPcntPcnt:  100%      42.857%   20%                                       475:  100%      42.857%   20%                                       475:  100%      42.857%   20%                                       475:  100%      42.857%   20%                                       475
476 NOTE: re Cell 476 NOTE: re Cell 476 NOTE: re Cell 476 NOTE: re Cell Pcnt range: <1%==good, 1:2%==OK, >2%==troublePcnt range: <1%==good, 1:2%==OK, >2%==troublePcnt range: <1%==good, 1:2%==OK, >2%==troublePcnt range: <1%==good, 1:2%==OK, >2%==trouble!;            476!;            476!;            476!;            476
477                                                                          477                                                                          477                                                                          477                                                                          477477477477
478 %478 %478 %478 %INVALID(TESTNVLD                                                        478INVALID(TESTNVLD                                                        478INVALID(TESTNVLD                                                        478INVALID(TESTNVLD                                                        478
479         ,IDLIST  =IDNMBR FORMNMBR                                        479479         ,IDLIST  =IDNMBR FORMNMBR                                        479479         ,IDLIST  =IDNMBR FORMNMBR                                        479479         ,IDLIST  =IDNMBR FORMNMBR                                        479
480         ,LIBRARY =WORK                                                   480480         ,LIBRARY =WORK                                                   480480         ,LIBRARY =WORK                                                   480480         ,LIBRARY =WORK                                                   480
481         ,FMTLIB  =WORK                                                   481481         ,FMTLIB  =WORK                                                   481481         ,FMTLIB  =WORK                                                   481481         ,FMTLIB  =WORK                                                   481
482         ,PRNTFILE='C:\TEMP\ZINVALID.SAS'                                 482482         ,PRNTFILE='C:\TEMP\ZINVALID.SAS'                                 482482         ,PRNTFILE='C:\TEMP\ZINVALID.SAS'                                 482482         ,PRNTFILE='C:\TEMP\ZINVALID.SAS'                                 482
483         );%*NOTE hard-coded output 483         );%*NOTE hard-coded output 483         );%*NOTE hard-coded output 483         );%*NOTE hard-coded output fileref;                              483fileref;                              483fileref;                              483fileref;                              483
484 %*EXPECTED 484 %*EXPECTED 484 %*EXPECTED 484 %*EXPECTED OUTPUTOUTPUTOUTPUTOUTPUT:*:*:*:*if IDNMBR =  1  and FORMNMBR = '01' then do;          484if IDNMBR =  1  and FORMNMBR = '01' then do;          484if IDNMBR =  1  and FORMNMBR = '01' then do;          484if IDNMBR =  1  and FORMNMBR = '01' then do;          484
485 %485 %485 %485 %*                    numeric  ^ ^ no quotes;                            485*                    numeric  ^ ^ no quotes;                            485*                    numeric  ^ ^ no quotes;                            485*                    numeric  ^ ^ no quotes;                            485
486                                                                          486                                                                          486                                                                          486                                                                          486486486486
487 %* Four Summary Reports487 %* Four Summary Reports487 %* Four Summary Reports487 %* Four Summary Reports:;                                                487:;                                                487:;                                                487:;                                                487
488                                                                          488                                                                          488                                                                          488                                                                          488488488488
489 %489 %489 %489 %* ,SMRYIDS =1 *?print FREQ of IDS? *                                    489* ,SMRYIDS =1 *?print FREQ of IDS? *                                    489* ,SMRYIDS =1 *?print FREQ of IDS? *                                    489* ,SMRYIDS =1 *?print FREQ of IDS? *                                    489
490                                                                          490                                                                          490                                                                          490                                                                          490490490490
491 invalid values in TESTNVLD Obs491 invalid values in TESTNVLD Obs491 invalid values in TESTNVLD Obs491 invalid values in TESTNVLD Obs:5                                         491:5                                         491:5                                         491:5                                         491
492 summary: IDs listed invalid<5> / data<5> = 100492 summary: IDs listed invalid<5> / data<5> = 100492 summary: IDs listed invalid<5> / data<5> = 100492 summary: IDs listed invalid<5> / data<5> = 100%                          492%                          492%                          492%                          492
493                                                                          493                                                                          493                                                                          493                                                                          493493493493
494 494 494 494 ObsObsObsObs    IDNMBR    FORMNMBR    COUNT    PERCENT                            494    IDNMBR    FORMNMBR    COUNT    PERCENT                            494    IDNMBR    FORMNMBR    COUNT    PERCENT                            494    IDNMBR    FORMNMBR    COUNT    PERCENT                            494
495                                                                          495                                                                          495                                                                          495                                                                          495495495495
496  1        496  1        496  1        496  1        1         01         1      14.2857                            4961         01         1      14.2857                            4961         01         1      14.2857                            4961         01         1      14.2857                            496
497  2        497  2        497  2        497  2        2         01         1      14.2857                            4972         01         1      14.2857                            4972         01         1      14.2857                            4972         01         1      14.2857                            497
498  3        498  3        498  3        498  3        3         01         1      14.2857                            4983         01         1      14.2857                            4983         01         1      14.2857                            4983         01         1      14.2857                            498
499  4        499  4        499  4        499  4        4         01         2      28.5714                            4994         01         2      28.5714                            4994         01         2      28.5714                            4994         01         2      28.5714                            499
500  5        500  5        500  5        500  5        5         01         2      28.5714                            5005         01         2      28.5714                            5005         01         2      28.5714                            5005         01         2      28.5714                            500
501                              ====501                              ====501                              ====501                              =====                                       501=                                       501=                                       501=                                       501
502                                7;                                        502502                                7;                                        502502                                7;                                        502502                                7;                                        502
503                                                                          503                                                                          503                                                                          503                                                                          503503503503
504 %*504 %*504 %*504 %*,SMRYVARS=1 *?print FREQ of variables with invalid? *                  504,SMRYVARS=1 *?print FREQ of variables with invalid? *                  504,SMRYVARS=1 *?print FREQ of variables with invalid? *                  504,SMRYVARS=1 *?print FREQ of variables with invalid? *                  504
505                                                                          505                                                                          505                                                                          505                                                                          505505505505
506 invalid values in TESTNVLD Obs506 invalid values in TESTNVLD Obs506 invalid values in TESTNVLD Obs506 invalid values in TESTNVLD Obs:5                                         506:5                                         506:5                                         506:5                                         506
507 summary: Variables listed invalid<3> / data<7> = 42.857507 summary: Variables listed invalid<3> / data<7> = 42.857507 summary: Variables listed invalid<3> / data<7> = 42.857507 summary: Variables listed invalid<3> / data<7> = 42.857%                 507%                 507%                 507%                 507
508                                                                          508                                                                          508                                                                          508                                                                          508508508508
509 509 509 509 ObsObsObsObs    VAR    COUNT    PERCENT                                           509    VAR    COUNT    PERCENT                                           509    VAR    COUNT    PERCENT                                           509    VAR    COUNT    PERCENT                                           509
510                                                                          510                                                                          510                                                                          510                                                                          510510510510



511  1      A       2      28.5714                                           511511  1      A       2      28.5714                                           511511  1      A       2      28.5714                                           511511  1      A       2      28.5714                                           511
512  2      B       3      42.8571                                           512512  2      B       3      42.8571                                           512512  2      B       3      42.8571                                           512512  2      B       3      42.8571                                           512
513  3      C       2      28.5714                                           513513  3      C       2      28.5714                                           513513  3      C       2      28.5714                                           513513  3      C       2      28.5714                                           513
514               ====514               ====514               ====514               =====                                                      514=                                                      514=                                                      514=                                                      514
515                 7;                                                       515515                 7;                                                       515515                 7;                                                       515515                 7;                                                       515
516                                                                          516                                                                          516                                                                          516                                                                          516516516516
517 %517 %517 %517 %* ,SMRYNAME=1 *?print detail  of variables, by name? *                  517* ,SMRYNAME=1 *?print detail  of variables, by name? *                  517* ,SMRYNAME=1 *?print detail  of variables, by name? *                  517* ,SMRYNAME=1 *?print detail  of variables, by name? *                  517
518 invalid values in TESTNVLD Obs518 invalid values in TESTNVLD Obs518 invalid values in TESTNVLD Obs518 invalid values in TESTNVLD Obs:5                                         518:5                                         518:5                                         518:5                                         518
519 detail: by 519 detail: by 519 detail: by 519 detail: by Var-Name invalid<7> / data<35> = 20Var-Name invalid<7> / data<35> = 20Var-Name invalid<7> / data<35> = 20Var-Name invalid<7> / data<35> = 20%                          519%                          519%                          519%                          519
520                                                                          520                                                                          520                                                                          520                                                                          520520520520
521    521    521    521    Var Format Label     IDNMBR  FORMNMBR  VALUECHR  VALUENUM  N          521Var Format Label     IDNMBR  FORMNMBR  VALUECHR  VALUENUM  N          521Var Format Label     IDNMBR  FORMNMBR  VALUECHR  VALUENUM  N          521Var Format Label     IDNMBR  FORMNMBR  VALUECHR  VALUENUM  N          521
522                                                                          522                                                                          522                                                                          522                                                                          522522522522
523 A ONE_3_ A: number 523 A ONE_3_ A: number 523 A ONE_3_ A: number 523 A ONE_3_ A: number 1       4       01        .          1       4       01        .          1       4       01        .          1       4       01        .          4     1          5234     1          5234     1          5234     1          523
524                            5       01        .          524                            5       01        .          524                            5       01        .          524                            5       01        .          5     1          5245     1          5245     1          5245     1          524
525 ----------------------                                        525 ----------------------                                        525 ----------------------                                        525 ----------------------                                        -          525-          525-          525-          525
526 A ONE_3_ A: number 526 A ONE_3_ A: number 526 A ONE_3_ A: number 526 A ONE_3_ A: number 1                                          2;         5261                                          2;         5261                                          2;         5261                                          2;         526
527                                                                          527                                                                          527                                                                          527                                                                          527527527527
528 run528 run528 run528 run;/******************************************************************/ 528;/******************************************************************/ 528;/******************************************************************/ 528;/******************************************************************/ 528



Advanced Macro Topics
       Steven First, Systems Seminar Consultants, Madison, WI

Abstract

The SAS macro language continues to be an integral part of the
SAS system, and can be a wonderful tool or an overcomplicated
solution.    This paper will be of interest to macro users that would
like to more fully understand the macro system.

This paper will discuss the following topics:

1. Macro data structures and timing
2. Local and Global referencing environments
3. Quoting
4. Macro and data step functions and call routines
5. Debugging and tracing techniques
6. Autocall facilities
7. Design considerations
8. Alternatives to SAS macros
9. Changes and enhancements with Version 7 and 8

Introduction

The SAS macro facility gives the SAS programmer some very
interesting power and at the same time requires more
understanding than the SAS data or PROC step.  While it can
make SAS jobs more robust and easier to code, it can also be
easily overdone with the result being a more complex system
than is sometimes necessary.  This paper will explore some of
the more advanced features of the macro facility, but at the same
time strive to keep things as well documented and simple as
possible.

Macro Data Structures And Timing

The SAS Macro facility is a second language that can be
intermixed with normal SAS statements.  Unlike normal SAS
statements, the function of macro statements is to generate SAS
statements or perhaps just part of SAS statements during the
word scan and compile process.

Without macros, SAS programs are DATA and PROC steps.
The program is scanned one statement at a time looking for the
beginning of step (step boundary).  When the beginning of step is
found, all statements in the step are compiled one at a time until
end of step is detected.   When the end of step is found (the next
step boundary),  the previous step executes.  This interleaving of
compiling and execution can be confusing to many users.  Other
languages also have compile and execute phases, but typically
those programs are similar to a single SAS step.  Because in
SAS a step is  compiled, then executed, before the next step is
compiled  and executed, it is easy to see  how the timing can be
difficult to comprehend.

Again, most of the work of the macro facility is performed during
word scan and compile, with the DATA or PROC step doing the
work at step execution time.

SAS Step Boundaries

If it is important for the user to understand the timing of compile
and execution, it is critical to define the start and end of a SAS
step.
The beginning of steps are obviously the DATA or PROC
statements.  The ends of steps are a little more difficult to detect.
The end of a step for our purposes is whenever SAS encounters

another step boundary or end of job.

The following keywords are step boundaries to the SAS system:

DATA ENDSAS
PROC       LINES
CARDS      LINES4
CARDS4     PARMCARDS
DATALINES  QUIT
DATALINES4 RUN

In the following program, the word scanner can only detect end of
step when the next step starts.  The last step will start compile,
but will only execute if run in batch because there is no explicit
end of step give.  Interactive sessions will disply the message
“PROC MEANS is RUNNING”, but it really is in the word scan
phase. This is not a very good way of coding a SAS job even
though it may work in some instances.

data saleexps;            <--Step, start compile
 infile rawin;
 input name $1-10 division $12
       years 15-16 sales 19-25
       expense 27-34;
proc print data=saleexps; <--Step end, exec prev
                             Step start, compile
proc means data=saleexps; <--Step end, exec prev
 var sales expense;          Step start, compile

The RUN statement does not actually end some PROCs, but it
does tell the wordscanner to stop compiling and ‘RUN’ the step.
It is highly recommended that the RUN statement be coded, as
there is then no question as to when compile finishes and
execution starts.

data saleexps;            <--Step, start compile
 infile rawin;
 input name $1-10 division $12
       years 15-16 sales 19-25
       expense 27-34;
 run;                     <--Step end, exec prev
proc print data=saleexps; <--Step start, start

compile
 run;                     <--Step end, exec prev
proc means data=saleexps;
 var sales expense;
 run;                     <--Step end, exec prev

It shold be noted that global statements such as title, footnote,
options, libname etc. are compiled, and then executed
immediately.  Again by explicitly coding RUN statements, the
programmer has absolute control over which steps global
statements affect.

Timing with Macro Variables

As %LET statements define macro variables, and those variable
are referenced by name and ampersand what are the timing
considerations?

%LET and & are processed during the word scan and compile
phases, which remember always precede the execution phase.
The %LET statement below defines a macro variable called
dsname which is then referenced many times later in the
program.  This is a very simple substitution and it works very well.
In fact, quite often an automatic variable is defined by SAS and
we don’t even need to code the %LET.



%let dsname=saleexp;
data &dsname;            <--Step, start compile
 infile rawin;
 input name $1-10 division $12
       years 15-16 sales 19-25
       expense 27-34;
 run;                    <--Step end, exec prev
proc print data=&dsname; <--Step start, comp
 run;                    <--Step end, exec prev
proc means data=&dsname;
 var sales expense;
 run;                    <--Step end, exec prev

A Timing Error

The program below attempted to set a macro  variable to either
Hardware or Software based on the values read in Division.  In
this case there were only “H” division records, but yet when the
title prints, “Software division” is displayed.  Why?

data saleexps;
 input name $1-10 division $12 ;
 if division=’H’ then
    %let mdiv=Hardware;
 if division=’S’ then
    %let mdiv=Software;
 datalines;
Steve      H
Bob        H
;
run;
proc print data=saleexps;
 title “&mdiv division”;
run;

The program has timing confused.  The %LET statements set the
mdiv values at COMPILE time and the first  %LET statement
moves Hardware to the macro variable, but then the second
%LET statement moves Software into the same macro variable.
The resulting value is then from the last %LET statement
processed during wordscan.  It is much later that the data step
executes the IF statements which now effectively do nothing
since %LET has no effect at data step execution time.  I have
seen this error in several programs where the timing wasn’t
understood completely.

Execution Time Macro Components

To solve the problem above, the programmer really needed to
use a statement to set the macro variable’s value at data step
execution.  The most commonly used routine is CALL SYMPUT.
This statement creates a macro variable at data step
EXECUTION time.

data saleexps;
 input name $1-10 division $12 ;
 if division=’H’ then
    call symput(‘mdiv’, ‘Hardware’);
 if division=’S’ then
    call symput(‘mdiv’, ‘Software’);
 datalines;
Steve      H
Bob        H
;
run;
proc print data=saleexps;
 title “&mdiv division”;
run;

Macro variables created via CALL SYMPUT cannot be
referenced with an & until a later step again because of timing.

data saleexps;
 input name $1-10 division $12 ;

 if division=’H’ then
    call symput(‘mdiv’, ‘Hardware’);
 if division=’S’ then
    call symput(‘mdiv’, ‘Software’);
 title “&mdiv division”;
 datalines;
Ssteve      H
Bob        H
;
run;
proc print data=saleexps;
 run;

The reference to &mdiv occurs at wordscan time which again is
before execution time when SYMPUT executes.   In order to
make the &mdiv resolve correctly, it must be referenced in a later
step.  This again underscores the importance of step boundaries.

Another Timing Error

Suppose we want to retrieve a macro variable value that was
created in the same step.  This might be because the user is
interacting with the step, or perhaps we are using a stored
compiled step or an SCL program.

data saleexps;
 input name $1-10 division $12 ;
 if division=’H’ then
    call symput(‘mdiv’, ‘Hardware’);
 if division=’S’ then
    call symput(‘mdiv’, ‘Software’);
 newvar=”&mdiv”;
 datalines;
Steve      H
Bob        H
;
run;

Again the reference to &mdiv would be attempted before it was
created by SYMPUT, even though it appears later in the program.
The run time retrieval routine is typically SYMGET which works
fine.

data saleexps;
 input name $1-10 division $12 ;
 if division=’H’ then
    call symput(‘mdiv’, ‘Hardware’);
 if division=’S’ then
    call symput(‘mdiv’, ‘Software’);
 newvar=symget(‘mdiv’);
 datalines;
Steve      H
Bob        H
;
run;

Macro Structures and Conventions

The structures and storage used by the macro facility are also
located in separate areas from the SAS DATA and PROC steps.
SAS observations are normally stored on disk or tape, and when
processed by the DATA step, values are normally stored in the
program data vector.  In the DATA step, variables are referenced
by name, and they are not quoted.  Numeric constants are not
quoted, but single or double quotes are used around character
constants to differentiate them from numeric constants and
variables.

In the macro language since everything is a character value, no
quotes are needed, and if quotes are included they are usually
treated like any other character.   One exception is that macro
variables are not resolved within single quotes and they are
resolved within double quotes.   The semicolon is also not
needed as much in the macro lanquage as it is in SAS.



Macro variable names and their corresponding values are stored
in memory locations called symbol tables and they are not
retained beyond the current job.  Macro variables are not
normally named with a & when defined with a %LET statement,
but are normally prefixed with & when referenced later.  In the
example below, the macro variable name (dsname) is a constant
and the value (saleexps) is also  a constant.

Example:

%let dsname=saleexps;
data &dsname;
etc.

There is no reason the variable name itself can’t be a macro
variable reference.  In the example below the macro variable
name includes an & which means that the name itself varies and
will need to be resolved before creating the new variable.

Example:
              /* name dsname, value saleexps */
%let dsname=saleexps;

              /* name saleexps, value abc */
%let &dsname=abc;
                        /* name saleexps, value abc */
data &sallexps;
etc.

Multiple Ampersands

The double ampersand (&&) is a special reference that always
resolved into a single ampersand.

Example:

%let c=hallo;
%put &c &&c;

The macro processor resolves the first reference into hallo.  In
the second reference, the macro processor resolves && into &
and the scans the letter c.  Next, because the macro processor
always rescans an item resulting from a resolution, it scans the
remaining &c giving the same result hallo and displaying:

hallo hallo

Using a double ampersand in this case gives the same result as
a single ampersand.  Why then would we ever need multiple
ampersands?   One example is when we have a series of
similarly named variables then end in consecutive numbers that
we may want to index through.

For example, we have a series of county datasets that we would
like to print with a macro loop.  A very common technique is to
store the names in separate variables along with a final variable
containing the number of other variables, then loop through them.

Solution 1: Incorrect

%let cnt1=ashland;
%let cnt2=bayfield;
%let cnt3=washington;
%let totcnt=3;
%macro cntprt;
 %do I=1 %to 3;
   proc print data=&cnt&I;
   run;
%end;
%cntprt

The above fails, because there is no variable called cnt, so we

have to delay the resolution with multiple ampersands.  Using
&&cnt&I resolves &&cnt to &cnt and &I to 1 on pass 1, then
rescans the result (&cnt1) to resolve to ashland etc.  This indirect
referencing technique is used in many macros that use looping.

Solution2: Correct

%let cnt1=ashland;
%let cnt2=bayfield;
%let cnt3=washington;
%let totcnt=3;
%macro cntprt;
 %do I=1 %to 3;
   proc print data=&&cnt&I;
   run;
%end;
%cntprt

Triple Ampersands

Three ampersands can be used in the case where the value of
one variable is the name of a second variable whose value you
would like to retrieve.

Example:

%let c=data;
%let data=year2001;
data &&&c;
 etc.

During scan one, && resolves to &, &c resolves to data.  Scan 2
resolves the remaining &data to year2001.
More than three ampersands can be used though this is done
rarely.  In any case the macro processor resolves two
ampersands into a single ampersand and then rescans all text
generated by the previous scan.

Macros Versus Macro Variables

SAS macros  (macro programs)  allow much more than simple
substitution of values, they introduce logic.  This can also
introduce unneeded complication to the program if only
substitution is needed.

The macros themselves go through the word scan process and
are normally stored in a work area until invoked.  Another way of
saying this is that macros themselves are compiled and invoked
(executed).  Remember that the macro may generate steps that
are compiled and executed as well.

Referencing Environments

As macros define their own macro variables, the concept of
referencing environments is necessary.   Every SAS program has
one or more referencing environments.  A referencing
environment is the area in which a macro variable is stored and
later retrieved.  Referencing environments are especially
important when using multiple macros that could conceivably use
the same variable names for different values, and thus
contaminate or destroy results.

Referencing environments are large areas surrounding
progressively smaller areas.  The largest and outermost area is
the global area.  The automatic SAS variables, those variables
created outside of macros, as well as most macro variables
created with SYMPUT exist in the global environment.  Variables
stored in the global environment are available anywhere in the
SAS job.

Each macro that you invoke creates its own local referencing
environment.  The local referencing environment is empty until
the macro creates a macro variable.  This environment exists
only while the macro is executing at which time the storage is
freed to the system.  Also any nested calls to macros will result in



nested local environments.

The environment for the currently existing macro is called the
current macro environment.

How the Macro Processor Uses Referencing Environments

When creating macro variables, the macro facility tries to change
any existing macro variable rather than creating a new one.
If no existing variable is found, the macro processor creates the
new variable in the current environment. The %LOCAL and
%GLOBAL statements can be used by the programmer,  to
control these actions.

While this seems complicated, in practice it is not usually very
difficult to deal with.  In most cases, if all macros are defined in
the same job, each macro creates it’s own variables as the macro
executes, and then those variables are deleted.  When macros
call one another is the case that usually causes problems.

If a calling macro and the called macro accidentally use the same
variable names for different values, there is a good chance that
the inner macro may contaminate the value of the outer macro.
To prevent this the %LOCAL statement can tell the macro facility
to define it in the local environment, regardless of where else it
may be defined.  It is always good practice to define all variables
in a macro as local unless there is some reason to not do so.
Unfortunately, almost nobody uses %LOCAL even though they
probably should.  This is especially important to utility-type
macros that could be called by other macros.

Using %LOCAL isn’t always the answer to all problems, though.
Suppose we want to write a utility macro that performs some
task, and then reports the success to the caller through some sort
of macro variable used as a return code.   Without taking special
action that variable would only be defined in the local
environment, and as such the caller would have no access to it.
In this case, the only option is to define the return code variable
as global and hope that the caller or other macros are not using
the same named variable.

Obviously well chosen names and good documentation can help
tremendously when building a library of macros.  Without good
conventions and documentation, utility macros can be very
difficult to use and understand, and some very strange results
can occur.

Macro Quoting

All programming languages need some way to differentiate that
certain characters are to be treated as a text value instead of
some instruction or operator used in the language. In the data
and PROC steps, and in most other programming languages, a
single or double quote mark serves this role.

In the example below when var1 is not quoted, it refers to the
name of an existing data step variable.  When it is quoted it is
simply four constant characters.  Likewise the semi-colon marks
the end of all SAS statements, but in addition when Z is set to the
quoted semicolon, the quotes cause the system to treat the
semicolon as it would any other character.

data temp;
  set ds1;
  x=var1;
  y=’var1’;
  z=”;”;
run;

Obviously the macro facility has special symbols that may need
similar treatment.  However the macro facility does not use the
single or double quote character to mask these characters.
Instead it uses a variety of functions to do what quotes do in other
languages,  thus the name ‘macro quoting’.   Another way of

stating this is that the actions that you take to cause the macro
facility to treat a certain character as text rather than part the
macro language is called “macro quoting”.   Similarly when the
literature mentions that the “result is quoted”, it does not mean
that actual quote marks are inserted, but rather the result is
treated like text and the meaning of the special characters are
removed.

Different Kinds of Quoting Functions

Compilation Functions

There are functions that cause the macro facility to treat items as
text during macro compilation or when used in open code.  %STR
and %NRSTR are examples.  %STR removes meaning of the
following: ;’+-*/**~=<>,*LT LE EQ NE GT OR AND & trailing and
leading blanks.   %NRSTR (no rescan string) processes all of the
above and also prevents rescanning (ignore meaning of & %).

Examples:

%let name=%str(proc print;run;);
%let name=%str(    &company);
%let desc=%nrstr(    %of total report);

Execution Functions

There are functions cause the macro facility to treat items as text
during macro execution as well.  %QUOTE and %NRQUOTE
operate at execution time and remove meaning of most
characters in the result of the macro call.  %BQUOTE and
%NRBQUOTE should be used if the value contains unmatched
quotes or parentheses.

Examples:

%macro getst(state,employee);
%if quote(&state) = %str(NE) %then
   %do;
      %let longst=Nebraska;
  %end;
  %put hello &employee from &longst;
%mend;
%getstate(NE,O’brien)

Functions to Prevent Resolution

%SUPERQ is a function that will prevent starting any resolution
of macro variables.  This is most needed in windowing operations
such as SAS/AF,  %WINDOW, or SAS/INTRNET screens, or
after CALL SYMPUT if there is any chance the input value could
contain an ampersand or percent sign.  Other functions do not
work as well in this case, and would issue warnings and recursion
messages.

Example:

data _null_;
   call symput('mv1','Bob&Fred %macro report');
   run;
%let mv2=%superq(mv1);
%put mv2=&mv2;

The Result:

mv2=Bob&Fred %macro report

Unquoting

The effects of quoting can be removed if desired by the
%UNQUOTE function.  In the example below var2 is not resolved
but using %UNQUOTE later allows the resolution to take place.

Example:



%let mv1= hallo;
%let mv2=%nrstr(&mv1);
%let mv3=%unquote(&mv2);
%put mv1=&mv1 mv2=&mv2 mv3=&mv3;

The Result:

mv1=hallo mv2=&mv1 mv3=hallo;

Other Macro Functions

There are several other character functions that do various
manipulations on macro values.  Most of these functions are very
similar to functions in the data step and perform the same way to
substring data, left align, right align, parse words etc.  In many
cases there is a quoted version of the function where the name
starts with a Q (ex. %QSUBSTR).  These functions are
sometimes more difficult to code and debug than counterparts in
the DATA step mostly because the DATA step is a more
comprehensive and robust language.

Using Data Step Functions Within Macros

The macro facility can have access to the DATA steps function
library of over 300 functions via the %SYSFUNC macro function.
This can be extremely handy to include any of the logic from
existing functions.  %SYSFUNC can also apply a format to the
result from the function.  There are some functions such as the
LAG function that cannot be used because LAG needs to read
prior records in a data step  which might not exist in a macro
application.

Example:  Extract today’s date, format it as a worddate, store the
final result in a macro variable.

%let mydate=%sysfunc(date(),worddate.);
%put &mydate;

Displays:

January 15, 2001

Debugging and Tracing Techniques

There are essentially five debugging tools in the macro facility.

1. %PUT
2. SYMBOLGEN
3. MLOGIC
4. MPRINT
5. MFILE

The %PUT statement is probably the best and simplest method
of displaying values at word scan time.  %PUT can display text or
macro variable references and calls.  Like the PUT statement
from the DATA step, %PUT can be placed at strategic spots in
your program to display debugging information.  Like other items
in the macro facility, quotes are not needed to display text.

Example:

%let var1=Stevo;
%put ***** var1=&var1;

Displays:

**** var1=Stevo

A fairly recent addition is parameters to  %PUT that not only
display a single variable, but can show several.

_ALL_ Shows all variables and there respective

symbol table
_AUTOMATIC_ shows only the system variables
_USER_ displays only user variables
_LOCAL_ displays only local variables
_GLOBAL_ displays only global variables

Using _ALL_  is really the only practical way to determine
whether a variable is defined locally, globally or both.  This was
requested for many years, and it’s now available.

The other four debugging tools are system options.
SYMBOLGEN shows macro variables as they are being resolved.
MLOGIC displays decisions and looping that the system makes
with %DO, %IF etc.
MPRINT displays the generated code sent to the SAS compiler.
MFILE routes the MPRINT results to a separate file.

MFILE can be useful to give us an answer to a very difficult
problem.  Suppose the following macro is submitted with a
semicolon missing after the VAR statement.  The statement
number displayed in the log is the line number of the statement
that called the macro.  This isn’t overly useful, since the macro
could contain or generate thousands of lines, and we have an
error somewhere in it.

1    options mprint nomfile;
2     %macro printmac(msasds=invoice);
3      proc print data=&msasds;
4       by company;
5       id days;
6       var rate age    /* note missing ;*/
7       title "listing of &msasds";
8      run;
9     %mend printmac;
10
11    %printmac(msasds=invoice)
MPRINT(PRINTMAC):   proc print data=invoice;
MPRINT(PRINTMAC):   by company;
MPRINT(PRINTMAC):   id days;
NOTE: Line generated by the invoked macro
"PRINTMAC".
11      proc print data=&msasds;    by company;
id days;    var rate age             title
"listing of &msasds";   run;
-
200
ERROR 200-322: The symbol is not recognized and
will be ignored.
NOTE: Line generated by the macro variable
"MSASDS".
11   "listing of invoice
      --------------------
      22
MPRINT(PRINTMAC):   var rate age title "listing
of invoice" run;
ERROR 22-322: Syntax error, expecting one of the
following: a name, ;, -, :, _ALL_, _CHARACTER_,
_CHAR_, _NUMERIC_.

As a last resort, the generated code could be routed to a file,
manually included and run.  Since the code no longer contains
any macro statements or conventions, statement numbers will be
more meaningful.

filename mprint 'c:\temp\pmaccap.sas';
options mprint mfile;
 %macro printmac(msasds=invoice);
  proc print data=&msasds;
   by company;
   id days;
   var rate age     /* note missing ;*/



   title "listing of &msasds";
  run;
 %mend printmac;
 %printmac(msasds=invoice)
options nomfile;

The captured program looks like the next few lines from the SAS
log, where it easier to find the offending statement.

53   proc print data=invoice;
54   by company;
55   id days;
56   var rate age title "listing of invoice"
run;
                        -------------------- ---
                        22                   202
ERROR 22-322: Syntax error, expecting one of the
following: a name, ;, -, :, _ALL_, _CHARACTER_,
_CHAR_, _NUMERIC_.

The SAS Autocall Facility

There are five methods of making a macro available to your SAS
job:

1. Define a macro in the same program that uses it.
2. Use %INCLUDE to include macros stored in external

files.
3. Use the INCLUDE display manager command to

manually include the macro.
4. Use the autocall facility to search a predefined macro

library.
5. Use the Stored Compiled Macro Facility.

In my opinion the first three methods work fine for many systems,
and the compiled macro facility is probably not worth the bother.
While it might save a slight amount of word scanning, the user
now has to manage both compiled code and source code which
can be very difficult to deal with especially with new releases.

A good option to handle production macros that will be used by
many users is to store them in an autocall library.  By making this
library available to all users, they can call macros without
including them first.

Using the autocall facility requires five steps:

1. Create a macros source library appropriate for your
operating system.

2. Place each macro as a separate member in the library.
The member name must be the same as the macro name

3. Associate the fileref  SASAUTOS with the library.
4. Turn on the MAUTOSOURCE SAS system option.
5. Invoke any stored macro.

Invoking a macro that has NOT been defined in the current
session causes the macro facility to:

1. Search the autocall library for the member named the
same as the invoked macro.

2. Issue an error message if the macro is not found.
3. Automatically include the macro source if found.
4. Submit the macro.
5. Call the macro.

The autocall facility is a PDS under OS/390 and is a directory in
the directory based systems.  You can also concatenate several
libraries and in fact several macros are shipped with the SAS
system and the user only needs to call them as they would a

macro function.

Examples of SAS-Institute Autocall Macros (partial list)

%COMPSTOR(arg) compiles autocall members
%CMPRES(arg) remove multiple blanks
%DATATYP(arg) determine argument data

type
%LEFT(arg) remove leading blanks
%LOWCASE(arg) translate to lower case
%MDARRY simulate multi-dimension

arrays
%QCMPPRES(arg) quoted form of %CMPRES
%QLEFT(arg) quoted form of %LEFT
%QLOWCASE(arg) quoted form of %LOWCASE
%QTRIM(arg) quoted form of %TRIM
%SUPERQ(variable) remove meaning of all

special characters
%SYSGET(arg) returns oper system vars
%SYSRC(arg) translates numerics to

mnemonics
%TRIM(arg) trims trailing blanks from

arguments value

An example of using an autocall macro:

%TRIM can be used to trim trailing blanks from macro values.

%LET X=%STR(MADISON   );
%LET Y=%TRIM(&X);
%PUT ---&X--- ---&Y---;

Generates:

---MADISON   --- ---MADISON---

Design Considerations

Since the macro system has a unique purpose, it stands to
reason that design may be unique.

It is my opinion that the best systems:

1. Minimize macros
2. Clearly document macros and their purpose
3. Display source of all modules at least while testing.
4. Keep things simple

Minimizing macros

The are many cases where macros have been written where a
SAS option or DATA statement may work much better.
Examples are the CNTLIN option for building formats, the
#BYVAL variable for displaying by variables in titles.    Macros
are simply more difficult to work with if there is another
reasonable alternative.

Below is a pair of macros that create titles.  The first technique
uses only macro statements and the second one does most of
the work in the DATA step.   Because of the robustness of the
DATA step and the limitations of the macro language,  the
second approach may be simpler, though this approach obviously
wont work for all cases.

In both cases the macro call below generates the title following
the call.

%ssctitlm(1,
           3,'left edge',
          20,'sample center',
          40,"date run:&sysdate")

Generates



title1
"  left edge        sample center
            date     run:13DEC00";

Solution one done completely with macros:

%macro ssctitlm(mtitlno,mcol1, mtext1,
                mcol2, mtext2,
                mcol3, mtext3);
/**********************************************/
/* macro ssctitlm                             */
/*  purpose:  create sas title variables      */
/*            forprocs                        */
/*    input:  title number, starting col,     */
/*            text up to 3 segments of title. */
/*   output:  title vars that can be used by  */
/*            sas                             */
/**********************************************/
/* need data step logic to build data step    */
/* vars, put in macro variables at end.       */
/**********************************************/
%let noblank=%eval(&mcol1-1);  /* # blks left */
%let mtext=%str();             /* set to null */
%do i=1 %to &noblank;          /* do # blanks */
 %let mtext=%str(&mtext)%str( ); /* insert blk*/
%end;                          /* end of loop */
%let tlen=%eval(%length(&mtext1)-2); /* no 's */
                               /* strip out 's*/
%let mtext1=%substr(%str(&mtext1),2,&tlen);
%let mtext=%str(&mtext)%str(&mtext1); /* app  */
                               /* to mtext    */
                               /*# bls text2  */
%let noblank=%eval(&mcol2-1-%length(&mtext));
%do i=1 %to &noblank;          /* do # blanks */
 %let mtext=%str(&mtext)%str( );   /* insert  */
                               /*  blanks     */
%end;                          /* end blk loop*/
%let tlen=%eval(%length(&mtext2)-2); /* no 's */
                               /* strip 's    */
%let mtext2=%substr(%str(&mtext2),2,&tlen);
%let mtext=%str(&mtext)%str(&mtext2);  /* app */

                       /* to text  */
                               /*# bls mtext3 */
%let noblank=%eval(&mcol3-1-%length(&mtext));
%do i=1 %to &noblank;          /* do # blks   */
 %let mtext=%str(&mtext)%str( );/* insert blk */
%end;                          /* end blk loop*/
%let tlen=%eval(%length(&mtext3)-2);

                       /* no 's       */
                               /* strip 's    */
%let mtext3=%substr(%str(&mtext3),2,&tlen);
%let mtext=%str(&mtext)%str(&mtext3);

                       /* app to mtext*/
 title&mtitlno "&mtext";       /* make title  */
/***********   end of macro ssctitlm
****************/
 %mend ssctitlm;

The following macro generated  the same title statement, but with
a lot less coding effort.

 %macro ssctitle(mtitlno,mcol1,mtext1,
                 mcol2,mtext2,mcol3,mtext3);
/**********************************************/
  /* macro ssctitle                           */
  /*  purpose:  create sas title variables    */
  /*            for procs                     */
  /*    input:  title number, starting col,   */
  /*            text for 3 segments of title. */
  /*   output:  title vars that can be used by*/
  /*            sas.                          */

/**********************************************/
  /* need data step logic to build data step  */
  /* vars put into macro variables at end.    */
/**********************************************/
data _null_;                  /* use data step*/
  length text $ 160;          /* ds var mx len*/
  text=' ';                   /* blank it out */
  substr(text,&mcol1)=&mtext1;/* first text   */
  substr(text,&mcol2)=&mtext2;/* second text  */
  substr(text,&mcol3)=&mtext3;/* third text   */
  call symput("mtitle&mtitlno",text);
                              /* ds vars->mac */
 run;                         /* end of step  */
 title&mtitlno "&&mtitle&mtitlno";
                              /* move to title*/
  /********** end of macro ssctitle ***********/
 %mend ssctitle;

Clearly Documenting and Keeping It Simple

A recent program that a student offered used all of the below
techniques:
1. Autocalled macros
2. Generated Code to a file, then %included it back to run.
3. %included macros
4. Inline macros
5. Nested macros
6. All source display (2000 lines) turned off
7. No commenting.

While any of the above techniques are fine, having so many
pieces and no documentation really makes the job much more
difficult than a few, well-documented  techniques.

Changes and Enhancements

The major changes to the macro system is 32 character names
and the %PUT _All_ statement mentioned earlier.  Below are
some of the other changes implemented.

The following automatic macro variables are available in all
operating environments.

SYSCC contains the current condition code that SAS
returns to your operating environment (the
operating environment condition  code).

SYSCHARWIDTH
  contains the character width value.

SYSDATE9 contains a SAS date value in DATE9. format,
which displays a 2-digit date, the first three
letters of the month name, and  a 4-digit year.

SYSDMG contains a return code that reflects an action
taken on a damaged data set.

SYSPROCESSID
contains the process ID of the current SAS
process.

SYSPROCESSNAME
contains the process name of the current SAS
process.

SYSSTARTID contains the identification number that was
generated by the last STARTSAS statement.

SYSSTARTNAME
contains the process name that was generated
by the last STARTSAS statement.



SYSUSERID contains the user ID or login of the current SAS
process.

%PUT In Version 8, the %PUT statement has been
enhanced. It displays text in different colors to
generate messages that  look like SAS-
generated ERROR, NOTE, and WARNING
messages.

%SYSLPUT   In Version 8, this new macro statement creates a
new macro variable or modifies the value of an
existing macro variable on a remote host or
server.

The following new macro statement invokes a SAS CALL routine:

%SYSCALL

The following macro functions are new:

%SYSEVALF evaluates arithmetic and logical expressions
using floating-point arithmetic.

%SYSFUNC and %QSYSFUNC
execute SAS functions or user-written functions

Conclusion
The SAS macro facility continues to have incremental
improvements with each new SAS release, and with when used
properly, it gives the tremendous power and capabilities.

Contact Information
Your comments and questions are valued and encouraged.
Contact the author at:

Steven First
Systems Seminar Consultants
2997 Yarmouth Greenway Drive
Madison, WI 53716
608 278-9964 x 302 voice 
608 278-0065 fax
sfirst@sys-seminar.com

 www.sys-seminar.com



Paper P813

Top-Down Programming with SAS® Macros
Edward Heaton, Westat, Rockville, MD

ABSTRACT
Structured, top-down programming techniques are not
intuitively obvious in the SAS language, but macros can
be used to approximate a top-down structure.  This can
lead to programs that are more versatile, more robust,
and generally easier to develop.  This presentation will
review a SAS macro that reads elements from a difficult-
to-read ASCII text file that is typically used to control the
processing for a COBOL job.  Along the way, we will look
at the program structure and review the engineering
decisions that allow the code to be developed in an
organized and robust manner.

This presentation will demonstrate methods for macro
testing and debugging, as well as various features of the
SAS Macro Facility.

INTRODUCTION
Top-down programming can make your programs much
more easy to understand, develop, debug, and modify.
This paper will demonstrate top-down programming while
creating a utility to facilitate the creation of value-label
formats.

One task that greatly benefits from an orderly, top-down
structure is the reading of a complex external file.  We will
develop a SAS macro that reads a meta-data file to obtain
variable and format information.

Westat developed a COBOL program to read a free-
format text file and write files that facilitate many of the
steps of survey processing.  That text file (hereafter called
a source file) is a useful first-step in creating value labels.
In this presentation we will create an external SAS macro
that can be called from a SAS autocall library.  The macro
will read the source file and will write a SAS data set.
That data set needs to contain all the information
necessary to create value-label formats.  While we
develop this macro, we want to write code that will be
easily adaptable to other stages of our survey processing
cycle.  We will not address those other stages, but certain
programming techniques help to assure that adaptability.

FILE FORMAT
Let's start by defining the source file.  Perhaps the best
approach is to look at the specifications for creating the
source file.

1. The file is free-format; words do not need to begin
and end in specific columns.

2. The statements shall be typed in lines of 100
characters or fewer, including spaces, but they may
span several lines.

3. A virgule (/) marks the beginning of a line
continuation.  Line continuations are for the
descriptive parts of the statement, such as the
wording of a question or the description of a value
code.

4. Each statement begins with a key letter that identifies
the statement type:
� P Parameter – We will not process this

statement.
� H Header – We will not process this statement.
� V Variable – Variable statements define

properties of the variable.
V name width type
E.g.:  To define variable Q1 as two columns
wide containing numeric data, the source file
will have the following statement.
V Q1 02 N
For this task, we will want to read the name of
the variable and its data type.

� Q Question – If we were creating variable labels,
we would want to read the wording of the
question.  We are not so we will not use this
statement.

� C Code – The code statement defines the values
of the variable defined in the preceding V
statement.  A + indicates a "missing" value.
You can link a C statement to an S statement
via one or more asterisks (*).
C [********] value = text
E.g.:
C ++ = inapplicable
C 01-70 = number of years
C 98 = don't know
C 99 = not ascertained

� R Remark – This is a comment statement and
has no bearing on our task.

� S Skip pattern – Skip patterns tell us which
variables to skip based on the values of the
variable defined in the preceding C
statements.  We are not going to deal with skip
statements; they have no bearing on this task.

� A Abbreviation – The A statement will not be
processed by our macro.

Our paper will work with the variable and code statements
only.  The source file might look something like the
following:

P RECLEN 200
H 1 U.S. Department of Education
H 2 National Center for Educational
  / Statistics
H 3 Internet Access in U.S. Public Schools,
  / Fall 2000
V QA 01 A
Q What is the title/position of the
/ Respondent?
C 1 = Technology Coordinator
C 2 = Library/Media Specialist
C 9 = Not Ascertained
V QB 01 A
Q Does the respondent have email?
C 1 = Yes
C 2 = No
C 9 = Not Ascertained
V Q1 04 N
Q What is the total number of instructional
/ rooms in your school?  (Include all rooms
/ used for any instructional purposes:



/ classrooms, computer labs and other labs,
/ library/media centers, etc.)
C 0001-0250 = Total number of Instructional
            / Rooms
C 9999 = Not Ascertained
V Q2A 04 N
Q How many computers are there in your
/ school?  (Count all computers, including
/ those used by administrators, teachers, and
/ students.)
C *    0000 = No computers in school (Skip to
            / Q13.)
C 0001-0550 = Total number of computers in
            / school
C      9999 = Not Ascertained
S * Skip Q2B - Q12DC and code as +
…

THE PLAN OF ATTACK
We will create a SAS data set that can be written to an
MS Access® database.  The Label field of that database
will be edited to and then used for value labels – the
wording of value labels is usually done by non-
programmers at our site.  When all the labels have been
updated, we use PROC DATASETS to attach the labels to
the variables.  The code to write the SAS data to an
existing MS Access database will look something like the
following.  (For this example, the
%CreateValueLabelsDataSet macro is stored in the
Macros sub-folder.  The source file is in the same
directory as this job, and it is called codebook.dat.  We
are creating a SAS data set called ValueLabels and an
MS Access table called ValueLabels.)

Options sasAutos= ( "Macros" sasAutos ) ;
LibName labels odbc complete=
   "dsn=MS Access 97 Database;
    dbq=EasyLabels.mdb"
;
%CreateValueLabelsDataSet(
   inFile="codebook.dat"
 , cntlOut= ValueLabels
)
/* Write data to Access. */
Data labels.ValueLabels ;
   Set ValueLabels (
      rename= ( Label =LongLabel )
   ) ;
   Length Label $40 ;
   Label = LongLabel ;
Run ;
LibName labels clear ;

The %CreateValueLabelsDataSet macro read the source
file and wrote the SAS data set.  Then we wrote that data
to MS Access, in effect shortening the length of the Label
variable to 40 characters and creating a variable called
LongLabel.  LongLabel contains the entire text part of
the code statement.  When the MS Access table has been
reviewed and updated we will use the data to create value
label formats and attach those value label formats to our
SAS data set with code similar to the following.  By
referring to SASAUTOS in the SASAUTOS= option, you
make sure that all of the standard SAS autocall libraries
are included.

LibName project "Library" ;
Options

   fmtSearch= ( project )
   sasAutos= ( "Macros" sasAutos )
;
LibName labels odbc complete=
   "dsn=MS Access 97 Database;
    dbq=EasyLabels.mdb"
;
Proc format
   library=project
   cntlIn=labels.ValueLabels( drop=
      VarName LongLabel
   )
   fmtLib
;
Run ;
/* Create a variable-format list as a macro
   variable. */
Proc sql noPrint ;
   Select
      trim(VarName) || " " ||
      trim(FmtName) || "."
      into :FormatString separated by " "
      from labels.ValueLabels
   ;
Quit ;
/* Apply the variable-format list to the data
   set. */
Proc dataSets ;
   Modify project.OurData ;
      Format &FormatString ;
   Run ;
Quit ;
LibName project clear ;

As you can see, these jobs are relatively short and simple.
They could, however, be developed into macros to make
the task even more simple.

EXECUTION OF THE PLAN
STANDARD DOCUMENTATION
Let's start with the standard job documentation.  I use a
template that prompts me for all the information that I
typically want in my header.

/*****************************************
MACRO:
OBJECTIVE:
PROGRAMMER:
   Ed Heaton, Senior Systems Analyst,
   Westat,
   1550 Research Boulevard, Room 2018,
   Rockville, MD 20850-3159
   Voice: (301) 610-4818
   Fax:   (301) 294-3992
   mailto:EdwardHeaton@Westat.com
   http://www.Westat.com
DETAILS:
INPUT:
OUTPUT:
STORAGE:
AUDIT TRAIL:
   yyyymmdd EH : Developed macro.
*****************************************/
%Macro MName ( debugging=0 ) ;



   %If &debugging %then %do ;
      %TurnDebugOptions( ON )
   %End ;
/* SAS code and calls to other macros */
   %If &debugging %then %do ;
      %TurnDebugOptions( OFF )
   %End ;
 %Mend MName ;
/****************************************/

Maybe I need to say something about the debugging=
parameter.  I include it whenever I develop a macro.  It is
used for, as you guessed, debugging.  The default value
is zero.  I pass debugging=1 if I want to debug the
macro.  Then I can use this parameter to do things that I
want to do only when I am in debugging mode.  We will
see examples of this feature in this paper. Even if I do not
have immediate plans for the debugging= parameter, I
include it.  Then it is available for future use if I find a
problem later on.

THE TURNDEBUGOPTIONS MACRO
When in debugging mode (called with debugging=1), a
macro calls another macro called %TurnDebugOptions.
That macro will either set or reset certain systems options
that write copious amounts of information to the system
log, depending on the value passed to the macro.  The
macro might be useful to you, so let's take a few minutes
and look at it.

/********************************************
MACRO: TurnDebugOptions
OBJECTIVE:
   This macro will turn macro debugging
   options ON or OFF.  To turn them on, call
   this macro passing in ON.  This macro will
   first retrieve original values of SAS
   system options MPRINT, SOURCE, NOTES,
   SYMBOLGEN, and MLOGIC.  It will then set
   the system options to MPRINT, MLOGIC,
   SOURCE, NOTES, and SYMBOLGEN so that we
   can follow the workings of macros.  To
   turn off the debugging options and restore
   the original SAS system option values,
   call this macro with the parameter set to
   OFF.
USAGE:
   The most common usage of this macro will
   be to add the DEBUGGING=0 parameter to
   your macro statements.  Then, if
   DEBUGGING=1 is passed in to your macro,
   call this macro passing "ON" and, at the
   end of your macro, call it again passing
   "OFF".  E.g.:
      %Macro Sample ( debugging=0 ) ;
         %If &debugging %then %do ;
            %TurnDebugOptions( ON )
         %End ;
         Macro Code
         %If &debugging %then %do ;
            %TurnDebugOptions( OFF )
         %End ;
      %Mend Sample ;
PROGRAMMER:
   …
STORAGE: …
AUDIT TRAIL:
   20000613 EH : Wrote code combining the …
   20000614 EH : Added code to allow …

********************************************/
%Macro TurnDebugOptions ( switch ) ;
   %If ( %upCase(&switch) eq ON ) %then %do ;
      %Global
         _mPrint
         _mLogic
         _source
         _notes
         _symbolGen
      ;
      %Let _mPrint =
         %sysFunc( getOption( mPrint ) )
      ;
      %Let _mLogic =
         %sysFunc( getOption( mLogic ) )
      ;
      %Let _source =
         %sysFunc( getOption( source ) )
      ;
      %Let _notes =
         %sysFunc( getOption( notes ) )
      ;
      %Let _symbolGen =
         %sysFunc( getOption( symbolGen ) )
      ;
      Options
         mPrint
         mLogic
         source
         notes
         symbolGen
      ;
   %End ;
   %Else %if (
      %upCase( &switch ) eq OFF
   ) %then Options
      &_source
      &_notes
      &_mLogic
      &_mPrint
      &_symbolGen
   ;
   %Else %put
      TurnDebugOptions must pass ON or OFF.
   ;
%Mend TurnDebugOptions ;
/****************************************/

So you see, if a calling macro passes ON, the
%TurnDebugOptions macro checks the current settings
of five systems options using the GETOPTION function
and then writes that value to macro variables using
%SYSFUNC.  If OFF is passed, the macro uses the
systems options settings that were stored in these macro
variables to restore the options to the original settings.  If
the %TurnDebugOptions macro is called twice passing
ON without calling it passing OFF, the original systems
settings will be lost.  It is the responsibility of the
programmer to avoid this situation.

TOP-DOWN PROGRAMMING – THE TOP
Let's define the steps to create a data set of value labels.
The %CreateValueLabelsDataSet macro exists in a file
called CreateValueLabelsDataSet.sas.  Let's define a
top-level macro as a macro that exists in a file of the same
name.

%Macro CreateValueLabelsDataSet (
   inFile=
 , cntlOut=
 , debugging=0
) ;
   %If &debugging %then %do ;
      %TurnDebugOptions( ON )
   %End ;



   /* Create a SAS data set that has all the
      data that we need. */
   %If &debugging %then %do ;
      %TurnDebugOptions( OFF )
   %End ;
%Mend CreateValueLabelsDataSet ;

Whew, that was easy – just one step!  Is that all there is to
it?  Well, yes; but the devil is in the details.  Let's create
the DATA step.  Note the macro %IF statement
embedded in the DATA statement below.  I typically start
all temporary variable names with an underscore.  That
way, I can drop all of them with DROP=_: (The colon is a
wild card, like the asterisk in Windows.).  If I am not in
debugging mode, this will drop all variables that start with
an underscore.

Data &cntlOut (
   %If not &debugging %then drop=_: ;
) ;
   %_DefineVariables( debugging=&debugging )
   Retain VarName FmtName Type ;
   InFile &inFile truncOver end=eof ;
   %_ReadOneStatement(
      cntlOut=&cntlOut
    , debugging=&debugging
   )
   If ( upCase( _StatementType_ ) eq "C" )
      then output &cntlOut
   ;
Run ;

We want to define our variables (the ones that we want to
keep).  I almost always find this a useful first step.  We
retained the VarName, FmtName, and Type variables
because there are usually multiple C (case) statements
per variable and we want to write an observation for each
C statement.  Each observation needs the variable name,
the format name, and the data type.  Of course, we need
to read the source file.  The output data set needs data for
the VarName, FmtName, Start, End, Label, and Type
variables.

After the DATA step, let's include code to print the data
whenever we are in the debugging mode.  We can print
the whole data set; it shouldn't be too long.  But let's print
only the first 40 characters of Label because that value
might be quite long.

%If &debugging %then %do ;
   Title4 "&cntlOut" ;
      Proc print data=&cntlOut ;
         Format Label $40. ;
      Run ;
   Title4 ;
%End ;

SUPPORTING MACROS – THE NEXT LEVEL
Now we need to create the two macros that we called.
Let's define a supporting macro as one that exists in the
same *.SAS file as a top-level macro and is called by
another macro in that file.  In keeping with the top-down

concept, let's define supporting macros below the top-
level macro.  I always start a supporting macro with an
underscore for two reasons: (1) the macro name is more
unlikely to be used in the job that calls this top-level
macro; and (2) it will be easier to explain to the users,
when its name appears in the SAS log, that it is a
supporting macro and that the users will not find a *.SAS
file by that name.  Let's create the macro that defines the
variables.  I have three criteria for deciding to create a
macro rather than just including the code in the calling
job.

1. Is the code used more than once?  Whenever I have
the same code in two different places, then I will
surely, at some point, update it in only one of those
places.  Then my code will either not work or, worse,
will work intermittently based on the data.

2. Will the code make the program block too long?  I
find it hard to visualize code when I can't see it from
start to end on one page or screen.  I.e.:  I need to be
able to see the start and end of a DO block at the
same time.  Ideally, I can see the entire DATA step,
SQL statement, or PROC as a unit.  I would rather
see place-holders for code (i.e.; macro calls) than not
be able to see both the start and the end.  My rule of
thumb is that I don't like any macro or program step
to be over a half a page long if I can easily keep it
shorter.

3. If I don't know how to write the code, I can simply
insert a descriptive macro call and go on with the
code that I do know how  to write.  (Often, coding
tasks that I do know how to code will help me to see
the algorithm for tasks that I didn't understand.)  Then
I can go back and create the macro that I called.
(Sometimes, we need output from a macro but  do
not know how to get the values from the data.  We
can use the debugging=1 parameter to hard-code
values in the otherwise empty macro.  Then we can
continue with development of the job at hand and
return to the undeveloped macro when we
understand more.)

DEFINE VARIABLES
The %_DefineVariables macro will simply make the
DATA step short enough to see in its entirety.

%Macro _DefineVariables ( debugging=0 ) ;
   Attrib
      VarName
         label= "Variable Name"
         length= $  6
      FmtName
         label= "Format Name"
         length= $  8
      Start
         label= "Starting Value for Format"
         length= $ 16
      End
         label= "Ending Value for Format"
         length= $ 16
      Label
         label= "Format Value Label"
         length= $200
      Type
         label= "Type of Format"
         length= $  1
   ;
%Mend _DefineVariables ;



Why did we set the length of the variable name to six
characters?  SAS allows 32 characters.  The problem is
with the format name; SAS still allows only 8 characters
here.  To keep our process algorithmic, I want to
systematically create a format name with the variable
name as its base.  Variable names can end with a digit;
format names cannot.  So I want to append an eff (F) onto
the end of the variable name.  (E.g.: If the variable name
is Q59a12, I want the format name to be Q59a12F.)  What
if the variable is type character?  Then the format name
needs to start with a dollar sign ($).  (E.g.: $Q59a12F.)
So, you see, a 6-character variable name can become an
8-character format name.

READ ONE STATEMENT
Now we will read the values for the needed variables and
output the data set.  However, given the nature of our
input file, this seems like a big task.  Let's break it down.
We saw that the source file has seven different kinds of
statements.  We need to determine the type of statement
and process it.  Let's read the first non-blank character,
call it the statement type, and hold the record.  Since the
source-file statements can span lines, we need to hold the
record with a trailing @@.  Then we will use the SELECT
statement to set our course.

We need only process the V and C statements; a V
statement will provide a variable's name and its data type;
and a C statement will provide a value label.  The other
statements will be skipped.  However, we will want to keep
the select statement very general because we will want to
expand our macro to get variable labels from the source
file and , maybe, to collect skip-pattern information so that
we can use the data to create a data dictionary.  We don't
want to significantly change this macro once it works
correctly, so let's make sure it is easily expandable.

%Macro _ReadOneStatement ( debugging=0 ) ;
   Input @1 _StatementType_ : $1. @@ ;
   Select ( _StatementType_ ) ;
      When ( "P" ) do ;
         %_ReadPStatement(
            debugging=&debugging
         )
      End ;
      When ( "H" ) do ;
         %_ReadHStatement(
            debugging=&debugging
         )
      End ;
      When ( "V" ) do ;
         %_ReadVStatement(
            debugging=&debugging
         )
      End ;
      When ( "Q" ) do ;
         %_ReadQStatement(
            debugging=&debugging
         )
      End ;
      When ( "C" ) do ;
         %_ReadCStatement(
            debugging=&debugging
         )
      End ;
      When ( "R" ) do ;
         %_ReadRStatement(
            debugging=&debugging
         )
      End ;

      When ( "S" ) do ;
         %_ReadSStatement(
            debugging=&debugging
         )
      End ;
      When ( "A" ) do ;
         %_ReadAStatement(
            debugging=&debugging
         )
      End ;
      When ( "/" ) do ;
         %_VirguleErrMessage(
            debugging=&debugging
         )
      End ;
      When ( " " ) do ; /* Empty Row */
         %_ReadNextRecordCode(
            debugging=&debugging
         )
      End ;
      Otherwise  do ;
         %_GenErrMessage(
            debugging=&debugging
         )
      End ;
   End ;
%Mend _ReadOneStatement ;

This is long, but it does fit my half-page criterion when I
have longer lines of code.  (That is, each WHEN
statement, including the DO block, will fit on one line of
code.)  This macro called a lot of other macros that we will
have to define.

Three notes:
1. The colon (:) format modifier tells SAS to start

reading at the next non-blank column.  So the
statement-type identifier does not have to be in the
first column.

2. Our source code can have blank records.  We do not
want to output these, so our macro will need to
explicitly tell SAS when to output an observation.  If
we come to an empty record, we will simply move to
the next record.

3. Every time we read a statement, we need to read all
the way through every line continuation of the
statement.  So the %_ReadOneStatement macro
should never see a line continuation.

LEVEL 3: SUPPORTING THE SUPPORTING MACROS

Working on a SAS job
Going down, down, down.
Working on a SAS job;
Whoop, I wanna lie down.

Five o'clock in the morning,
My code is still not done.
Lord I'm so tired.
How long can this go on?

I'm a working on a SAS job …

Okay, the %_ReadOneStatement macro was easy
because it only decided which other macros to call.  Let's
define these macros.

READ P STATEMENT
We don't need the P statement for this task.  However, we



do want to address it and to write our code so that it is
clear where and how to change things if we want to
expand the scope of our macro.

%Macro _ReadPStatement ( debugging=0 ) ;
   %_GoToNextStatement(
      debugging=&debugging
   )
%Mend _ReadPStatement ;

So, this macro simply calls another macro.  Does this
seem a little trite?  On the surface, yes.  We could have
called the %_GoToNextStatement macro directly.
Remember, however, that a macro that works is best left
alone.  If we called %_GoToNextStatement directly from
%_ReadOneStatement, we would have to change both
the %_ReadOneStatement and %_ReadPStatement
macros if we want to do something with the P statement.
This way, we only have to change the
%_ReadPStatement macro.

We need similar macros for each of the statements that
we do not need for this task.  We don't need the H, Q, R,
S, and A statements.

READ V STATEMENT
This macro will read a variable statement.  Variable
statements start with a vee (V).  Variable statements are
in the form

V name width type [possibly more stuff we don't need]

The following statement
V  Q1  02  N
defines variable Q1 as two columns wide, containing
numeric data.  Since the source file is written in a free-
format language, you can place the vee in a column other
than column 1 and insert as many spaces between the
elements as wanted.  However, the elements must occur
in the order as specified.

The variable name may be any valid SAS variable, except
that we artificially restricted the length to six characters or
fewer for this macro.  COBOL keywords cannot be used
because the standard job to read this file was written in
COBOL.

%Macro _ReadVStatement ( debugging=0 ) ;
   Input VarName $ _Length_ $ Type $ @@ ;
   %_ReadNextRecordCode(
      debugging=&debugging
   )
   FmtName = trim( VarName ) || "F" ;
   Select ( Type ) ;
      When ( "G" ) delete ;
      When ( "N" ) ;
      When ( "A" ) do ;
         Type = "C" ;
         FmtName = "$" || FmtName ;
      End ;
   End ;
%Mend _ReadVStatement ;

Not too bad.  Statement type G denotes a group of
variables, and is not a part of the SAS data set.  So we
will drop that record.

As you can see, we had to do some coding here.  But the
macro is still quite easy to visualize.  We will need to
define the %_ReadNextRecordCode macro before we
are done, but we need that macro for our
%_ReadOneStatement macro anyway.

READ C STATEMENT
The code statement equates coded (actual or range of)
values to a description.  If a survey item (such as a
verbatim answer or a comment) does not have codes, no
C statement is required.  You have the option to link the C
statement to a skip pattern statement by one or more
asterisks.  The code statement consists of five elements:

C [******] value = text

You use the + (blank) code when the question is skipped.

%Macro _ReadCStatement ( debugging=0 ) ;
   %_ReadValueRange( debugging=&debugging )
   %_ReadValueLabel( debugging=&debugging )
%Mend _ReadCStatement ;

Okay, we have read the V statement to get the variable
name and its type.  From that, we have built the format
name.  Now we have read the starting and ending values
and the label.  We will need to define the
%_ReadValueRange and %_ReadValueLabel macros.

READ NEXT RECORD CODE
The %_ReadNextRecordCode macro was called by the
%_ReadOneStatement and %_ReadVStatement
macros.  This macro simply looks ahead to see what the
statement identifier is for the next line of code.

If we are on the last record we cannot advance to the next
record.  Duh!  So simply release the record with the
INPUT statement (no trailing @@).  Otherwise advance to
the next record and read the first character.

%Macro _ReadNextRecordCode (debugging=0) ;
   If EOF
      then input ;
      Else input
         / @1 _NextRecordCode_ : $1. @@
      ;
%Mend _ReadNextRecordCode ;

Hey, this macro calls no others!  So this is the end of this
branch and the code was really quite simple.

VIRGULE ERR MESSAGE
The %_VirguleErrMessage macro is called by the
%_ReadOneStatement macro, but it really should never
be called at all.  That is to say, all line continuations
should be processed by one of the %_Read?Statement
macros where ? is in {P,H,V,Q,C,R,S,A}.  However, if the
source file is badly written we might try to read a line
continuation from the %_ReadOneStatement macro and
we will need to know that something is wong.



%Macro _VirguleErrMessage ( debugging=0 ) ;
   Put
      "ERROR: / records should never be"
      " accessed from the"
      " _ReadOneStatement macro!"
    / _inFile_
   ;
   %_GoToNextStatement(
      debugging=&debugging
   )
%Mend _VirguleErrMessage ;

GEN ERR MESSAGE
Suppose a statement starts with a symbol other than
those in { P,H,V,Q,C,R,S,A,/}.  Then we have another
error in the source file that we need to know about.  So
let's write this error and move on.

%Macro _GenErrMessage ( debugging=0 ) ;
   Put
      "WARNING: " _StatementType_=
      "is not coded."
    / _inFile_
   ;
   %_GoToNextStatement(
      debugging=&debugging
   )
 %Mend _GenErrMessage ;

We still have macros that have been called but not
defined.  We need to go deeper with our programming.

DEEPER AND DEEPER

GO TO NEXT STATEMENT
The %_GoToNextStatement macro was called by the
%_ReadPStatement, %_ReadHStatement, …  macros.
So let's define it here.

Statements can span records, so we need to keep
skipping records until the next record code is not a line
continuation.  Since we have already defined the
%_ReadNextRecordCode macro, we will use it here.

%Macro _GoToNextStatement ( debugging=0 ) ;
   %_ReadNextRecordCode(
      debugging=&debugging
   )
   Do while ( _NextRecordCode_ eq "/" ) ;
      %_ReadNextRecordCode(
         debugging=&debugging
      )
   End ;
%Mend _GoToNextStatement ;

Again, this is very simple code.  We have already defined
the %_ReadNextRecordCode macro.

READ VALUE RANGE
The %_ReadValueRange macro was called by the
%_ReadCStatement macro.  Let's investigate how to
build this macro.

The value that we want to read might be a single value or

it might be a range of values of the form lowest value –
highest value.  It also might have a series of asterisks
before the values that indicate a condition that prompts us
to skip certain questions.  About the only thing that all of
the C statements have in common is an equals sign that
separates the value label from the rest of the statement.

Let's define the a temporary variable, called _Value_, with
plenty of space so that we can be sure to include all the
source-file code for the value.  How long does it need to
be?  Well, the limit for a record in the source file is 100
characters.  The first character must be a statement
identifier or a line continuation indicator.  That leaves 99
characters.  So let's make _Value_ 99 characters long.
Why not; it's a temporary variable.  The value, or range of
values, is the part before the equal sign, with any
asterisks (skip indicators) removed.  Since the source
code is free format, and spaces have little meaning, let's
compress out the spaces so that we have consistent code
to process.  Plus signs (+) indicate missing values;
multiple plus signs simply reflect the length of the field.
So we will need to convert the source file's missing value
indicator to the appropriate SAS missing value indicator.
For now, we will simply insert a macro call to indicate this
task needs to be coded.  We will probably want to pass
the name of the variable that we want to set to missing,
and the name of the variable that specifies the data type,
in case this macro sees further use.

If we are working with a range of values rather than a
single value, we will need to parse that range into the
starting value and the ending value.  If we are working
with only one value we will simply copy the value of Start
to End.

%Macro _ReadValueRange ( debugging=0 ) ;
   Input _Value_ $char99. @@ ;
   _Value_ = scan( _Value_ , 1 , "=" ) ;
   _Value_ = compress( _Value_ , " *" ) ;
   If index(_Value_,"+")
      then do ;
         %_SetPlusToMissing(
            var=_Value_
          , type=Type
          , debugging=&debugging
         )
      End ;
      Else do ;
         Start = scan( _Value_ , 1 , "-" ) ;
         End   = scan( _Value_ , 2 , "-" ) ;
         If ( End = " " ) then End = Start ;
      End ;
%Mend _ReadValueRange ;

The SCAN function looks for words, and allows us to
specify word partitions.  So SCAN( _Value_ , 1 , "=" ) tells
SAS to partition the character string called _Value_ into
smaller character strings using the equal sign (=) as the
partition delimiter.  The "1" tells SAS to return the first
partition.  So this gives us all the characters between the
statement identifier (C) which is not part of _Value_ and
the equal sign.

The COMPRESS function removes characters specified in



the second argument from the first argument.  So
COMPRESS( _Value_ , " *" ) will remove the skip-pattern
indicators; we are not dealing with them in this code.
White space is not significant; the creators of the source
file can include spaces or not, as they prefer.  But we
need something constant to deal with.  So let's use the
COMPRESS function to remove blanks.  Of course, we
can remove both the blanks and the asterisks with one
compress function.

We will define the %_SetPlusToMissing macro later.

PROC FORMAT does not require that a CNTLIN= data
set have an End variable, but if it does it must not have
missing values.  If we are dealing with a range of values,
we need to partition our _Value_ variable into the part
before the hyphen (called Start) and the part after (called
End).  If there is no hyphen, we must populate the End
variable with the contents of the Start variable.

READ VALUE LABEL
The %_ReadValueLabel macro was called by the
%_ReadCStatement macro.  The value label starts after
the equal sign (=) and continues to the start of the next
statement.  Remember, it can span multiple input lines.
So we need read, check if the new line is a new
statement, and concatenate the new line to the label as
long as the new line is still a continuation of the statement.

Starting after the equals sign (=), read the first of the value
label.  When you ask SAS to start input immediately after
it finds a character string, it only searches forward for that
character string.  If our input pointer is already past the
equals sign, then we will have to move the pointer back to
the start of the line.  So, to be safe, let's always back up.
After reading the part of the label on the initial record of
the C statement, we will append any line continuations to
the label.

%Macro _ReadValueLabel ( debugging=0 ) ;
   Input @1 @"=" Label ?? $char99. @@ ;
   %_ReadNextRecordCode(
      debugging=&debugging
   )
   Label = left( Label ) ;
   Do while ( _NextRecordCode_ eq "/" ) ;
      Input _MoreLabel_ ?? $char99. @@ ;
      Label =
         trim( Label ) || " " ||
         left( _MoreLabel_ )
      ;
      %_ReadNextRecordCode(
         debugging=&debugging
      )
   End ;
%Mend _ReadValueLabel ;

We called the same %_ReadNextRecordCode macro
that we called in the %_ReadOneStatement,
%_GoToNextStatement, and %_ReadVStatement
macros.

GET ON DOWN

SET PLUS TO MISSING
It seems the only macro we have yet to define is the
%_SetPlusToMissing macro which was called by the
%_ReadValueRange macro.  The %_SetPlusToMissing
will set the variable passed in with the var= parameter to
the appropriate missing value based on the data type as
defined by the type= parameter.

%Macro _SetPlusToMissing (
   var=Start
   type=Type
 , debugging=0
) ;
   Select ( &type ) ;
      When ( "C" ) &var = " " ;
      When ( "N" ) &var = "." ;
      Otherwise put
         "ERROR: For variable " VarName
         "-- " &var= "and " &type=
       / _inFile_
      ;
   End ;
%Mend _SetPlusToMissing ;

Another simple macro.

Hey, we're done!

CONCLUSION
As you see, jobs are much simpler to understand,
program, and modify if they are approached from a top-
down perspective.  Look at the general requirements for
the job and, if the steps are too complicated or if you
simply don't understand them yet, code a macro call and
worry about the coding of the macro later.  Keep working
in this fashion until the tasks get simple enough to easily
code.

Remember, it is much easier to read code if you can see
the beginning and the end of a block of code on one page
– even better a half page.

REFERENCES
"Working on a SAS Job" is a parody of Lee Dorsey's
"Working in a Coal Mine."

ACKNOWLEDGMENTS
I want to thank Ian Whitlock of Westat for his continual
support and encouragement in my career growth.  He was
an inspiration before I met him, and has proven to be a
wonderful mentor and friend since.

I also want to thank Dianne Rhodes of Westat, who
directed my focus toward more career-enhancing facilities
such as SAS Users Groups and the SAS-L list server
when we both worked elsewhere.

Finally, I want to thank all the wonderful and insightful
contributors to SAS-L for their selfless contributions.  They
have proven to be my most valuable aid as I learn how to
be a SAS programmer.

SAS is a registered trademark of SAS Institute Inc. in the



USA and other countries.  � indicates USA registration.

Other brand and product names are registered
trademarks or trademarks of their respective companies.

CONTACT INFORMATION
Your comments and questions are valued and
encouraged.  Contact the author at:

Edward Heaton
Westat
1650 Research Boulevard
Rockville, MD 20850
Work Phone: (301) 610-4818
Fax: (301) 294-3992
Email: EdwardHeaton@Westat.com



Paper #P814

The Power of PROC DATASETS
Lisa M. Davis, Blue Cross Blue Shield of Florida, Jacksonville, Florida

ABSTRACT
The DATASETS procedure can be used to do many functions that are
normally done within a SAS data step more efficiently.
 For example:

� Labeling and renaming variables
� Concatenating and indexing datasets

This paper will demonstrate the power of the PROC DATASETS
procedure and the enhancements made in V8.  This paper is intended
for beginning to intermediate SAS users.  PROC DATASETS is a
powerful procedure that everyone needs to know.

INTRODUCTION
PROC DATASETS is a SAS utility used to manage more than one
SAS file at a time. This procedure allows you to append, copy, delete,
label, rename, index, and collect information about the dataset that
has been modified, all in one step.  The DATASETS procedure
executes in order.  The first statement executes first, then the second,
and so on.  This allows you to concatenate two data sets, then rename
the variables, change the labels and create an index all in the same
procedure.  The ability to do so improves processing time,
programming length, and data steps needed.  The following is a list of
statements used in the DATASETS procedure:

 PROC DATASETS;
AGE;
AUDIT;
CHANGE;
CONTENTS;
COPY;
   EXCLUDE;
   SELECT;
DELETE;
EXCHANGE;
MODIFY;
    FORMAT;
    IC CREATE;
    IC DELETE;
    IC REACTIVB;

       INDEX CREATE;
    INDEX DELETE;
    INFORMAT;
    LABEL;
    RENAME;
REPAIR;
SAVE;

RUN;
QUIT;  

This tutorial will show you why and how to use PROC DATASETS.
We will not cover all statements and options with the DATASETS
procedure, but you will walk away knowing how powerful this
procedure is.

THE DATASETS STATEMENT
The DATASETS procedure is an interactive procedure that executes
immediately and does not stop processing until QUIT or RUN
CANCEL command is issued.  The DATASETS statement executes a
list of all of the members in a SAS library in the log of your program.
The list can contain members with a member type of: data, view,
access, catalog, any and program.

The general form of the DATASETS statement is:

PROC DATASETS LIBRARY=LIBREF
  MEMTYPE=MEM-LIST <OPTIONS>;

The LIBRARY=  and MEMTYPE= are options, but I always
stress to specify both a library reference and a member type
so you know what library and member type you are working
with.  This is crucial when you have several member types in
the same library that could be named the same.

If you haven’t worked with a library over a period of time, this is
a good way to find out what is in that library.  Here is the code
to do so:

libname mylib 'c:\temp';

proc datasets library=mylib memtype=data;
run; quit;

Refer to OUTPUT 1.1 in the appendix
The output generated in you r log, gives you the libref pointing
to the library, engine the data set was created with, physical
name, file name, name of the datasets that are located in that
library, the memtype (in this case memtype = data), file size,
and the day and time the data set was last modified.  As you
can see there are three data sets in the library: MORTGAGES,
PLUS, SECUREDLOANS.  These are the data sets we will be
working with throughout this tutorial.

One other option I want to cover with the DATASETS
statement is KILL.  KILL deletes all data sets within a library
automatically.  The general form is:

proc datasets library=mylib memtype=data
kill;

Caution:  KILL executes immediately before the DATASETS
procedure completes processing.

THE CONTENTS STATEMENT
The CONTENTS statement acts the same as the CONTENTS
procedure.  This statement gives you information about the
variables within a SAS library.  How do you know which one to
use?  The CONTENTS statement is very useful when you are
combining other DATASETS statements to manipulate a SAS
library.  Otherwise PROC CONTENTS is recommended to use.
The general form of the CONTENTS statement is:

CONTENTS DATA=LIBREF.MEMBER <OPTIONS>

DATA = is an option that is very useful to always use.  This
specifies which library and member you want contents on.  The
libref is not always needed in the case that the libref is
specified in the DATASETS statement.  _ALL_ is also an
option that may be used when you want contents on all of the
data sets that reside in that library.

To find out what variables reside in the data set
SECUREDLOANS submit the following code:

libname mylib 'c:\temp';



proc datasets library=mylib memtype=data;
contents data=securedloans;
run; quit;

Refer to OUTPUT 1.2 in the appendix.
The CONTENTS statement is added after the DATASETS statement
after all the changes have been done to that dataset. The CONTENTS
statement gives you number of observations, engine created with, last
date modified, and engine host information. It also gives you a list of
variables within the data set, type of variable, length, format, position,
informat, and labels.  Examples of how the CONTENTS statement is
used with other statements will be covered later in the tutorial.

THE APPEND STATEMENT
The APPEND statement is used to concatenate two SAS data sets
together.  SAS takes one data set and appends the second data set to
the bottom of the first.  Being able to do this in one step saves
processing time and space allocation.  Only SAS data sets can be
concatenated together.
The general form of an APPEND statement is:

APPEND BASE=SAS DATASET DATA=SAS DATASET <FORCE>

The BASE= is the SAS dataset that you want the observations added
to.  The DATA= is the SAS dataset that you want added.  FORCE is
an option that is used when you want to force a concatenation when
the two data sets have different variable names.   The following code
is an example of concatenating two data sets and viewing the contents
after the two are appended.

libname mylib 'c:\temp';

proc datasets library=mylib memtype=data;
append base=securedloans data=mortgages;
contents data=securedloans;
run; quit;

Refer to OUTPUT 1.3 in the appendix
This example appends the MORTGAGES data set to the bottom of the
SEUREDLOANS data set.  The contents is ran on the
SECUREDLOANS data set showing that the number of observations
in MORTGAGES have been added to SECUREDLOANS.  The
MORTGAGES data set still exists in the library.  This was done in one
procedure versus a data step, creating a third data set, and the
CONTENTS procedure.  This may not be noticeably faster with small
data sets, but as the data sets exist of million of rows, the processing
time surpasses by hours and space allocation is greatly reduced.  Of
course this means major savings, these days.

THE DELETE STATEMENT
The DELETE statement deletes specified data sets within a library.
Multiple data sets or all of the data sets can be deleted at the same
time in a library.  The deletion occurs immediately, and does not wait
for the DATASETS procedure to complete.  For example:  If you delete
a member in the first line of the DATASETS procedure you cannot run
a CONTENTS statement referring to that member.  You will receive a
‘this file does not exist’ error.  The advantage of using the DELETE
statement is during a long process you can delete data sets that are
no longer being used.  This frees up space and reallocates this space
to be used in your same process.

The general form of the DELETE statement is:

DELETE MEMBER-LIST

For an example:

libname mylib 'c:\temp';

proc datasets library=mylib memtype=data;
append base=securedloans data=mortgages;
delete mortgages;
contents data=securedloans;
run; quit;

The DELETE statement here deletes the data set
MORTGAGES because this data set has been appended to
the SECUREDLOANS data set and is no longer needed.  The
space MORTGAGES was occupying is now free to be used to
store another data set.

THE MODIFY STATEMENT
The MODIFY statement; in my opinion is the most powerful
and useful statement in the DATASETS procedure.  Within the
MODIFY statement you can label, rename, create and delete
indexes, create integrity constraints, delete integrity
constraints, reactivate integrity constraints, format, and
informat variables within a library.  These actions can only
occur after a MODIFY statement.  We will discuss several of
these actions that are most used in this procedure.  The
structure of the MODIFY statement is:

MODIFY DATA SET <OPTIONS>;
    FORMAT;
    IC CREATE;
    IC DELETE;
    IC REACTIVB;
    INDEX CREATE;
    INDEX DELETE;
    INFORMAT;
    LABEL;
    RENAME;

The MODIFY statement alone points to the data set that you
want to change.  The LABEL option allows creating or deleting
a label on the data set specified.  For example:

libname mylib 'c:\temp';

proc datasets library=mylib memtype=data;
modify securedloans(label='Secured Loans');
contents data=securedloans;
run; quit;

Refer to OUTPUT 1.4 in the appendix
As you can see in the contents output you can see that the
SECREDLOANS data set has been labeled ‘SECURED
LOANS’.  If you wanted to delete this label you would use the
label option and leave a blank ‘ ‘.  Also with multiple MODIFY
statements you can modify more than one dataset at a time.
The reason you may want to do this is to prepare two data sets
to be merged without all of the preparation data steps.

libname mylib 'c:\temp';

proc datasets library=mylib memtype=data;
modify securedloans(label='Secured Loans');
modify mortgages (label='Mortgage Loans');
contents data=securedloans;
contents data=mortgages; run;quit;

THE INDEX STATEMENT
The INDEX statement allows you to create or delete an index
on a SAS data set.  Creating an index on a SAS data set
allows for more efficient processing of observations.  If you
wanted to do BY processing on two data sets with an index
created, sorting is not needed.  By eliminating sorting, again
processing time and space is saved.  The advantage of



creating an index instead of sorting is within the DATASETS procedure
you can combine several statements to manipulate the data set in one
procedure instead of multiple.   If you wanted to merge two data sets
you could do so without sorting.  Once an index is created, you can
rename, copy, label, etc… and the index will be transferred.
The general form of an INDEX statement is:

INDEX CREATE  VARIABLE-LIST  or
INDEX DELETE INDEX-LIST

If you want to merge two very large data sets by two variables, you
can first create an index on these two variables on both data sets at
the same time.  For example:

libname mylib 'c:\temp';

proc datasets library=mylib memtype=data;
modify securedloans(label='Secured Loans');

index create accno cct_no;
modify plus (label='Plus Customers');

index create account companycost;
contents data=securedloans;

run;quit;

Refer to OUTPUT 1.5 in the appendix
By creating an index on the SECUREDLOANS data set and PLUS
data set, you have avoided two SORT procedures, saving time and
space again.  As you look in the indexes portion of the contents
output, you can see that the indexes create two extensions of the data
sets.  These extensions are treated as the data set; so all indexes
transfer through all modifications.

THE LABEL STATEMENT
The LABEL statement allows you to label variable within a data set.
Multiple variables can be labeled within one MODIFY statement.
Multiple variables from different data set can also be labeled within
several MODIFY statements.
The general form of a LABEL statement is:

LABEL VARIABLE=’LABEL’;

For example:

libname mylib 'c:\temp';

proc datasets library=mylib memtype=data;
modify securedloans(label='Secured Loans');

label accno='Account Number'
  cct_no='Cost Center';

modify plus (label='Plus Customers');
label acct='Account Number'

  cost='Cost Center';
contents data=securedloans;

run;quit;

Refer to OUPUT 1.6 in the appendix
As you can see in the variable list portion of the contents output you
can see that ACCNO and CCT_NO have been labeled within the
SECUREDLOANS data set.  Along with ACCT and COST within the
PLUS data set.  The advantage of using the LABEL statement with the
DATASETS procedure is that the labels are stored permanently in the
data set.  If you execute a LABEL statement within other procedures
such as: PROC FREQ, PROC PRINT, etc, the label is only active for
that procedure.  With the labels being stored permanently, you do not
have to worry about label consistency throughout the reports you
produce.

THE RENAME STATEMENT

The RENAME statement allows you to rename variables within
a data set.  Multiple variables can be renamed at one time.
The general form of a RENAME statement is:

RENAME VARIALBLE=NEW VARIABLE

 Once you rename a variable, the new name overwrites the old
name.  As you can tell we are building step-by-step of the
DATASETS procedure to allow you to get the most benefit and
power of this procedure.  So if you wanted to merge two data
sets by two variables that were named different in both data
sets, you would rename the variables so they matched for
merging.  First you would want to create an index, so you could
avoid sorting, second rename the variables so they match
each other, avoiding one possibly two data steps.  For
example:

libname mylib 'c:\temp';

proc datasets library=mylib memtype=data;
modify securedloans(label='Secured Loans');

index create accno cct_no;
rename accno=accountnumber

           cct_no=costcenter;
label accountnumber='Account Number'
      costcenter='Cost Center';

modify plus (label='Plus Customers');
index create account companycost;
rename account=accountnumber
       companycost=costcenter;
label accountnumber='Account Number'
      costcenter='Cost Center';

contents data=securedloans;
run;quit;

Refer to OUPUT 1.7 in the appendix
In this example we are preparing our data sets to be able to
merge.  We have labeled our data sets in the MODIFY
statements.  We created indexes on the two data sets.  Now
we renamed ACCNO to ACCOUNTNUMBER and CCT_NO to
COSTCENTER in the SECUREDLOANS data set.  Then we
did the same in the PLUS data set.  We renamed ACCOUNT
to ACCOUNTNUMBER and COMPANYCOST to
COSTCENTER.  After renaming the variables, the index is
transferred to the new names of the variables.  This is why it
was crucial to create the index before renaming or modifying
the data set any further.  In the contents output of
SECUREDLOANS you can see that the variables have been
renamed and the indexes have been transferred to the new
names.

THE FORMAT STATEMENT
The FORMAT statement is used to modify, change, or add a
format onto a variable.  You can also use the INFORMAT
statement to change how the variable is read in.  The
FORMAT statement changes how the variable is put out.

The general form of the FORMAT and INFORMAT statements
are:

FORMAT VARIABLE-LIST format    or
INFORMAT VARIABLE-LIST format

The following is an example of how the FORMAT statement is
used:

libname mylib 'c:\temp';

proc datasets library=mylib memtype=data;
modify securedloans(label='Secured

Loans');



index create accno cct_no;
rename accno=accountnumber

cct_no=costcenter;
label accountnumber='Account Number'

  costcenter='Cost Center';
format accountnumber $12.

costcenter 8.;
modify plus (label='Plus Customers');

index create account companycost;
rename account=accountnumber
   companycost=costcenter;
label accountnumber='Account Number'

costcenter='Cost Center';
format accountnumber $12.

costcenter 8.;
contents data=securedloans;

run;quit;

In this example we have made ACCOUNTNUMBER to be outputted as
a character with a length of 12,  COSTCENTER a numeric with a
length of 8.  Notice that both the LABEL and FORMAT statements
were done on the new variable names.  This is allowed because the
DATASETS procedure executes in order and automatically.

TYING EVERYTHING TOGETHER
Now that we have learned the basics of the DATASETS procedure,  I
want to give a complete example of everything we have learned and
compare it to what you would have to do if you did not use the
DATASETS procedure.
Example:

libname mylib 'c:\temp';

proc datasets library=mylib memtype=data;
append base=securedloans data=mortgages;
delete mortgages;
modify securedloans(label='Secured Loans');

index create accno cct_no;
rename accno=accountnumber

cct_no=costcenter;
label accountnumber='Account Number'

costcenter='Cost Center';
format accountnumber $12.

costcenter 8.;
modify plus (label='Plus Customers');

index create account companycost;
rename account=accountnumber
   companycost=costcenter;
label accountnumber='Account Number'

costcenter='Cost Center';
format accountnumber $12.

costcenter 8.;
contents data=securedloans;

run;quit;

Refer to OUTPUT 1.8 in the appendix
This example gives us a complete look at the statements we have
covered.  This example is good for the following scenario:
You have three SAS data sets.  Two of the data sets have the same
data but about different products.  You want to combine the two
product data sets and merge it with the third data set to get
demographic information on those customers with these precuts.  So
the steps would be:

1. Concatenate the two product data sets together
2. Delete the data set that was concatenated so you can save

of space
3. Create an index so when you merge the two data

sets you do not have to sort them
4. Rename the variables on the two data sets so they

will be able to merge
5. Label the data set and variables to have consistency

on reports
6. Format how you want the variables outputted on your

reports
7. Get information about the two data sets to make

sure everything is correct

All seven steps can be done in one procedure.  Here is an
example of what would have to been done if the DATASETS
procedure was not used:

libname mylib 'c:\temp';

data mylib.three;
format accountnumber $12.

   costcenter 8.;
  set mylib.one(rename=(accno=accountnumber
                      cct_no=costcenter))
    mylib.two(rename=(accno=accountnumber
                      cct_no=costcenter));

label accountnumber='Account Number'
  costcenter='Cost Center';

run;

proc datasets library=mylib memtype=data;
delete one tow;
run;quit;

proc contents data=mylib.three;
run;

data mylib.plus2;
format accountnumber $12.

   costcenter 8.;
  set mylib.plus(rename=(acct=accountnumber
                  companycost=costcenter));

label accountnumber='Account Number'
  costcenter='Cost Center';

run;

proc datasets library=mylib memtype=data;
delete plus;
run;quit;

proc contents data=mylib.plus2;
run;

proc sort data=mylib.three;
by accountnumber costcenter;
run;

proc sort data=mylib.plus2;
by accountnumber costcenter; run;

In this example you can see that the program is much longer
(code wise) , multiple data steps and procedures were used.
Processing time was always faster using the DATASETS
procedure, but the time was greatly reduced when using large
amounts of data.  By using the second example, it requires you
to know more syntax, procedures and data steps within SAS.
If you know the DATASETS procedure you can do all of this
with only knowing one procedure.

CONCLUSION
The DATASETS procedure is a powerful procedure to know.   I
only touched on the basis of this procedure; how to know what
data sets exist in your library,  information on the variable



within you data set,  append two data sets together,  indexing data
sets, renaming variables, labeling data sets and variables, modifying
data sets, deleting data sets, all within one procedure.  There are a lot
more things this procedure can do and I challenge you learn all you
can about this procedure.  Saving time, space and work is what our
goal is as programmers.  PROC DATASETS does all three for us with
little effort.

REFERENCES
SAS Institute Inc. (1990), SAS Procedures Guide, Version 6, Third
Edition, Cary, NC: SAS Institute Inc.

SAS Institute Inc. (1990), SAS Language Reference, Version 6, Third
Edition, Cary, NC: SAS Institute Inc.

SAS Institute Inc. (1999), “SAS Procedures”, SAS Version 8 Online
Documentation, Cary, NC: SAS Institute Inc.

SAS is a registered trademark or trademark of the SAS Institute Inc. in
the USA and other countries.  � indicates USA registration.

ACKNOWLEDGMENTS
Special thanks to Kevin Finnerty for allowing the time to create this
tutorial.

CONTACT INFORMATION
Your comments and questions are valued and encouraged.  Contact
the author at:

Lisa M. Davis
Blue Cross Blue Shield of Florida
4800 Deerwood Campus Parkway
DCC3-2
Jacksonville, Florida 32243
Work Phone: 904-905-3019
Fax: 904-905-1009
Email: lisa.davis@bcbsfl.com



APPENDIX

OUTPUT 1.1

Libref:        MYLIB
Engine:        V8
Physical Name: c:\temp
File Name:     c:\temp

                             File
#  Name          Memtype     Size  Last Modified

______________________________________________________
1  MORTGAGES     DATA      648192   19JUL2000:21:53:54
2  PLUS          DATA      123904   19JUL2000:21:52:56
3  SECUREDLOANS  DATA      656384   19JUL2000:16:02:02

OUTPUT 1.2

The DATASETS Procedure

Data Set Name: MYLIB.SECUREDLOANS      Observations: 10000
Member Type: DATA                      Variables:    8
Engine:        V8                      Indexes:      0
Created:15:10 Tuesday, July 11, 2000   Observation Length: 64
Last Modified: 16:02 Wednesday, July 19, 2000
Deleted Observations: 0
Protection:                            Compressed:   NO
Data Set Type:                         Sorted:       YES
Label:

-----Engine/Host Dependent Information-----

                   Data Set Page Size:         8192
                   Number of Data Set Pages:   80
                   First Data Page:            1
                   Max Obs per Page:           127
                   Obs in First Data Page:     96
                   Number of Data Set Repairs: 0
                   File Name: c:\temp\securedloans.sas7bdat
                   Release Created:            8.0000M0
                   Host Created:               WIN_NT

#    Variable         Type    Len    Pos    Format Informat  Label
 ____________________________________________________________________________
 1  ACCNO             Char     21     32    $21.    $21.     ACCNO
 3  ACC_OPN_DT        Num       8      8    DATE9.  DATE9.   ACC_OPN_DT
 6  ACC_PD_CTGY_CD    Char      3     53    $3.     $3.      ACC_PD_CTGY_CD
 2  CCT_NO            Num       8      0    11.     11.      CCT_NO
 4  CLS_DT            Num       8     16    DATE9.  DATE9.   CLS_DT
 7  PRD_PRMRY_TYPE_CD Char      3     56    $3.     $3.      PRD_PRMRY_TYPE_CD
 8  PRD_SECDRY_TYP_CD Char      3     59    $3.     $3.      PRD_SECDRY_TYP_CD
 5  acctbalance       Num       8     24    17.2    17.2     Average Account

-----Sort Information-----

Sortedby:      CCT_NO
Validated:     YES
Character Set: ANSI



OUTPUT 1.3

The DATASETS Procedure

       Data Set Name: MYLIB.SECUREDLOANS     Observations:     20000
       Member Type:   DATA                   Variables:            8
       Engine:        V8                     Indexes:              0
       Created:15:10 Tuesday, July 11, 2000  Observation Length:  64
       Last Modified: 22:03 Wednesday, July 19, 2000
       Deleted Observations: 0
       Protection:                           Compressed:          NO
       Data Set Type:                        Sorted:              NO
       Label:

OUTPUT 1.4

The DATASETS Procedure

       Data Set Name: MYLIB.SECUREDLOANS      Observations:     20000
       Member Type:   DATA                    Variables:            8
       Engine:        V8                      Indexes:              0
       Created:15:10 Tuesday, July 11, 2000   Observation Length:  64
       Last Modified: 22:19 Wednesday, July 19, 2000
       Deleted Observations: 0
       Protection:                            Compressed:          NO
       Data Set Type:                         Sorted:              NO
       Label:         Secured Loans

OUTPUT 1.5

-----Directory-----

Libref:        MYLIB
Engine:        V8
Physical Name: c:\temp
File Name:     c:\temp

                                        File
    #  Name           Memtype      Size    Last Modified
    ________________________________________________________
    1  MORTGAGES      DATA       656384   19JUL2000:22:26:26
    2  PLUS           DATA        74752   20JUL2000:00:28:04
       PLUS           INDEX       21504   20JUL2000:00:28:04
    3  PLUSCUSTOMERS  DATA       123904   19JUL2000:22:05:48
    4  SECUREDLOANS   DATA      1950720   20JUL2000:00:28:02
       SECUREDLOANS   INDEX      865280   20JUL2000:00:28:02



OUTPUT 1.6

-----Alphabetic List of Variables and Attributes-----

# Variable          Type    Len  Pos   Format  Informat  Label
 _______________________________________________________________________
1 ACCNO             Char     21  32    $21.     $21.     Account Number
3 ACC_OPN_DT        Num       8   8    DATE9.   DATE9.   ACC_OPN_DT
6 ACC_PD_CTGY_CD    Char      3  53    $3.      $3.      ACC_PD_CTGY_CD
2 CCT_NO            Num       8   0    11.       11.     Cost Center
4 CLS_DT            Num       8  16    DATE9.    DATE9.  CLS_DT
7 PRD_PRMRY_TYPE_CD Char      3  56    $3.       $3.     PRD_PRMRY_TYPE_CD
8 PRD_SECDRY_TYP_CD Char      3  59    $3.       $3.     PRD_SECDRY_TYP_CD
5 acctbalance       Num       8  24    17.2      17.2    Average Account

OUTPUT 1.7

-----Alphabetic List of Variables and Attributes-----

 # Variable          Type    Len  Pos   Format   Informat  Label
 ____________________________________________________________________________
 3 ACC_OPN_DT        Num       8    8   DATE9.    DATE9.    ACC_OPN_DT
 6 ACC_PD_CTGY_CD    Char      3   53    $3.       $3.      ACC_PD_CTGY_CD
 4 CLS_DT            Num       8   16   DATE9.    DATE9.    CLS_DT
 7 PRD_PRMRY_TYPE_CD Char      3   56    $3.       $3.      PRD_PRMRY_TYPE_CD
 8 PRD_SECDRY_TYP_CD Char      3   59    $3.       $3.      PRD_SECDRY_TYP_CD
 1 accountnumber     Char     21   32    $12.      $21.     Account Number
 2 costcenter        Num       8    0    F8.       11.      Cost Center
 5 acctbalance       Num       8   24    17.2      17.2     Average Account

-----Alphabetic List of Indexes and Attributes-----

                                                 # of
                                                 Unique

#    Index             Values
______________________________
1    accountnumber     10000
2    costcenter          116



OUTPUT 1.8

   -----Directory-----

                                     Libref:        MYLIB
                                     Engine:        V8
                                     Physical Name: c:\temp
                                     File Name:     c:\temp

                                                   File
                    #  Name           Memtype      Size  Last Modified
                    ________________________________________________________
                    1  PLUS           DATA        74752   20JUL2000:00:33:34
                       PLUS           INDEX       21504   20JUL2000:00:33:34
                    2  PLUSCUSTOMERS  DATA       123904   19JUL2000:22:05:48
                    3  SECUREDLOANS   DATA      1950720   20JUL2000:00:33:34
                       SECUREDLOANS   INDEX      865280   20JUL2000:00:33:34

        Data Set Name: MYLIB.SECUREDLOANS          Observations:   20000
        Member Type:   DATA                        Variables:          8
        Engine:        V8                          Indexes:            2
        Created:15:10 Tuesday, July 11, 2000       Observation Length:64
        Last Modified: 0:28 Thursday, July 20, 2000
        Deleted Observations: 0
        Protection:                                Compressed:        NO
        Data Set Type:                             Sorted:            NO
        Label:         Secured Loans

                          -----Engine/Host Dependent Information-----

                   Data Set Page Size:         8192
                   Number of Data Set Pages:   238
                   First Data Page:            1
                   Max Obs per Page:           127
                   Obs in First Data Page:     96
                   Index File Page Size:       4096
                   Number of Index File Pages: 211
                   Number of Data Set Repairs: 0
                   File Name:                  c:\temp\securedloans.sas7bdat
                   Release Created:            8.0000M0
                   Host Created:               WIN_NT



OUTPUT 1.8 CONTINUED

-----Alphabetic List of Variables and Attributes-----

 # Variable          Type  Len   Pos  Format  Informat  Label
 ________________________________________________________________________
 3 ACC_OPN_DT        Num     8     8   DATE9.   DATE9.  ACC_OPN_DT
 6 ACC_PD_CTGY_CD    Char    3    53    $3.       $3.   ACC_PD_CTGY_CD
 4 CLS_DT            Num     8    16   DATE9.   DATE9.  CLS_DT
 7 PRD_PRMRY_TYPE_CD Char    3    56    $3.       $3.   PRD_PRMRY_TYPE_CD
 8 PRD_SECDRY_TYP_CD Char    3    59    $3.       $3.   PRD_SECDRY_TYP_CD
 1 accountnumber     Char   21    32   $12.     $21.    Account Number
 5 acctbalance       Num     8    24    17.2      17.2  Average Account
 2 costcenter        Num     8     0    F8.       11.   Cost Center

   -----Alphabetic List of Indexes and Attributes-----

                                                  # of
                                                  Unique
                            #    Index            Values
                            _____________________________
                            1    accountnumber     10000
                            2    costcenter          116



Evaluating the Use of Enterprise Guide in Introductory Statistics Classes
Sandra B. Donaghy and Joy M. Smith, North Carolina State University, Raleigh, NC

ABSTRACT
Enterprise Guide (EG), a Windows thin client,
provides a point and click interface to the SAS ®
System.  EG allows users to access all data
types supported by the SAS System and utilize
the computing power of any Version 8 SAS
Server to generate professional reports and
graphics from the PC client interface.

In addition to the tasks that are available in the
point and click environment, EG provides a
program editor window where the full power of
the SAS System is available through traditional
SAS programming.  The code generated using
the point and click environment is viewable and
can be useful for learning SAS programming.

This paper includes a handout that we plan to
use in a pilot study this summer and our personal
evaluation of EG for use in beginning statistics
classes.  The presentation will include an online
demo and discussion of the pilot study.

INTRODUCTION
At NCSU, graduate students use SAS for their
research data analysis.  Many students report
that prospective employers prefer candidates
who are skilled SAS programmers.  For these
reasons, it would be very helpful if students were
exposed to SAS in their introductory statistics
classes.  The complexity of the SAS System has
made it difficult to introduce in beginning statistics
classes where the focus is on teaching statistical
concepts.  We are currently evaluating EG to
determine if it will make using SAS less complex
for both students and faculty.

We intend to conduct a pilot study this summer to
evaluate the use of EG in statistics classes.  We
believe students will be able to quickly perform
homework assignments without having to learn
SAS syntax.  In addition, students who want to
learn SAS programming could review the
generated code.  We are optimistic that EG will
satisfy our need for a point and click interface to
SAS.

In order for EG to be valuable, it must provide
easy data access, analysis, and reporting with
minimal need for support.  This pilot study should
help identify EG features that students find
confusing.  We are hopeful that the EG interface
will provide a gentle introduction to SAS.  As the
students progress in their studies, they will
benefit from learning SAS code and the code
window should be useful at that point.  The code

window will be used in classes where instructors
provide sample SAS programs to their students.
The results of this pilot study will be shared at the
paper presentation.

In addition to teaching, we provide computer and
statistical consulting to researchers on campus.
EG may be useful to these faculty, staff, and
graduate students when they analyze research
data.  EG will affect this consulting, but we can
only speculate on what the effects will be.  We
are glad that the option to write our own code
exists in case a task does not exist or we do not
know how to accomplish a task using the EG
menus and tasks.

This paper is structured as a student handout so
that large parts of it can be used in the pilot
study.  The handout introduces basic EG
concepts and provides one practice exercise.
The concepts introduced were carefully chosen
to meet the anticipated needs of beginning
statistics students.  EG has many features that
are not covered.  We hope to encourage the use
of EG by keeping this introduction simple for the
instructors and students.  We hope that students
will benefit from the exposure to SAS and be
better prepared to learn more advanced SAS
features in the future.

TESTING ENVIRONMENT
Our tests were run on Microsoft Windows NT 4.0
and Microsoft Windows 2000 Professional Edition
using EG version 1.2.0.242 and SAS version 8.2
loaded locally.  No effort has been made to
evaluate processing on remote servers since this
arrangement will not be necessary in the
classroom.

Currently at NCSU, there are two PC
environments in which we anticipate students
and researchers will use EG.  In the computer
labs, licensed software packages, including SAS,
are distributed using Novell Client V4.60 for
Windows NT and Zenworks Application
Launcher.  In this environment, student files are
stored in their personal network file space.  This
storage space is accessed using Andrew File
System (AFS).  The SASUSER library is located
in this network space.  This setup provides
automatic backups and private storage for
student files.  Processing and workspace are on
the local PC.  Statistics classes will be taught in
these labs, and students who do not have access
to a personal computer may use these labs for



their homework.  Systems administrators will be
responsible for EG Administrator settings.

Alternatively, licensed SAS users may load SAS
and EG on personal computers.  Many of these
SAS users will have networked drives from which
data can be accessed, but we expect they will
process their data locally.  Individuals using this
setup will be responsible for the EG Administrator
settings.  In our experience no modifications are
required, so this should not present a problem

We have noticed WORK libraries left behind by
abnormally terminated SAS sessions in both of
these environments.  Any user can delete these
libraries from the PC they are logged on to, but
we have not found an efficient mechanism for
removing these inactive libraries from the lab
machines en masse.  This is not a problem
unless disk space is limited and these folders are
allowed to accumulate.

STUDENT HANDOUT

WHY USE SAS AND ENTERPRISE
GUIDE?
SAS is a very rich system of procedures that is
used extensively at research universities,
government agencies, and companies for data
analysis and reporting.  Many of our graduating
students report that they are asked if they know
SAS when they interview for jobs.  According to
the SAS web site, www.sas.com,  “Ninety-eight
percent of Fortune 100 and ninety percent of
Fortune 500 companies are SAS customers.”
Also, “SAS serves more than 35,000 business,
government and university sites in 110
countries.”  Clearly, experience with SAS is an
asset to students who intend to pursue advanced
degrees, perform research, or seek high paying
jobs in information technology.

SAS Enterprise Guide (EG) is a Windows thin
client.  It provides a point and click interface to
many parts of the SAS System and access to all
SAS features using traditional programming
methods.  Students in this class will use EG to
perform their assignments.  EG will be used
because it allows students to concentrate on the
statistical concepts instead of the SAS code.
Students interested in learning SAS syntax can
view the generated SAS code in the code
window.  Usually the generated code contains
optional statements in addition to the required
statements.  This makes the code interesting to
more advanced SAS users, but probably more
overwhelming to new SAS users.

EG provides very thorough online help and a
tutorial.  Students are encouraged to use them to
answer their questions.  To learn more select

Help � Enterprise Guide Help or Help �
Getting Started Tutorial.

PROJECTS
EG uses a project-based interface.  You can
have only one project open at a time.  For class
use, we recommend that you make each
homework assignment a separate project and
name them something like HW1, HW2, etc.  The
project window (top left panel) displays the active
project and its associated data, code, notes, and
results links.  These links are referred to in the
SAS documentation as nodes.

CREATING PROJECTS
To open a new project select: File ���� Open
and select the New tab.

To open an existing project select: File ����
Open and select the Existing tab.  Double click
on the project file.  The project will also open if
you highlight it and select OK.

To save a new project select: File ���� Save
project-name As
This method allows you to choose a name and
storage location.  It can also be used to change
the name or location of your project.  EG projects
are binary files that have the extension .seg.

To save an existing project select: File ����
Save project-name
This method will save the project with its original
name in its original location.

To close a project select: File ���� Close
project-name
If you have created any temporary data sets, you
will be asked to save them before you close the
project.

Important Note: Be aware that your data is not
stored in your project file.  Your project will
contain links to your data.  It is important to know
where your data is stored so you can back it up
or manage it as needed.  To learn more about
data storage, see the SAS Data Libraries
section of this paper.

PROJECT NODES
Nodes will be added to your project tree as you
work.  There will be nodes for data tables, query
data views, analysis tasks, SAS code, notes, and
results.  You can open these nodes by double
clicking on them.  You can drag and drop these
nodes to rearrange them.  You can delete nodes
you do not want.

PROJECT DATA
The first step in working with an EG project is to
create a link to your data.  To do this select
Insert���� Data,  or Tools ���� Import Data.  You



can also drag and drop data from Windows
Explorer.  EG can use any SAS data set that has
one of the following extensions: sd2, sd7, or
sd7bdat.  One advantage of EG is you can
access various types of data files, i.e. Excel and
Oracle, from any platform where SAS runs.  The
necessary conversions are transparent to the
user.  However, it is essential that you check your
data carefully.  Import problems have been
observed.  These problems occur when the data
does not match the assumptions that SAS makes
in order to import data transparently.  In the vast
majority of cases the assumptions are correct,
but they may not be correct for your data.  Class
data sets will be fine, but if you use other data
sets it is up to you to verify the data is imported
correctly.

Within your project, data will appear in a data
table that resembles a spreadsheet.  Variable
type, character or numeric, is indicated by the
symbol beside the variable name.  A red pyramid
indicates character data and a blue ball indicates
numeric data.

Entering data into the data table: Data can be
entered directly into the data table.  To save this
data, select File ���� Save or File ���� Save As.
Choose a folder in the Save in drop down list and
enter a filename in the File name box.  Data sets
are stored as SAS Data Files  (*.sas7bdat, V7
Long Names ) unless a different file type is
selected in the Save as type drop down list.  If
you forget to save this data, you will be asked to
save it when you close the data set or project.

Adding an existing SAS data set to your
project:  Insert ���� Data and click the Existing
tab.  Select a folder from the Look in drop-down
list.  Select the data set and click OK, or double-
click the filename.  To drag and drop a SAS data
set into your project, click and hold the left mouse
button, drag the file from an Explorer window into
the Project window and release the left mouse
button.

Adding an Excel spreadsheet to your project:
To create a SAS data set from an Excel
spreadsheet select Tools ���� Import Data and
double click on the Excel icon.  Select a folder in
the Look in drop down list and double click on
the filename.  If there are multiple sheets in the
file, you will be able to choose the sheet you
want.  Follow the instructions provided for the
rest of the steps.  You will be able to select
variables, rename variables, and add labels and
formats.  You will need to choose a data set
name and storage location.

Excel spreadsheets can also be dropped into the
project window.  Using this method, a link to the
spreadsheet will be added to your project tree
instead of a SAS data set.  You will not be able to
edit this data.

Adding data using SAS code: A data set node
will be added to your project tree for data sets
created using SAS code.  If you use a one level
name, the data set will be stored in the WORK
data library until you end your project.  When you
close your project you will be asked if you want to
store the data set permanently.  It is not required
because the data set can be recreated by
rerunning the SAS code.  However, if you do not
save the data set, the associated tasks will not be
saved either.

Some instructors provide SAS programs on their
Web sites that include both data and code.  SAS
Institute provides sample programs in the
OnlineDoc and on their Web site.  These
programs can be copied and pasted into the code
window.  More information is provided in the
section Using the SAS Code Window.

Note: Other methods for adding data to a project
are available but will not be covered because
they are more complex.  Data problems should
be rare if students are provided SAS data sets
and they store them in either their SASUSER or
EGTASK data library.

Editing data tables: Data tables are opened in
Read-Only mode.  To change the protection level
to Update select: Data� Protected.  You will
receive a message that asks if you want to
change this data to Update mode and indicates
that changes made will be applied directly to the
data.  You will also receive this prompt if you try
to edit a data set that is in Read-Only mode.

Some changes made in the data grid can be
undone using Edit ���� Undo.  However, not all
changes to a data grid can be undone.  We
recommend that you make a backup copy of your
data before editing it .



Class data sets are protected so that they cannot
be modified.  If you need to modify a class data
set, you must create a copy of the data set and
modify your copy.  You can use Windows
Explorer to place a copy of the data set into your
own file space, but do not change the data set
name.  To save a copy of a data set from within
EG, select Insert ���� Data and highlight the
desired data set.  Right click on the data set node
and select Save data-set-name As.  Chose a
folder in the Save in drop down list and click
Save.  Now you need to change the data node so
it points to your data instead of the class data.
To do this right click on the data node and select
Properties.  Click Change, choose a folder in
the Look in drop down list, double click on the
filename, and click OK.  We were not able to use
this method if the data set was stored in the
WORK data library.

Exporting Project Data:  SAS data sets can be
exported and saved in many file formats.  To
export your data, highlight the data node, right
click the mouse button, and select Save data-
set-name As/Export.  Choose a folder in the
Save in drop down list, choose a file type from
the Save as type drop down list, and click Save.

CREATING A COMPUTED COLUMN
A new column or variable can be created either
directly in the data grid or using the Query
Builder.  Using the data grid method, the new
variable is added to the existing SAS data set,
but no record of how it was created is stored
unless you copy the expression into the Label
box.  With the Query Builder method, a query
data view is created that contains all the original
data and the new column.  The funnel icon in the
project tree indicates a query data view.  It may
be confusing to have data nodes for both the
original data set and the query data view.  The
advantage of the Query Builder is that the SQL
code used to create the new column is stored
with the query data view.  The SQL code can be
viewed by checking the Preview the query code
box in the Query Builder window or by dragging
and dropping the query data view into a code
window.

Creating a computed column in the Data Grid:
Open the data file and place the cursor on the
column heading to the left of where you want to
add the new column.  Select Insert ����Columns
and click the General tab.  Type the new column
name in the Name box and the expression in the
Expression box.  We recommend that you copy
the expression into the Label box so it is stored
with the data. Click OK.

For example, if Y is an existing column, you could
create a new column or variable, LY, using the
expression LOG(Y).

Creating a computed column in the Query
Builder:  Select Tools����Query����Create from
Active Data, click the Select and Sort tab, and
click New.  In the General tab, type the name of
the new column in the Alias box.  Now, click the
Expression tab.  You can use the Expression
Builder to create the expression or type the
expression directly into the Expression box.  Click
OK to add the new column.  The new computed
column appears in the list of computed columns
on the left side of the Query Builder.

FILTERING DATA USING THE QUERY
BUILDER
When performing statistical analysis, you may
need to delete observations or subset the data.
This can be done using the Query Builder.  The
Query Builder generates SQL code to perform
these tasks.  Check boxes at the bottom of the
Query Builder window allow you to view the
query result, code, and log.  You can also open a
code window and drag and drop the query data
view from the project tree into the code window.
The SQL code will appear in the code window.

Filtering Data:  To filter data, highlight the data
node and select Data���� Filter.  Drag a variable
from the left panel to the Filter Data window.
The Edit Filter Condition window will appear to
help you build an expression.  The data set
created will be a query data view.  A data view
does not actually contain data; it contains
instructions on how to get data from the original
data set.  The funnel icon is used in the project
tree to indicate a query data view.

Saving the query data view as a SAS data set:
To save the query data view as a SAS data set,
check the Save as Data box at the top of the
Query Builder window.  If you do this, two nodes
will be added to your project tree; one for the
SAS data set and one for the query data view.
You will be able to tell them apart by their icon.
The output SAS data set will have the name you
entered in the Name box and it will be stored in
the SASUSER library by default.  To change the
default storage location you can define the
EGTASK libref.  For instructions, see the SAS
Data Library section of this paper.

JOINING DATA USING THE QUERY BUILDER
Up to sixteen tables can be joined using the
Query Builder.  To open the Query Builder
window, select Tools���� Query� Create from
Active Data.  Select the Tables tab and add data
tables using the Add Data button at the bottom.
EG will draw join lines between matching
variables in the data sets, indicating how it will
match the data sets.  The diamond on the line will
contain the join operator, usually an equal sign



(=).  To modify the join, right click on the operator
in the diamond and select Modify Join.

The default join is an inner join and the resulting
data set will contain matching rows only.  Other
join types can be selected in the Modify Join
box, which is opened by right clicking on the
operator in the diamond.  If you are joining two
tables, your output choices are matching rows
only; all rows from data1; all rows from data2; all
rows from data1 and data2.  These are referred
to as inner, left outer, right outer, and full outer
joins respectively.  This is explained in detail in
the EG online help.

CONCATENATING SAS DATA SETS
To concatenate SAS data sets, select
Data����Append Data.  If you need to rename
variables before you append the data sets, this
can be done in the data grid.

ADDING NOTES TO YOUR PROJECT
Documentation and comments can be added to
your project using notes.
To insert a note in your project select: Insert
���� Note.

PROJECT TASKS
EG contains about 60 stored tasks.  These tasks
provide a point and click interface to many SAS
procedures.  Tasks can be accessed using the
Tools, Data, Analysis, and Graph menus.  They
are also available in the Task window.  In this
window the task list can be viewed and sorted
using the Task by Category tab or Tasks by
Name tab.

Tasks always use the current data set.  The
current data set is the data set highlighted in your
project tree.  Many tasks provide an easy way to
select analysis and classification variables;
procedure options; additional graphic output; and
output data sets.  Tasks generate SAS code and
produce results.  Code and results nodes are
added to the project tree beneath the task.  You
may need to expand the project tree in order to
see all the added nodes.

THE CODE WINDOW
The EG code window is color-coded and
provides syntax checking.  To submit code, use
one of these methods.  To use the pull down
menu, select Code ���� Run on Local.  To use the
toolbar, click the Run on Local icon.  To use the
mouse, click the right mouse button in the code
window and select Run on Local.

When you run your analysis from a code window,
a code node and all the usual nodes will be
added to your project tree.

Viewing EG generated SAS code: When you
perform a task, EG generates the SAS code.
This code can be viewed by opening the code
node.  At the beginning of the code, EG reports
the task; the date and time of execution; the
server (such as local PC); and the data source.
Reviewing the code is a good way to learn SAS
syntax.  However, for a beginning user, the SAS
code may be overwhelming.  EG code contains
many options and statements that are not
required, especially when graphs are requested.
Although this makes the code more complicated
it is a good learning tool.

Rerunning EG generated code: The code for
any task can be modified and rerun in a code
window.  To do this, open the code node you
wish to repeat.  When you attempt to make
changes to the code you will receive a prompt
that states: “This code has read-only attributes.
Do you want to add this as a modifiable code
window?”  If you choose yes, a new modifiable
code window will be opened and added to your
project tree.  This window will contain the code
you want to modify.

To rerun code with a different data set, replace
the data set name that follows the DATA= option
on the procedure statement.  This can be done
globally using Edit ���� Replace.  If the program
creates a SAS data set, you may want to replace
this data set name as well.  Many procedures use
the OUT= option to name output data sets.  If you
do not replace these names, the new data sets
will replace the existing data sets when you rerun
the code.

To identify a SAS data set, you must know its full
name.  One-way to determine the data set name
is to highlight the data node in the Project
window, click the right mouse button and select
Properties.  The File name box will display the
full data set name.  A second method is to drag
and drop the data set node from the Project
window to an open code window.  A comment
that reports the data set name will appear, along
with a LIBNAME statement, if one was
automatically created when the data was
generated.  For more information on LIBNAME
statements see the SAS Data Libraries section
or look in Help.

Entering and running code: You can enter and
run SAS code in the code window.  In some
cases, this may be easier than using the menus.
In some cases, it may be necessary because
there is no programmed task in EG for what you
need to do.

Copying SAS code from other sources, i.e.
the Web: SAS programs that contain data and
code can be copied from the other sources,



pasted into a code window, and submitted.  This
method allows you to run programs provided by
your instructor, OnlineDoc, or the SAS Web site.
http://www.sas.com/service/techsup/sample/sam
ple_library.html .

To do this, select Insert ���� Code and click the
New tab.  Enter a name in the Name box and
click OK.  Copy and paste the SAS program and
data into the code window.  Right click in the
code window and select Run on Local.

Saving your SAS code: Your code will
automatically be saved in your project tree, but
you can save it outside your project by selecting:
File ���� Save code As.

Saving all project code: File ���� Export All
Code.  Exporting all the code is not the same as
saving the project.  The code cannot re-create
the project.  Before saving all the code, you may
want to delete unwanted nodes.  To delete task
nodes, right click on the task in the project
window and select Delete.

RESULTS
Selecting your results style: By default, results
are stored in HTML format using the EG Default
Style.  You can select another style from the
drop-down list on the toolbar.  Results will print
much better if you select Printer instead of EG
Default.  You do not have to rerun the task,
because the HTML file is dynamically updated
when you select a new style.

Selecting your results file type:  In addition to
HTML, results can be generated as text, PDF, or
RTF files. RTF files copy very nicely into WORD
documents.  PDF files have a professional
appearance and you can easily print selected
pages from Adobe Acrobat.  Multiple file types
can be produced at the same time.  To choose
file types and other results options, select
Tools���� Options and click the Results tab.

Using EG Document Builder:  You can use the
EG Document Builder to combine the results of
multiple tasks into a single document, but you
cannot add text and ActiveX graphs may not be
displayed.  This limits the usefulness of the
Document Builder.  To build a document, select
Tools ���� Build Document.

Copying your results into a Word document:
You can cut and paste your results into a Word
document.  We recommend you choose the RTF
file type if you plan to do this.  Tables and graphs
can be edited in Word.

Printing complete task results:  To generate a
complete listing of the task results, open the

results by double clicking on the results node and
select File ���� Print.

Printing a single piece of task output:  Fully
expand the results node in the Project window,
open the desired piece of output and select File
���� Print.  Notice the entire contents of the
window are printed.

Emailing your Results:
To email your project code or data, highlight the
node, right click, and select Send To.

SAS DATA LIBRARIES
Folders that contain SAS files are referred to as
SAS data libraries.  Library references, or librefs,
are assigned using LIBNAME statements.

SASUSER is a special libref that is automatically
defined by SAS and output data sets are stored
in this library by default.

WORK is a special libref that is automatically
defined by SAS and temporary files are stored in
this library.

EGTASK is a special libref, which you can define
to identify the library where you prefer EG to
store output data sets.  If EGTASK is defined,
task output data sets will be stored in the defined
EGTASK library rather than in the SASUSER
library.

To view a list of data sets within assigned
libraries, select File����Open.  Select,
Local����Libraries in the drop down list.  Data
sets can be renamed, copied, and deleted from
within this window.  If other servers are defined
they can be found by selecting
File����Open����Servers.

To determine what librefs are defined and what
library they refer to, submit one of the following
statements:
LIBNAME _all_  list;
LIBNAME sasuser list;
LIBNAME egtask list;
LIBNAME work list;

To define EGTASK, submit a LIBNAME
statement like:
LIBNAME EGTASK “c:\st508”;
Replace c:\st508 with the name of an existing
folder where you want output data sets stored.

Note: SAS data sets stored in the SASUSER or
EGTASK libraries are considered permanent
because they will not be erased by SAS at the
end of your EG session.  Data sets stored in the
WORK library are considered temporary because
they will be erased at the end of your EG
session.



To facilitate transparent data access, EG defines
temporary librefs when you insert data into your
project from a library that has not been previously
identified.  These librefs begin with the prefix
“EC”; for example, ECLIB000.  You will notice
these librefs when you look at the SAS code, or if
you drag and drop a data node into a code
window.

EXERCISE
Before beginning, please change the following
EG settings.  All these settings will remain in
effect between EG sessions, except defining
EGTASK.  EGTASK has to be defined at the
beginning of each EG session.  EG may not use
EGTASK if it is not defined at the beginning of
the session.

Turn the agent sound off:  By default, an agent,
called Genie, will appear to assist you.  The
agent provides helpful hints, but the sounds can
be distracting.  To turn the agent sound off, right
click on the agent, and select Advanced
Character Options.  Clear the Play spoken
audio and Play character sound effects check
boxes.  You may also want to set the Speaking
speed to its fastest setting.  This will improve the
typing speed.

Change the style from EG Default to Printer:
Select Tools ���� Options and click the Results
tab.  In the Style box, replace EG Default with
Printer and click OK.

Select RTF output as well as HTML:  This is
only necessary if you want to paste your results
into a WORD document.  To choose the RTF file
type or set other results options, select Tools����
Options and click the Results tab.  Make your
selections and click OK.

Define EGTASK: We recommend you define the
EGTASK library at the beginning of each EG
session so output data sets will be stored in your
SAS data library.  For instructions, see the SAS
Data Libraries section of this paper.

EXERCISE 1
Objective:  Perform Linear Regression using
Crime Data
Data Description: This data set contains several
variables from the statistical abstracts of the
United States for the 50 states and District of
Columbia (DC).
Variables:  Murder Rate, Violent Crime Rate,
Metropolitan Residents %, White %, High School
Graduates %, Poverty Rate % and Single Parent
%.
Data Source:  Statistical Methods for the Social
Sciences by Alan Agresti and Barbara Finlay,
chapter 9.

 Add the crime data set to your project and
create the following:

1. Scatter plot of Murder versus Poverty
(Task: Graph � Line)

2. Boxplot for Murder (Task: Analysis �
Descriptive � Distribution Analysis)

3. Regression of Murder versus Poverty.
Include the following plots: Observed vs.
Predicted, Observed vs. Poverty with
Prediction Line, and Residual Plot
(Task: Analysis � Regression �
Linear);

4. Omit the DC observation from the data
set and repeat the Linear Regression
(Task: Data�Filter then repeat step #3)

5. Prepare a document of your results; be
sure to include your interpretation.

CONCLUSION
EG greatly simplifies data access. Students
should be able to easily access a wide variety of
data types from various platforms with few if any
problems.  It is important to realize that no
software can deal with every possible data file, so
it is up the student to verify that the data is
imported correctly.

EG greatly simplifies many statistical tasks.
Students should be able to generate statistical
output without having to learn SAS syntax.  This
will allow the students to concentrate on their
data and learning statistics.

EG greatly simplifies the creation of SAS graphs.
SAS/GRAH code is difficult, so only dedicated
students attempt to learn SAS/GRAPH.
However, the simplicity with which graphs can be
created in EG will lead to their increased use.
The use of graphs will enhance the data analysis
and interpretation of statistics.

EG should make simple data management tasks
easy to perform.  However, students with little
data analysis experience will probably need
instructions on joining data, filtering data, and
creating new variables.  Learning the SAS code
for these tasks would probably be harder than
learning the EG methods.

EG provides students an interactive and fairly
convenient way to learn SAS programming.  The
generated code can be viewed in the code
window.  The generated code usually contains
many options and statements that are not
required.  These are interesting to a programmer
who is comfortable with SAS code, but for a
beginning SAS user, they probably make SAS
seem more complex than it has to be.  Students
can also copy and run sample programs that are
available from many sources.  EG will provide
very limited exposure to the data step.



Understanding the data step is definitely a core
concept in SAS programming.  On the other
hand, EG will provide exposure to SQL.

Traditional SAS programmers often rely on their
programs and log files for documentation.  EG
provides logs for the tasks, but not for data sets
created from Query Builder or modified in the
data grid.  It is true that the SQL code is saved
with the query data view, but no code or log is
saved with the SAS data set.

EG will probably be useful to graduate students
and researchers at NCSU.  However, because
not all analyses are available as tasks, they may
also need to write code.  Students often run large
simulations and batch jobs. We are not sure how
these will work in our environment using EG.  It
will also be interesting to see how EG changes
the consulting we do with these clients.

EG provides a rich selection of results file types;
such as HTML, txt, PDF and RTF.  This variety of
file types provides many options for reporting
results.  We do not believe that the Document
Builder is full featured enough for our needs, but
the smooth incorporation of RTF files into Word
documents will certainly be used extensively.
Some campus members will use the HTML file
formats for reporting on the Web.  The email
feature will be useful, especially to students who
need to share their results with professors or
committee members.

We intend to introduce EG in a statistics class
before the meetings.  We plan to evaluate
whether EG can be used to provide beginning
statistics students with a relatively painless
introduction to SAS.  We hope that EG will do this
and that we will see the use of EG and SAS
increase in these classes in the future.

REFERENCES
Rigsbee, Carol and Hemedinger, Chris (2001)
“Delivering Information to the People Who Need
to Know”. Proceedings of the 26th SAS Users
Group International Conference, Paper 145-26.

TRADEMARKS
SAS is a registered trademark or a trademark of
SAS Institute Inc. in the USA and other countries.
® Indicates USA registration.

Other brand or product names are registered
trademarks or trademarks of their respective
companies.

ACKNOWLEDGMENTS
We sincerely appreciate Terry Bryon, Joe Wells,
and Laura Grady for helping us get the software,
installing it on the distributed platform, and

answering questions related to its use in this
environment.  Thanks to Dr. Jackie Dietz for the
information on how she uses SAS in her
introductory statistics classes.  Thanks to Bill
Sawyer of SAS Technical Support for his patient
and thorough responses to our questions.

CONTACT INFORMATION
Sandy Donaghy
Email: sandy_donaghy@ncsu.edu

Joy Smith
Email: joy_smith@ncsu.edu



Fuzzy Key Linkage
Robust Data Mining Methods for Real Databases

Sigurd W. Hermansen, Westat

Abstract
Results of data mining depend heavily on the quality
of linkage keys within a search dataset and within its
database target.  Linkage failures due to errors or
variations in linkage keys have few symptoms, and
can hide or distort what data have to tell us.  More
robust methods have promise as remedies, but
require careful planning and understanding of
specialized technologies.  A tour of fuzzy linkage
issues and robust linkage methods  precedes a review
of the results of a recent linkage project. Sample SAS
programs include tools and tips ranging from
SOUNDEX() and SPEDIS() functions to hash
indexing macroprograms.

Introduction

Relational Database Management Systems
(RDBMS's) have evolved into a multi-billion dollar
industry.  In no small part the industry has succeeded
because RDBMS's protect the integrity and quality of
data.  Large organizations have committed huge sums
of money and many person hours to enterprise
RDBMS's.  But while typical RDBMS's effectively
repel any attempt to insert duplicate key values in
data tables and subvert database integrity, they remain
remarkably vulnerable to other types of errors.  Most
obvious of all, linkage of an insert or update
transaction to a database fails whenever the search
key in the transaction fails to match bit-by-bit the
target key in the database.  If a transaction key
contains the person ID US Social Security Number
(SSN) of 105431002, for instance, instead of the
correct 105431802, it will fail to link to the
corresponding record for the same person.  Correct
linkages of tables in an RDBMS depend entirely on
the accuracy of columns of data used as key values.
Errors in the face values of keys, whatever the
sources, not only lead to linkage errors, but also
persist.  Once admitted to a database, errors in keys
seldom thereafter appear on the radar screen of a
system administrator.

Do errors in primary and foreign keys actually occur
in real databases?  Pierce (1997) cites a number of
reports indicating that in the early 1990's a near
majority or better of US business executives
recognized data quality problems in their companies.
Arellano and Weber (1998) assert that the patient
record duplication rate in single medical facilities
falls in the 3%-10% range.  Many who have assessed
the accuracy of the US SSN as a personal identifier in
federated databases, including the author, peg its

accuracy at somewhere between 93% and 97%.
These estimates suggest a 5% �2% rate of error in
attempts to link transactions or events to a master
database .

Failures of keys to link properly have more impact
where analysts are mining data for a few nuggets of
information in a mountain of data, or where access to
critical data requires a series of successful key links.
In both situations, errors in keys propagate.  Consider
how a 1% key linkage failure rate propagates over a
series of key links required for a basic summation
query [SAS PROC SQL syntax],

SELECT DISTINCT Person_ID,
SUM(amount) as OUTCOME

 FROM Events GROUP BY Person_ID;

Key linkage failures may hide the skew of the true
distribution.  Even small rates of errors produce bias
and outliers, such as the summary of amounts per
group by a count of related events (GT10), as shown
below.
   ID Group     GT10
 true in DB true  in DB   amount
10111 10111   T T 300
10111 10111   T T 100
13111 12111   T F 200
10111     10111   T T 100
12111 12111   F F 100
13111 13111   T T 100
10111 18111   T F 400

 Result of summation query:
 OUTCOME
                      GT10      true  computed

  T 1,200   600
  F    100   700

Errors can affect both the counts of related events and
the amounts being summed. Chains of keys that link
data in subsidiary tables to master records, typical in
SQL views, prove even more vulnerable to errors.
Transposing digits in a short integer key likely
converts one key into another key value already used
to link a different set of data, as in

Table T1 Table T2
ID status ID2 ID
21 Negative 43 21
12 Positive 34 21*



Table 3 
ID3 ID2 subject
76 43 patientXYZ
67 34 patientRST
*in truth, T2.ID=12

VIEW V1:
SELECT T23.subject,T1.status FROM
T1
  INNER JOIN
(SELECT T2.ID,T3.subject AS subject
  FROM T2 INNER JOIN T3
  ON T2.ID2=T3.ID2) AS T23
ON T1.ID=T23.ID;

In this case, a transposition in T3.ID links PatientRST
to “Negative” and not to the correct value of
“Positive”, yet does not trigger a referential integrity
constraint. The RDBMS validation scheme fails and
the error remains unnoticed. Key linkage errors such
as these undermine the efforts of data miners to
extract interesting and important information from
data warehouses and distributed databases. Many
database administrators may have good reason to
believe that critical identifying keys in their databases
have much lower error rates. Others, whose databases
support applications such as direct marketing, might
view a 5% linkage failure rate as perfectly acceptable.
All others need to consider more robust linkage
methods.  Knowledge is power, but bad information
quickly pollutes a knowledge base.

Alternative Linkage Keys

Robust linkage methods take advantage of alternative
key patterns.  An alternative key may work when
linkage on a primary key pattern fails.  If linkage on a
10-digit integer key fails, for instance, an alternative
key consisting of standardized names and a date of
birth could have a reasonable chance of being a
correct match.  So would other alternatives, such as a
partial sequence of digits in a numeric identifier
combined with either a standardized last name or a
month and year of birth.  Others, such as a match on
first name and zip-code, would not.

Alternative linkage keys have to meet at least a
couple of basic requirements.  First and foremost, a
key has to have a fairly high degree of discriminatory
power.  A weak identifier often finds too many
matches that contain too little information to rule
them out, much less verify them.  Second, the
alternative key has to have a good chance of linking
correctly when the primary key fails to link.  Two
alternative linkage keys with independent 5% error
rates, for example, have an expected joint failure rate
of 0.25% or only 1/20th the rate of either taken alone.
For independent 1% error rates, the combined rate

falls to 1/100th of the rate of either taken alone.
Fuzzy key linkage gains much of its power by
providing alternatives that we would not need in a
world of perfect information, yet, in the real world
prove necessary to prevent costly linkage failures.

Because linkage failures present no obvious
symptoms in a typical database system, the
information that these failure hide often surprises
clients. As data miners' close cousins, statisticians,
know all too well, it takes a lot more evidence and
effort to build a good case for a finding that goes
against the grain of conventional wisdom, but it
scores a lot more points.  To compete effectively with
an established database administration group, a data
miner needs to offer alternatives to routine methods.

Nonetheless, any scheme that involves alternative
linkage keys inevitably creates problems for database
programmers and, by extension, database clients.  The
latter group includes not only persons who depend on
enterprise RDBMS’s for information, but also clients
of networks, of Internet search engines, and of
wireless services.  These groups are growing rapidly
and becoming increasingly dependent on fuzzy key
linkage for information.  Who among us has not
found it frustrating to search through results of a Web
search and still not find a Web page that should be
there?  A Boolean alternative (x OR y) search may
find a few more relevant pages, but it often buries
them in an ocean of irrelevant pages. In Silicon
Valley speak, the sounds of terms associated with
robust database searches, "disjunctive query"
(Claussen et al, 1996), "iceberg query" (Fang et al,
1998), "curse of dimensionality"(Beyer et al, 1999),
"semi-structured data" (McHugh et al, 1977),
forewarn us of the computational burden of
alternative key linkage.

Of course a decision to integrate alternative linkage
keys into database access does not settle the issue.  A
data miner must also choose the right degree of
fuzziness in key linkage.  Suppose a data miner uses a
search key to locate instances of something that
occurs at a rate of approximately one-percent in a
database.  If the data miner selects an alternative key
that matches in error to 1% of the same database, the
specificity of key linkage cannot exceed 50% on
average.  For each true match selected, fuzzy linkage
would select on average one false match.

Fuzzy Linkage Methods

Fuzzy key linkage has at least one thing in common
with drug therapy.  A few “active ingredients” (AI)
help alleviate the problem of errors in linkage keys,
but each has side-effects that have to be managed
carefully with “buffering agents” (BA).   The active



ingredients in fuzzy linkage increase dramatically the
time and resources needed to compare two sets of
records and determine which records to link.  The
buffering agents do everything possible to make up
for losses of efficiency and bring the linkage process
sufficiently up to speed to make it feasible.

The order in which different active ingredients get
used in the linkage process proves critical.  Initial
stages of linkage have to strip irrelevant data from
key values and filter data as they are being read into
buffer caches under operating system control, and do
so before the linkage program moves them into
working memory or disk space.

Reduced Structure Databases and Data
Shaping (AI)

As the scale of databases and the dimensions of
alternative keys increase, the idea of loading all key
values into a single database, much less contiguous
memory, becomes increasingly an academic fantasy.
A more realistic linkage model leaves very large data
objects in place, outside the key linkage application,
and lets the linkage program select only key values
and relevant data for processing within the
application.

Alternative keys usually represent a dimension of the
real world, such as place, interval of time, and other
context cues, plus event outcomes, attributes, or other
facts that in some sense belong to an entity.  In
distributed or federated databases, alternative key
values retain their meaning while integer key values
removed from the context of a RDBMS lose their
meaning.  An integer makes a good employee ID in
an enterprise database, but a poor ID for a person in a
database that spans enterprises.

The so-called Star Schema for data ware-housing
makes it easier to develop a logical view of data that
includes alternative and overlapping information.
Earlier articles, especially Hermansen (2000), present
ideas for implementing alternative keys, disentangling
data from file systems, and restructuring databases
into forms that better support alternative logical
views.

Real database case study(1): A database
contains over 10 million records of blood donations.
The number of donation records per donor varies
from one to several hundred. Multiple observations of
donor demographics show surprising variations
within sets of records for individual donors. Related
donation and donor tables allow full capture of
observed responses by donors as well as most likely
attributes based on modes of multiple responses. The
accuracy of the donor database improves over time

as true responses have a better chance of repeating
than random errors.

Compression, Piping, Filtering, and
Parallel Processing (BA)

No way around it: alternative linkage keys crowd
whatever bandwidth a network and OS have to offer.
Even bit-mapped composite key indexes  become
unwieldy.  Multiple columns containing names,
addresses, date/times, category labels, and capsule
descriptions  replace neat, continuous sequences of
nine-digit ID's.

Harry X Lime 1923256 ...…Vienna Austria
replaces

105342118

Practical remedies include
1) compression of data streams on a database

server and decompression in a pipe that an
linkage program reads:

State-of-the-art mainframes implement data
compression and piping transparently.  Smaller
machines leave it up to the programmer to
compress data files and set up pipes to
decompress them in stream.  In the SAS System
(Unix in this case) the FILENAME statement,

  FILENAME zipPipe PIPE 'gzcat <file
     path(s) with .zip* extension>';

reads zipped files through an INPUT process.
The programmer can enter a list of file names in
a specific order, or specify a regular expression
that yields a list.  (The last asterisk in *.zip* may
only prove necessary when files have hidden
version numbers.)  In either case the source data
files remain in place while data stream into the
linkage program.  When reading a very large set
of records with a SAS program, a pipe often
works faster than inputting data directly from an
intermediate SAS dataset;

2) filtering data while cached in memory buffers,
before they move to the working storage that a
linkage program allocates:

In the SAS System, an INPUT statement in a
DATA STEP VIEW and a PROC SQL statement
referencing the DATA STEP VIEW in a FROM
clause caches data in memory where a SQL
WHERE clause acts as a filter.  Only data that
meet initial conditions pass through the filter and
enter a SAS WORK dataset;



3) extracting minimal subsets of data from database
servers using views:

As a rule a database server does a more efficient
job than an application program of handling basic
operations on its data tables.  A SQL SELECT
statement or equivalent in a stored view has
primary access to indexes, integrity constraints,
and other metadata of the database object, and it
executes in an environment tuned to allow quick
access.

4) running data extraction programs in parallel on
multiple processors, or even on multiple
database servers:

Some database systems allow more than one
thread of a key linkage program to execute in
parallel on different processors.  The MP
CONNECT procedure under the
SAS/CONNECT� product, for example, lets the
programmer RSUBMIT different sections of a
program to different processors on a SAS server,
or to different database servers, where they can
execute in parallel.  Doninger (2001) and Bentley
(2000) describe the benefits of parallel
processing with MP CONNECT and include
examples.  Parallel execution of views on
different database servers, for example, makes
good use of this new feature of SAS Version 8.

Real database case study (2): A database
programmer reported recently on SAS-L that
subsetting data into a SAS dataset via a DB2 view cut
CPU time to 11% of that required to read the full
database and then subset it.  It also reduced elapsed
time by a factor of six (see SAS-L Archives, subject:
RE: SQL summarization question, 12/14/2000).

Data Blurring, Condensing, and Degrees
of Similarity (AI)

A linkage key, at least after encoding for storage in a
digital computer, amounts to nothing more than a
pattern of bits.  To attain a higher degree of
specificity in key linkage, one must either add
information (more bits) or simplify the pattern (using
some form of metadata template for valid patterns).
To attain a higher degree of sensitivity of key linkage,
one must either suppress information (mask bits) or
simplify the pattern.  Greater specificity means fewer
false links among keys; greater sensitivity means
fewer failures to find true links.  Suppressing bits in a
key pattern prior to comparing two keys obviously
risks trading more false links for fewer failures to find
true links.  Confining a sequence of bits (a field in a
record) to a limited domain has some chance of
increasing sensitivity of linkage by reducing

meaningless variations in keys related to the same
entity.  Fuzzy key linkage attempts to achieve better
sensitivity of linkage with the least loss of specificity.

Although the term "fuzzy", as in "fuzzy math",
suggests a vague or inconsistent method of
comparison, fuzzy key linkage actually provides more
precise and consistent results of comparisons.  Fuzzy
key linkage resolves comparisons of vague and
inconsistent identifiers, and does so in a way that
makes better use of information in data than bit-by-bit
comparisons of keys.  It simply takes a lot more time
and effort to eliminate alternatives.

Real database case study(3): The article by
Cheryl Doninger cited above appeared first under the
name “Cheryl Garner”.  Under the SAS Web page,
“Technical Documents: SAS Technical Support
Documents--TS 600 to TS699”, a search on the
criterion “multiprocessing AND Garner” produced
nothing, but a search on the alternative
“multiprocessing AND Cheryl” located the correct
document.

Operators and functions specifically developed for
fuzzy key linkage make it easier to compare certain
forms of alternatives.  Each of three general types has
a special purpose.

 "Blurring" and "condensing" functions transform
instances in a domain of values into a domain that has
a smaller number of distinct values.  Blurring maps
similar values to one value; it reduces incidental
variation in a key.  Condensing reduces the remapped
values to a set (distinct values). The SOUNDEX()
function or operator (=*), for instance, condenses a
set of surname strings to a relatively small number of
distinct values:

SURNAME  SOUNDEX
Neill        N4
Neal        N4
Neil        N4
Niell        N4
Neall        N4
Nil        N4
Nel         N4
Nill         N4
Nell         N4
Nilson        N425
Nelson        N425
O'Neil        O54
O'Neal        O54
Oneill        O54

Blurring and condensing facilitate indexing of keys.
An index on a blurred and condensed key occupies
less bandwidth and memory, and it clusters similar



key values.  A SOUNDEX() transform of any of the
nine similar surnames beginning with an “N” and
ending with an “L” (above) will match to an index
containing “N4”.

A “degree of similarity” operator or function
compares two key values and produces a numeric
value within an upper and lower bound.  The upper
bound indicates identical keys; the other bound
indicates no similarities.  Combined with a decision
rule, usually based on an explicit, contextual, or
default threshold value, the fuzzy operator or function
reduces to a Boolean.  It aggregates the results of
comparisons of alternative keys into a numeric score,
accepts as true links those with scores that exceed a
threshold, and rejects the others.  As an example, the
SAS SPEDIS() or “spelling distance” function
calculates a cost of rearranging one string to form
another, where each basic operation used to rearrange
the string has a cost associated with it.  A CASE
clause in SAS SQL implements SPEDIS() in a way
that sets a neutral value of 0.4 should either of two
US SSN strings turn up missing, and a value in the
range of zero to one if the comparison goes forward.

case when t1.&SSN1="" or
t2.&SSN2=""
   then 0.4
   else max((1-length(t1.&SSN1)*
 pedis(t1.&SSN1,t2.&SSN2)/200)),0.1)
end as SSNcost

A programmer can use the calculated variable
SSNcost in a Boolean “OR” expression, as in

WHERE (calculated SSNcost > 0.5
      AND t1.surname=t2.surname)
       OR (calculated SSNcost > 0.8
      AND t1.frstname=t2.frstname),

to implement linkage on alternative key patterns, or
combine it with another degree of similarity, to
achieve the same goal.

So-called “regular expressions” and other pattern-
matching operators and functions (such as the SAS
INDEX() function) normally point to a location in a
string or file, or return a "not found" value.  This
feature in particular facilitates checks for alternative
patterns in strings, numbers, or other semi-structured
elements in databases.  Rhoads (1997) demonstrates
practical uses of pattern-matching functions.  These
include tests for a match on a template.  Extensions,
such as a series of searches for the location of a phone

Data Standardization, Cleansing, and
Summaries (BA)

Specialized programs for "mailing list hygiene",
standardizing codes, parsing text into fields, and other
database maintenance tasks are beginning to appear in
greater numbers and variety each year.  Patridge
(1988) and the www.sconsig.com Web site offer both
free and commercial database standardization,
cleansing, and summarization programs. Pre-
processing can obviously reduce the risk of fuzzy
linkage failures and false matches.  Partially for that
reason, database administrators are paying more
attention to data quality metadata, including audit
trails.  Best practice combines data quality control
with robust key linkage methods. To help fill in that
niche, SAS� has recently purchased Dataflux and its
Blue Fusion and dfPower Match standardization and
fuzzy linkage products.

A number of data warehouse developers are
rediscovering that old warhorse, the SAS PROC
FREQ, and even more sophisticated stuff such as
stratified sampling, linear regression, and cluster
analysis.  Linkage quality really comes down to
keeping expected costs of errors within limits.

Real database case study(4): In a database of
>5M blood donation records linked by a non-
informative donor ID to 1.5M donors, we grouped by
donor and identified unusual  sequences of screening
test results.  We separated out borderline cases,
verified the results of database searches, estimated
0.05% (95% CI 0-1.5%) frank technical errors in
data management, testing systems, and process
controls (Busch et al, 2000), and recommended
process enhancements in the blood collection
industry to help detect and prevent false-negative
results.

Blocking and Screening on Synthetic,
Disjuctive Keys (AI)

RDBMS performance depends heavily on indexes of
search keys that clients use to link database records to
transactions. As volumes of data approach the limits
of a database, platform, and network, indexes take on
an increasingly important, and constraining, role.
Indexes bound a search on that index to a small block
of key values.  A deus ex machina database tuner can
conjure up indexes to optimize transactions, but in
very large databases searches on alternative keys mire
in quicksand.

"Blocking", an old trick in record linkage
methodology, implements a series of searches on
partial primary key candidates.  A clever blocking



scheme might have an initial search on surname and
date of birth, followed by search on date of birth and
postal code, and finally a search on surname and
postal code.  Later stages consider only new
candidates for links, not those confirmed as correct
links in a prior stage.  A good blocking strategy
implements alternatives (surname AND DOB) OR
(DOB and PostCode) OR (surname and PostCode) so
that errors or variations in any one field do not cause
linkage failures.  The fact that each block consists of a
conjunctive (AND) query means that an index can
keep the computational burden of an indexed search
within bounds.

Blocking has one major disadvantage.  It takes
multiple passes through a set of data to complete the
screening process. When searching databases with
many millions of rows in a single table, a single-pass
solution makes better sense.

A better screening strategy defines a "synthetic key"
for each block and creates an index for each.  Each of
the synthetic keys represents an alternative linkage
key or fragments of an alternative key.  Table 1
provides a picture of definitions of eight keys
(columns) synthesized from eleven fragments or
transforms of alternative keys.
Whether character or numeric, key patterns reduce to
strings of bits.  By design each synthetic key has
sufficient discriminatory power to bind only to similar
key patterns, but relatively narrow bandwidth.  For
instance, it takes just seventeen bytes to represent a
first initial of a first name, a soundex transform of a
surname, and a Julian DOB.  On anything larger than
a low-end PC, a number of such indexes will fit

Table 1: Synthetic Linkage Keys
k1 k2 k3 k4 k5 k6 k7 k8

SSN �

SSN5 �

SSN4 �

LN � � � �

SLN � � �

FN � � �

FN1 � � � �

MI

DOB � � �

DOB* � �

Glossary:
ki : synthetic search keys
SSN5: digits 1-5 of SSN in decreasing order;
SSN4: digits 6-9 of SSN in decreasing order;
LN: last name;
SLN: yield of Soundex(LN);
FN: first name;
FN1: first letter of first name;
MI: middle initial (not used in screening);
DOB: date of birth:
DOB* date of birth +/- (U/L) 32 days;
MDX: day and month of birth;
Sex: (not used in screening)

into addressable memory.  It then becomes technically
feasible to

� transform and synthesize k  alternative keys or
fragments of keys from a moderately large (say,
100K rows) search dataset and build multiple
indexes;

� load all of the indexes into memory and hold
them there;

� scan a huge dataset one row at a time, transform
and synthesize alternative keys for that row, and
check each synthetic key against its
corresponding index;

� select from the huge dataset only those rows
linked to any one or more of the indexes.

The indexes implement a disjunctive “query flock”
(Tsur, 1998) that screens for possible links during one
pass through a huge dataset.  Rows of data that fail to
match any of the multiple key patterns pass through
the screen.  Those that match at least one of the
patterns get set aside for further attention.

Multiple, Concurrent Key or Hash
Indexes and Rescreening (BA)

Clearly a flock of indexes has to be compact to load
into memory and easy and quick to search.  The
balanced B-Tree indexes used in RDBMS’s conform
to the first constraint.  In early attempts to implement
screening on multiple indexes, we read data from files
and used them to write SAS FORMATS.  If the SAS
expression PUT(key,ndxi.) yielded a “+”, the key
value matched the ith index.  This effective
implementation in SAS of a B-Tree index, called “Big
Formats” on SAS-L, worked surprisingly well.
Nonetheless, subsequent postings by Paul Dorfman
on SAS-L proved and demonstrated that hash indexes
implemented in SAS worked much quicker.  Testing
of hash indexes against big formats, data step merges,
and SQL query optimizations, by Ian Whitlock and
others, established the equivalence or superiority of



Dorfman’s hash indexes, and the dramatic
improvements they bring to linkage of very large
volumes of data.

Though ideal choices in theory, hash indexes prove
cryptic and difficult to specify.  Almost all of the SAS
programmers who had a penchant for refining
Knuth’s sorting and searching algorithms have by
now found jobs in Palo Alto or Seattle, and are
writing C++ object classes and Java applets.
Fortunately, Dorfman and a few others have remained
loyal to the craft.   To make it easier for the rest of us,
Dorfman has written SAS macro-programs %hsize,
%hload, and %hsearch:.

%macro hsize (data=,hid=,load=.5);
   %global z&hid;
   data _null_;
      p = ceil(nobs / &load);
      do until (j = u + 1);
         p ++ 1;
         u = ceil(sqrt(p));
         do j=2 to u;
            if mod(p,j) = 0 then leave;
         end;
      end;

call
symput("z&hid",compress(put(p,best.))
);
put "info: size computed for hash
     table &hid is " p +(-1) '.';

      put;
      stop;
      set &data nobs=nobs;
   run;
%mend hsize;
%macro hload (data=,hid=,key=,pibl=6);
   %global t&hid p&hid ;
   %local dsid nvars found varfound vname

varnum vnum;
   %local keytyp keylen xpibl;
   %let dsid  = %sysfunc(open(&data,i));
   %let nvars = %sysfunc(attrn(&dsid,nvars));
   %let varfound = 0;
   %do varnum=1 %to &nvars;

%let vname=
  %sysfunc(varname(&dsid,&varnum));
%if %upcase(&vname) = %upcase(&key)
   %then %do;

              %let varfound = 1;
              %let vnum = &varnum;
           %end;
   %end;
   %if &varfound = 0 %then %do;
      do;
         put "error: key=&key variable not
             found in dataset &data..";
         abort;
      end;
      %let rc = %sysfunc(close(&dsid));
      %goto mexit;
   %end;
   %let keytyp =

%sysfunc(vartype(&dsid,&vnum));
   %if %upcase(&keytyp) = %upcase(c) %then

%let keytyp = $;
%else %let keytyp = ;

   %let t&hid = &keytyp;
   %let keylen   =

%sysfunc(varlen(&dsid,&vnum));
   %let rc       = %sysfunc(close(&dsid));
   %if &pibl > 6 %then %then %do;
      %let  pibl = 6;
      %put info: maximum value for pibl=

exceeded. pibl=&pibl assumed.;
   %end;
   %let p&hid = &pibl;
   do;
      array h&hid (0:&&z&hid) &keytyp &keylen

 _temporary_;
      array l&hid (0:&&z&hid) 8

 _temporary_;
      ___r = &&z&hid;
      eof = 0;
      do until (eof);
         set &data (keep=&key) end=eof;
         %if &keytyp = $ %then %do;
            ___h =
    mod(input(&key,pib&pibl..),&&z&hid) + 1;
         %end;
         %else %do;
            ___h = mod(&key,&&z&hid) + 1;
         %end;
         if l&hid (___h) > . then do;
            l&hid:
            if &key = h&hid(___h) then

continue;
            if l&hid(___h) ne 0 then do;
               ___h = l&hid(___h);
               goto l&hid;
            end;
            do while (l&hid(___r) > .);
               ___r +- 1;
            end;
            l&hid(___h) = ___r;
            ___h        = ___r;
         end;
         h&hid (___h) = &key;
         l&hid (___h) = 0;
      end;
      eof = 0;
      drop ___h ___r ;
   end;
   %mexit:
%mend hload;
%macro hsearch (hid=, key=, match=);
   do;
      drop  ___h;
      &match = 0;
      %if &&t&hid = $ %then %do;
         ___h =
mod(input(&key,pib&&p&hid...),&&z&hid) + 1;
      %end;
      %else %do;
         ___h = mod(&key,&&z&hid) + 1;
      %end;
      if l&hid(___h) > . then do;
         s&hid:
         if h&hid(___h)=&key then &match = 1;
         else if l&hid(___h) ne 0 then do;
            ___h = l&hid(___h);
            goto s&hid;
         end;
      end;
   end;
%mend hsearch;

The data= parameters require the name of a SAS
dataset or view.  The hid= parameters name the
specific index being sized, loaded, and searched.  The
key= parameter identifies SAS variables that contain
a value of the synthetic key either written to or
matched to the index.  The match= parameter names
the Boolean result of an index search. These program
excerpts show actual calls of %hsize, %hload, and
%hsearch:

%hsize(data = mdx , hid = mdx , load = &lf );
data rslt.headid ….

.



.
    %hload(data=mdx,hid=mdx,key= mdx,pibl=6);

.

.

.
    do until (eof);
      infile header end=eof;
      input
      @ 01 rtype       $char01.
      .

.

.
     %hsearch(hid= mdx,key=mdx,match=m_mdx );

.

.

.

After screening, all of the rows of data selected from
the huge dataset link to at least one of the rows of
data in the search dataset, but some rows in the search
dataset may not have linked to any of the rows in the
huge dataset.  A simple reversal of the screening
process selects only those rows of data in the search
dataset that match at least one row in the results of
screening.  We call this step “rescreening”.

Where each row in the huge table has a very small
chance of being a correct link, early elimination of
unlikely candidates for linking greatly reduces the
costs of later stages of the linkage process.  Screening
and rescreening cut large datasets down to
manageable size.

Fuzzy Scoring and Ranking on Degrees of
Similarity of Linkage Keys (AI)

Once screening has reduced a huge target dataset to,
say, a mere million or so rows, and rescreening has
reduced the number of rows in the search dataset by
perhaps fifty to eighty percent, more intensive linkage
methods become feasible.  So-called probabilistic
methods assign weights for individual field matches
and mismatches for each pair of records, and sum the
logs of these weights across fields.  Estimated error
rates in correct links, given a field match, and
estimated coincidental links, given field frequencies,
determine the composite weight or score. The higher
the score for a pair of records, the higher the linkage
program ranks them.

Probabilistic linkage and related methods have
evolved over a span of some forty years into
statistical modelling for control of both linkage
failures and incorrect links. Winkler (2000) assesses
the current state of record linkage methodology.
Proceedings of a recent conference (Alvey and
Jamerson, eds. 1997) on record linkage includes a
historical perspective on development of specialized
key linkage programs: OX-LINK (Oxford Medical
Record Linkage System), GIRLS (Generalized
Records Linkage System), from Statistics Canada;
and, AUTOMATCH, originally developed by Matt
Jaro at the US Bureau of the Census,

A relatively simple scoring program requires some
guesswork about the values to assign to field match
and mismatch weights and to a cut-off score.  The
values of weights generally increase with the relative
importance of a field match to the chance of a correct
match.  Neutral weights for missing values help us
focus on whatever subset of information a row of data
contains.

In this implementation of a simple scoring program, a
SAS macroprogram allows a user to assign variables
names as parameters.

*** MATCH PROGRAM ***;
%macro mtch(    DSN1=  ,    DSN2=          ,
            SubmitID=  ,SourceID=          ,
                SSN1=  ,    SSN2=          ,
            LstName1=  ,LstName2=          ,
            FstName1=  ,FstName2=          ,
                 MI1=  ,     MI2=          ,
                Sex1=  ,    Sex2=          ,
               Race1=  ,   Race2=          ,
                DOB1=  ,    DOB2=          ,
                DOD1=  ,    DOD2=          ,
            Zipcode1=  ,Zipcode2=          ,
            Zipcode3=    ,Zipcode4=        ,
            RECCODE1=    ,RECCODE2=
,
              STATE1=    ,  STATE2=
,
                key1=    ,    key2=
,
             keyval1=    , keyval2=
,
             Rectype=    ,  OutDSN=
,
                   c=           );

 proc sql;
  create table &OutDSN as
  select t1.&SubmitID as SubmitID,

  t2.&SourceID as SourceID,
         t1.&STATE1 as STATE,
         t1.&RACE1 as RACE,
         t2.&RECCODE2 as RECCODE,
         t1.&Zipcode1 as ZIP,
         t2.&Zipcode2 as ZIPX,
         t2.&Zipcode4 as ZIPP,
case when t1.&SSN1=t2.&SSN2 and t1.&SSN1 ne
          "000000000" and
(soundex(UPCASE(t1.&LstName1))=
          soundex(UPCASE(t2.&LstName2))
          or t1.&DOB1=T2.&DOB2) then 1.0
     when t1.&SSN1=t2.&SSN2 and t1.&SSN1 ne
          "000000000" then 0.5
     when
index(UPCASE(t2.&FstName2),substr(UPCASE(t1.&
FstName1),1,3)) and
soundex(UPCASE(t1.&LstName1))=soundex(UPCASE(
t2.&LstName2)) and t1.&DOB1=T2.&DOB2 then 0.2
     when
    UPCASE(t1.&FstName1)=UPCASE(t2.&FstName2)
     and t1.&Sex1="F1" and t1.&DOB1=T2.&DOB2

then 0.05
else 0

end as bonus,
case when t1.&SSN1="000000000" or

t2.&SSN2="000000000" then 0.4
          else max((1-

(length(t1.&SSN1)*spedis(t1.&S
SN1,t2.&SSN2)/200)),0.1)

end as SSNcost,



case when
UPCASE(t1.&LstName1)=
UPCASE(t2.&LstName2)

then 0.9
     when soundex(UPCASE(t1.&LstName1))=

   soundex(UPCASE(t2.&LstName2))
then 0.6

     when T1.&Sex1 = "F1" then 0.4
else 0.1

end as SDXLN,
case when
    UPCASE(t2.&FstName2)=UPCASE(t1.&FstName1)

then 0.9
     when index(UPCASE(t2.&FstName2),
  substr(UPCASE(t1.&FstName1),1,3))

then 0.6
     when index(UPCASE(t2.&FstName2),
   substr(UPCASE(t1.&FstName1),1,1))

then 0.4
else 0.2

end as FN2,
%if (&MI2 ne) %then
    case when substr(UPCASE(t1.&MI1),1,1)=
substr(UPCASE(t2.&MI2),1,1)   then 0.8

else 0.2
    end as MI1,
 ;
 %if (&Sex2 ne) %then
    case when t1.&Sex1=t2.&Sex2

then 0.5
else 0.2

    end as SexMtch,
 ;
 case when t2.&DOB2 = t1.&DOB1

then 0.7
 when month(t1.&DOB1)=month(t2.&DOB2)
and day(t1.&DOB1)=day(t2.&DOB2)

then 0.6
         when t2.&DOB2 <= 1.05*t1.&DOB1

  and t2.&DOB2 >= 0.95*t1.&DOB1
then 0.4
else 0.2

   end as BtwnDOB,
   %if (&SourceID ne SSNC)

%then t2.&SSN2 as SSNX, ;
      t1.&SSN1 as SSNC,

            t1.&LstName1,t2.&LstName2 as LNX,
            t1.&FstName1,t2.&FstName2 as FNX,
          t1.&Sex1,t1.&DOB1,t2.&DOB2 as DOBX,

      t2.&DOD2,calculated bonus +
              (calculated SSNcost*

calculated SDXLN*
calculated FN2*
calculated BtwnDOB) as score

              from &DSN1 as t1,&DSN2 as t2
              where calculated score gt

 0.4*0.8*0.6*0.7 * &c
                and t1.&key1 = t2.&key2

 and t1.&keyval1 = t2.&keyval2
              order by calculated score

DESCENDING,SubmitID,SourceID
              ;
 quit;
%mend mtch;

The structure of the SQL program makes it relatively
easy to adapt to other purposes and to port to other
SQL implementations.

Grouping Links and Decisions by Score
Range  (BA)

In some cases we expect more than one event row in a
target dataset to link to one and the same person row
in the search dataset; one event row in the target

dataset linked to more than one person row in the
search dataset indicates at least one error.  In lower
score ranges, the number of cross-linked events
should increase sharply.  Clerical reviewers can verify
small samples (�300 links) of linked pairs drawn from
different score ranges.  Frequencies of reviewer
decisions by scores make it possible to evaluate
linkage performance within different ranges of scores.

Real database case study(5): During 2000 a
particularly difficult linkage task required linkage of
personal information on each member of a study
cohort of around one-hundred forty-five thousand
persons to a database of some twenty million
exposure measurements containing names,
demographic information, and a supposedly unique
identifying number (US SSN) for each person. Some
in the cohort should not link to any exposure
measurements, and some should link to more than
one.  Researchers expected about ninety-seven
thousand persons in the cohort to link to at least one
exposure measurement.  Roughly ninety thousand
cohort records linked on the primary person key,
SSN, to at least one exposure measurement.

Fuzzy linkage on a primary and on alternative keys
linked the expected number of around ninety-seven
thousand persons to at least one exposure
measurement.  About forty-five thousand of over two-
hundred fifty thousand linked exposure measures
required clerical reviews.  A relatively large fraction
of the ninety-seven thousand linked persons, 8.5%,
linked to an exposure record on an alternative key,
but not on the primary key.
Many linked on alternative keys had small errors in
the primary key but had full or partial matches on
names and demographic data.  These almost
certainly qualified as correct links.  Around 2% or so
of cases of records linked on identical primary keys,
then failed to match on any alternative key or
fragment of a key.  Researchers reclassified these
cases as linkage errors and dropped them from the
set of linked records.     

Conclusions

Fuzzy key linkage has an important role in data
quality improvement of RDBMS’s and other data
repositories, and in linkage across databases.  The
computational burden of linkage of alternative keys
means that such a task needs careful planning and
good choices of resources.  The SAS� System
provides a rich variety of tools for conducting a
linkage project and a basis for implementing new
tools.



Acknowledgments

Paul Dorfman contributed many valuable ideas
as well as programs and technical advice. Kellar
Wilson and Lillie Stephenson tested variants of
methods presented in the paper. Other Westat
colleagues, especially Mike Rhoads and Ian
Whitlock, and many contributors to SAS-L have
for no fault of their own contributed to this
effort.

References

Alvey, W. and B. Jamerson, eds. “Record
Linkage Techniques – 1997”, Proceedings of an
International Workshop and Exposition.
Washington, DC, 1997.

Arellano, M., Weber, G. “Issues in identification
and linkage of patient records across an
integrated delivery system”, J. Healthcare
Information Management, (3) Fall, 1998:43-52.

Bentley, J. “SAS Multi-Process Connect: What,
When, Where, How, and Why”. Proceedings of
SESUG 2K, Charlotte, NC, 2000.

Beyer, K., J. Goldstein, R. Ramakrishnan and U.
Shaft. "When Is `Nearest Neighbor'
Meaningful?", Proceedings 7th International
Conference on Database Theory (ICDT'99),
pp.217-235, Jerusalem, Israel, 1999.

Busch, M., K. Watanabe, J. Smith, S.
Hermansen, R. Thomson, “False-negative
testing errors in routine viral marker screening
of blood donors”, TRANSFUSION
2000;40:585-589.

Doninger, C. “Multiprocessing with Version 8
of the SAS System”, SAS Institute Inc, (2001)
ftp.sas.com/techsup/download/technote/ts632.pdf

Dorfman, P. “Table lookup via Direct
Addressing: Key-Indexing, Bitmapping,
Hashing”, Proceedings of SESUG 2K, Charlotte,
NC, 2000.

Hermansen, S. ‘Think Thin 2-D: “Reduced
Structure” Database Architecture’, Proceedings
of SESUG 2K, Paper#1002, Charlotte, NC,
2000.

McHugh, J., S. Abiteboul, R. Goldman, D.
Quass, and J. Widom. Lore: A Database
Management System for Semistructured Data.
SIGMOD Record, 26(3):54-66,  September
1997.

Patridge, C. “The Fuzzy Feeling SAS Provides:
Electronic Matching of Records without
Common Keys”, 1998 http://www.sas.com/
service/doc/periodicals/obs/obswww15/index.html

Pierce, E., “Modeling Database Error Rates”,
DATA QUALITY 3(1) September, 1997.

Rhoads, M., “Some Practical Ways to Use the
New SAS Pattern-Matching Functions”,
Proceedings of the 22nd Annual SAS Users’
Group International Coference: 72, San Diego,
CA, 1997.
http://www2.sas.com/proceedings/sugi
22/CODERS/PAPER72.PDF.

Tsur, D., Ullman, J., Abiteboul, S., Clifton, C.,
Motwani, R., Nestorov, S., Rosenthal, A.
“Query flocks: A generalization of association
rule mining”, Proceedings of  the 1998 ACM
SIGMOD Conference on Management of Data,
1-12, Seattle, WA, June, 1998.

Winkler, W. “The State of Record Linkage and
Current Research Problems”, Bureau of the
Census, Suitland, MD, 2000.

Author Contact Information

Sigurd W. Hermansen
WESTAT, An  Employee –Owned
 Research  Corporation
1650 Research Blvd.
Rockville, MD 20850
USA
phone: 301.251.4268
e-mail: hermans1@westat.com



Point, Set, Match (Merge) – A Beginner’s Lesson
Jennifer Hoff Lindquist, Institute for Clinical and Epidemiologic Research,

Veterans Affairs Medical Center, Durham, NC

The phrase “Point, Set and Match” is used in tennis when the final game winning point is scored.  Those terms are also special
SAS techniques that can make you a champion SAS programmer.  Projects can collect data from a number of different
sources.  Combining the information into a cohesive data structure is essential for resource utilization.  One of the most
valuable resources is your time.  By combining and collapsing data into a small number of datasets, information can be
accessed and retrieved more quickly and  already properly linked.  Two techniques used with manipulating existing data sets
are SET and MERGE.

SET
The SET statement is often used in two ways – copying  and appending.

Set – Copy

To avoid corrupting a permanent SAS data set, copy of the data set is desirable. Suppose the permanent SAS dataset
In.Source A consists of 5 observation with 4 variables.  The syntax to create a copy of the data set  is Set <dataset name>.

SAS Code:   Data White;
     Set In.SourceA;
Run;

The contents of the White data set are an exact replicate of the orignal In.Source A data set.

White data set
ID GRP AGE ELIG
1 A 30 Y
2 A 40 N
3 A 50 N
4 A 60 Y
5 A 70

Set – Append

The SET statement can be used to append or stack data sets.

Let data set Yellow consist of 3 observations with 3 variables

Yellow Data Set
ID GRP ELIG
3 B Yes
5 B No
6 B Yes

SAS code:  Data TwoSets;
                        Set White Yellow;
                   Run;

Any number of data sets could be listed.  The white data set contributes 5 observations and the yellow data set tacks on 3
observations.  All the variables in the two data sets are included.  If any variables are only in one of the data sets, the variable
is included in the concatenated dataset.  The observations which originated from a dataset without a particular variable has the
variable added to the observation with a missing value.

SAS Output:

ID GRP AGE ELIG
1 A 30 Y
2 A 40 N
3 A 50 N



4 A 60 Y
5 A 70
3 B . Yes
5 B . No
6 B . Yes

The observations are simply stacked starting with the data set listed first.   SAS then continues tacking on the observations to
the “bottom” of the list for each data set listed in the SET statement.  This is especially useful when consolidating data sets
with mutually exclusive records but the same variables.

MERGE

MERGE-GENERAL

Joining records “side by side” instead of stacking is another data consolidation technique.  Many times your want to create a
data set with one observation per patient/person.  A merge statement then is more applicable.  The remainder of the paper will
be devoted to discussing the various types of merges – One to One Merge, Match Merge, One to Many Merge and Many to
Many Merge.

MERGE-ONE TO ONE MERGE

The first type of merge is a one to one merge.  The accidental or careless use of this merge can produce disastrous results.  In
all SAS merges a data set listed first (on the left) is overwritten by the corresponding data in the data set on the right.  In a one
to one merge the observations are conjoined by their relative positions-the first observation with the first observation, etc.

White Data Set Yellow Data Set
ID GRP AGE ELIG ID GRP ELIG
1 A 30 Y � 3 B Yes
2 A 40 N � 5 B No
3 A 50 N � 6 B Yes
4 A 60 Y
5 A 70

SAS Code Data MergeSet;
      Merge White Yellow;

Run;

In this one to one merge, the values in the first three observations in the white data set are wiped out by the overlapping
variables in the yellow data set even though they are NOT referring to the same individuals.

SAS Output
ID GRP AGE ELIG
3 B 30 Yes
5 B 40 No
6 B 50 Yes
4 A 60 Y
5 A 70

The resulting data set has “lost” patients with ids 1 and 2.  The age for patient #3 appears to be 30 when it is actually the age
for patient #1.  Other errors include the ages for patients 5 and 6.  Patient #5 has ages 30 years apart! Due to this potential to
lose/corrupt data, the one to one merge is best avoided.

MERGE - MATCH MERGE

A refinement of the one to one merge is the match merge.  Using the BY statement, variables are listed which SAS uses to
match observations.  Data sets must be sorted on the same variables as listed in the match merge BY statement.  More than
two data sets may be included in the merge statement.  More than one variable can be listed on the BY statement.  But only
one BY statement is allowed for each Merge statement.



SAS Code: Proc Sort data=white;
     By Id;
Proc sort data=yellow;
     By Id;
Run;

Data Mergeby;
     Merge white Yellow;
     By ID;
Run;

SAS Output
ID GRP AGE ELIG
1 A 30 Y
2 A 40 N
3 B 50 Yes
4 A 60 Y
5 B 70 No
6 B Yes

If two data sets have variables with the same name, the value of the variable in the data set named last will overwrite the value
of the variable in the data set name previously.  The ELIG for Patient #3 in the white date set was “N” but in the yellow data set
ELIG was “Yes”.  Since the order in the Merge statement was white then yellow the value in the yellow data set appears in the
merged dataset.  However, due to the overwrite property this conflict of eligibility status is lost.

The match merge and the one to one merge differ in syntax  only in the use of the BY statement.  It is (too) easy to
inadvertently leave off the BY statement.  Results are NOT the same!  SAS has acknowledged that this can be a problem.  In
version 8, there is a system option called MERGENOBY.  It has 3 settings – None, Warning, Error.  The Warning setting will
write a Warning message in the log whenever a merge is performed without a BY statement but will continue processing.  The
Error setting will write an Error message in the log and halt processing.   The None setting – no message is written in the log.  I
strongly recommend using at least the Warning option.

MERGE -IN Option

A useful option with both the  SET and MERGE statements is the IN statement.  The syntax is data set name (IN= temporary
variable).  The temporary variable is assigned a one if the observation came from that data set.  The temporary variable is
receives a value of zero if the observation is not in that data set.  The temporary variable exists only for the length of time it
takes to process the observation.  It is not accessible after the completion of the data step.  If the information will be needed
later, a regular variable can copy the value of the temporary variable;

SAS Code: Data MergeSource;
     Merge White (IN=InWt) Yellow(IN=InYel);
     By Id;

If InWt=1 and InYel=1;
*Alternate if InWt=InYel;

WtFileInd=InWt;
Run;

An intermediate internal processing snapshot shows the values of the temporary variables.

ID GRP AGE ELIG InWt Inyel ID GRP ELIG
1 A 30 Y 1 0
2 A 40 N 1 0
3 A 50 N 1 1 3 B Yes
4 A 60 Y 1 0
5 A 70 1 1 5 B No

0 1 6 B Yes

Due to the subsetting if statement the observation must be in both the white and the yellow data sets to make the eligibility
requirements for the MergeSource data set.  The temporary variables InWt and InYel are not in the resulting data set.  The
problem remains with the second data set overwriting the first dataset.

Resulting Data set



ID GRP AGE ELIG WtFileInd
3 B 50 Yes 1
5 B 70 No 1

MERGE - RENAME Option
An option to avoid some of the overwrite problems is to rename the variables in the merge.  The syntax is after the dataset
name (rename=(old variable=new variable))

SAS Code Data MergeRen;
     Merge White(rename=(ELIG=WELIG)) Yellow(rename=(ELIG=YELIG));
     By ID;
Run;

The original data set supplies the value to the new variable as long as it was the dataset contributing the observation.

SAS Output
ID GRP AGE WELIG YELIG
1 A 30 Y
2 A 40 N
3 B 50 N Yes
4 A 60 Y
5 B 70 No
6 B Yes

By using the rename option, it is possible to detect the inconsistency in patient #3 data.

MERGE - ONE TO MANY  MERGE or MANY TO ONE MERGE

A third major category of merges is the One to Many and the closely related Many to One merges.  The syntax is the same as
the matched merge.  However, it is important to know which data set has the “many” observations and which data set has the
“one” observation.  The order the data sets are listed in the MERGE statement makes a difference.  The logistics of the merge
is basically the same.  The items in the right data set overwrites the data in the left data set.

SAS Code: Data One2Many;
     Merge white green;
     By id;
Run;

Visualizing the data sets side by side will help show what happens.

White Data Set Green Data Set
ID GRP AGE ELIG ID GRP TYPE
1 A 30 F
2 A 40 M
3 A 50 M 3 C a

3 C b
3 C c

4 A 60 F
5 A 70 5 C b

5 C c

Results of a One to Many Merge

ID GRP AGE ELIG TYPE
1 A 30 Y
2 A 40 N
3 C 50 N a
3 C 50 b
3 C 50 c



4 A 60 Y
5 C 70 b
5 C 70 c

The values in variables AGE and ELIG are retained until the value of the BY GRP variable changes.

If the order is reverse, a Many to One merge results in a different data set.

SAS Code: Data Many2One;
     Merge green white;
     By id;
Run;

Looking at the data sets side by side, recall the data on the right overwrites the data on the left.

Green Data Set White Data Set
ID GRP TYPE ID GRP AGE ELIG

1 A 30 Y
2 A 40 N

3 C a 3 A 50 N
3 C b
3 C c

4 A 60 Y
5 C b 5 A 70
5 C c

The results of the Many to One Merge

ID GRP TYPE AGE ELIG
1 A 30 Y
2 A 40 N
3 A a 50 N
3 C b    .
3 C c    .
4 A 60 Y
5 A b 70
5 C c    .

A Many to One merge is possible.  However,  the values of AGE and ELIG were not retained.  The Many to One and the One
to Many data sets are different.  The differences are highlighted.

Results of a One to Many Merge

ID GRP AGE ELIG TYPE
1 A 30 Y
2 A 40 N
3 C 50 N a
3 C 50 b
3 C 50 c
4 A 60 Y
5 C 70 b
5 C 70 c



Be aware the simple change in the order the data sets are listed DOES make a difference.

It is import to know your data.  Look at the proc contents before performing merges.  Print several observations of the original
data sets and the merged dataset.  Check and make sure you are getting the results you expect.

MERGE - MANY to MANY MERGE - General

The last category is a Many to Many merge.   This type of merge prompts regularly recurring questions on SAS-L, a mail serve
list for SAS questions. The problem is the same basic syntax does not yield the desired results for a Many to Many situation!

Green Data Set Red Data Set
ID GRP Type ID CAT
3 C a 3 10
3 C b 3 20
5 C c 5 50
5 C b 5 60
5 C d

The usual DESIRED results are a Cartesian cross product with 10 observations.
ID GRP TYPE CAT
3 C a 10
3 C b 10
3 C c 10
3 C a 20
3 C b 20
3 C c 20
5 C b 50
5 C c 50
5 C b 60
5 C c 60

However, the expected SAS code does NOT produce the above results.

SAS Code: Data Many2ManyERROR;
Merge red green;
By Id;

Run;
Results
ID GRP TYPE CAT
3 C a 10
3 C b 20
3 C c 20
5 C b 50
5 C c 60

Possible Solutions include using a SQL procedure or manipulate the dataset with the POINT command.

MERGE – MANY to MANY USING SQL

The SQL procedure implements the Structured Query Language.  Using proc SQL a Cartesian cross product data set can be
produced.

SAS Code: Proc SQL;
Create table manySQL as

Select *
From green, red
Where green.id=red.id
;

Quit;

Explanation of SQL code
The phrase “Create table many SQL as”  creates a data set named manySQL, storing the results of the query expression.



The code “Select *” includes all the variables all of the data sets listed in the next snippet of code.  An alternative is to name
the variables you want to keep in the data set.
The names of the source data sets are identified with “From green,red”.
The instructions “Where green.id=red.id” states the condition.

POINT in a MANY to MANY MERGE

Instead of using Proc SQL, it is possible to create the data set in a data step.  This is accomplished through accessing
observations in one data set sequentially and the observations in the other directly using the POINT= statement.

The vast majority of my work I process data sequentially.  That is accessing the observations in the order in which they appear
in the physical file. Usually every observation needs to be examined, and processed so sequential access is adequate.  When
working with small datasets sequential access is not a problem.

On occasion it is advantageous to access observations directly. You can go straight to a particular observation without having
to handle all of the observations that come before it in the physical file. The POINT= option with the SET statement will
communicate to jump to a particular observation.  Suppose you had a large data set with 1 million observations named BigSet
and you knew ELIG was missing for some observations in the last 100 observations.  Instead of sorting or processing the
999,900 other observations you can go directly to the last 100 observations to identify those with missing ELIG values.

SAS Code: Data  FindMissing;
   Do I = 999900 to 1000000;
           Set BigSet point=I;
             If ELIG=’’ then output;
   End;
  Stop;
Run;

When you use the POINT= option, a STOP statement must be included.  If the STOP is inadvertently left off, a continuous or
endless loop occurs.  You are pointing to specific observations and SAS never will find/read the end of file indicator.

The Many to Many Merge data step solution using the Point option is given below.  The Green data set is being processed
sequentially.  For each observation in the Green data set each observation in the Red data set is accessed directly in the Do
Loop. The values read with the SET statement are automatically retained until another observation read from that data set. So
each observation of the Red dataset is paired with the retained observation from the Green data set.  If the tempId variable in
the Green data set matches the Id variable in the Red data set then the observation is outputted to the Cross product data set.

Data CrossProduct (drop=tempID);
   Set green(rename=(id=tempId));
   NumInRedSet=4;

Do i=1 to NumInRedSet;
Set Red Point=i;

                       If tempid=id then output;
             End;
Run;

Green Data Set Red Dataset
ID GRP Type ID CAT
3 C a 3 10
3 C b 3 20
5 C c 5 50
5 C b 5 60
5 C d

TempId GRP Type i ID CAT
3 C a 1 3 10 Output



3 C a 2 3 20 Output
3 C a 3 5 50
3 C a 4 5 60
3 C b 1 3 10 Output
3 C b 2 3 20 Output
3 C b 3 5 50
3 C b 4 5 60
3 C c 1 3 10 Output
3 C c 2 3 20 Output
3 C c 3 5 50
3 C c 4 5 60
5 C b 1 3 10
5 C b 2 3 20
5 C b 3 5 50 Output
5 C b 4 5 60 Output
5 C c 1 3 10
5 C c 2 3 20
5 C c 3 5 50 Output
5 C c 4 5 60 Output

Results
ID GRP TYPE CAT
3 C a 10
3 C a 20
3 C b 10
3 C b 20
3 C c 10
3 C c 20
5 C b 50
5 C b 60
5 C c 50
5 C c 60

CONCLUSION

Trying to locate a particular data element in a large number of small, scattered data sets can be frustrating.  Combining data
sets with SET and MERGE statements can create data sets which are more comprehensive, cohesive and easier to utilize.
The SET statement can be used to copy or append data sets.  The MERGE statement used properly pulls together the
common data elements for a unit of measurement.  Usually a Matched Merge is preferred over a One to One Merge.  Using
the IN and RENAME options will refine newly created data sets.  Many to Many merges are not necessarily intuitive.
However, use the proc SQL or the Data Step point examples as templates will get you started on the right path.  Combining
and manipulating data sets does take a certain amount of skill.  But just like tennis, with practice, POINT, SET, and MATCH
(Merge), will become part of your winning game set.



Data Cleaning and Base SAS Functions
Caroline Bahler, Meridian Software Inc

Introduction
Functions are small programming subroutines and
can be defined as the “work horses” of any data
cleansing operation.  “Dirty data”, unfortunately, is
the norm especially within demographic data where
input errors are common.  In addition, often there is
the necessity of converting a variable within a data
source from one data type into another (for example
from a character date to SAS� date) in order to
conform to pre-existing data.  This paper is not an
exhaustive study of all functions available within
SAS� to cleanse data.  Instead the objective of this
paper is to discuss the most commonly used base
functions within the following categories: data type
conversion (input/put), character, date/time, and
“geographic”.

General Comments on Data Cleansing
Data cleaning, cleansing, or scrubbing all are
synonymous terms for the same process – the
removal of data values that are incorrect from a data
source5.  Dirty data refers to data that contains
incorrect/ erroneous data values.

Data cleansing is an art not a science.  Each set of
data that needs to be cleaned has its own set of
headaches and cleansing solutions.  Therefore, the
following functions allow the “cleanser” to tackle
many types of problem in the basic cleansing line
instead of being specific solutions for a defined
situation.

Data cleansing requires the following information:
� Is there a pre-existing data source, either a

database table or data set that the new data will
be added to?

� Are there any business rules that need to be
used during cleansing?  Often one of the
cleansing chores is to convert a field into
another using a set of criteria.

� What are the cleansing problems in the new
data?  Before any cleansing effort can begin a
inventory of all of the obvious flaws in the data
needs to be compiled.

Finally, some general rules of data cleansing:
� The data is ALWAYS dirtier than you thought it

was.
� New problems will always come to light once the

obvious ones have been solved.
� Data cleansing is an on-going process that

never stops.

Overview of Functions

Data Type Conversion Functions
Frequently a variable value needs to be converted
from one format to another.  For example, data
within a new mailing list contains the zip code as a
numeric value but your permanent customer data
set has zip code as a character variable.  The zip
code can be converted from numeric to character
using the PUT function:

 data newlist;
  set newdata.maillist;

  zipcode = PUTPUTPUTPUT(zip,z5.);
 run;

In the previous example, a new character variable
called zip code was created utilizing the PUT
function.  Conversely, if the zip code in the new mail
list is character but it needs to be numeric then the
INPUT function can be used2.  For example,

data newlist;
 set newdata.maillist;

 zipcode = INPUTINPUTINPUTINPUT(zip,8.);
run;

In addition, to character / numeric conversions the
PUT and INPUT functions can be used in the
conversion of data/time values into character
variables and vice versa.

Character Functions
Frequently it is necessary to change the form of a
character variable or use only a portion of that value.
For example, you might need to uppercase all letters
within the variable value.   In this case, a new
variable does not need to be defined for the function
to be used.

The following is a list of character functions that are
extremely useful in data cleansing.

Function Use
Compress Removes specified characters from a

variable.  One use is to remove
unnecessary spaces from a variable.

Index,
indexc,
indexw

These functions return the starting
position for a character, character
string, or word, and are extremely
useful in determining where to start



Function Use
or stop when sub stringing a
variable.

Left Left justifies the variable value.
Length Returns the number of characters

with a character variable value.
Lowcase Lower cases all letters within a

variable value.
Right Right justifies the variable value.
Scan Returns a portion of the variable

value as defined by a delimiter.  For
example, the delimiter could be a
space, comma, semi-colon etc.

Substr Returns a portion of the variable
value based on a starting position
and number of characters.

Translate Replaces a specific character with
characters that are specified.

Tranwrd Replaces a portion of the character
string (word) with another character
string or word.  For example, a
delimiter was supposed to be a
comma but data in some cases
contains a colon.  This function could
be used to replace the comma with a
colon.

Trim Removes the trailing blanks from the
right-hand side of a variable value.

Upcase Upper cases all letters within a
variable value.

If you need to use one of these functions on a
numeric variable then it is preferable to first convert
the numeric value into a character value (see
previous section).  By default, conversion from
numeric to character will occur when using these
functions within the DATA step with a warning
placed at the end of the DATA step.

For example –

A new mailing list contains a date value that is a
character and it needs to be converted into a SAS
date value.  An additional challenge is that the
character value does not match any date informats.

Date character value format - Mon dd, yyyy

The solution to this conversion has two (2) steps –
1. Need to re-arrange the date character value

so that the date is in the following format –
ddmonyyyy, i.e. date9. informat.

2. Convert the new character value to a date
value.

data newlist;
 set newdata.maillist;

/* Extract month, day and year */
/* from the date character vara */

   m = scan(date,1,’ ‘);
   d = scan(date,2,’ ‘);
   y = scan(year,2,’,’);
   dd = compress(d||m||y,’ ,’);

/* Convert mon, day, year into */
   /* new date variableb            */

   newdate = input(dd,date9.);
 run;

a) In this case the SCAN function was used, but
the SUBSTR function could also have been
used to extract the month, day, and year from
the original character date variable.  The SCAN
function was used because the data values
contained a space or comma delimiter.  Note
that the comma was used to delimit the year and
the text portion was the second and NOT the
third.  The reason for this is the text string has
only two pieces, month and day, before the
comma and year after the comma, when the
comma is used as the only delimiter. The
SUBSTR function would have been the only
choice if a delimiter had not been available.

b) Conversion of the resulting mon, day and year
variables into a new variable was accomplished
by utilizing the COMPRESS function and INPUT
functions.  The COMPRESS function was used
to remove any spaces present within the three
(3) concatenated variables and to remove the
comma within the day variable value.  Note – by
choosing to use the scan function for extracting
the day value from the original date variable, the
comma was left with the day value since there
was no space between the day and comma.
Finally, the use of the INPUT function creates a
new variable with a SAS date value.

Parsing along –

In many data cleansing scenarios, a single data
variable contains multiple pieces of data that need to
be split into separate variables.  If there is no
delimiter between them, then the variable must be
divided using the SUBSTR (substring) function.

The SUBSTR function requires a starting point and
the number of characters to be kept in the new
variable.  In some cases however, the starting point
may not be constant.  In those cases then several



other character functions can be useful in
determining where to start sub stringing.

Some examples -
� The last three characters of a variable are an id

that requires a new variable. An additional
hurdle is that the variable length is not constant.

To extract the last 3 characters in this case the
LENGTH function is used to define the starting
position.

Data cleandata;
  Set dirtydata;
 a = substr(oldid,length(oldid)-3);
 put a;
run;

Oldid         New Id
A123B24 B24
AS1456B35 B35

� A character or a specific set of characters occur
where the character string starts.  Using the data
from the last example, the last 3 characters can
be extracted using INDEX to define the starting
position.

data cleandata;
  set dirtydata;
 oldidx = upcase(oldid);
 a = substr(oldid,index(oldidx,’B’),3);
 put a;
run;

In this case, the length of the character string to
be extracted was specified.  Note – case is
important here so the following variation
removes any case problems without affecting
the case of the extracted string.

Date/Time Functions
Date/Time functions are a set of functions that return
portions of date time, date, or time values or convert
numeric values for month, day and year or hour,
minute and seconds into SAS date or time values.
These functions are especially useful for extracting
the date and time from a date time value or
converting separate month, day and year values into
a SAS date value.

The following is a list of date/time functions that are
extremely useful in data cleansing.

Function Use
Month Returns the month from a date value
Day Returns the day from a date value

Function Use
Year Returns the year from a date value
Hour Returns the hour from a time value
Minute Returns the minute from a time value
Second Returns the second from a time

value
Datepart Returns the date only from a date

time value
Timepart Returns the time only from a date

time value
MDY Returns a date value from the

numeric values for month, day and
year into a date value

HMS Returns a time value from the
numeric values for hour, minutes and
seconds

Today() Returns the current date value.
Date() Returns the current date value.
Datetime() Returns the current datetime value.

For example –

The new mailing list has in one case separate
variables for month, day, and year for one date.  The
problem is that this data needs to be added to a pre-
existing data set that contains this information as a
single SAS date.  If the data is numeric, then the use
of the MDY function converts the separate variables
into a single date value variable.  However, if the
data is character then the conversion to numeric
should occur first and then the conversion to the
date value.

The following codes shows how this two(2) part
process can occur within one (1) statement.

data newlist;
  set newdata.maillist;

  newdate=mdy(input(mon,2.),
              input(day,2.),
              input(yr,4.);
run;

Note: as noted before if the character variables are
not converted to numeric before the use in the MDY
function, SAS will automatically convert these values
to numeric and issue a warning at the end of the
DATA step.  However, good programming practices
prefer the conversion of character variables into
numeric before their use in a function like MDY.

“Geographic” Functions
“Geographic” functions consist of a set of state and
zip code functions that can be used to verify state
name spelling and state abbreviations (to a point).
All useful when data cleansing, especially the
conversion of the zip code to the abbreviation.  This



is a function that can be used to verify that the
abbreviation for the state is correct.  However, this
conversion has another use in identifying the zip
codes that are potentially incorrect.

The following is a list of date/time functions that are
extremely useful in data cleansing.

Function Use
Stname Returns state name in all upper case

from state abbreviation.
Stnamel Returns state name in mixed case

from state abbreviation.
Zipname Return state name in upper case

from zip code.
Zipnamel Returns state name in mixed case

from zip code.
Zipstate Returns state abbreviation from zip

code.

For example –

data newlist;
  set newdata.maillist;

  if state ne zipstate(zip) then
     stateflag=1;
   else
     stateflag=0;
Run;

In the example, above the value returned by the
ZIPSTATE function is compared to the variable
containing the state abbreviation.   If the two state
abbreviations do not match, then a flag is set.

Putting it all together
Appendix 1 is an example of using all of the function
types to cleanse a set of data that is going to be
added to a pre-existing data table in a data
warehouse.  Table 1 lists the data in its “raw” form.
All variables within the “raw” data set are character
variables.

The following changes need to be made:
� Change moddate to datetime value
� Upper case all state abbreviations
� Ensure all phone numbers use only a dash as

divider.
� Add identifier – the data needs a character

variable that uniquely identifies each row.  The
identifier needs to start with 1000.

� Determine if state abbreviations match zip code
determined abbreviations

Table 2 lists the data after cleansing and table 3 is a
listing that identifies the case where the state
abbreviations do not match.  Note – the mismatch

could be caused by either a data entry problem with
the state abbreviation or a data entry problem with
the zip code.  In this case, our program has not
identified the actual problem. Instead the program
has identified only that there is a problem.

Conclusion
This paper was not an exhaustive study of all
functions available within SAS� to cleanse data.
Instead it discussed the most common base
functions used to perform:
� data type conversions
� parse or change the justification or case of

character variables
� parse and create date/time values
� determine state names from state abbreviations

and zip codes

References
1. Functions and Call Routines, Base SAS

Software.  SAS On-line Documentation version
8. SAS Institute, Inc. Cary, NC.

2. Delwiche, Lora D. and Slaughter, Susan J.
1998. The Little SAS Book, Second Edition, SAS
Institute, Inc. Cary NC. pp 204-205

3. Zip codes for basic example – www.usps.com
4. Howard, Neil. 1999. Introduction to SAS

Functions. Proceeding of the Twenty-fourth
Annual SAS User’s Group International
Conference. SAS Institute, Inc. Cary NC. pp
393-399.

5. Karp, Andrew. 1999. Working with SAS Date
and Time Functions Proceeding of the Twenty-
fourth Annual SAS User’s Group International
Conference. SAS Institute, Inc. Cary NC. pp
400-406.

6. Cody, Ron.  2000. Cody's Data Cleaning
Techniques Using SAS Software. SAS Institute,
Inc. Cary NC.

Trademarks
SAS® and all SAS products are trademarks or
registered trademarks of SAS Institute Inc.
Meridian Software, Inc.� is a registered trademark
of Meridian Software, Inc.

Contact Information
Caroline Bahler
Meridian Software, Inc.
12204 Old Creedmoor Road
Raleigh, NC  27613
(919) 518-1070
merccb@meridian-software.com



Appendix 1 - Basic Example

Cleansing Program.

data clean(drop = date time i moddate);
 set newdata.maillist;
 format datetime datetime21.;

 retain i 1000;

 /* identifier */
 i = i + 1;
 id = put(i,4.);

 /* conversion to datetime */
 date = compress(scan(moddate,2,' '),',')||
            scan(moddate,1,' ')||
            scan(moddate,3,' ');
 time = scan(moddate,4,' ');
 datetime = input(compress(date||":"||time),datetime21.);

 /* upper case state */
 st = upcase(st);

/* ensuring dash is divider in phone */
 phone = tranwrd(phone,'/','-');

 /* zip check on state abbrev */
 stabbrv = zipstate(zip);
 if stabbrv ne st then flag = "*";

run;



Ta
bl

e 
1.

 O
rig

in
al

 D
at

a

 I
d 
  
  
Fi
rs
t 
  
  
La
st
  
  
  
  
Ad
dr
es
s 
  
  
  
  
  
  
  
Ci
ty
  
  
  
  
  
  
St
at
e 
  
  
zi
p 
  
  
Ar
ea
  
  
 P
ho
ne
  
  
  
Mo
dd
at
e

10
01
  
  
Br
en
da
  
  
Jo
ne
s 
  
  
  
10
1 
1s
t 
St
  
  
  
  
  
  
Om
ah
a 
  
  
  
  
  
 N
E 
  
  
 6
81
01
  
  
12
3 
  
  
14
7-
24
57
  
  
Ja
n 
17
, 
20
01
 2
0:
07
:4
9

10
02
  
  
Ji
m 
  
  
  
Sm
it
h 
  
  
  
5 
Ke
yl
an
d 
La
ne
  
  
  
  
Po
rt
la
nd
  
  
  
  
 M
E 
  
  
 0
41
03
  
  
21
3 
  
  
12
5-
45
96
  
  
Ja
n 
17
, 
20
01
 2
0:
07
:4
9

10
03
  
  
Jo
hn
  
  
  
Ha
nd
fo
rd
  
  
32
69
 G
ra
ce
la
nd
 A
ve
  
  
Me
mp
hi
s 
  
  
  
  
 M
I 
  
  
 3
75
01
  
  
11
1 
  
  
23
5-
98
75
  
  
Ja
n 
17
, 
20
01
 2
0:
07
:4
9

10
04
  
  
Ja
ne
  
  
  
Ke
w 
  
  
  
  
56
84
 J
on
es
bo
ro
 R
d 
  
  
Bl
ow
in
g 
Ro
ck
  
  
 N
C 
  
  
 2
86
05
  
  
10
2 
  
  
28
6-
54
68
  
  
Ja
n 
17
, 
20
01
 2
0:
07
:4
9

10
05
  
  
Ma
ry
  
  
  
Ro
de
ri
ck
  
  
20
1 
Ga
rl
an
d 
Dr
  
  
  
  
At
la
nt
a 
  
  
  
  
 g
a 
  
  
 3
03
44
  
  
41
2 
  
  
96
5/
56
92
  
  
Ja
n 
17
, 
20
01
 2
0:
07
:4
9

Ta
bl

e 
2.

 C
le

an
ed

 D
at

a

 I
d 
  
  
Fi
rs
t 
  
  
La
st
  
  
  
  
Ad
dr
es
s 
  
  
  
  
  
  
  
Ci
ty
  
  
  
  
  
  
St
at
e 
  
  
zi
p 
  
  
Ar
ea
  
  
 P
ho
ne
  
  
  
  
 M
od
da
te

10
01
  
  
Br
en
da
  
  
Jo
ne
s 
  
  
  
10
1 
1s
t 
St
  
  
  
  
  
  
Om
ah
a 
  
  
  
  
  
 N
E 
  
  
 6
81
01
  
  
12
3 
  
  
14
7-
24
57
  
  
  
 1
7J
AN
20
01
:2
0:
07
:4
9

10
02
  
  
Ji
m 
  
  
  
Sm
it
h 
  
  
  
5 
Ke
yl
an
d 
La
ne
  
  
  
  
Po
rt
la
nd
  
  
  
  
 M
E 
  
  
 0
41
03
  
  
21
3 
  
  
12
5-
45
96
  
  
  
 1
7J
AN
20
01
:2
0:
07
:4
9

10
03
  
  
Jo
hn
  
  
  
Ha
nd
fo
rd
  
  
32
69
 G
ra
ce
la
nd
 A
ve
  
  
Me
mp
hi
s 
  
  
  
  
 M
I 
  
  
 3
75
01
  
  
11
1 
  
  
23
5-
98
75
  
  
  
 1
7J
AN
20
01
:2
0:
07
:4
9

10
04
  
  
Ja
ne
  
  
  
Ke
w 
  
  
  
  
56
84
 J
on
es
bo
ro
 R
d 
  
  
Bl
ow
in
g 
Ro
ck
  
  
 N
C 
  
  
 2
86
05
  
  
10
2 
  
  
28
6-
54
68
  
  
  
 1
7J
AN
20
01
:2
0:
07
:4
9

10
05
  
  
Ma
ry
  
  
  
Ro
de
ri
ck
  
  
20
1 
Ga
rl
an
d 
Dr
  
  
  
  
At
la
nt
a 
  
  
  
  
 G
A 
  
  
 3
03
44
  
  
41
2 
  
  
96
5-
56
92
  
  
  
 1
7J
AN
20
01
:2
0:
07
:4
9

Ta
bl

e 
3.

 S
ta

te
 a

bb
re

vi
at

io
n 

ch
ec

k

  
  
  
 O
ri
g

Id
  
  
 S
ta
te
  
  
St
at
e 
  
 F
la
g

10
01
  
  
 N
E 
  
  
  
NE

10
02
  
  
 M
E 
  
  
  
ME

10
03
  
  
 M
I 
  
  
  
TN
  
  
  
 *

10
04
  
  
 N
C 
  
  
  
NC

10
05
  
  
 g
a 
  
  
  
GA



 
 
 
 

PROC REPORT: How To Get Started 
 

Malachy J. Foley 
 

University of North Carolina at Chapel Hill, NC 
 

ABSTRACT 

     PROC REPORT started as a soupped-up version of 
PROC PRINT.  Now this unique product combines 
features from PROC PRINT, SORT, FREQ, MEANS, 
and TABULATE.  Because of its special blend of 
possibilities, PROC REPORT is often the easiest way to 
do an elegant data listing or a report with descriptive 
statistics. 
 
    This tutorial shows how to use the batch versions of 
PROC REPORT.  Via examples, it thoroughly explores 
the use of PROC REPORT in creating specialized data 
listings. 
 
 
INTRODUCTION 

     Many people shy away from PROC REPORT because 
of it’s mysterious defaults.  Or put another way, PROC 
REPORT acts differently than other SAS  PROC’s. 
However, once you see how PROC REPORT works, you 
may never want to go back to other PROC’s.  
 
    PROC REPORT does the yeoman’s work of PROC 
PRINT, SORT, FREQ, MEANS, and TABULATE, and 
PUT-Statement Formatting (DATA _NULL_) all in one 
procedure. 
 
    The purpose of this paper is to examine, in detail, the 
how to produce listings with batch-mode PROC 
REPORT.  That is, this paper will look at the PRINT, 
SORT and DATA _NULL_ aspects of PROC REPORT.  
The FREQ, MEANS and TABULATE aspects will be 
examined in a subsequent article.  All of the examples in 
this paper are designed to function using SAS version 
6.12 or higher. 
 
     This tutorial is intended for SAS programmers with 
knowledge of the SAS dataset structure, and exposure to 
the SAS PRINT and CONTENTS procedures.  After 
completing this article, the reader should be able to do 
data listing using PROC REPORT and have the 
foundation for going on to learn how to do descriptive 
statistics with the procedure. 
 
 
SAMPLE INPUT DATA SET 

    The following two Exhibits are a PROC PRINT and a 
partial PROC CONTENTS of an example data set. This 
data set is going to be used as input to all the examples of 

PROC REPORT presented in this paper. 
 

Exhibit 1. Listing of Input Data Set 
------------------------------------ 
PROC PRINT DATA=ORG NOOBS UNIFORM; 
RUN; 
------------------------------------ 
      OUTPUT... file=ORG  
------------------------------------ 
 ID    SITE  DUM  NAME  SEX  AGE  
 A01    RU    1   SUE    F    58   
 A02    LA    1    X     M    58   
 A04    RU    1   TOM    M    21   
 A07    LA    1   LEE    F    47   
 A08    LA    1   KAY    F    29   
 A10    RU    1          M    36   
------------------------------------ 
 
Exhibit 2.  Partial CONTENTS of Data Set 
---------------------------------------- 
   Variables Ordered by Position 
---------------------------------------- 
 # Variable  Type  Len  Pos  Label 
 1   ID      Char    4    0 
 2   SITE    Char    2    4 
 3   DUM     Num     8    6 
 4   NAME    Char    3   14 
 5   SEX     Char    1   17 
 6   AGE     Num     8   18  Age in years 
---------------------------------------- 
 
 

FEATURES & DEFAULTS OF PROC REPORT 

    Observe Exhibit 3. It shows a very simple PROC 
REPORT.  This example illustrates the procedure’s 
defaults.  
 

Exhibit 3. REPORT’s defaults in Batch Mode 
------------------------------------------ 
     PROC REPORT DATA=ORG NOWINDOWS; 
     RUN; 
------------------------------------------ 
                            S 
        SI             NAM  E     Age in 
  ID    TE        DUM  E    X      years 
  A01   RU          1  SUE  F         58 
  A02   LA          1   X   M         58 
  A04   RU          1  TOM  M         21 
  A07   LA          1  LEE  F         47 
  A08   LA          1  KAY  F         29 
  A10   RU          1       M         36 
------------------------------------------ 



     The only option used in Exhibit 3 is the 
NOWINDOWS option.  This option is required in batch 
mode and whenever you want your output sent to a file 
rather than a window. Since this paper is dedicated to 
batch mode processing, all examples will use the 
NOWINDOWS option. Everything else in the Exhibit is a 
default. 
 
     As you can see from Exhibit 3, PROC REPORT’s 
defaults are different than PROC PRINT’s defaults. In 
fact, some of REPORT’s defaults are different than the 
defaults used in the rest of SAS.   Below is a list of 
REPORT’s defaults.  “Same” and “Dif” indicate if the 
default is the same or different than PROC PRINT. 
 

• Recs/rows ordered as they appear in data set-
Same 

• Variables/Columns in position order (Proc 
Contents)   -Same 

• UNIFORM is default.    -Dif 
• No Record Numbers (NOOBS) is default  - Dif 
• Labels (not var names) used as headers - Dif 
• REPORT needs NOWINDOWS option. - Dif 
• Default spacing not as nice as Proc PRINT.   –

Dif 
 
 
VARIABLE NAMES AS COLUMN HEADINGS 

    As a default, PROC REPORT uses the variable labels 
as column headings.  This is different than PROC PRINT 
which uses variable names as column headings.  If you 
want to create a report that uses variable names as column 
headings, the NOLABELS system option will do the 
trick.  This is illustrated in the next exhibit. 

 
Exhibit 4. Variable Names as Col Headings 
------------------------------------------ 
     OPTIONS NOLABEL; 
     PROC REPORT DATA=ORG NOWINDOWS; 
     RUN; 
------------------------------------------ 
                            S 
        SI             NAM  E      
  ID    TE        DUM  E    X        AGE 
  A01   RU          1  SUE  F         58 
  A02   LA          1   X   M         58 
  A04   RU          1  TOM  M         21 
  A07   LA          1  LEE  F         47 
  A08   LA          1  KAY  F         29 
  A10   RU          1       M         36 
------------------------------------------ 

 
 
 
MYSTERIOUS RESULTS 

     One of the things people don’t like about PROC 
REPORT is that sometimes it gives some unexpected 

results. 
    Look at Exhibit 5.  This is a simple PROC REPORT 
which is exactly the same as Exhibit 3, except that the 
input file is subsetted to two variables.  But something 
strange happens.  Rather than listing the values in the 
input data set from Exhibit 1, it sums the values!  This is 
because the two variables (DUM and AGE) are numeric.  
When all the variables in the input file are numeric, 
PROC REPORT does a sum as a default. 

 
Exhibit 5. Unexpected Results 
------------------------------ 
PROC REPORT 
      NOWINOWS 
      DATA=ORG (KEEP=DUM AGE)  
    ; 
RUN; 
------------------------------ 
       OUTPUT 
------------------------------ 
           Age in 
     DUM    years 
      6       249 
------------------------------ 
 
 

THE DEFINE STATEMENT 

    To avoid having the sum of numeric variables, one or 
more of the input variables must be defined as DISPLAY.  
The DISPLAY option forces each observation to Print. 
Furthermore, it is good programming practice to always 
define each variable that is in the output report.  The 
following is an example of how to use the DEFINE 
statement. 
     
    This example also shows that the NOWINDOW option 
can be abbreviated as NOWD. 
 

Exhibit 6. The DEFINE statement and NOWD 
------------------------------------------ 
PROC REPORT DATA=ORG (Keep=DUM AGE) NOWD ; 
       DEFINE  DUM  /DISPLAY;  
       DEFINE  AGE  /DISPLAY;  
RUN; 
------------------------------------------ 
               Age in 
       DUM      years 
         1         58 
         1         58 
         1         21 
         1         47 
         1         29 
         1         36 
------------------------------------------ 
 
 

ORDERING/SUBSETTING COLUMNS (VARS) 

   In the previous example, the KEEP data set option was 



used to subset the variables to be displayed in the output.  
Another way to control which variables are outputted, is 
to use the COLUMN statement.  This statement is similar 
to the VAR statement in PROC PRINT.  It determines 
which variables are going to be in the report and in what 
order the variables are displayed. 
 

Exhibit 7. Ordering/Subsetting Cols/Vars 
---------------------------------------- 
   PROC REPORT   NOWD   DATA=ORG  ; 
       COLUMN  AGE  DUM; 
       DEFINE  AGE  /DISPLAY; 
       DEFINE  DUM  /DISPLAY;  
   RUN; 
---------------------------------------- 
         Age in          
          Years     DUM 
             58      1  
             58      1  
             21      1  
             47      1  
             29      1  
             36      1  
---------------------------------------- 
 

 
 
 
SYNTAX SO FAR 

     As seen, in the batch mode you must always use the 
NOWINDOWS=NOWD option in PROC REPORT. 
Also, iIt is good programming practice to always use the 
COLUMN and DEFINE statements.  Furthermore, the 
NOLABEL option and the DISPLAY manipulation type 
have been introduced.  As such, the syntax of PROC 
REPORT thus far is. 

 
Exhibit 8. PROC REPORT’s Syntax So Far 
------------------------------------------ 
OPTIONS NOLABEL; 
PROC REPORT 
          NOWD 
          DATA=file-name 
            (OBS= WHERE=() DROP= KEEP=) 
        ; 
    COLUMN list-of-variables;       
    DEFINE  var-name /DISPLAY; 
    DEFINE  var-name /DISPLAY; 
RUN; 
------------------------------------------ 
 

 
 
 
WHY PEOPLE DO/DO NOT USE PROC REPORT 

     By now, it is becoming apparent why people avoid 
PROC REPORT.  As seen in the previous Exhibit, PROC 
REPORT almost always requires more statements than 

PRINT.  Also, PROC REPORT’s defaults are to different 
than PROC PRINT’s and generally unfamiliar.  
Sometime, like in Exhibit 5, PROC REPORT seems to act 
strangely. Moreover, REPORT defaults do not space 
fields nicely. 
 
    What may not be so apparent is why people DO use 
PROC REPORT.  The short answer is that PROC 
REPORT is much more flexible than PRINT and allows 
you to create more professional looking reports.  The 
significant capabilities of  REPORT will become 
noticeable as this paper proceeds. 
 
   To appreciate the flexibility of  PROC REPORT, 
horizontal spacing is examined in the next section. 
 
 
 
HORIZONTAL SPACING AND MORE 

     The following Exhibit shows a PROC-PRINT type of 
report of the data using, but PROC REPORT.  Notice that 
the output is not as nice as PROC PRINT’s defaults 
provide (see Exhibit 1).  In the output of the next Exhibit, 
the column titles are crazy and spacing between the 
columns is not uniform. 
 

Ehibit 9. A Proc-PRINT Type of Listing 
------------------------------------------ 
PROC REPORT NOWD 
             DATA=ORG (WHERE=(ID<"A08")) ; 
    COL ID SITE NAME AGE ; 
    DEFINE ID/DISPLAY; 
    DEFINE SITE/DISPLAY; 
    DEFINE NAME/DISPLAY; 
    DEFINE AGE/DISPLAY; 
RUN; 
------------------------------------------ 
             SI  NAM     Age in 
       ID    TE  E        years 
       A01   RU  SUE         58 
       A02   LA   X          58 
       A04   RU  TOM         21 
       A07   LA  LEE         47 
------------------------------------------ 
 

    To figure out how to make the PROC REPORT listing 
look nicer, one must understand how REPORT creates 
horizontal spacing.  Actually, horizontal spacing is a 
combination of spacing between fields, width of the 
fields, format of the fields and justification of the data 
within the fields.  All of this can be summarized as 
follows. 
 

• Default Spacing between fields = 2 blanks 
 

• Default Justification (=Alignment) 
• RIGHT for Numeric Fields 
• LEFT for Character Fields 



 
• If no format specified, then Proc REPORT uses 

• Best9.  for Numeric Fields 
• $w. for Character Fields (w=width) 

 
• Default Width= Format width 

 
    If you examine Exhibit 9, it becomes apparent that the 
crazy titles and spacing is caused by the default widths.  It 
is quite easy to upgrade the spacing with by adding a 
width specification to the define statements as follows. 

 
Exhibit 10.Cleaning Up Exhibit 9’s Listing 
------------------------------------------ 
PROC REPORT HEADLINE HEADSKIP NOWD 
             DATA=ORG(WHERE=(ID<"A07"));  
    COL ID SITE NAME AGE ; 
    DEFINE ID   /DISPLAY; 
    DEFINE SITE /DISPLAY WIDTH=4 RIGHT; 
    DEFINE NAME /DISPLAY WIDTH=4 RIGHT; 
    DEFINE AGE  /DISPLAY "AGE" WIDTH=3; 
RUN; 
------------------------------------------ 
 
      ID    SITE  NAME  AGE 
 
      A01     RU   SUE   58 
      A02     LA     X   58 
      A04     RU   TOM   21 
------------------------------------------ 
 
 

    You will see in Exhibit 10 that aside from adding the 
WIDTH option on the DEFINE statement several other 
things were done. 
 
    To start with, the HEADLINE and HEADSKIP options 
were add to the PROC REPORT statement.  HEADLINE 
creates the line below the column titles and HEADSKIP 
creates the blank line below the headline. 
 
   Also, the “Age” column title was added to the DEFINE 
statement.  This title overrides the label in the descriptor 
part of the input data set.   Column labels or titles can 
come from a variety of sources.  How PROC REPORT 
chooses which label to use is described in the next 
exhibit. 

 
Exhibit 11. Label Hierarchy 
------------------------------------------ 
REPORT uses the 1st label it finds in this 
list. 
 

• col-heading”  (DEFINE option) 
• OPTIONS NOLABEL;  (implies Var Names) 
• LABEL Statement in Proc REPORT 
• LABEL in the Data Descriptor 
• Variable Names 

------------------------------------------ 

 
 

     You may have noticed in Exhibit 10 that several 
options were used in the DEFINE statement.  Actually the 
DEFINE statement is one of the places were REPORT 
derives a lot of its power.  The DEFINE statement lets 
you do just about anything you want to the column of data 
it is defining.  The next Exhibit outlines some of the 
options available in the DEFINE statement. 
 

Exhibit 12. Some DEFINE Statement Options 
----------------------------------------- 

• DISPLAY 
• Col-Heading in quotes 
• SPACING= (Overrides all Spacings) 
• FORMAT= (Overrides all other Formats) 
• WIDTH=  (Default=Format Width) 
• Justification Specifications 

o RIGHT 
o LEFT 
o CENTER 

----------------------------------------- 
 
 

    Notice that the DEFINE statement gives you almost 
total horizontal control.  Also, notice that the DEFINE 
statement options override almost all other options in your 
program. 
 
    As such, the author suggest that you use the DEFINE 
statement to define all of your horizontal spacing rather 
than use other methods.  There are several reasons for the 
suggestion.  First, you don’t have to memorize the various 
hierarchies, like the label hierarchy of Exhibit 11.  You 
know that whatever is in the DEFINE statement is what is 
going to happen.  Second, you don’t have to keep track of 
what has already been defined elsewhere in your program.  
For example, you don’t have to remember if you have 
labels defined in the descriptor part of your program or if 
you have a subsequent label statement, etc. 
 
    While you don’t have to remember hierarchy rules to 
use REPORT, it probably is a good idea to remember the 
justification rules.  These rules follow. 
 

Exhibit 13. Justification Rules 
   (Right, Left, Center) 
------------------------------------------ 

  Justification applies to 
• col-headings 
• data values. 

 
  Default Justification (=Alignment) 

• RIGHT for Numeric Fields 
• LEFT for Character Fields 

 
  Numerical values:  

• always remain right justified within 
FORMATs 



• FORMATs are justified within the 
WIDTH. 

 
  For col-headings & character values:  

•  values are justified within the 
WIDTH.  (without regard for the $w. 
FORMAT). 

• leading blanks are retained. 
• trailing blanks are eliminated. 

------------------------------------------ 
 
 
 

     Just how these Justification rules work are 
demonstrated in the next two Exhibits.  Exhibit 14 shows 
the case of right justification, and Exhibit 15 shows the 
case of left justification. 
  

Exhibit 14. RIGHT Justification  
------------------------------------------ 
 
DEFINE AGE / ‘AGE∆’ SPACING=3 WIDTH=6 
              FORMAT=4. RIGHT; 
------------------------------------------ 
COL=  123456789        s=Spacing location 
TYPE= ssswwwwww        w=Width location 
TYPE=      ffff        f=Format location 
            AGE        ∆=Blank space 
           ∆∆58 
------------------------------------------ 
 
 
 
Exhibit 15. LEFT Justification 
------------------------------------------ 
 
DEFINE AGE / ‘∆AGE’” SPACING=3 WIDTH=6 
              FORMAT=4. LEFT; 
------------------------------------------ 
COL=  123456789        s=Spacing location 
TYPE= ssswwwwww        w=Width location 
TYPE=    ffff          f=Format location 
         ∆AGE          ∆=Blank space 
         ∆∆58 
------------------------------------------ 
 
 

     You will note from the previous two examples that 
REPORT gives you almost complete horizontal control of 
where you are putting your data.  One thing it does not 
give you is trailing blanks. 
 
 
 
FORCING A TRAILING BLANK 

     Notice the last line of Exhibit 13. It says that for 
column headings and character data trailing blanks are 
always eliminated by REPORT.  Sometimes you want 
trailing blanks so that your data is justified correctly.  One 

way of creating trailing blanks is given in the next 
example. 
 
    This trick works on most ASCII-based computers and 
PC’s.  The example shown in Exhibit 16 is identical to 
Exhibit 14 except that a &blk is placed behind the AGE 
column label in the DEFINE statement.  The &blk 
character is created in the DATA _NULL_ step at the 
beginning of the Exhibit.  
 
    You do not need to understand how the CALL 
SYMPUT works to use this trick.  Merely put the DATA 
_NULL_ somewhere at the beginning of your program 
and then use the &blk character whenever you need it. 
 
   One note of  CAUTION… you must use double quotes 
(rather than single quotes) around the &blk for this trick 
to function. 

 
Exhibit 16. Forcing Trailing Blanks 
------------------------------------------ 
DATA _NULL_; 
   CALL SYMPUT('blk','FF'X); 
RUN; 
 
DEFINE AGE / ″ AGE&blk″ SPACING=3 WIDTH=6 
              FORMAT=4. RIGHT; 
------------------------------------------ 
 
COL=  123456789        s=Spacing location 
TYPE= ssswwwwww        w=Width location 
TYPE=      ffff        f=Format location 
           AGE∆ 
           ∆∆58 
------------------------------------------ 
 
 
 

THE FLOW OPTION 

     Exhibits 14 to 16 discussed how to place your data 
almost anywhere you want to within a line.  The next 
example reveals how to make a very long character value, 
like a note or a comment, to span several lines of output.  
This is yet another feature of  PROC REPORT which 
makes it so powerful.  The feature is called FLOW.  
Sometimes people will use REPORT rather than PRINT 
just because of the FLOW option. Observe how the 
FLOW option in the DEFINE statement for the note 
variable works. 
 

Exhibit 17. The Flow Option 
------------------------------------------ 
PROC REPORT Headline NOWD DATA=ORG;  
    COL ID NAME AGE NOTE; 
    DEFINE NAME /DISPLAY WIDTH=4 RIGHT; 
    DEFINE AGE  /DISPLAY "AGE" WIDTH=3; 
    DEFINE NOTE /DISPLAY WIDTH=13 FLOW; 
------------------------------------------ 
 



     ID    NAME  AGE  NOTE          
     A01    SUE   58  This is an ex 
                      of FLOW. 
     A02      X   58  No flow here. 
     A04    TOM   21  Adverse 
                      Event. 
------------------------------------------ 

 
COLUMN HEADINGS 

    The previous sections demonstrate how REPORT gives 
you almost complete control of how to place your data 
horizontally.  This section shows how REPORT lets you 
to play with the column heading. 
 
    The following exhibit shows how the dash is 
automatically expanded around a column heading 
(NOTE) and how a slash may be used to split column 
labels onto two lines. 

 
Exhibit 18. Expanding dash. 
            Splitting slash. 
------------------------------------------ 
PROC REPORT Headline NOWD DATA=ORG;  
  COL ID NAME AGE NOTE; 
  DEFINE NAME /DISPLAY WIDTH=7 RIGHT 
             ‘First/Name”’; 
  DEFINE AGE  /DISPLAY "AGE" WIDTH=3; 
  DEFINE NOTE /DISPLAY WIDTH=13 FLOW 
            ‘- Note- ‘; RUN; 
------------------------------------------ 
            First 
     ID      Name  AGE  ---- NOTE --- 
     A01      SUE   58  This is an ex 
                        of FLOW. 
------------------------------------------ 
 
 

    The next exhibit shows how the STAR is automatically 
expanded around a column heading (NOTE) and how a 
SPLIT= option works.  The SPLIT option in PROC 
REPORT functions much as it does in PROC PRINT. 
 

Exhibit 19. Expanding star. 
            Split= option. 
------------------------------------------ 
PROC REPORT Headline NOWD DATA=ORG 
        SPLIT=’*’; 
    COL ID NAME AGE NOTE; 
    DEFINE NAME /DISPLAY WIDTH=7 RIGHT 
             ‘First*Name’  
    DEFINE AGE  /DISPLAY "AGE" WIDTH=3; 
    DEFINE NOTE /DISPLAY WIDTH=13 FLOW 
            ‘* Note *’; RUN; 
------------------------------------------ 
            First  
     ID      Name  AGE  **** NOTE *** 
     A01      SUE   58  This is an ex 
                        of FLOW. 
------------------------------------------ 

 
 
 

    Exhibit 20 illustrates how to create a column heading 
that spans several columns.  Observe how the parenthesis 
indicate which columns the special title is to span.  
Specifically, the parentheses embrace the ID and NAME 
variables. 

 
 
Exhibit 20. Special Column Heading 
------------------------------------------ 
PROC REPORT Headline NOWD DATA=ORG; 
    COL (‘-ID INFO-‘ ID NAME) AGE NOTE; 
    DEFINE ID   /DISPLAY ‘ID#’; 
    DEFINE NAME /DISPLAY WIDTH=6 RIGHT; 
    DEFINE AGE  /DISPLAY  WIDTH=3; 
    DEFINE NOTE /DISPLAY WIDTH=13 FLOW 
            ‘* Note *’;    RUN; 
------------------------------------------ 
     --ID INFO--- 
     ID#     NAME  AGE  **** NOTE *** 
     A01      SUE   58  This is an ex 
                        of FLOW. 
------------------------------------------ 
 
 
 

   The next exhibit details how to add a line above the 
column headings.  This line could be called an “overline”. 
 
    Note how the underline symbol in quotes is 
automatically expanded out to cover all the column 
headings to form the overline. 
 
     Here, like in the previous example, the parentheses 
indicate which columns are to be spanned with the special 
heading.  The difference here is that there are two sets of 
parentheses.  The outermost set is for the overline (to 
cover all the columns).  The innermost set is to cover or 
span only the variable ID and NAME. 
 
    Exhibit 21 also demonstrates the automatic expansion 
of the greater-than and less-than symbols around the Note 
column title. 
 
 

 
 
Exhibit 21. Overlining the column headings 
------------------------------------------ 
PROC REPORT Headline NOWD DATA=ORG; 
   COL (‘_ _’(‘-ID INFO-‘ ID NAME) Age  
                                 Note); 
    DEFINE ID / ‘ID#’; 
    DEFINE NAME /DISPLAY WIDTH=6 RIGHT; 
    DEFINE AGE  /DISPLAY  WIDTH=3; 
    DEFINE NOTE /DISPLAY WIDTH=13 FLOW 
            ‘< Note >’;    RUN; 
------------------------------------------ 



                                      
     --ID INFO--- 
     ID#     NAME  AGE  <<<< NOTE >>> 
     A01      SUE   58  This is an ex 
                        of FLOW. 
------------------------------------------ 
 
 

    In this section, many different column heading or 
labeling techniques have been illustrated.  These 
techniques are summarized in the following table. 

 
Exhibit 22.Summary of Column Headings 
------------------------------------------ 
• Controlling the Breaks (stacking text) 

• ‘xxx’ ‘yyy’ (multiple pairs of  
quotes) 

• ‘xxx/yyy’ (slash is default split 
char.) 

• ‘xxx*yyy’ (with SPLIT=’*’ Report 
Option) 

 
• Underlining 

 HEADLINE Proc Report Statement Option 
 

• Overlining (with text or characters) 
          COL (‘text’ var var) var var; 
 

• Extending Headers to Column Width 
• ‘char header-text char’ 

          (where char pair is **  ==  ++  
                    --  _ _  ..  < >   > <   ) 
 

• Justification (LEFT, CENTER, RIGHT) 
------------------------------------------ 
 
 
 
 

WHY PEOPLE DO USE PROC REPORT 

    Earlier in the article, several reasons shy people might 
not use PROC REPORT were given.  Now that some of 
the features of RPEORT have been explored, it is only 
fair to state some of the reasons why people DO use 
REPORT.  Basically all the reasons are REPORT 
features.  With REPORT you have: 
 

• Complete Horizontal Control 
• Complete Col-heading Control 
• Justification Control 
• The FLOW option 
• More Professional Looking Reports 

 
    And this is just the beginning of the list of features.  
The list goes on and on.  In the next section, another 
feature of REPORT is examined.  Namely, how you can 
do sorts within PROC REPORT. 
 

 
 
ORDERING LINES IN OUTPUT - SORT 

    Until now, only the DISPLAY manipulation option of 
the DEFINE Statement has been used.  There are data 
manipulation options available.  One of them is the 
ORDER option.  This option sort the rows before the 
output is printed.  Here is an example. 

 
Exhibit 23. The ORDER Option. 
---------------------------------------- 
  Proc REPORT nowd headline headskip 
              Data=ORG;  
    COL SITE NAME AGE ; 
    DEFINE SITE /ORDER WIDTH=4; 
    DEFINE NAME /DISPLAY WIDTH=4; 
    DEFINE AGE  /DISPLAY "AGE" WIDTH=3;  
 
---------------------------------------- 
          SITE  NAME  AGE 
 
           LA     X     58 
                 LEE    47 
                 KAY    29 
           RU    SUE    58 
                 TOM    21 
                        36 
---------------------------------------- 
 
 
 

     Notice how in Exhibit 23 the records from the input 
data set described in Exhibit 1 are now sorted according 
to SITE.  This was done with the ORDER option. 
 
   Also notice that in Exhibit 23 the SITE value is not 
repeated on each line, but rather given only once on its 
first occurrence.  This overhang feature is automatic when 
you use the ORDER option. 
 
   The next exhibit is the same as the previous exhibit, 
except that now two variables are declared as ORDER 
type variables.  Thus, you will get the output sorted on 
two variables.  What’s more, you should get two 
overhanging variables.  However, in this example, each 
value of the second variable is distinct, so the 
overhanging effect is not evident. 

 
 
 
Exhibit 24. Sort on two variables  
------------------------------------------ 
  Proc REPORT nowd headline headskip  
              Data=ORG;  
    COL SITE NAME AGE ; 
    DEFINE SITE /ORDER WIDTH=4; 
    DEFINE NAME /ORDER WIDTH=4; 
    DEFINE AGE  /DISPLAY "AGE" WIDTH=3;  
------------------------------------------ 



          SITE  NAME  AGE 
 
           LA     X     58 
                 KAY    29 
                 LEE    47 
           RU    SUE    58 
                 TOM    21 
------------------------------------------ 
 
 

  You might see that something is wrong with the output 
in the preceding exhibit. Namely, the record or row for 
the person with a missing Name is not printed.  This is the 
way REPORT handles missing values on ORDER type 
variables.  It does not print them.  To get around this 
feature, you must add the MISSING option.  The 
following exhibit is the same as Exhibit 24, except it 
includes the MISSING option . 

 
Exhibit 25. MISSING Option 
------------------------------------------ 
  Proc REPORT nowd headline headskip  
              Data=ORG MISSING;  
    COL SITE NAME AGE ; 
    DEFINE SITE /ORDER WIDTH=4; 
    DEFINE NAME /ORDER WIDTH=4; 
    DEFINE AGE  /DISPLAY "AGE" WIDTH=3;  
------------------------------------------ 
          SITE  NAME  AGE 
 
           LA     X     58 
                 KAY    29 
                 LEE    47 
           RU           36 
                 SUE    58 
                 TOM    21 
------------------------------------------ 
  
 
 
 
 

TYPES OF STATEMENTS 

      REPORT like other PROC’s allows you do use 
several general SAS statements, In addition to all the 
PROC REPORT statements like COL and DEFINE.  Here 
is a list of which general statements are supported by 
RPEORT. 

 
Exhibit 26. General SAS Statements. 
---------------------------------------- 

    Supported by PROC REPORT. 
• WHERE 
• LABEL - not recommended 
• FORMAT- not recommended 
• TITLE 
• FOOTNOTE 
• BY 

 

   NOT supported by PROC REPORT 
• KEEP 
• DROP 

---------------------------------------- 
 
 

     This article assumes the reader is familiar with these 
general SAS statements and knows how to use them.   
 
 
 
FORMAT HIERARCHY 

      Exhibit 26 says that the LABEL and FORMAT 
statements are not recommended.  This again is the 
suggestion to set your label and format values in the 
DEFINE statement for each variable.  This suggestion is 
made so that you do not have to remember what the 
different hierarchies are nor remember what has been 
previously defined in your program.    However, if you do 
wish to use something other than the DEFINE statement 
to specify your labels and formats, you should be aware 
of the hierarchies.  The label hierarchy was presented in 
Exhibit 11 and the format hierarchy follows. 
 

 
 
Exhibit 26. Format Hierarchy   
---------------------------------------- 
REPORT accepts the 1st Format from the 
following list that fits in WIDTH. 
(Thus, WIDTH can affect FORMAT/Values.) 
    

• FORMAT=  (DEFINE option) 
• FORMAT Statement in Proc REPORT 
• FORMAT in the Data Descriptor 
• Default Formats as follows 
• Best9.  for Numeric Fields 
• $w. for Character Fields (w=width) 
• If Value does not fit in Format 
• Numeric Fields are filled with * 
• Character Fields are truncated 

------------------------------------------ 
 

Notice that WIDTH’s do affect the FORMAT and values, 
and that WIDTH size defaults to the FORMAT size.  As 
such, the author makes two suggestions in choosing 
FORMAT’s and WIDTH’s for REPORT 
 

• Choose FORMATs with more columns than 
your maximum expected value. 

 
• Choose WIDTHs greater than or equal to the 

FORMATs.  
 
 
 



ORDER= OPTION 

    Another programming suggestion is to always use the 
ORDER= option when you use the ORDER option in a 
DEFINE statement.  Exhibit 26 is an example of how to 
use this the ORDER= option.  The reason for the 
suggestion is that in every other PROC the order is 
different than in PROC REPORT.  So, it is easy to expect 
the wrong sort.  Exhibit 27 explains the different 
ORDER= Options. 

 
Exhibit 26. Order= Option                                         
------------------------------------------ 
  Proc REPORT nowd missing headline  
          headskip Data=ORG;  
    COL  SITE NAME AGE ; 
    WHERE AGE>30. ; 
    DEFINE SITE /ORDER WIDTH=14 
          FORMAT=$SITE. ORDER=INTERNAL; 
    DEFINE NAME /ORDER WIDTH=4; 
    DEFINE AGE  /DISPLAY "AGE" WIDTH=3;  
------------------------------------------ 
      SITE            NAME  AGE 
 
      LOS ANGELES      X     58 
                      LEE    47 
      DURHAM-RALEIGH         36 
                      SUE    58 
------------------------------------------ 
 
 
 
Exhibit 27. ORDER= Option  Values                           
------------------------------------------ 
ORDER= (one of the following) 
    DATA or FORMATTED or FREQ or INTERNAL 
 
Meaning of Options 
• DATA - Order recs. as in the data set. 
• FORMATTED - Sort values after 

formatting. 
• INTERNAL - Sort values before 

formatting them. 
• FREQ - Sort values by frequency of 

occurrence in the data set. 
 
Defaults 
• DATA when manipulation-type is 

DISPLAY. 
• FORMATTED when manip.-type is ORDER. 
• (in every other PROC, default is 

INTERNAL.) 
------------------------------------------ 
 
 
 
 

THE BREAK STATEMENT 

     Finally, the BREAK statement is introduced in the 

next exhibit.  BREAKS can be use in a variety of ways.  
In this example, it is used to put a blank line (a SKIP) 
after each different SITE. 
 

Exhibit 28. BREAK  Statement   
------------------------------------------
Proc REPORT nowd missing headline DATA=ORG 
    COL  SITE NAME AGE ; 
    WHERE AGE>30. ; 
    DEFINE SITE /ORDER WIDTH=4; 
    DEFINE NAME /ORDER WIDTH=4; 
    DEFINE AGE  /DISPLAY "AGE" WIDTH=3;  
    BREAK AFTER SITE /SKIP; 
RUN; 
------------------------------------------ 
          SITE  NAME  AGE 
           LA     X     58 
                 LEE    47 
 
           RU           36 
                 SUE    58 
------------------------------------------ 
 
 
 

SYNTAX FOR LISTINGS 

     This article is an introduction to how to use PROC 
REPORT to create listings.  Exhibit 29 shows all of the 
syntax that has been covered in this article and serves as 
an example of what can be done. 
 

Exhibit 29. Syntax for Listings 
------------------------------------------ 
OPTIONS NOLABEL LS= PS=; 
PROC REPORT   NOWD  MISSING SPLIT=’char’ 
      HEADLINE HEADSKIP SPACING= 
      DATA=file-nam 
        (OBS= Where=() Drop= Keep=); 
  WHERE expression ; 
  TITLE ‘your-message‘ ; 
  FOOTNOTE ‘your-message’; 
  COLUMN (‘∆header&blk’ list-of-vars)  
             more-vars;       
  DEFINE  var-name /<DISPLAY or ORDER> 
          ‘∆col-head&blk” 
           SPACING=  WIDTH=  FORMAT=  FLOW 
           RIGHT  LEFT  CENTER  
           ORDER= DESCENDING; 
  BREAK AFTER order-var /SKIP; 
RUN; 
 
 
 
 

PROGRAMMING RECOMMENDATIONS 

  Throughout this paper, the author has made several 
suggestions on how one might program a PROC 
REPORT.  The following bullets summarize these 



suggestions/tips. 
 

• Always use NOWD 
• Use MISSING most of the time. 
• Use DEFINE for every variable. 
• Use a Manipulation type (Display/Order) for 

every DEFINE. 
• Use ORDER= with ORDER manipulation type. 
• Use DEFINE for horizontal control (spacing, 

width, format) 
• Don’t use FORMAT and LABEL statements. 
• Indent and align code. 
• Always use RUN statement. 

 
 
 
CONCLUSION  

    They say “there is no such thing as a free lunch”.  So it 
is with creating listings of  data sets.  When you need a 
quick listing, PROC PRINT is your best choice.  
However, when you need a more formal listing, PROC 
REPORT is probably your best choice.  REPORT 
provides listing features that are difficult or impossible to 
obtain with PROC PRINT.  For example, 
 

• Fancy headings. 
• FLOW of character value onto multiple lines. 
• Total horizontal control. 
• Break lines 
 

   REPORT almost gives you all of the features of using 
PUT Statement Formatting (DATA  _NULL_ ), and 
without as much work. 
 
     Nonetheless, you don’t get something for nothing.  
REPRORT, unlike PRINT, pretty much requires you use 
a define statement for every variable you output.  On the 
other hand, this is a small price to pay for near-PUT-
statement capabilities. 
 
    Furthermore, PROC REPORT goes way beyond great 
looking listings.  It offers the ability to create descriptive 
statistics that are usually found in the FREQ,  MEANS, 
and  TABULATE procedures.  Once you are familiar with 
all the listing features of  REPORT, it is fairly easy to go 
and create great-looking reports that include descriptive 
statistics.  How to use PROC RPEORT to create statistical 
reports is the subject of a future paper. 
 
 
 
REFERENCE 

SAS Technical Report  P-258, Using the REPORT 
Procecure in a Nonwindowing Environment, Release 
6.07, Cary, NC: SAS Institute Inc., 1993. 
 

 
 
TRADEMARKS 

    SAS is a registered trademark or trademark of SAS 
Institute Inc. in the USA and other countries.  indicates 
USA registration. 
 
    Other brand and product names are registered 
trademarks or trademarks of their respective companies. 
 
 
 
AUTHOR CONTACT 

    The author welcomes comments, questions, corrections 
and suggestions. 
 
        Malachy J. Foley 
        2502 Foxwood Dr. 
        Chapel Hill, NC 27514 
 
        Email: FOLEY@unc.edu 
 

mailto:FOLEY@unc.edu


DIRECT ADDRESSING TECHNIQUES OF TABLE LOOK-UP

PART 1.      KEY-INDEXING - BITMAPPING
PART 2.      HASHING

Paul M. Dorfman,
CitiCorp AT&T Universal Card, Jacksonville, FL

ABSTRACT

Table look-up is the most time-consuming part of many SAS programs. Base SAS offers
a rich collection of built-in searching techniques. Merging, SQL joins, formats, SAS
indexes - all serve the purpose of locating relevant data. For custom programming, SAS
offers arrays, whose direct addressability lends itself to implementing just about any
searching algorithm. Array-based lookup is not a ready-to-go food; it has to be cooked
at home. However, it may result in dishes digested by the computer more easily, more
programmatically nutritious, and with fewer computer resources ending up in the
garbage disposer.

This paper shows how arrays can be used to organize the fastest class of in-memory
table look-up -- direct-address searching. Three such techniques --  key-indexing,
bitmapping, hashing -- are considered in a logical sequence using a real-life example of
matching two data files by a common key. The results of benchmarking presented in the
paper show that home-cooked direct addressing methods beat even the quickest ready-
to-go tools like the "large formats" by a wide margin. As such, they can be indispensable
in any massive data processing setting, where speed and efficiency considerations are
paramount.

INTRODUCTION

Table lookup being one of the most frequent data processing operations, SAS provides a
rich collection of built-in searching techniques. Merging, SQL joins, formats, indexes, to
name a few, all serve the purpose of looking up relevant data. In addition, SAS
Language incorporates arrays – the data structures ideal for implementing just about
any searching algorithm “by hand”. SAS arrays are not ready-to-go tools: Array-based
lookups have to be custom-coded and tuned. However, this approach is more flexible
and often results in programs that search faster and use fewer resources than the
“heavy artillery”.

This paper concentrates on a group of in-memory lookup methods based on direct or
almost direct addressing into a temporary SAS array. First, we shall consider key-
indexed search. Then we will try to expand its domain by viewing an array as a bitmap.
Finally, we will see how to generalize the core idea of key-indexing to arrive at a hybrid
search method called hashing.

To make the discussion less abstract, we will consider a common task of matching two
data files by a common variable. This will help us how different lookup techniques
compare to each other and to some of the ready-to-go methods such as “large formats”
and SQL.

Consider an unsorted file SMALL containing N_SMALL records with a key variable KEY
and satellite variable S_SAT. Another unsorted file, LARGE, with N_LARGE records, also
contains KEY and a satellite field L_SAT. Let us assume, for the time being, that the keys
are integers. Imagine that LARGE is so big that sorting is not an option; however, also
assume that we have enough memory to hold all keys from SMALL at once. Under these
conditions, What is the most efficient way to subset LARGE based on the values of KEY
in SMALL to produce a file MATCH? SAS offers a number of ready-to-go tools based on
in-memory table lookup. For example:

1. Compile unduplicated keys from SMALL into a format using CNTLIN= option, and
search it for each KEY read from LARGE.

2. Join the files using BUFFERSIZE large enough to prompt the SQL optimizer to use
SQXJHSH access method.

3. Load the keys from SMALL into a sorted array, then use a hand-coded binary or
interpolation search.

With plenty of methods available, why try something else? Because there are faster and
more efficient ways to do the trick!

I.  KEY-INDEXING

Most of the ready-to-go and hand-coded searching methods are based on comparing a
search key to all or some keys in a memory table. It makes them principally limited since
generally, no comparison-based method can search in fewer iterations than binary
search. We could therefore try to remove the limitation by doing away with key
comparisons altogether. But is it possible to search for a key without at least one
comparison? The answer is “yes” and given by a radically different searching philosophy
called direct addressing, that finds its pure expression in key-indexed search. Its idea is
simple. Imagine that all keys are 1-digit numbers from 0 to 9, and that SMALL has just 9
records:

OBS    | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9
-------+---+---+---+---+---+---+---+---+----
 KEY   | 2 | 3 | 5 | 2 | 7 | 9 | 5 | 7 | 3
-------+---+---+---+---+---+---+---+---+----
 S_SAT | 1 | 2 | 3 | 0 | 4 | 5 | 6 | 9 | 7

Let us create a temporary array HKEY with one node (location, address) allocated for
each possible key value, and initialize the contents of all buckets to a missing value.
(In SAS, such initialization will be done be default. In the case the satellites might have
legitimate missing values, the table can be primed using special missing values.) The
array HKEY can be thought of as the following table in memory:

------------------------------------------------
 H     | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9
-------+---+---+---+---+---+---+---+---+--------
 HKEY  | . | . | . | . | . | . | . | . | . | .
------------------------------------------------

Now, for each key from SMALL, let us look at the array location H whose index is equal
to the value of the KEY, that is, simply at HKEY(KEY). Since we have created a separate
bucket for each possible key value, we are always guaranteed to find the address with
H=KEY. Let us check first if the node is empty, i.e. if  HKEY(KEY) is missing. If it is
empty, let us move the satellite S_SAT to H=KEY. After repeating this procedure for all
nine test keys, HKEY acquires the following shape:

------------------------------------------------
 H     | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9
-------+---+---+---+---+---+---+---+---+--------
 HKEY  | . | . | 1 | 2 | . | 3 | . | 4 | . | 5
------------------------------------------------

What we have just created is termed a key-indexed table. It comprises two types of
entries: empty and occupied. Inserting the satellite only when the node is empty retains
its first instance corresponding to a repeating key value; otherwise, the last instance
would be used. Either way, duplicate keys are deleted automatically as the table is
loaded. If SMALL has no satellites or they are of no interest, the entries of the key-
indexed table could be marked as occupied by moving 1 into the node, the unduplication
effect remaining intact.

Given a search key to look for, all we have to do is examine the table location whose
index is equal to the key. If the corresponding location is empty (missing), the key is not
in the table. If it is occupied, the search has been successful, and the node contains the
satellite value related to the search key. For example, if KEY=1, the search fails since
the address 01 of the table is empty. If KEY=7, we have to look at the node 07. It is
occupied; therefore, the key is found, and the node returns the satellite value
HKEY(7)=4.

Note that searching is implicitly incorporated in the process of loading the table: To
determine if the node is empty, we in effect search the table to find out if the key has
already been marked in the table as present. If it has, it is a duplicate, and need not be
inserted, so we can merrily proceed to the next record. The nature of the process makes
it unnecessary to sort SMALL or insert the keys themselves, because effectively, the keys
are "inserted" by making their corresponding nodes occupied by satellites or, in lieu of
the satellites, by a non-missing value, e.g. 1.

The utter simplicity of key-indexing lends itself to a very simple DATA step
implementation. Suppose, for example, that we are dealing with integer keys ranging
from –4E6 to +4E6. The range thus naturally defines the bounds of the array HKEY
representing the key-indexed table:

** Key-Indexed Load and Search **;

data match;
   array hkey (-4000000:4000000) _temporary_;
   ** load key-indexed table from small;
   do until (eof1);
      set small end=eof1;
      if hkey(key) = . then hkey(key) = s_sat;
   end;
   ** for each obs in large, search table and output matches;
   do until (eof2);
      set large end=eof2;
      s_sat = hkey(key);
      if s_sat > . then output;
   end;
run;
From the nature of the algorithm, it is clear that no lookup method is simpler and/or can
run faster than key-indexing: It completes any search, hit or miss, without comparing
any keys, via a single array reference. It also possesses the fundamental property: Its



speed does not depend on the number of keys "inserted" into the table, i.e. any single
act of key-indexed search takes precisely the same time.

To see how well key-indexing performs, it was compared in load and search phases to
formatting, SQXJHSH, and other methods presented below, for N_LARGE=2E6 and a
number of N_SMALL values using SMALL and LARGE. The results shown in the Section
“TESTING” testify that - at a high memory expense -  key-indexing completely
dominates the competition. For instance, it out-performs MERGE running against (pre-
sorted!)  input as 5:1.

Well, if key-indexed search is all that good, why not use it at all times and instead of
everything else? Unfortunately, there is a fly on the ointment. As we have seen, key-
indexing, due to its very nature, is practically applicable only when the lookup keys are
integers falling in a limited range. For our test keys taking on only as many as 8,000,001
distinct values, sufficient array space can be allocated using about 64 MB of memory.
Having 80 MB of memory, one can get away with 7-digit keys. However, to deal with 9-
digit SSN, an array with 1 billion elements would be needed, which is almost impossible
even with the modern memories, while 16-digit credit card numbers would make key-
indexing a technical utopia.

On the other hand, there is a plenitude of real-world applications where key values do
indeed fall in a limited range. In all such cases, key-indexing, with its blazing speed and
simplicity, is beyond competition. Here are some examples:

1. SAS date is simply the number of days between a given date and 01JAN1960. Any
date value, from the lowest possible in the SAS System up to year 4000 can be
accommodated by a [-138061:380217] table, and it will occupy mere 4 MB of real
storage (RAM).

2. SAS times. An array sized as [0:86400] will key-index any SAS time value.
3. ICD9/CPT4 codes. If some character is a letter, it can be converted into a number

to 1-26 range, and then the entire code can be represented as a limited-range
integer, probably not exceeding 1 million.

4. PIB2. informat maps any 1- and 2-byte character key onto the  [0:65535] range.
5. Any fractional key if limited in range when multiplied by a suitable scaling

constant.

So, key-indexing can be really useful and extremely fast in a variety of data processing
situations. And yet, it remains inherently limited to the domain of restricted-range,
integer keys. But the idea on which the method is based is so beautiful that it would be
a shame to let it go underused just because of its greed for memory. It is worth trying
to expand it. However, to do so, we must find a practical way to keep memory usage at
bay.

The question is: How?  First, let us observe that both the speed of key-indexing and its
limitations rest upon several simple facts:

� The lookup table is directly addressed by the value of a key itself.
� The entire set of possible key values is addressable. It means that a separate

node must be allocated for each possible value a search key can assume.
� No comparisons between the search key and any key in the table are made.

Based on these facts, we can devise two principal approaches that could loosen the
restriction self-imposed by key-indexed search.

1. Keep all possible key values addressed, but expand the addressable range of keys
by making much smarter use of the available memory resources. For, instance, we
can try to key-index bits instead of bytes.

2. Eliminate any restrictions imposed on the nature of lookup keys. This can be done
by dropping the requirements that (a) no two distinct keys shall reside in one
node, and (b) no comparisons between the search key and keys in the table shall
be allowed.

The first approach results in a technique called bitmapping. The second path leads to a
more versatile hybrid searching method known as hashing.

II. BITMAPPING

Suppose we have a situation where the satellite information in SMALL is of no interest
for us, and therefore we need not drag S_SAT through the memory to the output. In
such a case, the key-indexed table only serves one purpose: To indicate whether a
memory node, whose index corresponds to the key value, is empty or occupied. The
occupied nodes can be populated with 1, and the empty ones can be either left missing
or else initialized to zero. Now if a node number KEY contains 1, the key whose value is
KEY is present. Otherwise, if the node number KEY contains 0, the key is not in the
table. Hence, all a table node must be able to tell is whether it contains 0 or 1. Such
functionality can be amply served by nothing more than a single bit. Yet looking back at
our key-indexing implementation, we see that it uses full 8 bytes, the memory length of
a numeric array item, to store a binary value. This is 64 times the difference! But if we
to realize such a potential, how do we make efficient use of bits in such a setting?

If it  were possible to have a temporary array with 1 bit per item, the question would not
even arise – we would simply have the bits addressed directly via an index.
Unfortunately, the shortest memory length reserved by a temporary SAS array element
is not 1 bit but always full 64 bits regardless of the declared expression length. If, for
example, a temporary array is allocated as $1, its item's expression length is 1, but its
memory length is still full 8 bytes. Hence, to properly index the bits that compose an
array element, some additional computations are needed.
At first glance, it seems natural to try bitmapping a character array with the shortest
allowable memory length, $8, and the number of elements equal to the number of all
possible key values divided by 64. This would obviously allow cutting memory usage 64

times, just as projected above. Say, for the time being, that we are dealing with 8-digit
natural keys. In order to be able to address all of them, we will need, accordingly, 100
million (1E+8) bits. The equivalent amount of real storage, about 12 MB, is nowadays
insignificant, especially compared to what key-indexing would require (760 MB). The
entire universe of all possible keys can be thus covered by the bits of an array consisting
of 1,562,500 8-byte character items. To mark a key as present, we might proceed as
follows:

1. Declare ARRAY BITMAP (0:1562500) $8 _TEMPORARY_.
2. Compute X= INT(KEY/64). Now X points to the array item containing the bit

having to be turned on.
3. Compute R=1+MOD(KEY, 64). Now R points to the correct bit.

To turn the bit on, we would compute X and R. If BITMAP(X) is blank (none of bits is on
yet), we would set it to the binary zero “0000000000000000”X, then convert it to a 64-
byte character variable BITSTR mirroring the bit content of BITMAP(X) , set R-th byte to
1, reconstruct BITMAP(X), and reinsert it into the proper array location:

BITSTR = PUT(BITMAP(X),$BINARY64.);
SUBSTR(BITSTR,R,1) = '1';
BITMAP(X) = INPUT(BITSTR,$BINARY64.);

This way, marking the keys from SMALL as present one by one, we would eventually
“compile” the entire bitmap. Now, given a key from LARGE, how would we search for it?
First of all, we would find X and test BITMAP(X). If it is blank, then we have a miss since
obviously none of this item's bits has been turned on. Otherwise, if the entire item is not
blank, one or more of its bits are on, and we have to compute R and check the R-th bit
using either of the two expressions:

� SUBSTR(PUT(BITMAP(X),$BINARY64.),R,1) EQ '1'
� INPUTN(BITMAP(X),'BITS1.'||PUT(R,Z2.))

Both of  them evaluate to 1 if the R-th bit is 1, and to 0 if the R-th bit is 0.

This looks fairly simple and actually does work! Unfortunately, when this scheme was
implemented and tested, it returned lackluster performance. And, after some reflection,
it should be no surprise: Just to examine a bit or turn it on, we in effect have to either
memory-write full 64 bytes or use a modified informat which, unfortunately, executes
quite slowly. (Note that in version 8.1, the situation might have changed because
supposedly, 8.1 will allow to allocate character temporary arrays with $1 memory
length.)

To achieve a decent searching speed (the name of the whole game), we must find a
way to spot individual bits much more rapidly. In turn, this can only be achieved by
performing some kind of fast computation on the entire array item rather than by
breaking it apart –  which immediately suggests using a numeric array instead of the
character one. That brings about two interrelated questions:

1. If a numeric array is chosen to represent the bits of a bitmap, what sort of rapid
operation can be performed on a numeric item in order to turn its R-th bit on?

2. Given a numeric item, what kind of rapid direct calculation can we use to find out
whether R-th bit is on?

The first issue is resolved easily. If R-th bit of a numeric item is off, adding 2**(R-1) to
the entire item is equivalent to turning its R-th bit on. Moreover, we do not even have to
compute the binary power on the fly, since a series of consecutive binary powers can be
pre-computed and stored in an auxiliary array. To resolve the second issue, it is first
necessary to delve into a number of subtle caveats.

     Caveat 1. It must be never attempted to turn a bit on if it is already turned on.
Otherwise the added unity will become a carry turning one or more of the higher bits to
1, thus wreaking havoc in the entire bitmap. So, the answer to question 1 above cannot
be found without answering question 2 first. (Of course, bit checking is superfluous if
BITMAP(X) is missing, as none of the bits has been set to 1 yet.)

     Caveat 2. Before the very first bit can be turned on, a missing item must be set to 0.
However, initializing the entire array is not necessary, because at the searching stage,
the missing items can be simply skipped.

     Caveat 3. How many bits per array element can we use in such a manner? Since
they must be limited to the mantissa, it leaves us with 56 usable bits per element under
OS/390 and 53 bits under NT, so the divisor 64 in the formulae above must be changed
accordingly. Thus, by switching to a numeric array, we sacrifice about 15% memory
utilization for the sake of speed.

Now we can answer question 2 posed above, but to do so, let us first figure out how to
determine whether, say, the 4th least significant decimal digit of a numeric variable N is
not zero. Naturally, we would divide N by 1E+4 and find the remainder. If the latter is
not less than 1E+3, the digit being tested is not zero; otherwise, it is zero. By induction,
it can be  concluded that a boolean expression

MOD(N,10**R) => 10**(R-1)
indicates whether R-th decimal place is “on” or “off”. By the same token, the expression

MOD(N,2**R) => 2**(R-1)



returns 0 or 1 depending on whether R-th bit of N is turned off or on. So, in effect, the
result to which the expression above evaluates is set directly to the value of R-th bit of
N's mantissa. That gives us all we need to key a numeric-array bitmap:

Step 1. Allocate a numeric temporary array BITMAP bound from 0 to 10**[number 
of key digits]/M, where  M=56 or 53, depending on OS. Create an 
auxiliary array B and fill it with the serial powers of 2.

Step 2. Read a record with KEY from SMALL.
Step 3. Locate the array element: X=INT(KEY/M). If BITMAP(X) is missing, then set

it to 0.
Step 4. Locate the right bit within the array element: R=MOD(KEY, M).

If BITMAP(X) is missing, go straight to Step 5. Otherwise check the bit. If it 
is already 1, then the key is a duplicate: return to Step 2.

Step 5. Turn R-th bit on: BITMAP(X) ++ B(R), and go back to Step 2.

Given a bitmap “compiled” by the procedure just detailed, searching for a key is equally
simple:

Step 1. Read a record from LARGE.
Step 2. Locate the array element: X=INT(KEY/M). If BITMAP(X) is missing, the 

search is unsuccessful, so go back to Step 1.
Step 3. Locate the bit: R = MOD(KEY, M).
Step 4. Check the bit. If it is zero, the key is not found, hence go to Step 1. 

Otherwise, write the record out and go back to Step 1.

Translating the algorithm into the SAS Language is now straightforward, but first the
possibility of negative keys should be accounted for. With key-indexing, it is natural and
easy to do by giving the lower bound of the table the lowest negative key value. In the
case of a bitmap, we have to rummage around with the keys a little bit first: Shift them
up by the absolute value of the lowest key (say, MINKEY), rescale the upper BITMAP
bound accordingly, and leave the lower bound at 0.

*** Bitmap Table Load And Search ***;

%let m      =   56; *** if OS/390, else 53;
%let minkey = -4e6;
%let maxkey = +4e6;
%let lo = %sysfunc(floor(&minkey/&m));
%let hi = %sysfunc(floor(&maxkey/&m));
%let hb = %eval(&hi - &lo);

data match (keep=key l_sat);
   array bitmap (0:&hb) _temporary_;
   array b      (0: &m) _temporary_;

   ** precompute powers of 2;
   do x=0 to &m; b(x) = 2**x; end;

   ** load the bitmap from SMALL;
   do until (eof1);
      set small end=eof1;
      x = int((key - &minkey) / &m);
      if bitmap(x) eq . then bitmap(x) = 0;
      r = key - &minkey - x*&m;
      if mod(bitmap(x),b(r+1)) < b(r) then bitmap(x) ++ b(r);
   end;

  ** search bitmap for keys from LARGE, output matches;
   do until (eof2);
      set large end=eof2;
      x = int((key - &minkey) / &m);
      if bitmap(x) eq . then continue;
      r = key - &minkey - x*&m;
      if mod(bitmap(x),b(r+1)) => b(r) then output;
   end;
   stop;
run;

The macro assignments at the top take care of the necessary shifting and rescaling.
M=53 will work under any OS; however, under a system with 56-bit mantissa, say
OS/390, it is possible to choose M=56 instead and thus improve memory utilization. The
first DO loop populates the auxiliary array B with the powers of 2. The process in the
<EOF1> DO loop can be thought of as “bitmap compilation”. Finally, the <EOF2> DO
loop performs the actual bitmap search and outputs the records from LARGE whose key
imprints are found in the bitmap. Because of the extra computations, bitmapping runs
about 50 per cent slower than key-indexing, yet it uses 53 to 56 times less memory and
is still twice as fast as MERGE after sorting!

 In the approach implemented above, the bitmap compilation loop resides in the same
step where it is searched. However, a bitmap can also be compiled in a separate step,
stored in a file, and reused thereafter. To do so, we would only have to change the
DATA statement to, for instance,

data lib.bitmap (keep=byte8);

and replace the entire <EOF2> loop with

do x=0 to &hb;
   byte8 = bitmap(x);
   output;
end;                                                                 

The name of the variable BYTE8 is, of course, absolutely arbitrary. At this point, the
BYTE8 in each observation of the SAS data set LIB.BITMAP corresponds to exactly one
array item of the would-be bitmap. A bitmap saved in this manner can be then utilized
any time a file similar to LARGE needs to be subset, validated, scrubbed, etc., based on
the bit pattern stored in the bitmap, only in the beginning of the searching step, the
array BITMAP must be loaded in memory from LIB.BITMAP one item at a time. This is
accomplished by replacing the <EOF1> DO loop with

do x=0 to bitobs-1;
   set lib.bitmap nobs=bitobs;
   bitmap(x) = byte8;
end;                                                             

Principally, key-indexing and bitmapping are nearly twins:

� The table size is dictated solely by the overall key range and not by the number of
lookup keys.

� Neither the “driver” file nor “master” file has to be sorted.
� Duplicate lookup keys are eliminated automatically as the table is “loaded”.
� The speed of searching does not depend on the number of keys.

However, there are a few differences worth noting as well:

� Given the same memory resource, bitmapping has the addressable key range 53
to 56 times that of key-indexing.

� A bitmap cannot be used for dragging lookup satellites through memory into the
output.

� With key-indexing, locating and rejecting a key takes exactly the same time. With
bitmapping, a successful search requires, on the average, slightly more
computing, and therefore, more time.

Because of its relatively wide key range and purely direct-addressing nature, bitmapping
operates with incredible speed in a niche no other searching method can touch. As an
example, imagine SMALL file with 50 million 8-digit keys (hardly “small” but let us stick
with the name), and LARGE with mere 100 million records – figures not unusual in data
warehouses nowadays. Sorting either one for MERGE is not exactly painless operation,
especially if L_SAT tail is long, or say LARGE is actually is a view into a RDBMS table.
Storing the lookup keys in a format is practically hopeless, as memory usage by a format
usually tops 600 MB already at mere 10 million keys. Key-indexing would consume about
800 MB. A hash table (described later) would need at least 400 MB. However, a bitmap
can be safely compiled with 120 million bits of temporary array storage in the worst case
scenario (M=53). It means that it can be easily accommodated within only 15 MB of
memory! If we decide to store the bitmap on disk, it will take about 1.9 million 1-
variable observations; loading such a file into an array is a matter of several seconds.
What is more, the lookup speed and memory usage will remain exactly the same, no
matter whether we have 100, 100,000, or 100,000,000 keys to search.

Thus, the bitmapping niche can be defined as “no-matter-how-many-short-keys”. Bitmap
is a champion when we only need to rapidly find out if the record with a given key
should be selected, and if memory resources are sufficient for key-indexing  the entire
key range into memory bits.

But how can we capitalize on direct addressing if the keys have a huge, say 16-digit,
range, or are long character strings (256-radix integers), and therefore neither key-
indexing nor bitmapping can do the job?  Welcome to hashing !

III. HASHING

As noted above, compared to key-indexing, bitmapping changes nothing principally –  it
simply expands the workable universe of keys about 53+ times by using memory more
efficiently. Hashing methods approach the problem quite differently: They eliminate the
requirement of a separate slot for each possible key and allow some amount of
comparisons between the search key and keys in the table. A simple example might be
the easiest way of making the idea transparent. Let us suppose that SMALL contains just
10 3-digit keys:

185  971  400  260  922  970  543  532  050  067

To use key-indexing, we would have to allocate a table sized as [0:999] and map each
key to the node corresponding to its value. Out of 1000 table nodes, only 10 will end up
occupied, while the rest will play the role of placeholders, that is, will be simply wasted!
The crucial question is, therefore, Can we get away with a smaller table  of a reasonable
size, only somewhat larger than the number of keys at hand, and still be able to take
advantage of direct addressing?

Let us choose some number HSIZE greater than the number of keys N_SMALL in SMALL,
for instance, 17, and allocate an array sized as HKEY(0:17). Let us agree to call the
array HKEY the hash table, HSIZE - the hash table size, and the ratio N_SMALL/HSIZE -
the load factor. Thus, the load factor shows the number of lookup keys relative to the
total number of nodes in the hash table, in other words, how sparse the hash table is. In
our example, the load factor equals 0.588, that is, the hash table is about 41 percent
sparse.

Imagine some rapidly-computing function H(KEY) taking a key as an argument and
returning an address into HKEY, unique to each key supplied, so that H(KEY) would map
each key to its own location in a one-to-one manner. Were such perfect hash function
available, we would only have to plug it in the code for key-indexed search and be done.
Such functions are possible; however, they are quite difficult to discover, and once one
is found, it can only be used for the same set of keys: Adding just an extra key will ruin
everything.



A lot less rigid method can be obtained if we give up the one-to-one requirement of the
relationship between the keys and table addresses and let H(KEY) map two or more
distinct keys to the same location in HKEY. Of course, if more than one key is sent to the
same node, a phenomenon termed a collision occurs, and we must invoke some collision
resolution policy in order to tell the keys apart in the process of insertion or searching.
Thus, we arrive at the core concept behind hashing. If the hash function H(KEY) is good
enough to map only a few keys to any particular hash address H, in other words, spread
the keys evenly throughout the table, we can adopt the following strategy:

1. Given a search KEY, use H(KEY) to hash KEY to some address H in the table.
2. If the address H is empty, the search is unsuccessful, since no key has ever

hashed to H.
3. If the address is occupied, search all the keys that have hashed to H sequentially.

Thus, hashing is a typical hybrid algorithm: It combines direct addressing with
sequential search, a method based on comparisons between keys. The average number
of keys mapping to any hash node equals N_SMALL/HSIZE, i.e. the load factor. If the
hash table is not full and the keys are spread uniformly, the average number of key
comparisons required to find or reject a key is less than 1. Also, searching for a key
should be the faster, the sparser the table is. So, to make a good practical use of a hash
table, we ought to:

1. Choose a proper hash function H(KEY).
2. Find an efficient way of resolving collisions.

Before we could formulate the requirements for a good hash function let us consider
how a bad hash function would behave. On one extreme, if a function is lightning fast
but maps all keys or their majority to the same hash address, it defies the very purpose
of distributing keys among different addresses: For then we would have to search all
these keys sequentially! Hence, for a good hash function, it is paramount that it should
map the keys evenly across all hash table nodes, without burdening some addresses
with huge clusters of keys and leaving the rest of the slots empty. On the other
extreme, if a function maps the keys extremely uniformly but takes an inordinate time to
compute, it is of no good use, either -  direct addressing itself would become a
bottleneck. Now we can formulate some rational requirements a good hash function
should satisfy:

1. Its computation should be as fast as possible.
2. It should distribute the keys uniformly to minimize collisions.
3. It must return addresses in the range from 0 to HSIZE-1.

There is a number of mapping methods conforming to these requirements [1]. We will
discuss and use the simplest technique called the division method, which utilizes the
remainder modulo:

H = MOD (KEY, HSIZE);

It certainly fits requirement 3, since for any value of KEY, this function always returns an
integer in the range from 0 to HSIZE-1. It also satisfies requirement 1, for although it
incorporates a division, its computation is still  reasonably fast. However, to satisfy
requirement 2, the value for HSIZE must be chosen rather carefully. The number theory
tells us (see, e.g., [1]) that if HSIZE is a prime number and not too close to the power of
2, the MOD function tends to spread the keys uniformly across the nodes, with the
majority of the occupied nodes receiving 1 to 3 keys. Let us see how this would work for
our sample set of 10 keys. If we choose the “target” load factor as 0.625 and divide it
into the number of keys, we obtain 16. The first prime number greater or equal to 16 is
17, so let us select HSIZE=17. (The actual load factor is now 10/17 = 0.588.) We may
want, therefore, to allocate the table as

ARRAY HKEY (0:17) _TEMPORARY_;

To obtain a hash address, KEY is divided by HSIZE=17, and the remainder H is
computed. H points to the H-th slot in the table where KEY must be inserted. Repeating
this operation for every test key, we end up with the following pattern (the numbers
atop the table indicate the corresponding array buckets, and the colliding keys are
shown in boldface):

00    .   .   .
01  970   .   .
02  971   .   .
03    .   .   .
04  922   .   .
05  260 532260 532260 532260 532   .
06    .   .   .
07    .   .   .
08    .   .   .
09  400   .   .
10    .   .   .
11    .   .   .
12    .   .   .
13    .   .   .
14    .   .   .
15  185   .   .
16  543 050 067543 050 067543 050 067543 050 067
17    .   .   .

The keys 970, 971, 922, 400, and 185 all map to their slots in HKEY one-to-one. The
keys 260 and 532 produce a single collision at the address 05, and the keys 543, 050,
and 067 result in a double collision in the node 16. If this table is to be stored in
memory and searched, the collisions at the locations 05 and 16 have to be resolved.

Before we move on, let us solve the small technical problem of finding the correct prime
HSIZE, given the file SMALL and load factor LOAD. Instead of computing it by hand or
from a table of primes, it can be calculated and stored in a macro variable LOAD
dynamically using a short (and extremely fast) SAS program:

%let load = 0.8;
data _null_;
   do p=ceil(p/&load) by 1 until (j = up + 1);
      up = ceil(sqrt(p));
      do j=2 to up until (not mod(p,j)); end;
   end;
   call symput(‘hsize’,left(put(p,best.)));
   stop;
   set small nobs=p;
run;

 
As we already know, selecting a decent hash function is just one part of the deal: No
matter how good the function is, it is practically guaranteed  that some keys will hash to
the same addresses in the table, so we have to devise a method of resolving collisions.
This is another point at which hashing radically deviates from key-indexing and
bitmapping where we needed not store the keys in the table itself. With hashing, the
keys themselves have to reside in the table, because they will have to be compared to a
search key unless the search key hashes to an empty node. Various collision resolution
policies differ in the ways by means of which colliding keys are stored, linked as
“belonging” to the same hash address, and traversed. Let us consider them one at a
time.

1. Separate Chaining

One way of resolving collisions suggests itself naturally once we cast a rapid glance at
the distribution of our 10 keys among the addresses of the hash table shown in the
previous section. Keys “attached” to each occupied address form visible “chains” -
consisting of a single key in the absence of collisions. Making use of such chains to
resolve collisions is logically called separate chaining.

There are two ways the chains of keys can be utilized in terms of the SAS DATA step.
First, the keys comprising the chains could be stored outside the table by placing them
in the occurrences of a two-dimensional array. A significant drawback of this method,
however, is poor memory utilization. If we have 100,000 keys in SMALL and a single
“bad” address colliding 10 keys, we will be forced to create a 2-dimensional array sized
as (0:10, 0:100000) to resolve the collisions. Even with the load factor 1, it requires 10
times the memory the keys would occupy by themselves. On the positive side, the 2-
dimensional chaining is quite fast, and it can work with load factors greater than 1, if
necessary. So, if good memory utilization is not a paramount consideration, the method
could be recommended. (Feel free to contact the author for the details of
implementation.) What is more, because 2-dimensional separate chaining provides a
natural way of working with long chains, it turns out to be extremely valuable when
hashing is used for external searching, i.e. searching on disk rather than in high-speed
memory. It will be mentioned once again in the section “Applications”.

Returning to the main course of the paper, memory-resident hashing, the idea of
chaining can be exploited in a much neater fashion than by using a huge, and mostly
wasted, 2-dimensional array! Once the philosophy of allocating the main storage for
colliding keys is changed from sequential to linked , we arrive at an extremely elegant
collision resolution policy, both very fast and reasonably memory-efficient.

2. Coalesced Chaining

The core idea of this method is to place the chains of colliding keys into the hash table
itself and combine the keys mapping to the same node in a linked list, with the head
residing at the colliding address. Setting the last link of each chain to null designates the
end of the chain, thus helping us tell where to stop when the list is traversed serially.
Since the linked lists are thus allowed to overlap in the hash table sharing the same
storage locations, this approach is termed coalesced list chaining, or, shorter, coalesced
chaining. To make it possible, all we need is a numeric array of link items LINK, parallel
to the “main” hash table where the keys are inserted. It is extremely important that in
order for this method to work, at least one entry in the table must be empty. Otherwise
if the table is full, there would be no empty node where a null link should point in order
to terminate the loop traversing the list. Since a table allocated as (0:HSIZE) has
HSIZE+1 entries, but the modulo-based hash function only addresses HSIZE nodes from
0 to HSIZE-1, this requirement will always be satisfied. Let us agree to always leave the
address 0 empty by hashing keys as

MOD (KEY, HSIZE) + 1.

That is, if KEY modulo HSIZE is 05, it will map to the address 06. Adding a unity to the
modulo has the additional advantage of allowing to use 0 as a null value for the end-of-
chain. As stated above, we have to allocate two parallel arrays, one for the hash table
itself and one to hold the links:

ARRAY HKEY (0:&HSIZE) _TEMPORARY_;
ARRAY LINK (0:&HSIZE) _TEMPORARY_;

Now we are ready to spell a detailed plan of loading a coalesced list hash table:
STEP 1. Set a counter variable R to the top address: R=HSIZE.
STEP 2. Hash: H=MOD(KEY,HSIZE) + 1.
STEP 3. If LINK(H)= ., the node is empty, no list is attached to it. Go to step 8 to 

insert the key.
STEP 4. Otherwise traverse the chain to find if the key is already in the table:



A. If KEY=HKEY(H) the key is duplicate. Get the next  key and return to 
step 2.
B. Else If HKEY(H) is not 0, it is not the end of the list yet. Set H= HLINK(H)
and repeat step 4.

STEP 5. Find an empty address closest to the top: Decrement R until LINK(R)= .
STEP 6. Store the key at this address: HKEY(R)=KEY.
STEP 7. Memorize where KEY actually belongs: LINK(H)=R; H=R.
STEP 8. Insert KEY into the address H and set its link to null: HKEY(H)=KEY;       

LINK(H)=0. Now the node has been marked as occupied.

Let us see, by inserting one key at a time, what kind of linked list hash table is actually
created by this process for our 10 sample keys and HSIZE=17. Please refer to the
resultant table, Table A1, in the Appendix. The key being inserted, as well as the
colliding keys, are shown in boldface. The two bottom rows represent the final state of
the loaded table. A peek at it quickly reveals how the collisions are being handled:

All the way up to the attempt to insert KEY=532, each key finds its unique slot without
any contention. But at KEY=532, we have the first collision, because it hashes to the
address 06, already occupied by the key 260. In accordance with the algorithm, we look
at the link at address 06 and find it to be zero. Therefore, it is the end-of-chain - and the
only key in the chain so far. The first available empty address counting from the top of
the table (right to left on the diagram above) is 15. The new key 532 goes there, and
the node is marked as occupied with 00 in its link field. To tell the key 260 where its
successor in the chain, 532, resides, we store the address of 532, i.e. 15 in the link field
of node 06 that holds 260.

The keys 543, 050, and 067, all hashing to the address 17, are placed in the table in the
same manner. The first key in this chain, 543, must be stored at this address, and there
it is. The link of the address 17 is not 0, hence, it is not the end of the list. Instead,
LINK(17)=14. This is the node where the next key in the chain, 050, must reside, and it
is there, indeed. But once again, the list must continue because the address 14 contains
a non-zero link, LINK(14)=13. Finally, we find the key 067 in the node 13, and it is the
last key colliding at the hash address 17, for LINK(04)=0.

As opposed to the colliding keys, the keys hashing to their addresses uniquely, bump in
a zero link at once. For example, the key 922 hashes to the address 05, with
LINK(05)=0. Now the reason of leaving the address 00 always empty should be
transparent. We are using 0 to indicate the end of chain (null link), but actually a chain
traversal terminates when a null, i.e. missing value, link field has been encountered. A
zero in a link field will always lead to address 00, and since it is always missing, the
traversal will inevitably stop.

At this point, it should be crystal clear how this linked table organization facilitates
searching. Suppose that we need to look for KEY=051. It hashes to the address 01
where the link field LINK(01) is missing. That is, none of the keys in the table has ever
hashed to this address, hence the key is not in the table. However, searching for
KEY=047 that hashes to the address 14, we are in a different situation, because
LINK(14)=13 is not null. Hence, some other keys in the table may have also hashed to
this address, and so the entire chain must be examined for the presence of 047. Since
the key 050 in the node 14 does not match the search key, we have to look at the next
key in the chain located at the address 13 to which LINK(14) is pointing. The key 067 in
the node 13 does not match the search key 047, either, and it is the end of the list since
LINK(13)=0. This, finally, points to address 00, whose link is (always) null. Hence, 047 is
not present in the table.

As an example of a successful search, let us try to find KEY=050. It hashes to the
address 17 with the key 543, different from 050. But it is not the end of story: LINK(17)
= 14 is not null telling us that the next comparison should be made with HKEY(14) =
050. At this point, the search key is found, the list need not be traversed any further,
and the process of searching terminates successfully.

After this walk-through, it should not take a Certified SAS Programmer to schedule hash
searching:

STEP 1. Hash: H = MOD(KEY,HSIZE) + 1.
STEP 2. If LINK(H) = . then search terminates unsuccessfully.
STEP 3. Traverse the list. If KEY = HKEY(H) then search terminates successfully.
STEP 4. Else examine LINK(H). If LINK(H) = 0 then KEY is not found. Stop.
STEP 5. Next link. Set H = LINK(H) and go to step 3.

Now we can finally give a solution to the matching problem using coalesced chain
hashing. An additional array parallel to the hash table and links, HSAT, is used to pull
the satellites from the lookup file SMALL. If we do not need S_SAT it may be omitted
along with the corresponding instructions.

** Coalesced Linked List Chaining **;

data match (keep=key s_sat l_sat);
   array hkey (0:&hsize) _temporary_;
   array link (0:&hsize) _temporary_;
   array hsat (0:&hsize) _temporary_;
   ** load and link hash table using keys from SMALL;
   do until (eof1);
      set small end=eof1;
      h = mod(key,&hsize) + 1;
      found = 0;
      if link(h) > . then do;
         link traverse;
         if found then continue;
         do r=&hsize by -1 until (link(r) = .); end;
         link(h) = r;

         h       = r;
      end;
      link(h) = 0    ;
      hkey(h) = key  ;
      hsat(h) = s_sat;
   end;
   ** search table for key from LARGE, output matches;
   do until (eof2);
      set large end=eof2;
      found = 0;
      h = mod(key,&hsize) + 1;
      if link(h) > . then link traverse;
      if found then do;
         s_sat = hsat(h);
         output;
      end;
   end;
   stop;
   traverse: if key = hkey(h) then found = 1;
             else if link(h) ne 0 then do;
                h = link(h);
                go to traverse;
             end;
run;

Since the code intentionally parallels the algorithm above, you should not be surprised to
find the GO TO instruction. Those believing that “GO TO” and "structured programming"
cannot peacefully coexist, may prefer to rewrite the TRAVERSE block at the expense of
an extra comparison at the bottom of the loop as

do until (found);
   if hkey(h) = key then found = 1;
   else if link(h) = 0 then leave;
   else h = link(h);
end;

Now that the coalesced chaining routine is ready, it can be tested using the same
sample files as have been used for key-indexing. The program was tested for the load
factors 0.5 and 0.8 (50 and 20 per cent sparse table). The results shown in Table 1
generally corroborate the conjectures made earlier:

1. The sparser the table, the faster the search, but it consumes proportionally more
memory.

2. If the hash table is relatively sparse, its lookup time does not depend on the
number of keys in the table.

3. It runs somewhat slower than key-indexing, but still 2 to 3 times faster than even
SQLXJHSH and is much easier on memory than the rest of the methods tested.

4. Just like with key-indexing and bitmapping, hashing needs neither sorting nor
removing duplicates.

Judging from the test results (see the “Benchmarking” section below), chaining performs
very well, with the added benefit of not being too sensitive to the sparsity of the table
(load factor). However, it requires an extra array to hold the links. The link array is as
large as the hash table itself, so if SMALL is actually not quite small, the additional
memory burden can be significant. In a different class of collision resolution policies
collectively called open addressing, memory utilization is improved by doing away with
the links altogether. We shall discuss two such methods: Linear probing and double
hashing.

3. Open Addressing with Linear Probing

The main idea behind open addressing can be described as follows. Just like in the case
of coalesced chaining, keys are stored in the hash table itself. Suppose we have a key
KEY to be loaded in the table. First, let us hash it using the division method, but straight,
i.e. without adding a unity:

H = MOD(KEY, &HSIZE);

If H points to an empty slot, we simply store the key at this location. If the slot H is
occupied, we have a collision. Let us compare the key with the one already sitting at H.
If the keys are equal, the current key should be discarded because it is a duplicate, and
the next key obtained from the input. Otherwise we have to find a different  slot for the
current KEY. Let us step down the table one or more times one node at a time. If H
becomes less than 0, i.e. we have stepped off the bottom of the table, let us return to
its top, and continue to do so in this wrap-around cycle until having encountered either
a duplicate key - in which case we just stop and get the next key, or an empty node - in
which case we insert the colliding key into it. The method of resolving collisions just
described is called linear probing – for the table is being “probed” using a fixed probe
decrement, C=1, regardless of the key.

Since we have HSIZE+1 nodes in the table, but can only address HSIZE nodes from 0 to
HSIZE-1, at least 1 location in the table, the top one, will always remain empty, thus
preventing the loop from iterating infinitely. Let us observe how this process works step
by step while our 10 test keys are being inserted in the table sized as [00:17] (See the
dynamic table Table A2 in the Appemdix):
All the keys up to and including 543, hash uniquely to their very own nodes. However
the next key, 532, hashes to the same address 05 as the key 260, already sitting there.
According to the plan outlined above, we step down the table until an empty slot is
found. This happens at H=03, and so 532 is inserted at this address. The next key, 050,
is not too friendly, either, since it claims the same seat, H=16, that is already assigned
to 543. The nearest free slot down the table is H=14, and so that is where 050 goes.
But the next key, 067, happens to hash to the same H=16 again! Now, to find where to



place this one, we have to travel all the way to H=13, at which point the hash table is
loaded and ready to be searched.

As in the case with chaining, the process of loading the table readily suggests the way of
looking it up. As an example of an unsuccessful search, let us look for KEY=51.
MOD(51,17) yields 0, and address 00 is empty. Hence, 51 is not in the table, period.
Searching for KEY=66 is more complex, since it hashes to H=15 occupied by the key
185. Since there is no match, we look at the next key, 050, one node down the table,
find a mismatch again, and proceed in this manner all the way to H=12, which is empty.
It means that 66 is not in the table, either, for if it had been inserted in the table, it
would have been found before an empty node is hit.

As an example of a successful search, let us look for KEY=922. It hashes to H=04, and
we have an immediate match. Another successful search for KEY=067 is a bit more
laborious, for it hashes to H=15, and we have to step down the table twice until the key
is identified in H=13.

From these simple examples, it should be clear how linear probing reduces the number
of probes sequential search would require. In the worst case scenario in the example
above, linear probing examines 5 keys until it either finds or rejects a search key; but on
the average, with the load factor 10/17, the number of comparisons will be close to 2
per search, hit or miss. Sequential search, on the other hand, would require, on the
average, 8 probes for a hit and 17 for a miss. Now it is time to translate all these verbal
speculations into SAS:

** Hashing by Open Addressing with Linear Probing **;

data match (keep=key s_sat l_sat);
   array hkey (0:&hsize) _temporary_;
   array hsat (0:&hsize) _temporary_;
   ** load table with keys from SMALL;
   do until (eof1);
      set small end=eof1;
      do h=mod(key,&hsize) by -1 until (hkey(h)=. or hkey(h)=key);
         if h < 0 then h = &hsize-1;
      end;
      hkey(h) = key  ;
      hsat(h) = s_sat;
   end;

   ** search table for each key from LARGE and output matches;
   do until (eof2);
      set large end=eof2;
      do h=mod(key,&hsize) by -1 until (hkey(h) = .);
         if h < 0 then h = &hsize-1;
         if hkey(h) = key then do;
            s_sat = hsat(h);
            output;
            leave;
         end;
      end;
   end;
   stop;
run;

The main advantage of this scheme, as it is evident from the code above, is its profound
simplicity. In fact, none of existing hashing methods is simpler or more straightforward
than the linear probing. And, if the table is sparse enough, it performs quite well, too! As
a rule of thumb, the linear probing will do the hashing job just right if about half of all
nodes in the table are left empty, i.e. with the load factor of about 0.5. However, as the
table gets fuller, its performance deteriorates the quicker, the fuller the table is. With
load factors above 0.9, the only good things we can say about the linear probing is that
it is simple and it works, albeit slowly but surely.

The reason why linear probing exhibits such a behavior in a crowded table lies in the
phenomenon called primary clustering. When looking for an unoccupied node for a
colliding key, we fill out the very first empty location we come across. Therefore the
groups of adjacent occupied addresses tend to aggregate, forming clusters of keys.
Worse still, the clusters can bridge together forming bigger clusters. (For instance,
consider what happened to the clusters 970, 971 and 922, 260 in our test table above.)
Hence, if the table is not quite sparse, we will eventually have to travel through almost
the entire table before finding an empty location to either insert a key or stop the loop in
the case of an unsuccessful search.

One apparent way to alleviate the problem of primary clustering is to try stepping
through the table using more than one node at a time. It turns out to be a very good
and sound idea. Complemented with another good and sound idea, it leads to the open
addressing method called double hashing  that eliminates primary clustering entirely.
Therefore, it would allow achieving the same speed of search with a less sparse table
resulting in a superior memory utilization.

4. Open Addressing with Double Hashing

So, as suggested above, let us try stepping down the table using some probe decrement
C > 1. However, the value of C must be chosen rather carefully. With linear probing, it is
guaranteed by virtue of C=1 that in the wraparound process of probing the table, each
node can be examined, and examined exactly once. What kind of value should C > 1
have to retain the same fundamental property? It follows from the number theory that if
the probe decrement C and the hash table size HSIZE are relatively prime, this property
holds. Now remember, we have chosen the table size prime in order to minimize the
collisions. Therefore, selecting C as any integer between 1 and HSIZE-1 inclusively will
make C and HSIZE relatively prime.

However, there is one more important consideration helping choose C even wiser.
Namely, if we could make C depend on the key in a random yet deterministic manner, it
would help spread diversify the probing sequences belonging to different keys, and
hence distribute the keys even more evenly in the table. MOD function, as we know,
possesses quite good randomizing capabilities (which is why it is used as a hash function
in the first place).  Therefore, if we compute C as

C = 1 + MOD(KEY, HSIZE-2),

it will both distribute the values of C among the keys pseudo-randomly and guarantee
that any C value obtained this way and HSIZE are relatively prime. Indeed, C can result
in nothing else but some integer between 1 and HSIZE-2, and since HSIZE is prime, C
and HSIZE will always by relatively prime. In practice, such a choice for C has been
proven to work satisfactorily in most cases.

In essence, what we are doing is hashing the key the second time to obtain the probe
decrement, which is why this method of resolving collisions is called double hashing. Of
course, the second hashing is an extra computation, but it is not too expensive, and it is
situated outside the inner loop of the routine. Therefore, we should not expect a lot if
computational overhead, all the more that eliminating primary clustering turns out to be
much more important from the standpoint of performance.

With the exception of C > 1, the basic linear probing algorithm remains intact. Like
before, if in the process of decrementing H, it is found that H < 0, that is, we have fallen
off the bottom of the table, we wrap around it;   only in this case, instead of returning
right to &HSIZE-1, we shall return to H+&HSIZE. For example, if HSIZE=17, C=5, and
we have found that H=-2, we shall wrap around the table to –2+17=15th array item. Let
us see, using the set of our experimental keys, what kind of hash table this process will
compile, starting with an empty table and inserting one key at a time. The dynamic table
A3 created by this process is shown in the Appendix.

Comparing the final state of the table with that compiled by linear probing, we clearly
see that it is much more uniform, with the clusters of keys well separated from each
other, and with no cluster containing more than 3 keys. It means that no matter what
key we are looking for, no search will require more than 3 comparisons between keys in
the worst case scenario.

While theoretically, double hashing is significantly more involved that linear probing,
amending the program for linear probing in order to accommodate double hashing boils
down to a single line of code preceding the main hash, and a subtle change in the way
to wrap around (below, all the changes to the linear probing routine are shown in upper
case):

** Open Addressing with Double Hashing **;

data match (keep=key s_sat l_sat);
   array hkey (0:&hsize) _temporary_;
   array hsat (0:&hsize) _temporary_;
   ** load table with keys from SMALL;
   do until (eof1);
      set small end=eof1;
      C = 1 + MOD(KEY,&HSIZE-2);
      do h=mod(key,&hsize) by -C until (hkey(h)=. or hkey(h)=key);
         if h < 0 then H ++ &HSIZE;
      end;
      hkey(h) = key  ;
      hsat(h) = s_sat;
   end;
   ** search table for each key from LARGE and output matches;
   do until (eof2);
      set large end=eof2;
      C = 1 + MOD(KEY,&HSIZE-2);
      do h=mod(key,&hsize) by -C until (hkey(h) = .);
         if h < 0 then H ++ &HSIZE;
         if hkey(h) = key then do;
            s_sat = hsat(h);

            output;
            leave;
         end;
      end;
   end;
   stop;
run;

Let us take a look at the performance Table 1. With a 50 per cent sparse table, double
hashing runs just a tad slower than coalesced chaining with 20 percent sparsity, but on
the positive side, it uses less memory. So, double hashing is quite fast; it even loads an
equally sparse table somewhat faster than the chaining because it does not have to
worry about the links. The fact that a searching method based on stepping through the
table before an empty node is found works so well, may seem surprising. However, this
is a direct result of the double hashing probing methodology. In fact, independent
experiments (corroborating theoretical conclusions) show that if the table is no more
than half full,  double hashing makes on the average no more than 2 comparisons per
miss, and no more than 1.3 comparisons per hit.

IV. HASHING WITH NON-NATURAL KEYS

As the test results show, hashing performs admirably by any account regardless of the
collision resolution policy being used. However, even though hashing schemes we have
discussed impose no limitations on the range of keys, they have been developed under
the assumption that the keys are integers. Now it is time to remove this restriction as
well.



The reason it is possible to do is rooted in the fact that in its final stage, hashing is
strictly comparison-based, which effectively renders the nature of keys non-critical. Both
hashes and traversals are used merely to minimize the number of comparisons
necessary to carry out a search, yet the final hit-or-miss decision - if a hash address is
not empty - is made by comparing some keys in the table to the search key. Therefore,
in order to be able to operate on keys of any type, we only have to figure out how to
hash a key if it is not a non-negative integer. For the hash function to remain uniform
and fast, it is critical to adhere to a few simple rules:

� Hashing process should involve as many key characters as possible.
� String operations and conversions must be minimized.

Let us consider a number of distinct practical situations.

1. Fractional Signed Keys

In this case, we can simply rescale each key before hashing by multiplying it by a
suitable integer constant and adding another constant to the result if necessary. For
instance, if our keys are in the decimal form X.Y, multiplying each key by Y would
suffice. If, in addition, they can be negative, we would simply add an integer Z known to
exceed the largest absolute value a negative key can assume. So, the entire change to
the programs above needed to accommodate fractional signed keys would be using

MOD ( KEY*Y + Z, HSIZE)

in the hashing formulae instead of the straight modulo. It will not cause any noticeable
deterioration in performance, since in SAS this kind of computation is quite fast.

 2. Digital Strings

First of all, since digital strings are character variables (consisting of digits only), the
hash table itself will have to be declared as a character array of appropriate expression
length, for example:

ARRAY HKEY(0:&HSIZE) $12 _TEMPORARY_;

Hashing a digital string is a simple matter of using the INPUT function and an
appropriate numeric informat. For example, if the keys were 16-digit account numbers
stored in a character variable, we could simply choose

MOD (INPUT(KEY,16.), HSIZE)

as our hash function. Another way to hash a digital string is to apply the same methods
that are used for hashing character variables in general (see below).

3. Generic Character Keys

Numerous techniques have been developed to hash arbitrary character keys well [2, 3,
4]. Almost all of them are based on breaking a character key apart and then involving
the individual bytes into a sort of computation resulting in an integer in the range
[0:HSIZE-1]. Some of these methods, for instance, universal hashing, actually guarantee
to hash any input evenly. However, they are based on the assumption that the process
of extracting individual bytes from a string is very fast. Unfortunately, this is exactly
what is slow in SAS. We would be much better off converting a character string to an
integer in a single shot, and PIBw. informat is just the tool:

MOD (INPUT(LEFT(KEY),PIBw.).

Generally, the wider is the informat width, the better, because the wider it is, the more
key information is involved in the hashing process. However, selecting the informat too
wide may result in a large integer rendering the result produced by MOD function
incorrect. Experimentally, it has been found that under NT, the maximum allowable
width, 8, works fine. Under OS/390, it should not exceed 7, and under HP-UNIX, 6 is the
limit. The method has an extra advantage of avoiding the slow SUBSTR function, for it
automatically chops the number of characters from the beginning of KEY equal to the
informat width. Note that we use PIBw. instead of S370FPIBw.. First, it is faster.
Secondly, with hashing, the order of bytes does not matter: We only want to use as
many key bytes as possible to minimize collisions. The LEFT function may help by
squeezing leading blanks to the right. If a key is longer than the practical informat
width, the trick still works, provided that the input characters distinguish the keys well.
However, if they have a good chance of being identical, they can be selected from a
different portion of the key.

4. Composite Keys

This situation arises quite often. A natural inclination is to concatenate the components
and hash the result. Principally, there is nothing wrong about it; however, there are two
pitfalls. First, in the context of hashing, where computing a hash function fast is
paramount, concatenation is slow. Second, the components may concatenate into an
integer lying beyond SAS integer precision. Third, too large a value can cause the MOD
function to return a no-sense result, for instance, a remainder greater than the divisor.

Consider a (real-life) situation when records are uniquely identified by two numeric
variables, a 16-digit ID and 9-digit MEM, while particular ID can point to multiple
accounts. Concatenating the keys as ID || MEM and hashing the result would have the
effect of scrambling the entire MEM. All keys with the same ID would then hash to the
same address regardless of MEM and lead to multiple collisions and horrible

performance. Luckily, it can be avoided since we are not interested in the value of the
key itself, but only in its remainder modulo HSIZE. Hence, Horner's algorithm can be
used to hash the components separately and then combine the results in the final
address. The outcome is the same as if we had enough integer precision to store the
combined key accurately. For the ID and MEM, it means that the hash function can be
computed in the form:

MOD(MOD(ID,HSIZE)*1E9 + MEM, HSIZE) .

If the partial keys are longer or the range is wider, they can be split further, and
Horner's rule can be applied to the components once again. Of course, in order for  this
method to work, the parts of the key must be kept in parallel hash arrays, and loaded
and tested separately. If, for instance, ID and MEM were hashed by chaining, the HKEY
declaration would have to be replaced with

ARRAY HID  (0:&HSIZE) _TEMPORARY_;
ARRAY HMEM (0:&HSIZE) _TEMPORARY_;

The instruction
        

HKEY(H)=KEY

 would become

HID  (H) = ID    ;
HMEM (H) = MEMNO ;

Also, in the TRAVERSE subroutine, the instruction

 IF KEY=HKEY(H)

 would transform into the following:

 IF ID = HID(H) AND MEMNO = HMEM(H);

Similar modifications could be done if the open addressing methods were used.

V. BENCHMARKING

Each technique presented above operates best in its own “area of expertise” defined by
the number of lookup keys and key range. To compare them to each other and two
SAS-supplied methods, SMALL and LARGE were created with random integer keys in
[0:8E6] range where all methods could work within the system imposed memory limit of
70 MB. To include bitmapping into the comparison group, the satellite S_SAT was
omitted from SMALL. The input was prepared in such a way that hits and misses were
equally likely to occur. LARGE with fixed N_LARGE=2E6 was then matched against
SMALL with varying number of records in batch on S/390 G5 R36 Enterprise Server
running SAS Version 6.09E. For key-indexing, bitmapping, and hashing LOAD represents
the time needed to load a table from SMALL (<EOF1> loop). In the case of formatting,
LOAD is the time required to unduplicate SMALL and compile the format. For MERGE, it
is the time needed to sort the files. The value LF= is the load factor used for the run.
LOAD, SEARCH, and TOTAL are given in CPU seconds, MEMORY – in kilobytes.

Table 1. Benchmarking.

N_Small  Method     Load  Search    Run   Memory
-----------------------------------------------
100,000  Key-Inx    0.42   12.18   12.60   65261
         Bitmap     0.36   22.64   23.00    3925
         Chain-05   0.31   21.78   22.09    5997
         Chain-08   0.34   26.28   26.62    4829
         Doubl-05   0.28   32.78   33.06    4445
         Doubl-08   0.33   47.91   48.24    3961
         Sqxjhsh    0.00   52.66   52.66    5881
         Format     6.27   51.92   58.19   10866
         Merge     19.74   46.16   65.90    3276
-----------------------------------------------
300,000  Key-Inx    0.67   12.07   12.74   65261
         Bitmap     0.99   26.17   27.16    3925
         Chain-05   0.87   21.47   22.34   12093
         Chain-08   0.95   26.03   26.98    8637
         Doubl-05   0.80   31.24   32.04    7493
         Doubl-08   0.97   47.03   48.00    5769
         Sqxjhsh    0.00   58.38   58.38   11401
         Format    18.71   55.19   73.90   26199
         Merge     20.91   46.63   67.54    3267
-----------------------------------------------
500,000  Key-Inx    0.92   12.09   13.01   65261
         Bitmap     1.59   26.56   28.15    3925
         Chain-05   1.37   21.60   22.97   18033
         Chain-08   1.53   25.30   26.83   12357
         Doubl-05   1.29   31.90   33.19   10465
         Doubl-08   1.57   42.17   43.74    7625
         Sqxjhsh    0.00   64.49   64.49   16921
         Format    29.77   67.26   97.03   57289
         Merge     21.59   47.27   68.85    3267



The same benchmarking information might be digested better if presented in a more
visual form. On the chart below, the left half of bars represents relative run-times, and
the right half shows relative memory utilization.

------------ N_Small = 100000 ----------------
Key-Inx  |||||||   |||||||   |||||||   |||||||   ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Bitmap   |||||||||||||   |||||||||||||   |||||||||||||   |||||||||||||   ||||||||||||||||
Chain-05 |||||||||||||   |||||||||||||   |||||||||||||   |||||||||||||   ||||||||||||||||||||||||||||
Chain-08 |||||||||||||||   |||||||||||||||   |||||||||||||||   |||||||||||||||   ||||||||||||||||||||||||
Doubl-05 |||||||||||||||||||   |||||||||||||||||||   |||||||||||||||||||   |||||||||||||||||||   ||||||||||||||||||||
Doubl-08 ||||||||||||||||||||||||||           ||||||||||||||||||||||||||           ||||||||||||||||||||||||||           ||||||||||||||||||||||||||           ||||||||||||||||
Sqxjhsh  |||||||||||||||||||||||||||||||   |||||||||||||||||||||||||||||||   |||||||||||||||||||||||||||||||   |||||||||||||||||||||||||||||||   ||||||||||||||||||||||||||||
Format   ||||||||||||||||||||||||||||||||||   ||||||||||||||||||||||||||||||||||   ||||||||||||||||||||||||||||||||||   ||||||||||||||||||||||||||||||||||   ||||||||||||||||||||||||||||||||||||||||||||||||||||
------------ N_Small = 300000 ----------------
Key-Inx  |||||||   |||||||   |||||||   |||||||   ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Bitmap   ||||||||||||||||   ||||||||||||||||   ||||||||||||||||   ||||||||||||||||   ||||||||||||||||
Chain-05 |||||||||||||   |||||||||||||   |||||||||||||   |||||||||||||   ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Chain-08 ||||||||||||||||   ||||||||||||||||   ||||||||||||||||   ||||||||||||||||   ||||||||||||||||||||||||||||||||||||||||
Doubl-05 |||||||||||||||||||   |||||||||||||||||||   |||||||||||||||||||   |||||||||||||||||||   ||||||||||||||||||||||||||||||||||||
Doubl-08 ||||||||||||||||||||||||||           ||||||||||||||||||||||||||           ||||||||||||||||||||||||||           ||||||||||||||||||||||||||           ||||||||||||||||||||||||||||
Sqxjhsh  |||||||||||||||||||||||||||||||||||   |||||||||||||||||||||||||||||||||||   |||||||||||||||||||||||||||||||||||   |||||||||||||||||||||||||||||||||||   ||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Format   ||||||||||||||||||||||||||||||||||||||||||||   ||||||||||||||||||||||||||||||||||||||||||||   ||||||||||||||||||||||||||||||||||||||||||||   ||||||||||||||||||||||||||||||||||||||||||||   ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
------------ N_Small = 500000 ----------------
Key-Inx  |||||||   |||||||   |||||||   |||||||   ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Bitmap   ||||||||||||||     ||||||||||||||     ||||||||||||||     ||||||||||||||     ||||||||||||||||
Chain-05 |||||||||||||   |||||||||||||   |||||||||||||   |||||||||||||   ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Chain-08 ||||||||||||||||   ||||||||||||||||   ||||||||||||||||   ||||||||||||||||   ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Doubl-05 |||||||||||||||||||   |||||||||||||||||||   |||||||||||||||||||   |||||||||||||||||||   ||||||||||||||||||||||||||||||||||||||||||||||||||||
Doubl-08 ||||||||||||||||||||||||||||       ||||||||||||||||||||||||||||       ||||||||||||||||||||||||||||       ||||||||||||||||||||||||||||       ||||||||||||||||||||||||||||||||||||
Sqxjhsh  ||||||||||||||||||||||||||||||||||||||   ||||||||||||||||||||||||||||||||||||||   ||||||||||||||||||||||||||||||||||||||   ||||||||||||||||||||||||||||||||||||||   ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Format   ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||   ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||   ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||   ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||   ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
-------- Run Time ----------- Memory Usage ---

Note that the run times exhibited by key-indexing, bitmapping, and hashing, in
agreement with their direct-addressing nature, are virtually independent from the
number of lookup keys. For key-indexing and bitmapping, memory usage is always fixed
since the number of keys has no effect on the universe of keys they embrace. Hashing
uses memory strictly proportional to the number of keys in the table and sparsity of the
table.

VI. APPLICATIONS

1. Subsetting

Subsetting used above as a sample problem is an important but only one of many tasks
to which direct-addressing based methods can be applied successfully. However, before
discussing other applications, we have to make a few final observations about
subsetting, all the more that it has been used as our proving grounds. From the test
results, it follows that when it comes to one-time subsetting, direct-addressing methods
result in lookup speeds unmatched even by methods written in the underlying software
and specifically designed for searching. As an icing on the cake, hashing is significantly
more memory-efficient  than formatting and SQL. The latter is extremely important
when the number of keys in SMALL grows beyond a couple of million. Hash memory is
strictly proportional to the number of lookup keys and can be accurately estimated
beforehand. Contrary to that, the amount of memory used by formats or SQL seems to
grow uncontrollably after a certain threshold has been reached.

On a different note, we should exercise caution dragging satellites from SMALL through
the memory. If there is more than one satellite, one may be tempted to create a
separate parallel satellite array for each, but this is not always the right thing to do.
Remember, character temporary SAS arrays are allocated in 8-byte multiples per item
(unless you are running V8.1). If we have four 8-byte character satellites, a separate
array can be declared as $8 for each with 100 per cent memory utilization. However, if
we have four 2-byte satellites and create 4 parallel arrays $2 each, it will waste gobs of
memory, for SAS will allocate the arrays with 8 bytes per item, anyway. So, in this case,
we will be much better off memory-wise allocating one array as $8, stringing the
satellites together in the load phase, and unstringing them into separate variables just
prior to outputting a record.

2.  Dynamic DATA Step Data Dictionaries

Let us take a look at key-indexing and hashing from a different, more philosophical,
standpoint. The key-indexed and hash tables we have used to facilitate direct address
and hybrid searching can be viewed as some abstract data type (ADT) in memory, that
allows to efficiently perform certain operations on its entries. The ADT used in key-
indexing and hashing is simply called a table. The entries contain keys and maybe some
satellite information. There are two operations we have learned how to perform in the
process of solving our sample problem: Insert and search. Many kinds of ADTs other
than a hash and key-indexed table can facilitate these operations. A simple sequentially
searched array, binary searched sorted array, AVL tree are just a few ADT examples.

The difference between various ADTs lies in the time necessary to insert an entry or
search the entries given a key. For example, a plain array requires O(1), i.e. constant
time, independent from the number of entries N, to insert a new entry - we simply
append it to the right. However, searching such a structure occurs in O(N) time, i.e.
proportional to N. If the ADT is a sorted array, we need O(N) time to insert an entry
because it is necessary to shift a number of items proportional to N to free a node for

the new key keeping the table sorted. In exchange, searching an ordered array, as we
know from Part 1, occurs only in O(log(N)), or even O(loglog(N)) time. Yet another ADT,
an AVL tree, facilitates both operations in O(log(N)) time as its worst case.

From these examples, it is clear what kind of advantage key-indexing and hashing offer:
If a hash table is sparse enough, they support both insert and search operations in
constant time O(1), because, as we have seen before, it takes practically the same time
to search the table or to insert a new key, no matter how many keys the table may
contain.

As a side note, from this standpoint, the difference between key-indexing and hashing is
merely superficial. A key-indexed table is, in effect, nothing else but an infinitely sparse
hash table, and the hash function used to access it is simply constant.

The fact that hashing supports searching (and thus retrieval and update) in constant
time makes it ideal for implementing DATA step dynamic data dictionaries. Imagine that
in the course of DATA step processing, we need to memorize certain key elements and
their attributes as we go, and at different points in the program, ask and answer
questions like the following:

1. Has the current key already been used before?
2. If it is new, how to insert it in the table, along with its attribute, in such a way

that the question 1 could be answered as fast as possible in the future?
3. How to access a key element in the most speedy fashion and update its satellite

datum?
4. If the key is no longer needed, how to delete it?

If the "key element" satisfies the conditions making key-indexing applicable (for
instance, it is a SAS date), there is no better tool for the job. All the actions are
performed in O(1) time and do not get any simpler:

1. See if the node whose value equals KEY contains a missing value.
2. Fill the node with the attribute.
3. Overwrite the attribute already in the node.
4. Move a missing value to the node.

If the keys are not limited-range integers, we will have to organize a hash table using
either of the collision resolution policies given in the text. In both programs, the body of
the first DO UNTIL(EOF) loop constitutes nothing else but a ready-to-go combined hash
search-and-insertion. That answers questions 1 and 2, or 1 and 3. The second DO
UNTIL(EOF) loop is a pure hash search, and answers question 1 itself.

A practical application of these principles immediately coming to mind is obtaining
frequency counts in the case of a huge number of distinct levels of a categorical
variable, when FREQ or SUMMARY either run out of memory or take too long to run. To
compute frequencies without sorting, we must be able to maintain a table in memory
allowing to immediately locate the value coming with the next record and add a unity to
its count.

The following question was asked in SAS-L: "I have an unsorted SAS data set with
almost 100 million records. It has a numeric variable FLDR_ID that can be any integer
number from -500,000 to +500,000. How to create a file with frequencies, cumulative
frequencies, percents and cumulative percents for all values of FLDR_ID having only 50
MB of RAM?"  The problem with the “standard” approaches (FREQ or SUMMARY) is that
there are too many discrete values of the categorical variable, and both procedures, if
applied “head-on”, either run out of memory or seem to run endlessly. From the
standpoint of direct addressing, the key FLDR_ID is a restricted-range integer, and
therefore for the purpose of the data dictionary, key-indexing should be here right at
home. This was realized by Ian Whitlock and the author:

data freq (keep=fldr_id freq cfreq pcnt cpcnt);
   array f (-500001:500000) _temporary_;
   do until(end);
      set ids end=end nobs=nobs;
      if fldr_id = . then fldr_id = lbound(f);
      f(fldr_id) ++ 1;
   end;
   ptot = 1/nobs * 100;
   do i=lbound(f) to hbound(f);
      if f(i) = . then continue;
      freq =  f(i);
      cfreq ++ freq;
      pcnt  = freq * ptot;
      cpcnt ++ pcnt;
      if i > lbound(f) then fldr_id = i;
      else fldr_id = .;
      output;
   end;
run;                               

The program uses 12 MB of memory and runs an order of magnitude faster than either
FREQ or SUMMARY (provided that they do not run out of memory in the process).

3. Stable Sortless Unduplication

While discussing hashing, we saw that as an attempt is made to load the next key into a
hash table, the search-and-insert subroutine first determines whether the key has
already been inserted, and if it has, goes to the next record. As this occurs very fast, the
search-and-insert subroutine can be successfully used to remove duplicates from a file
without sorting.



Speaking of the latter, for a SAS programmer, “duplicate removal” almost instantly rings
“PROC SORT NODUPKEY” or “SELECT DISTINCT”, depending on the prior exposure and
taste preferences. It is an interesting phenomenon. We have, in effect, accustomed to
using the side effects of two very time-consuming procedures just to kick out records
with repeating keys. Of course, in the situation when a file has to be both sorted and
unduplicated, PROC SORT is just the tool for the job. However, if sorting is not needed,
a lot of extra work is done for no reason. What is more, consider a situation when not
only we need to delete the duplicates from a file, but also retain the original order of its
records, in other words, unduplicate the file in a stable manner. Should we decide to
sort with NODUPKEY, we would be looking at at least 3 steps:

1. Add a sequence variable, say SEQ, to the file.
2. Sort the file with NODUPKEY EQUALS options by the key.
3. Re-sort the file by SEQ, and drop SEQ from the output.

Not only it does not look efficient, it does not make a whole lot of sense. Imagine that
we have to remove duplicate cards from a deck; would we sort the deck first? Probably
not! We would most likely take the cards off the deck one by one and memorize which
cards have been taken out so far. If a card is “new”, it goes face up to the output deck;
if it is “old”, it goes to the waste basket. At the end, the output will contain no duplicates
and have the same relative order as input. All along in this process, we are using our
human memory to keep track of the “keys” having been already used. Getting back to
real files, a direct-address-based dictionary table can play the same role, providing both
the quickest way to memorize “used”  keys and establish whether the current key has
already been used. Of course, the table must have a sufficient memory capacity, so we
have to exercise a good judgement choosing between key-indexing, bitmapping, or
hashing.

As an example, let us consider unduplicating a file similar to SMALL (how “small”,
depends on the range of keys and number of records) having 1,000,000 records, say.
Assume that KEY has 16 digits, so neither key-indexing nor bitmapping can be used.
However, a 50% sparse open-addressed hash table can be deployed at the expense of
about 30 MB of memory. (It is not a small change, but with “usual” PC memories
steadily creeping towards 1 GB, such memory usage can be considered tolerable.)
Moreover, with 50% of nodes guaranteed to be empty, we can use linear probing, the
simplest collision resolution method, with great deal of confidence. The plan (paralleling
the playing card analogy above) is plain:

Step 1. Read a record from SMALL.
Step 2. Search for the key associated with the record in the hash table.
Step 3. If the key is found, it is a duplicate. Go to step 1.
Step 4. Otherwise insert the key in the table, output the record and go to step 1.

In the language of the SAS DATA step, it does not get any simpler, either:

** Sortless Stable Unduplication with Linear Probing;

data nodup (keep=key l_sat);
   array hkey (0:2000003) _temporary_;
   set large;
   do h=mod(key,2000003) by -1 until (hkey(h) = .);
      if h < 0 then h = 2000003;
      if hkey(h) = key then delete;
   end;
   hkey(h) = key;
run;               

That is all it takes. Of course, the number 2000003 is not just arbitrary – it is the first
prime number greater than 2000000, the “target” hash table size. But what about
performance? On the same real computer the rest of the tests for this paper has been
done, this step finishes the task in 3.1 CPU seconds. This compares quite favorably with
PROC SORT EQUALS NODUPKEY (4.3 CPU seconds, and of course more for two extra
steps if the stable output is required), and SQL with DISTINCT (11.2 CPU seconds).

4. Other Applications

It is impossible to embrace all conceivable applications of direct addressing methodology
in one paper, so let us superficially mention just two more directions.

The author has participated in a “fuzzy matching” project, where the records from multi-
million files with insufficient and redundant key information had to be linked using
probabilistic matching. The linkage was essentially done in two stages. The first stage,
using multiple composite redundant keys, identified probable matches, which were then
scored pair-wise in the second stage. In both stages, key-indexing and hashing
techniques were used to boost performance. They successfully supplanted “large”
formats and SAS indexes, and as a result, the matching process was able to finish in
about 1/5 of the original run-time on the same UNIX server where the original programs
were run.

In this paper, only memory-resident direct-addressing methods have been considered.
But what if we have so many distinct keys that none of the methods above will work just
because of sheer memory limitations? Is it possible to apply the direct-addressing
techniques, working so well in the high-speed memory, to some form of disk searching?
The answer to this question is “yes”.  In fact, using a hybrid disk/memory hashing
methodology, a plain SAS data set can be organized in such a way that the speed of
accessing it randomly will exceed that of SAS index several times. Moreover, because of

the intrinsic properties of hashing, the performance of such a lookup table does not
depend on the distribution of the search keys. However, it is a topic for another paper.

CONCLUSION

Key-indexing is an in-memory lookup technique based strictly on direct addressing into
an array with no comparisons between keys made. Its area of applicability is limited to
integer keys falling in a limited range defined by available memory resources. However,
when applicable, key-indexed search exhibits unmatched performance, and is the most
straightforward way of implementing an ADT where all operations, such as search,
insert, retrieve, update, delete, and enumerate are done in constant, O(1), time.

Bitmapping does not deviate a bit from the key-indexing philosophy, but uses available
memory resources smarter by indexing keys directly into the bits, rather than 8-byte
elements, of a numeric array. This way, bitmapping can address a much larger universe
of integer keys than pure key-indexing. Both techniques have the advantage of working
very fast with unlimited number of keys falling into their workable range. For instance,
for keys restricted to 8 digits, up to 100 million integer keys can be in effect “stored”
and subsequently extremely rapidly searched in a bitmap occupying only about 12 MB of
real storage (RAM).

Hashing helps direct addressing work on keys of any type and range by bringing serial
search and collision resolution policies into the equation. A bit slower that pure direct
addressing, hashing searches times faster than SAS formats and SQL, and uses
significantly less memory. Massive data processing applications like a data warehouse or
production list management system are examples of the fields where the unmatched
speed and efficiency of direct-addressing methods can be utilized. Compared to
“traditional” techniques, they can successfully supplant formats and SQL in eliminating
costly table joins, and tremendously accelerate the processes of data extraction,
scrubbing, and validation, based on a large predetermined set of keys. The larger the
data, the bigger advantage direct addressing can offer. Finally, direct-addressing
searching methods are just additional, free programming tools, and can be used by any
SAS programmer interested in efficiency and performance.

Key-indexing, bitmapping, and hashing are cool. They allow operating in the niches
where “standard” approaches may run out of memory or take a frustrating time to run.
The author encourages other SAS users to use these tools, modify them, tweak them,
improve the code, and discover new areas of application. Karsten M. Self wrote once
after having tried hashing in a real-world application: "Hash rocks, Dude!" Needless to
say, the author eagerly agrees.

SAS is a registered trademark or trademark of SAS Institute, Inc. in the USA and other
countries. � indicates USA registration.

REFERENCES

1. D. E.Knuth, The Art of Computer Programming, 2.
2. D. E.Knuth, The Art of Computer Programming, 3.
3. R. Sedgewick, Algorithms in C, Parts 1-4.
4. T. A. Standish. Data Structures, Algorithms and Software Principles in C.

ACKNOWLEDGEMENTS

Thanks to Karsten M. Self, Ian Whitlock, F. Joseph Kelley, Sigurd Hermansen, and Base
SAS R&D team for their enthusiastic support of direct-addressing methods in SAS,
valuable discussions full of ideas, wit, and vigor, and giving the author an opportunity to
apply the techniques to solve practical problems. The author gratefully acknowledges
the contribution of the individuals who have, directly or indirectly, encouraged the
author and supported his efforts of making direct addressing an accepted and practically
used DATA step philosophy:

Michael V. Dorfman     Paul Gorell          David Pider
Eugenia P. Kravchenko  Steven Kleiman       Robert Workman
Doris H. Bogar Alex V. Martchenko   David Cassell
Victor P. Dorfman      Thomas Mendicino   Jim Groeneveld
Vera Voloshin          Alex L.  Voloshin Diana Noble
Koen Vyverman Vladimir A. Kirillov   Gerard Pauline
Benjamin Guralnik Yuri Katsnelson        Ray Pass             
Gennady Taratut        Michael A. Raithel   Art Carpenter
Jane King              Michael Rhoads          Shiling Zhang
Jay Melesky            Dianne Rhodes        Ronald J. Fehd
Bob Abelson            Don Stanley          Thomas Zicafoose
Ashiru Babatunde       Mark Terjeson        Christoph Edel
Peter Crawford         William W. Viergever John Whittington
Colin Earle Gregg Snell Paul Kent
Peter Lund Rick Aster Kathy Y. Knorozova
Viacheslav V.  Tsiolko Igor A. Soloshenko Michael M. Begun

AUTHOR CONTACT INFORMATION

Paul M. Dorfman
10023 Belle Rive Blvd. 817, Jacksonville, FL 32256
(904) 564-1931 (h) / (904) 954-8533 (o)
sashole@bellsouth.net
paul.dorfman@citicorp.com
paul_dorfman@hotmail.com



APPENDIX

Table A1.Inserting the sample keys into a hash table with collision resolution
using coalesced linked list chaining.

----------------------------------------------------------------------------
 H --> 00  01  02  03  04  05  06  07  08  09  10  11  12  13  14  15  16  17
----------------------------------------------------------------------------
HKEY   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   . 185   .     .     .     .  KEY=185
LINK   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .     .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .     .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .     .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .  00   .   .   .   .
----------------------------------------------------------------------------
HKEY   .   .   .    .   .   .    .   .   .    .   .   . 971   .   .   .   .   .   .   .   .   .   .   .   .    .   .   .   .   .   .   .   .   .   .   .   .    .   .   .   .   .   .   .   .   .   .   .   .    .   .   .   .   .   .   .   .   .   .   .   . 185   .    .    .    .  KEY=971
LINK   .   .   .     .   .   .     .   .   .     .   .   .  00   .   .   .   .   .   .   .   .   .   .   .   .     .   .   .   .   .   .   .   .   .   .   .   .     .   .   .   .   .   .   .   .   .   .   .   .     .   .   .   .   .   .   .   .   .   .   .   .  00   .  .  .  .
----------------------------------------------------------------------------
HKEY   .   .   .    .   .   .    .   .   .    .   .   . 971   .   .   .   .   .   .    .   .   .   .   .   .    .   .   .   .   .   .    .   .   .   .   .   . 400   .   .   .   .   .    .   .   .   .   .    .   .   .   .   .    .   .   .   .   . 185   .     .     .     .  KEY=400
LINK   .   .   .     .   .   .     .   .   .     .   .   .  00   .   .   .   .   .   .     .   .   .   .   .   .     .   .   .   .   .   .     .   .   .   .   .   .  00   .   .   .   .   .     .   .   .   .   .     .   .   .   .   .     .   .   .   .   .  00   .  .  .  .
----------------------------------------------------------------------------
HKEY   .   .   .    .   .   .    .   .   .    .   .   . 971   .   .    .   .    .   .    .   . 260   .   .   .    .   .   .    .   .   .    .   .   . 400   .   .   .   .   .    .   .   .   .   .    .   .   .   .   .    .   .   .   .   . 185   .     .     .     .  KEY=260
LINK   .   .   .     .   .   .     .   .   .     .   .   .  00   .   .    .   .    .   .    .   .  00   .   .   .     .   .   .     .   .   .     .   .   .  00   .   .   .   .   .    .   .   .   .   .    .   .   .   .   .    .   .   .   .   .  00   .  .  .  .
----------------------------------------------------------------------------
HKEY   .   .   .    .   .   .    .   .   .    .   .   . 971   .    .    .    . 922    260   .   .   .    .   .   .    .   .   .    .   .   . 400   .   .   .   .   .    .   .   .   .   .    .   .   .   .   .    .   .   .   .   . 185   .     .     .     .  KEY=922
LINK   .   .   .    .   .   .    .   .   .    .   .   .  00   .    .    .    .  00        00   .   .   .    .   .   .    .   .   .    .   .   .  00   .   .   .   .   .    .   .   .   .   .    .   .   .   .   .    .   .   .   .   .  00   .  .  .  .
----------------------------------------------------------------------------
HKEY   .   .   .   .   .   .   .   . 970    971   .   .   .   . 922 260   .   .   .    .   .   .    .   .   .    .   .   . 400   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   . 185   .    .    .    .  KEY=970
LINK   .   .     .   .     .   .     .   .  00        00   .    .    .    .  00  00   .   .   .   .   .   .   .   .   .   .   .   .  00   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .  00   .  .  .  .
----------------------------------------------------------------------------
HKEY   .   .   .   .   .   .   .   . 970 971   .   .   .   . 922 260   .   .   .   .   .   .   .   .   .   .   .   . 400   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   . 185 543        KEY=543
LINK   .   .     .   .     .   .     .   .  00  00   .   .   .   .  00  00   .   .   .   .   .   .   .   .   .   .   .   .  00   .   .   .   .   .    .   .   .   .   .    .   .   .   .   .    .   .   .   .   .  00     00
----------------------------------------------------------------------------
HKEY   .   .    .   .    .   .    .   . 970 971   .   .   .   . 922 260   .   .   .    .   .   .    .   .   .    .   .   . 400   .   .   .   .    .   .   .   .    .   .   .   .    .   .   .   . 532    185 543  KEY=532
LINK   .   .   .   .   .   .   .   .  00  00   .    .    .    .  00  15   .   .   .    .   .   .    .   .   .    .   .   .  00   .   .   .   .    .   .   .   .    .   .   .   .    .   .   .   .  00     00  00  Collision @ 06
----------------------------------------------------------------------------
HKEY   .   .   .   .   .   .   .   . 970 971   .   .   .   . 922 260   .   .   .   .   .   .   .   .   .   .   .   . 400   .   .   .   .   .   .   .   .   .   .   .   . 050    532 185 543  KEY=050
LINK   .   .    .   .    .   .    .   .  00  00   .    .    .    .  00  15   .   .   .   .   .   .   .   .   .   .   .   .  00   .   .   .     .   .   .     .   .   .     .   .   .  00        00  00  14  Collision @ 17
----------------------------------------------------------------------------
HKEY   .   .   .   .   .   .   .   . 970 971   .   .   .   . 922 260   .   .   .    .   .   .    .   .   .    .   .   . 400   .   .    .   .    .   .    .   . 067 050 532 185 543  KEY=067
LINK   .   .    .   .    .   .    .   .  00  00   .  .  .  .  00  15   .   .   .    .   .   .    .   .   .    .   .   .  00   .   .    .   .    .   .    .   .  00  13  00  00  14  Collision @ 17
----------------------------------------------------------------------------

Table A2. Inserting the sample keys into a hash table with collision resolution
 by open addressing with linear probing.

-------------------------------------------------------------------------------
H --�   00  01  02  03  04  05  06  07  08  09  10  11  12  13  14  15  16  17
-------------------------------------------------------------------------------
KEY=185   .   .   .   .   .   .   .   .   .   .   .   .   .   .   . 185   .   .
    971   .   . 971   .   .   .   .   .   .   .   .   .   .   .   . 185   .   .
    400   .   . 971   .   .   .   .   .   . 400   .   .   .   .   . 185   .   .
    260   .   . 971   .   . 260   .   .   . 400   .   .   .   .   . 185   .   .
    922   .   . 971   . 922 260   .   .   . 400   .   .   .   .   . 185   .   .
    970   . 970 971   . 922 260   .   .   . 400   .   .   .   .   . 185   .   .
    543   . 970 971   . 922 260   .   .   . 400   .   .   .   .   . 185 543      .
    532   . 970 971 532 922 260   .   .   . 400   .   .   .   .   . 185 543   .  Collision @ 05
    050   . 970 971 532 922 260   .   .   . 400   .   .   .   . 050 185 543   .  Collision @ 16
    067   . 970 971 532 922 260   .   .   . 400   .   .   . 067 050 185 543   .  Collision @ 16
-------------------------------------------------------------------------------

Table A3.Inserting the sample keys into a hash table with collision resolution
by open addressing with double-hashing.

-------------------------------------------------------------------------------
H --�   00  01  02  03  04  05  06  07  08  09  10  11  12  13  14  15  16  17
-------------------------------------------------------------------------------
KEY=185   .   .   .   .   .   .   .   .   .   .   .   .   .   .   . 185   .   .
    971   .   . 971   .   .   .   .   .   .   .   .   .   .   .   . 185   .   .
    400   .   . 971   .   .   .   .   .   . 400   .   .   .   .   . 185   .   .
    260   .   . 971   .   . 260   .   .   . 400   .   .   .   .   . 185   .   .
    922   .   . 971   . 922 260   .   .   . 400   .   .   .   .   . 185   .   .
    970   . 970 971   . 922 260   .   .   . 400   .   .   .   .   . 185   .   .
    543   . 970 971   . 922 260   .   .   . 400   .   .   .   .   . 185 543   .
    532   . 970 971   . 922 260   .   .   . 400   .   .   .   . 532 185 543   .  Collision @ 05; C=8
    050   . 970 971   . 922 260   .   .   . 400 050   .   .   . 532 185 543   .  Collision @ 16; C=6
    067   . 970 971   . 922 260   .   . 067 400 050   .   .   . 532 185 543   .  Collision @ 16; C=8
-------------------------------------------------------------------------------



Advanced Methods to Introduce External Data into the SAS���� System

Andrew T. Kuligowski – Nielsen Media Research

ABSTRACT / INTRODUCTION

The SAS® System has numerous capabilities to
store, analyze, report, and present data.
However, those features are useless unless that
data are stored in or can be accessed by the
SAS System. This presentation will provide a
brief introduction to many of the different
methods that can be used to pass data into the
SAS System, with special emphasis on those
methods for use on the Personal Computer.
Topics will include the menu-driven SAS Import
Wizard, DDE, ODBC, and others - as many as
time and space will allow! The goal of this
presentation is to provide information that will be
useful to all users of the SAS System. Some
topics are tailored to the novice, while others will
be more applicable to the experienced user.
Please note that some information, by its very
nature, will only be applicable to select operating
systems. This presentation will be tailored to
Version 8 of the SAS System, however special
note will be made of those topics that have
changed between Versions 6 and 8.

SAS IMPORT WIZARD

Often, the best tool for a job is the simplest one.
To illustrate that point, the first topic we will
discuss is the SAS Import Wizard.  Available
since Release 6.12 of the SAS System, the SAS
Import Wizard is a menu-driven system to define
and import external data into the SAS System.
It is typical in appearance and in approach to
Wizards available in other Windows products,
such as Microsoft Excel.  The Import Wizard is
accessed by selecting Import Data from the File
pulldown menu on the SAS toolbar.  (Those who
have not yet upgraded to Version 8 will find the
selection is called Import under Version 6.12.)

The first screen requires the user to specify the
type of file to be imported.  The first choice is a
“standard file format”; a pull-down menu allows
various options such as dBASE, LOTUS, Excel,
or delimited files.  (NOTE:  Some of these
options are only available if the site has licensed
SAS/ACCESS to PC File Formats.)  The other
choice, “user-defined file format”, provides an
interface to the External File Interface.  (The
External File Interface, which permits the user to
specify the details of an external file via menus,
will not be discussed in this presentation.)  See

Figure A for a sample of this screen – this and
subsequent screen prints will illustrate the IMPORT of
an Excel 2000 file.

Figure A – SAS Import Wizard “Import Type” Screen

The SAS Import Wizard now displays a screen prompting
the user to “Select File”.  The file name can be manually
typed in the space provided, or the Browse button can be
selected in order to search for the file.  See Figure B for a
sample of this screen.

Figure B  - SAS Import Wizard “Select File” Screen

This screen also has an Options button.  This button causes
a separate pop-up window to be displayed, which can be
used to select any options that are specific to the type of file
selected on the first screen.  See Figure C for a sample of
this screen.



Figure C – SAS Import Wizard “Select File – Options” Screen

Figure D – SAS Import Wizard “Library & Member” Screen (Initial)

Figure E – SAS Import Wizard “Library & Member” Screen
(Completed)

Next, the user is prompted to choose the “SAS
Destination”, better known as the Library and
Member.  Again, the user can manually enter
the SAS library and member into which the data
is to be stored, or they can use pull-down menus
to select from those which are already known to
the SAS session. See Figures D and E for
samples of this screen.

If “standard file format” was originally selected
and the screen was correctly and completely
filled out, please note that the picture on the left
side of the screen changes from a tabular image
to a checkered flag when entry is finished.
Normally, a checkered flag alludes to a finish
line or completion – in fact under Version 6.12,
this was the final screen of the SAS Import
Wizard.  However, under Version 8, an
additional screen allows the user to store the
generated code in a file, allowing for reuse
and/or modification.  See Figure F for an
example of this screen.

At this point, the SAS System processes the
request.  Success is indicated by a simple
message in the SASLOG, advising that the SAS
dataset is now available for use :
NOTE: [SASdsn] was successfully
      created
At this point, it is possible for those users who
are still using Version 6.12 of the SAS System to
save their generated code, although the process
is slightly more complicated than entering in
values on a menu as with Version 8.  The
process to save generated SAS code under
Version 6.12 is as follows:
� Toggle to the PROGRAM window in SAS

Display Manager.
� RECALL (F4 by default) your previously

submitted code.
The generated code will be echoed in the
Program Window, and it can now be saved to an
external file.

It should be noted that the code generated
under Version 6.12 will look radically different
than the code generated under Version 8.  This
is because Version 8 uses PROC IMPORT,
which was not available under Version 6.12.
Refer to Figures G and H for examples of
code generated under both versions of SAS.



Figure F – SAS Import Wizard “Create SAS Statements” Screen

PROC ACCESS DBMS=EXCEL;
  CREATE WORK._IMEX_.ACCESS;
  PATH=‘C:\SAS Class\Sample
        Data\NHL 1999-2000 Scoring
        Leaders.xls’;
  GETNAMES YES;
  SCANTYPE=YES;
  CREATE WORK._IMEX_.VIEW;
  SELECT ALL;
RUN;
DATA WORK.tempdata;
  SET WORK._IMEX_;
RUN;

Figure G – SAS Import Wizard Generated Code – Version 6.12

PROC IMPORT OUT=WORK.Sampdat1
     DATAFILE="C:\SAS Class\Sample
        Data\NHL 1999-2000 Scoring
        Leaders.xls"
     DBMS=EXCEL2000 REPLACE;
  GETNAMES=YES;
RUN;

Figure H – SAS Import Wizard Generated Code – Version 8

The SAS Import Wizard is not always the optimal solution -
if it was, this would be an awfully short presentation!  There
are two major drawbacks to the Import Wizard.  First of all, it
is not available when running SAS in a mainframe
environment.  Secondly, it is an interactive tool, which
renders it useless for a batch, schedule-oriented
environment.  However, the SAS Import Wizard can be the
easiest, quickest, and therefore best solution for the one-
time-only processing of an external file during an interactive
SAS session.  It also has great utility as a code generator,
saving time for the user to invest in other areas.

PROC IMPORT

As mentioned earlier, PROC IMPORT (along
with the corresponding PROC EXPORT) is a
new addition to the SAS System.  It provides a
simple-to-code method that facilitates the
transfer of data from an external source to the
SAS System.

It is not necessary to understand the syntax of
PROC IMPORT if the user generates the code
from the Import Wizard – in general, wizards are
designed so that the end user does not need
any advanced knowledge of the tool in question.
However, since PROC IMPORT can be invoked
manually, either from scratch or by including
code that was generated by an earlier execution
of the Import Wizard – with or without further
modification – it is worth briefly reviewing the
procedure at this time.

There are two required arguments on the PROC
IMPORT statement.  The first, OUT=, should be
familiar to all but the most inexperienced SAS
users.  The other required “argument” can
actually be one of two different arguments,
depending on the source of the input data:
� DATAFILE=”filename” is used to specify

most input data sources, such as sequential
files or Excel spreadsheets.

� TABLE=”tablename” is used to specify
DBMS tables, such as from Microsoft
Access.

There are also two optional arguments.  DBMS=
specifies the type of data to be imported.  It is
not required in conjunction with DATAFILE=, as
long as the filename contains a valid extension
associated with the data source such as .XLS.
However, it is required if the file name does not
have a valid extension or if TABLE= was
specified instead of DATAFILE=.  The other
optional argument, REPLACE, controls whether
or not a preexisting SAS dataset is overwritten
by the procedure.

There are a number of statements available for
use in conjunction with PROC IMPORT,
depending on the data source that is being
processed and on whether DATAFILE= or
TABLE= is being used on the PROC statement.
To conserve space, these options will not be
discussed in this paper – the reader is directed
to the Version 8 SAS Procedures Guide for
details.

As with the Import Wizard, the options available
to PROC IMPORT are limited to .TXT and .CSV



(or other delimited file) if the users’ site has not
licensed SAS/ACCESS to PC File Formats.

CSV (Comma Separated Value) FILES

The CSV, or Comma Separated Value File is a
special variety of sequential file, typically used for
importing or exporting data from a spreadsheet.  Data
values are separated by commas, as is implied by
the name, and character values are typically
surrounded by double quotation marks ( “ ).

CSV files can be processed by using the DSD
parameter on the INFILE statement.  This parameter
automatically sets the default delimiter to comma,
although this can be overridden by use of the
DELIMITER= option.  The presence of a pair of
commas denotes a missing value. The DSD
parameter also causes SAS to strip the double
quotation marks, if present, from character values
before storing them in SAS variables.  Please note
that character variables are defined with a default
length of 8 bytes in this instance.  This default length
can be overridden by use of the LENGTH statement.
Do not attempt to specify a format length on the input
statement for character variables, as this may cause
delimiting commas to be treated as part of the
variable’s value.  See Figure I for an example of
reading a CSV file.

DATA TEMP;
   LENGTH  CITY $ 20.  STATE $ 15. ;
   INFILE  SAMPCSV  DSD ;
   INPUT  YEAR    CONFNAME $
          CITY $  STATE    $;
RUN;

Figure I - CSV File

DDE

The next method of obtaining external data that shall
be discussed in this presentation is Dynamic Data
Exchange.  Dynamic Data Exchange, or DDE, allows
a client application to request information from a
server application in a Windows or OS/2
environment.  Effective with Release 6.08, the SAS
System acts as a client application in this
relationship.  It can request data from a server
application, with the requirement that the server
application must be running.  (It can also send
commands and data to a server application, but that
is a topic for another presentation.)

In order to use DDE, a connection must be
established between the client application and the

server application.  This is accomplished by issuing a
FILENAME statement with the keyword "DDE".  The
syntax for this statement, in this context, is:

FILENAME fileref DDE 'DDE-triplet' ;
The DDE-triplet is a specialized argument, and is
made up of three components:

application|topic!item
Application is the name of the server application,
such as Excel.  Topic is defined as the "topic of
conversation"; basically, this is the file to be
processed.  Item is the "item of conversation"; in a
spreadsheet, this is the range of cells that is to be
included.  For example, the DDE-triplet an Excel
worksheet would be:

Excel|[Book1]Sheet1!R1C1:R250C4
Note that the application and topic are separated by a
vertical bar ( | ), while the topic and item are
separated by an explanation point (!).

The DDE triplet for an application should be defined
in the documentation for that application.  However,
most people find it easier to let SAS determine the
proper DDE triplet.  The following is a step-by-step
method to obtain the proper DDE triplet for an
application, assuming both SAS and that application
are active:
� Toggle to your application, and use the standard

PC "cut" techniques to store the portion of the
client application to be processed in the Windows
Clipboard.  (For example, use the mouse to
highlight the area to be "cut", then select CUT or
COPY on the EDIT pop-up menu of most
Windows applications.)

� Toggle to your SAS session, and click on the
"Options" menu on the Menu Bar in SAS.

� The Options menu will contain an option called
"DDE Triplet".  Click on it.

� This will display an Information Box, which will
contain the DDE-triplet.

� Enter this DDE-triplet into the FILENAME
statement of your SAS routine.

If the user is willing to perform a little manual
intervention, it is even possible to use DDE without
ever knowing the name of the DDE triplet!
� As above, toggle to your application, and use the

standard PC "cut" techniques to store the portion
of the client application to be processed in the
Windows Clipboard.

� Toggle to your SAS session, and replace the
FILENAME statement with the following:

FILENAME fileref DDE CLIPBOARD ;
The SAS routine is now ready to be executed.  The
weakness in this approach is that the data to be
processed must be stored in the Clipboard prior to
each invocation of your SAS routine.  The benefit is



that there is no need to ever know the DDE-triplet for
your application to use DDE.  (Please note that this
approach will only work if an application is DDE
compliant.)

In order to use DDE with the SAS System, the server
application must be running while SAS is running.  If
the server application is not active, then it can be
invoked from within the SAS session with the "X"
command.  However, the SAS options XSYNC and
XWAIT must be turned off before issuing this
command, or control will not be returned to the SAS
session until that external application is closed -- this
defeats the purpose of a DDE link!  (Of course, the
user could also simply toggle over to the Windows
Program Manager and manually invoke the
application.)

The actual transfer of data from the external
application to the SAS System is done via the
combination of an INFILE and INPUT statement.
The actual code to accomplish this task looks exactly
like the code to read a sequential file into SAS.   See
Figure J for an example of reading an Excel 5.0
spreadsheet via SAS.  For further examples
covering a number of PC products, please refer to
“Technical Support Document #325 - The SAS
System and DDE”, which is available on the SAS
Institute web site.

OPTIONS  NOXSYNC NOXWAIT;
X 'C:\EXCEL SASCONF.XLS' ;
FILENAME SASCONF DDE
   'Excel|[Book1]Sheet1!R1C1:R250C4';
DATA CONFSCHD;
   INFILE SASCONF;
   INPUT DAY TIME TITLE AUTHOR;
RUN;

Figure J -  INPUT from EXCEL using DDE

It should be noted that the use and support of DDE is
declining, as more recent technological advances
become the tools of choice in the new millennium.
However, the reader is encouraged to develop an
understanding of DDE for several reasons:
� New DDE applications are still being coded at

many sites around the world.
� There are many existing applications that were

coded to use DDE; these applications will need
maintenance.

� DDE is available with base SAS, and does not
require additional product licensing or installation,
making it a viable alternative for many sites.

SAS/ACCESS ENGINES

SAS/ACCESS software is available, under separate
licenses, for a variety of host systems, covering
traditional mainframe, personal computer, and UNIX

environments.  It provides a method to view and
transfer data from several common database
management systems (DBMS) and a number of
common PC file formats, into the SAS system.

The ACCESS procedure can create descriptor files
that will provide information about the data stored in
the DBMS table or PC file format, and use that
information to create a SAS data file.   In addition,
use of an interface view engine will allow SAS to read
data from the file formats directly into SAS routines.
The interface view engine is used by the SAS SQL
procedure to directly access external databases
without leaving the SAS session.  However, the SQL
statements used in the procedure are beyond the
scope of this Tutorial.

There are two types of descriptor files created by the
ACCESS procedure:  an access descriptor and a
view descriptor.  Access descriptors provide
information regarding the structure of the file to be
accessed.  This includes data types, table names,
and column names, as well as the related SAS
dataset information such as variable names and
formats.  This access descriptor can then be used to
create the view descriptor, which will contain criteria
to be used to select columns and rows from the
selected DBMS table or PC file.  The data can be
used directly from the view descriptor in the SAS
routine, or it can be extracted from the DBMS or PC
file into a SAS data file.

The type of DBMS or PC file to be used is specified
in the PROC ACCESS statement in the form:

PROC ACCESS DBMS=filetype
Filetype can take on many different values.  To cite
just a few examples, the user can obtain data from
DB2®, SYBASE®, and ORACLE® by selecting
filetypes DB2, SYBASE, and ORACLE, respectively.
In a Windows environment, XLS, and WKn (where n
is a valid version number) will allow the transfer of
data from Excel or Lotus® spreadsheets, while DBF
and DIF are obviously the filetype for interfacing with
.DBF and DIF formatted files, respectively.

The actual access or view descriptor is then created
with the following syntax:

CREATE libref.member-name.ACCESS    or
CREATE libref.member-name.VIEW

The PROC ACCESS and CREATE statements are
followed by a statement that identifies the name of
the DBMS, DBF, XLS or other file that will be
accessed.  In addition, there are other editing
statements; these provide information about the
structure of the DBMS or PC file being accessed, and
select columns to be viewed.   See Figure K for an
example of using PROC ACCESS create a view,
with a subsequent use of its output.



LIBNAME VWLIB 'c:\confdat\';
PROC ACCESS DBMS=xls;
  CREATE vwlib.states.access;
  PATH 'c:\confdat\state.xls';
     <editing statements omitted>
  CREATE vwlib.states2.view;
     <select, format, and
      subset statements omitted>
RUN;
DATA _NULL_;
  SET vwlib.states2;
  <statements omitted>
RUN;
Figure "K" - PROC ACCESS : Creation and use of a View

The SAS view descriptor can be used in any PROC
or DATA step just like a SAS data set.  It is also
possible to use PROC ACCESS to create a SAS
dataset from the view descriptor.  This is
accomplished by issuing PROC ACCESS with the
VIEWDESC=libref.view-descriptor and
OUT=libref.sas-data-filename options.  See Figure L
for an example of using PROC ACCESS create a
view, with a subsequent use of its output.

PROC ACCESS VIEWDESC=vwlib.states2
            OUT=vwlib.stdata ;
RUN;
PROC PRINT DATA=vwlib.stdata;
RUN;
Figure "L" - PROC ACCESS : Creation of a SAS Dataset

The process to create and use a SAS/ACCESS view,
as described above, is reasonably easy to
understand and to use.  However, under Version 8,
SAS/ACCESS became even easier to employ, by
allowing view definitions via the LIBNAME statement!
The syntax is straightforward:

LIBNAME  libref  enginename
  <engine-specific options>
  <general LIBNAME options>;

This process will be described under the ODBC
section of this presentation.

It is not possible to fully cover PROC ACCESS in the
limited space of this paper -- there are a number of
separate manuals dedicated to the topic!  For further
information, including details of the DBLOAD
procedure that will transfer data from SAS to the
assorted DBMS and PC products, the reader is
directed to the assorted SAS/ACCESS manuals.

PROC DIF and PROC DBF

SAS/ACCESS to PC File Formats, which requires a
separate license from Base SAS software, also
provides additional interfaces to two traditional types
of PC files.  DBF and DIF formats date back to the
“ancient” days of PCs in the early 1980s; however,

data continues to exist in these formats and one must
be prepared to deal with it.

DBF files contain data originally formatted for the
dBASE� database management product, and are
accessed through PROC DBF.   PROC DBF accepts
two options. The first, OUT= should be self-
explanatory to anyone with even a modest
experience in use of the SAS System.  The other,
DBn=, is required, and contains the file reference  to
the DBF file.  The n in “DBn” refers to the version of
dBASE for which the file was created; “2”, “3”, “4”,
and “5” are valid version numbers.   Please note that
all dBASE formatted files are assigned the extension
.DBF, regardless of the version of dBASE (or other
product) under which they were created.  SAS will
produce an error message if the version number is
incompatible with the file format.

PROC DBF will produce a SAS dataset, with variable
names mapped from the original dBASE field names.
Field names will be truncated to 8 characters, if
necessary, to conform to current SAS variable name
restrictions.   See Figure M for examples of PROC
DBF.

10   /* This is a dBASE IV format file. */
11   filename sasconf
        'c:\sasconf\confloc.dbf';
12   proc dbf db2=sasconf  out=conf_db2;
RUN;
ERROR: Input file is not a DBASEII file.
WARNING: Data set WORK.CONF_DB2 not replaced
         because new file is incomplete.
NOTE: The SAS System stopped processing this
      step because of errors.
NOTE: The PROCEDURE DBF used 0.44 seconds.
13   proc dbf db4=sasconf  out=conf_db4;
RUN;
NOTE: 7 observations written to the output
      SAS data set.
NOTE: The PROCEDURE DBF used 0.38 seconds.

Figure "M" - PROC DBF - Invalid and Correct
DIF files, short for Data Interchange Format, date
back to VisiCalc� and other early PC spreadsheet
products. PROC DIF can be used to convert DIF files
into SAS datasets.  The format for PROC DIF is
similar to PROC DBF, with the DIF= option used in
place of DBn=.  Variable names are assigned COL1
to COLn in the output SAS dataset; it is
recommended that the user subsequently reassign
them to something more meaningful. .   See Figure N
for an example of PROC DIF.

filename sasconf 'c:\sasconf\confloc.dif';
proc dif dif=sasconf  out=conf_dif;
run;
proc print uniform;
run;

Figure "N" - PROC DIF



ODBC

Open DataBase Connectivity, or ODBC, started
off as a standard for the exchange of data
between DataBase Management Systems
(DBMS) under Microsoft's Windows
environment.  Since those early days, interfaces
to other operating systems and machines, such
as the Apple MacIntosh, have been developed.
It is necessary to use the SAS/ACCESS
Interface to ODBC in order to use ODBC to
bring data into the SAS System.

It is important to note that the SAS / ODBC
interface does not directly obtain data from an
external source, unlike other data sources which
are available via SAS/ACCESS.  Instead, it
interfaces with the ODBC manager, which in
turn interfaces with the other external data
sources.

In order to use the SAS / ODBC Interface, it is
therefore first required to install the appropriate
drivers, or “Data Sources”..  This is done via the
ODBC Icon available through the operating
system.  (Under Windows 98, for example, this
could be found in the “ODBC Administrator” from
the Program Menu, or the “ODBC Data Sources”
icon in the Control Panel.)  See Figures O, P,
Q, R, and S for examples of the screens used
to define a SAS driver in ODBC with the
ODBC  Data Sources method.  The ODBC
Administrator uses the same basic menu s,
although the first 2 menus are different.

It should be noted that under Version 6, the SAS
ODBC driver used DDE for product to product
communication.  As of Version 7, the SAS
ODBC driver uses TCP/IP protocol for
communication.  Version 6 users will need to
update their driver settings when upgrading to
Version 8.

The SAS / ODBC interface is also unlike the
other products in the SAS/ACCESS family, in
that PROC ACCESS is not used to bring
external data into SAS.  Instead, the SAS
System utilizes an enhancement to PROC SQL,
the SQL Procedure Pass-Through Facility.
(Please note that it is still necessary to license
and install SAS/ACCESS to ODBC in order to
use the SQL Pass-Through Facility in
conjunction with ODBC.  It should also be noted
that the SQL Pass-Through Facility can also be
used with other databases via separate
SAS/ACCESS licenses; these will not be
discussed in this presentation.)

Figure "O" - ODBC Driver Configuration Active Data Sources

Figure "P" ODBC Driver Configuration - Add Data Source

Figure "Q" - ODBC Driver Configuration - General Information



Figure "R" - Windows 3.1 ODBC Driver Configuration
Servers (1 of 2)

Figure "S" - Windows 3.1 ODBC Driver Configuration
Servers (2 of 2)

The SQL Procedure Pass-Through Facility has four
statements associated with it; or more correctly, three
statements and a “component”, which is included within the
SQL itself.

The first statement,  CONNECT, establishes a connection
with ODBC.  The syntax is:
CONNECT TO ODBC <AS alias> <(options)>
The alias is optional; however, if used, the word “AS” must
immediately precede it.  The options are used to specify the
data source which is to be processed, and must be
enclosed within parentheses.  DSN=data-source can be

used to specify a previously defined data
source, as described above.  (Note that “DSN”
stands for “Data Source Name”, and not “Data
Set Name”.)  Alternatively, the word PROMPT
will walk the user through the process of setting
up an ODBC interface at execution time.  Note
that PROMPT and DSN= are mutually exclusive
of each other.  See Figures T and U for an
example of the screens displayed to define a
dBASE data source.  See Figures V and W
for the SAS source code to use these
screens.  One other option that should be noted
is LOG, which will cause all warnings and errors
generated by the ODBC API (Application
Programming Interface) to be written to the
SASLOG.  This may be especially useful during
the development phase of an application.

As one would expect, DISCONNECT is the
opposite of CONNECT.  This statement ends
the connection with ODBC.  The syntax is :

DISCONNECT FROM ODBC | alias;
using either the word “ODBC” or the alias that
was specified in the CONNECT statement.  It is
optional, as an implicit DISCONNECT is issued
when the QUIT statement  ends PROC SQL.
However, it may be desired to explicitly break
the connection if more SQL statements are to be
issued, or if a different CONNECT is desired.

The EXECUTE statement sends non-query SQL
statements to ODBC.  These are primarily used
to update the external database, and as such
are outside the scope of this presentation.

CONNECTION TO is a clause that can be
inserted in an SQL SELECT statement to send
an SQL query to the external data source
accessed via ODBC.  The syntax is:

FROM CONNECTION TO ODBC | alias
     (SQL to external source)

again using either the word “ODBC” or the alias
that was specified in the CONNECT statement.
There are a number of special queries that can
be used in conjunction with ODBC; these will be
omitted from this presentation due to space
limitations.

All of these statements and components can be
combined with the statements normally
associated with PROC SQL to form a successful
ODBC query. See Figure V for an example of
PROC SQL using PROMPT.  See Figure W for
an example of PROC SQL using DSN=.

����



Figure "T" - SQL Pass-Through Facility CONNECT TO ...
PROMPT / Data Source

Figure "U" - SQL Pass-Through Facility CONNECT TO ...
PROMPT / Select Directory

84   /* “feedback” option expands SQL */
85   /* statements in the SASLOG.     */
86   proc sql feedback ;
87      connect to odbc(prompt);
88      create table confloc as
89         select * from connection to odbc
90           (select * from confloc );
NOTE: Statement transforms to:
        select YEAR, CONFEREN, CITY, STATE
          from connection to ODBC
                  /* dbms=ODBC,
                 connect options=(prompt) */
                  ( select * from confloc );
NOTE: Table WORK.CONFLOC created, with
      7 rows and 4 columns.
91      disconnect from odbc ;
92      quit ;
NOTE: The PROCEDURE SQL used 7.91 seconds.

Figure "V" - SQL Pass-Through Facility using PROMPT

218  proc sql ;
219     connect to odbc as sasconf
220             (dsn="confdemo");
221     create table confloc as
222       select * from connection
                   to sasconf
223         (select * from confloc );
NOTE: Table WORK.CONFLOC created, with
      7 rows and 4 columns.
224     disconnect from sasconf ;
225     quit ;
NOTE: The PROCEDURE SQL used 3.35 seconds.

Figure "W" - SQL Pass-Through Facility using DSN

The ODBC examples covered so far have been based
on Version 6 technology, although they have been run
using Version 8.  However, under Version 8, it has
become even easier for a SAS routine to interface
with ODBC by using the LIBNAME statement.

By using the ODBC keyword, the LIBNAME statement
can be used to provide a straightforward interface
between the external data source and the SAS
System:

LIBNAME  libref  ODBC
    <ODBC-specific options>
    <general LIBNAME options>;
See Figure X for an example of using the
LIBNAME statement with ODBC.

245 libname odbclib odbc
246         datasrc='SASClass Example';
NOTE: Libref ODBCLIB was successfully
      assigned as follows:
      Engine:        ODBC
      Physical Name: SASClass Example
247 proc print data=odbclib.confloc; run;
NOTE: There were 10 observations read
      from the dataset ODBCLIB.CONFLOC.
NOTE: PROCEDURE PRINT used:
      real time           0.10 seconds

Figure "X" – LIBNAME statement with ODBC

CONCLUSION

There are a number of methods to introduce external
data into the SAS System.  It would be impossible to
provide in-depth information on all of them in the
limited space of this presentation.  It is hoped that the
material contained in this paper will serve to stimulate
the curiosity of the reader, and that they will continue
their education by researching the appropriate
manuals and technical papers devoted to the specific
topics discussed within this paper.  Ultimately,
however, it will be through real-life trial and error that
true comprehension and retention of this knowledge
will be attained.



REFERENCES / FOR FURTHER INFORMATION

Beatrous, Steve, and Clifford, Billy.  (1998).
“Sometimes You Get What You Want: I/O
Enhancements for Version 7”.  Proceedings of the
Twenty-Third Annual SAS Users Group International
Conference. Cary, NC:  SAS Institute, Inc.

Bodt, Mark (1996).  “Talking to PC Applications Using
Dynamic Data Exchange”.  Observations, Volume 5,
No. 3 (Second Quarter 1996).  Cary, NC:  SAS
Institute, Inc.

Boling, John C. (1997).  “SAS Data Views: A Virtual
View of Data”.  Proceedings of the Twenty-Second
Annual SAS Users Group International Conference.
Cary, NC:  SAS Institute, Inc.

Cody, Ronald  (1998).  “The INPUT Statement: Where
It’s @”.  Proceedings of the Twenty-Third Annual SAS
Users Group International Conference. Cary, NC:
SAS Institute, Inc.

Dickson, Alan, and Pass, Ray (1996).  “SELECT
ITEMS FROM PROC.SQL Where ITEMS > BASICS”.
Proceedings of the Twenty-First Annual SAS Users
Group International Conference. Cary, NC:  SAS
Institute, Inc.

Gilmore, Jodie  (1997).  “Using Dynamic Data
Exchange with Microsoft Word”.  Proceedings of the
Twenty-Second Annual SAS Users Group
International Conference. Cary, NC:  SAS Institute,
Inc.

Heffner, William F.  (1998).  “DATA Step in Version 7:
What’s New?”.  Proceedings of the Twenty-Third
Annual SAS Users Group International Conference.
Cary, NC:  SAS Institute, Inc.

Kuligowski, Andrew T., and Roberts, Nancy (1997).
“From There to Here: Getting Your Data Into the SAS
System”.  Proceedings of the Twenty-Second Annual
SAS Users Group International Conference. Cary,
NC:  SAS Institute, Inc.

Kuligowski, Andrew T.  (1998).   “An Overview of
Techniques to Introduce External Data into the SAS
System”. Proceedings of the Sixth Annual Conference
of the SouthEast SAS Users Group.   USA.

Kuligowski, Andrew T.  (1999).  Course Notes:
Turning External Data Into SAS Data.  Dunedin, FL:
self-published.

Riba, S. David (1996), Course Notes: Connecting
With Your Data.  Clearwater, FL:  JADE Tech, Inc.

Sanders, Roger E.  (1998).  “Accessing Data from
Your PC Using Version 7 of the SAS System”.
Proceedings of the Twenty-Third Annual SAS Users
Group International Conference. Cary, NC:  SAS
Institute, Inc.

SAS Institute, Inc.  (1995), SAS/ACCESS Software for
PC File Formats: Reference, Version 6, First Edition.
Cary, NC:  SAS Institute, Inc.

SAS Institute, Inc.  (1994), SAS/ACCESS Software for
Relational Databases: Reference, Version 6, First
Edition.  Cary, NC:  SAS Institute, Inc.

SAS Institute, Inc.  (1990), SAS Language:
Reference, Version 6, First Edition.  Cary, NC:  SAS
Institute, Inc.

SAS Institute, Inc.  (2000). SAS OnlineDoc, Version 8.
Cary, NC:  SAS Institute, Inc.

SAS Institute, Inc.  (1997).  Window by Window:
Capture Your Data Using the SAS System.  Cary, NC:
SAS Institute, Inc.



Rev up Your Spreadsheets With Some V8 Power

Peter Eberhardt M.A., Fernwood Consulting Group, Inc

ABSTRACT

There is a common need to provide read access to data
residing in SAS tables. This tutorial will introduce some
components of SAS Integration Technologies, then show
how to use these components to get SAS data into a MS
Excel spreadsheet – in some cases, without the need for
SAS on the user's computer. This tutorial is geared for
any SAS programmer who has a good grasp of VBA.

There are few SAS programmers and/or analysts who have not
heard the refrain ‘Can I have that in an Excel spreadsheet?’.
And, once provided, the additional and inevitable refrain ‘Can
you run it again with this one change?’.  If you have
SAS/Access for PC File Formats, generating the spreadsheets is
not too big an issue, assuming you have time to make the change
and run the programme. And if you do not have SAS/Access for
PC File formats, then you have yet another layer of conversion,
additional time, and of course the window of opportunity for
errors to creep in. Many people turned to Dynamic Data
Exchange (DDE) to try to alleviate these problems. In this paper
I will introduce a more robust set of tools aimed at sharing data
between SAS and non-SAS applications – SAS Integration
Technologies.

INTEGRATION TECHNOLOGIES

New in SAS v8, Integration Technologies is a set of tools that
allow you to access the power of the SAS system from a variety
of programming environments – Java, Visual Basic etc..  In this
paper, we will be looking at using some Windows desktop tools
and components to access SAS.  In particular, we will look at
using Excel VBA as the client programming language,
Microsoft’s Active Data Objects (ADO) as the data access
component, and the SAS Integrated Object Model (IOM) to
open SAS to the Excel client.

First, let us briefly examine the SAS Integrated Object Model
(for a complete description of SAS Integration Technologies,
and the IOM, refer to the SAS web site
www.sas.com/rnd/itech/library).  Figure 1 depicts the IOM
Hierarchy; in this paper we will focus on the Workspace and the
ADO/OLE DB components.

Figure 1.
IOM Hierarchy

The root of the IOM hierarchy is the SAS Workspace object;
when instantiated by the Workspace Manager within a client
programme, the SAS Workspace object can be thought of as a
SAS session. Virtually all of the functionality you would have in
a batch SAS session is available to you through the workspace
object. The Workspace Manager creates the SAS Workspace
objects on an IOM Server. In the Windows environment there
are three ways the Workspace Manager can create a SAS
Workspace:

� Through local COM if the SAS Server runs on the same
machine as the client

� Through DCOM if the SAS Server runs on another
machine that supports DCOM

� Through the IOM Bridge for COM if the SAS Server runs
on another machine that does not support COM/DCOM
functionality (Unix/OS390)

Regardless of how the SAS Workspace is created (COM,
DCOM, IOM Bridge), it still offers the same set of services –
DataService, FileService, LanguageService, and Utilities.

The LanguageService component provides methods to submit
SAS code to the IOM Server as well as retrieve log and list
outputs. If you take advantage of the SAS Output Delivery
System (ODS) you can use the ResultsPackageService to
retrieve collected items.
While the programme is executing, the LanguageService raises
events (e.g. step begin, step end) which will allow you to
monitor the progress.

The DataService and FileService provide methods to access
SAS libraries through librefs or host system files through
filerefs. The full range of library and file manipulation tools is
available through these services. Microsoft’s ADO/OLE DB



data model is used to share data between the client application
and the SAS IOM server.  The ActiveX Data Object (ADO)
model is shown in Figure 2.

MICROSOFT ADO

In order to share data between SAS and Excel we will need to
understand a bit about ADO.  For the purposes of this paper
there are two objects of interest – the Connection object and the
Recordset object.

The Connection object provides properties to define the source
of the data, and methods to manage the link between the client
to the datasource. The Recordset object uses the Connection
object to return data to the client. The Fields collection of the
Recordset object provides data about the contents of the
recordset.

DO YOU HAVE ALL OF YOUR TOOLS?

In order to follow the examples in this paper, you will have to
have SAS v8.1 installed; as part of the installation procedure be
sure the Integration Technologies components are installed.
Microsoft Data Access Components (MDAC) v2.1 or higher
should also be installed; normally this will be installed along
with SAS Integration Technologies. The examples that follow
were developed under Win NT 4.0 sp6 using SAS v8.1 and
Excel 97 sr2.

In order to use the SAS IOM within Excel we will need to make
sure that Excel has the proper references to the objects. To do
this, start Excel and follow these steps

Figure 2.
ADO Hierarchy

from an empty spreadsheet open the Visual Basic Editor
(Tools…Macro…Visual Basic Editor)
create a new module  (Insert…Module)
add the references to the SAS IOM and the SAS Workspace
manager (Tools…References – in the dialogue box, scroll down
and select the SAS objects)
add the references to the Microsoft ActiveX Data Objects
(Tools…References – in the dialogue box scroll down to
Microsoft ActiveX Data Objects and select the highest version
available)

DRIVERS, START YOUR ENGINES

Let’s start with a simple connection and retrieval of data; in the
first case we will retrieve the contents of the table sasuser.shoes.
To keep the demonstration as simple as possible and to highlight
the IOM components the Excel worksheet will not use common
spreadsheet components such as forms and buttons. The first
example will simply return the contents of sasuser.shoes and
display the contents in the Excel immediate window. Let us
examine each of the lines of code here (see Listing 1). NOTE:
watch carefully for code that spans multiple lines. Although I
have tried to catch all such spans and add the ‘line to be
continued’ character _ (the underscore), the transfer from Excel



to the word processor may have led to word wrap, and
consequently code that will not compile.

First, whenever using VBA modules, always set
Option Explicit. This option requires you to declare all variables
used. If this option is not set errors in the form of misspelled
variables can easily creep into your programme. The next three
declarations:

Dim swsSAS    As SAS.Workspace
Dim rsSAS     As New ADODB.Recordset
Dim swmWM  As New _
SASWorkspaceManager.WorkspaceManager

declare these objects to be global to the module. The use of the
New keyword indicates that the objects should be created when
the programme starts. These objects were declared global to the
module so they could be available to any function or subroutine
within the module.  The subroutine Test does all of the work in
this module.

The command:

Set swsSAS = _
swmWM.Workspaces.CreateWorkspaceByServer("",_
VisibilityProcess, Nothing, "", "", xmlInfo)

creates a SAS workspace (swsSAS) on the local machine.  The
third parameter (the VBA keyword Nothing) indicates the SAS
server is on the local machine. If the SAS server were to be
located on another machine then an appropriate server definition
would have to be passed

The command (which should be on one line):

cnnIOM.Open "Provider=sas.iomprovider.1; SAS Workspace
ID=" & swsSAS.UniqueIdentifier

opens the data connection between the SAS IOM server and the
Excel client. The “Provider= sas.iomprovider.1” option
indicates the particular SAS dataprovider we will be using (there
are three available providers). The “SAS Workspace ID= &
swsSAS.UniqueIdentifier” option tells the connection which
workspace it is dealing with.

The command:

rsSAS.Open "sashelp.shoes", cnnIOM, adOpenDynamic,_
adLockPessimistic, ADODB.adCmdTableDirect

opens the SAS table sashelp.shoes for update. The connection
object, cnnIOM, identifies where the data reside (a local SAS
workspace), the adOpenDynamic keyword indicates the data are
updateable.

A recordset can be positioned in one of three locations, before
the first record or the beginning of the file (BOF), after the last
record or the end of the file (EOF), or on an active record; if
there are no records in the recordset you cannot move to an
active record. A common way to test for an empty dataset is to
see if both the BOF and EOF properties are true; if both
properties are true, there are no records in the recordset. The
statement

If Not (rsSAS.BOF And rsSAS.EOF) Then

then checks if there are any records in the recordset, proceeding
only if there are records. There are a number of methods used to
navigate a recordset; some of the common ones are:

MoveFirst  - move to the first record
MoveLast  - move to the last record
MoveNext – move to the next record
MovePrevious – move to the previous record

Within the conditional If statement, we loop through all of the
records in the recordset, listing the contents in the VBA
immediate window using the Debug.Print method.

rsSAS.MoveFirst
Do While Not rsSAS.EOF
    Debug.Print rsSAS!region, rsSAS!product,_
rsSAS!subsidiary, rsSAS!stores, rsSAS!sales,_ rsSAS!inventory,
rsSAS!returns
    rsSAS.MoveNext
Loop

After looping through all of the records, we close all of the
objects we had opened and explicitly destroy them by setting
them to Nothing. If objects are not properly closed and
destroyed, the memory they occupied is not freed  (memory
leak) often resulting in your programme slowing drastically and
possibly crashing altogether.

FIELDS OF GLORY

The example in Listing 1 allowed us to display the contents of
the table sasuser.shoes; however, we had to explicitly identify
all of the fields in the recordset. In the next example (Listing 2)
we will see how to identify the fields in each record. The
following code is the segment which lists the fields:

For Each fld In rsSAS.Fields
      Debug.Print fld.Name, fld.Type
Next

If you recall from the ADO hierarchy model (Figure 2) the
recordset object has a Fields collection; this code is simply
stepping through all of the fields in the collection. The For Each
…. Next construct is a common method to iterate over a
collection.

WHAT’S UNDER THE HOOD?

How do you find the options and properties for these objects we
are using? If manuals were regularly distributed with software,
you could read the manual. Now manuals are replaced with on-
line help. Unfortunately, navigating the help files is not always
easy or productive. Fortunately there is a way to get the methods
and properties of the objects – the VBA object browser. Within
the VBA editor select View… Object Browser; the shortcut key
id F2 (Figure 3).



Figure 3
The Object Browser

The example in Figure 3 shows the members (properties and
methods) of the recordset object.

LET’S EXCELERATE

Now that we have been able to start SAS from our Excel
spreadsheet, let’s actually populate a worksheet (Listing 3). This
example builds upon the previous one. We will iterate over the
Fields collection to put out column headers (fld.Name). In
addition we will check for character fields (fld.Type =
adWChar) and set the column widths to be 2 characters wider
than the actual (defined) width (fld.DefinedSize + 2).  We will
also bold the titles and set the cell border to a bottom underline.
After displaying the column headers, we then process every
record in the recordset as before; within each record we iterate
over the Fields collection and populate the cells with the field
value (fld.Value). After populating the worksheet, we move to
the cell A2.

SUBMIT

Ok, we can read sasuser.shoes. My boss will really find those
data useful!! Ok, maybe he will, maybe she won’t. But a DATA
Step, that we know would be useful. In the next example
(Listing 4) we use the LanguageService to submit a simple data
step and return the results. As with the first example, the output
will be displayed in the VBA Immediate window.   The new
piece to the puzzle is the line (the quoted part should all be on
one line):

swsSAS.LanguageService.Submit _
"data a; do customer=1 to 0;quantity=customer*customer;
pizza='Pepperoni';output;end;run;"

This will create a dataset with 10 records and 3 variables. And
now with the ability to submit SAS code we can add some real
v8 power.

LET’S GET REAL

In order to access some real data we need to use the SAS
Workspace DataService to assign a libref to an existing SAS
Library (Listing 5). In this example we assign the libref CARD
to the directory D:\Cardiac using the command

Set libref =
swsSAS.DataService.AssignLibref("card",_"","d:\cardiac", "")

Then, in the SAS code in the submit command, we can reference
datasets in the specific libref CARD.

THE CHEQUERED FLAG

These examples have been kept simple to highlight a few of the
aspects of SAS Integration Technologies. By no means are they
exhaustive of the power of SAS Integration Technologies.
However, they should start you on your way.

To get started you should have SAS with Integration
Technologies installed on your desktop. Once you have the
programmes working using a local SAS Server it is a matter of
changing only a few options and you are ready to run the same
programmes against remote SAS servers. To deploy your
applications you need only the SAS Client components and the
client application (e.g. Excel) on the desktop and SAS
Integration Technologies components on the remote SAS
Server.

SAS, SAS Integration Technologies , and SAS Quality  Partner
are registered trademarks of SAS Institute Inc. in the USA and
other countries
Other brand and product names are registered trademarks or
trademarks of their respective companies.

REFERENCES

For a complete overview of SAS Integration Technologies see
www.sas.com/rnd/itech/library

Green, John (1999) Excel 2000 VBA Programmer’s Reference
Wrox Press, Birmingham

Jennings, Roger (1999) Database Developer’s Guide with Visual
Basic® 6
SAMS, Indianapolis IN



About the Author

Peter is SAS Certified Professional V8, SAS Certified
Professional V6, and SAS Certified Professional - Data
Management V6. In addition his company, Fernwood
Consulting Group Inc. is a SAS Quality Partner.

If you have any questions or comments you can contact Peter at:
Fernwood Consulting Group Inc.,
288 Laird Dr.,
Toronto ON  M4G 3X5
Canada

Voice: (416)429-5705
e-mail: peter@fernwood.on.ca



LISTINGS

Listing 1
Option Explicit ' always set option explicit
Dim swsSAS       As SAS.Workspace
Dim rsSAS        As New ADODB.Recordset
Dim swmWM        As New
SASWorkspaceManager.WorkspaceManager

Public Sub test()
Dim cnnIOM  As New ADODB.Connection
Dim xmlInfo As String

' Create a local SAS workspace.
   Set swsSAS =
swmWM.Workspaces.CreateWorkspaceByServer("",
VisibilityProcess, Nothing, "", "", xmlInfo)

' Open a connection to the workspace
   cnnIOM.Open "Provider=sas.iomprovider.1; SAS
Workspace ID=" & swsSAS.UniqueIdentifier

' Associate the Recordset object with the SAS data set.
   rsSAS.Open "sashelp.shoes", cnnIOM,
adOpenDynamic, adLockPessimistic,
ADODB.adCmdTableDirect
   If Not (rsSAS.BOF And rsSAS.EOF) Then
       rsSAS.MoveFirst
       Do While Not rsSAS.EOF
           Debug.Print rsSAS!region, rsSAS!Product,
rsSAS!subsidiary, rsSAS!stores, rsSAS!sales,
rsSAS!inventory, rsSAS!returns
           rsSAS.MoveNext
       Loop
   End If
   rsSAS.Close
   Set rsSAS = Nothing
cnnIOM.Close
   Set cnnIOM = Nothing
   SwmWM.Workspaces.RemoveWorkspaceByUUID
swsSAS.UniqueIdentifier
swsSAS.Close
   Set swsSAS = Nothing
   Set swmWM = Nothing
End Sub

Listing 2
Option Explicit ' always set option explicit
Dim swsSAS  As SAS.Workspace
Dim rsSAS   As New ADODB.Recordset
Dim swmWM   As New
SASWorkspaceManager.WorkspaceManager

Public Sub test()
Dim cnnIOM  As New ADODB.Connection
Dim xmlInfo As String
Dim fld     As Field

' Create a local SAS workspace.
   Set swsSAS =
swmWM.Workspaces.CreateWorkspaceByServer("",
VisibilityProcess, Nothing, "", "", xmlInfo)

' Open a connection to the workspace
cnnIOM.Open "Provider=sas.iomprovider.1; SAS
Workspace ID=" & swsSAS.UniqueIdentifier

' Associate the Recordset object with the SAS data set.
   rsSAS.Open "sashelp.shoes", cnnIOM,
adOpenDynamic, adLockPessimistic,
ADODB.adCmdTableDirect

   For Each fld In rsSAS.Fields
      Debug.Print fld.Name, fld.Type
   Next

   rsSAS.Close
   Set rsSAS = Nothing
cnnIOM.Close
   Set cnnIOM = Nothing
   SwmWM.Workspaces.RemoveWorkspaceByUUID
swsSAS.UniqueIdentifier
SwsSAS.Close
   Set swsSAS = Nothing
   Set swmWM = Nothing
End Sub



Listing 3
Option Explicit ' always set option explicit

Dim swsSAS  As SAS.Workspace
Dim rsSAS   As New ADODB.Recordset
Dim swmWM   As New
SASWorkspaceManager.WorkspaceManager

Public Sub test()
Dim cnnIOM  As New ADODB.Connection
Dim xmlInfo As String
Dim count   As Integer
Dim fld     As Field
Dim row     As Long

' Create a local SAS workspace.
   Set swsSAS =
swmWM.Workspaces.CreateWorkspaceByServer("",
VisibilityProcess, Nothing, "", "", xmlInfo)

' Open a connection to the workspace
cnnIOM.Open "Provider=sas.iomprovider.1; SAS
Workspace ID=" & swsSAS.UniqueIdentifier

' Associate the Recordset object with the SAS data set.
   rsSAS.Open "sashelp.shoes", cnnIOM,
adOpenDynamic, adLockPessimistic,
ADODB.adCmdTableDirect

' SELECT  the first sheet and freeze the panes on the 2nd
line
   Worksheets("sheet1").Activate
   Range("A2").Select
   ActiveWindow.FreezePanes = True
   If Not (rsSAS.BOF And rsSAS.EOF) Then
      Worksheets("sheet1").Activate
      Range("A1").Select
      For Each fld In rsSAS.Fields
         ActiveCell.Value = fld.Name
         ActiveCell.Font.Bold = True
         With ActiveCell.Borders(xlBottom)
            .LineStyle = xlContinuous
            .Weight = xlThin
         End With

         If fld.Type = adWChar Then
            Columns(ActiveCell.Column).ColumnWidth =
fld.DefinedSize + 2
         Else
            Columns(ActiveCell.Column).ColumnWidth = 12
         End If
         col = col + 1
         ActiveCell.Next.Select
      Next
      rsSAS.MoveFirst
      row = 2
      Do While Not rsSAS.EOF
         ActiveSheet.Cells(row, 1).Select

         For Each fld In rsSAS.Fields
            ActiveCell.Value = fld.Value
            ActiveCell.Next.Select
         Next
         row = row + 1
         RsSAS.MoveNext
      Loop
   Range("A2").Select

   End If

   rsSAS.Close
   Set rsSAS = Nothing
   CnnIOM.Close
   Set cnnIOM = Nothing
   SwmWM.Workspaces.RemoveWorkspaceByUUID
swsSAS.UniqueIdentifier
   SwsSAS.Close
   Set swsSAS = Nothing
   Set swmWM = Nothing
End Sub



Listing 4
Option Explicit ' always set option explict
Dim swsSAS       As SAS.Workspace
Dim rsSAS        As New ADODB.Recordset
Dim swmWM        As New
SASWorkspaceManager.WorkspaceManager

Public Sub test()
Dim cnnIOM As New ADODB.Connection
Dim xmlInfo As String

    ' Create a local SAS workspace.
Set swsSAS =
swmWM.Workspaces.CreateWorkspaceByServer("",
VisibilityProcess, Nothing, "", "", xmlInfo)

    ' Use LanguageService
swsSAS.LanguageService.Submit "data a; do customer=1
to 10;quantity=customer*customer;
pizza='Pepperoni';output;end;run;"

' Open a connection to the workspace
cnnIOM.Open "Provider=sas.iomprovider.1; SAS
Workspace ID=" & swsSAS.UniqueIdentifier

' Associate the Recordset object with the SAS data set.
rsSAS.Open "work.a", cnnIOM, adOpenDynamic,
adLockPessimistic, ADODB.adCmdTableDirect
If Not (rsSAS.BOF And rsSAS.EOF) Then
    rsSAS.MoveFirst
    Do While Not rsSAS.EOF
        Debug.Print rsSAS!CUSTOMER,
rsSAS!QUANTITY, rsSAS!PIZZA,
rsSAS!ORDERDATE
        rsSAS.MoveNext
    Loop
End If
rsSAS.Close
Set rsSAS = Nothing
cnnIOM.Close
Set cnnIOM = Nothing
swmWM.Workspaces.RemoveWorkspaceByUUID
swsSAS.UniqueIdentifier
swsSAS.Close
Set swsSAS = Nothing
Set swmWM = Nothing
End Sub

Listing 5
Option Explicit ' always set option explict
Dim swsSAS       As SAS.Workspace
Dim rsSAS        As New ADODB.Recordset
Dim swmWM        As New
SASWorkspaceManager.WorkspaceManager

Public Sub test()
Dim cnnIOM As New ADODB.Connection

Dim xmlInfo As String
Dim count   As Long
Dim libref  As SAS.libref
Dim fld     As Field

' Create a local SAS workspace.
   Set swsSAS =
swmWM.Workspaces.CreateWorkspaceByServer("",
VisibilityProcess, Nothing, "", "", xmlInfo)
   Set libref = swsSAS.DataService.AssignLibref("card",
"", "d:\cardiac", "")
   swsSAS.LanguageService.Submit "data a; set
card.revup;run;"

' Open a connection to the workspace
   cnnIOM.Open "Provider=sas.iomprovider.1; SAS
Workspace ID=" & swsSAS.UniqueIdentifier

' Associate the Recordset object with the SAS data set.
   rsSAS.Open "work.a", cnnIOM, adOpenDynamic,
adLockPessimistic, ADODB.adCmdTableDirect
   If Not (rsSAS.BOF And rsSAS.EOF) Then
      For Each fld In rsSAS.Fields
         Debug.Print fld.Name
      Next

      rsSAS.MoveFirst
       Do While Not rsSAS.EOF
   '        Debug.Print rsSAS!CUSTOMER,
rsSAS!QUANTITY, rsSAS!PIZZA,
rsSAS!ORDERDATE
           rsSAS.MoveNext
       Loop
   End If
   rsSAS.Close
   Set rsSAS = Nothing

   swsSAS.DataService.DeassignLibref "card"
   swmWM.Workspaces.RemoveWorkspaceByUUID
swsSAS.UniqueIdentifier
   swsSAS.Close
   Set swsSAS = Nothing
   Set swmWM = Nothing
End Sub



Using Functions and Arrays in the SAS® System to
Manage and Manipulate Data

Ben Cochran, The Bedford Group, Raleigh, NC

Abstract

Oftentimes, SAS users receive data that is
alleged to be cleaned, scrubbed, and ready for an
application or placement into a Data Warehouse.
Even though the data may be clean, many times
further manipulation is needed.  This paper
examines ways of manipulating data through the
use of functions and arrays in the SAS System.

This paper is intended for the beginning and
intermediate level SAS user.  Functions and
arrays are a part of the base SAS System;
therefore, no other SAS product will be
examined in this paper.

Basic Data Manipulation

Anytime users need to change existing data to
meet our application needs, they are
manipulating  the data.  One of the most basic
forms of manipulating data is rearranging the
order of the observations, or, in other words,
sorting it.  Sorting data not only rearranges the
order of the observations, it allows for by- group
processing.   An example of this is merging two
data sets by a common variable.

Another way to manipulate data is through the
use of SAS functions.

SAS Functions

A SAS function is a pre-written routine that
returns a value.   Functions  are often categorized
by the type of data manipulation performed.
These categories include: Data Conversion,
Truncation, Arithmetic, Mathematical,
Trigonometric, Statistical, Financial, Random
Number, Date and Time, and State and Zip.

The general form of a SAS function is:

         function-name (argument, argument, …);

The arguments are surrounded by a set of
parentheses.  The  number of arguments depends
on the function.  Some functions take a specific
number of arguments, some functions have a
varying number of arguments, some functions do
not have any arguments at all.  But there is
ALWAYS the set of parentheses that follow the
function. Each argument is separated from the
others by a comma.

The arguments can be: constants, expressions,
variables, or other functions.  In other words,
functions can be nested.

When using functions to manipulate data several
methods can be used to do this.   Following are
some of the more popular ways to use functions.

Creating Variables with Functions
Many times we need to create values from
existing data because what we need for a report
or other application is not originally in the data.
This is done by using an assignment statement
which it has the following syntax:

        new_variable = expression ;

New variables can be created by using functions
as part of the expression.   In this case, the
assignment statement would look like this:

        x = function-name(argument, argument, . .);

Manipulating Date Variables:
 One of the most common examples of creating
new variables is found in the manipulation of
DATE values.  For example, we may be asked to
build a drill-down bar chart in SAS/EIS where



the initial view shows a bar for each year. The
length of each bar reflects the number of tests
performed by a clinic.  Clicking on a bar
(YEAR) would then yield a display showing a
bar for each quarter within the chosen year.
Clicking on a bar (QUARTER) would then yield
a display showing a bar for each month within
the chosen quarter, etc.

In order to accomplish this task, there needs to
be a variable for YEAR, QUARTER, and
MONTH in the existing data.   Upon examining
the data, we find that there is NO variable for
YEAR, QUARTER, or MONTH.    Looking
closer, we see that there is a variable named
DATE that contains the SAS date of the test.  If
we know that there are functions available to us
that can create the needed variables, we can use
them in a DATA step similar to the one below:

  data new_data;
         set dates;
         year = year(date);
         quarter = qtr(date);
         month = month(date);
  run ;

In the above example, notice that the variables
being created are named YEAR (from the YEAR
function), QUARTER (from the QTR function),
and MONTH (from the MONTH function).
Function names are not reserve words in the SAS
language.

Manipulating Other Numeric Variables:
Suppose we want the highest, lowest, and
average cholesterol readings for each patient.
The data is in a SAS data set named
CHOLESTEROL and has the following form:

Pat_id  date1  chol1  date2  chol2  date3  chol3
 1201    010600  211.1   070200  201.4  112100  191.1
 1212    010400  181.7   063000  188.0  120100  191.8
 1222    020100  194.8   071100  195.3  121100  196.0
 1261    011800  199.7   062800  201.1  120600  211.1
  .  .  .

In order to get the desired statistics from this
data, write a data step using the MIN, MAX, and
MEAN functions.  The MIN function returns the
minimum value from its arguments.  The MAX
function returns the maximum value from its
arguments.  The MEAN function returns the
average from its arguments.   Notice how these
functions are used  in the following DATA step:

data cholesterol_stats (keep=pat_id high
                                              low average) ;
     set cholesterol;
     high  =  max ( of chol1 - chol3);
     low   =  min (of  chol1 -  chol3);
     average  = mean (of chol1 - chol3);
run;

In the above DATA step, the variables HIGH,
LOW and AVERAGE are created for the MAX,
MIN, and MEAN functions, respectively. In this
example, the arguments are NOT separated by
commas.   Instead, a variable list notation, the
single dash ( ‘-‘ ), is used.   Also, notice the use
of the keyword ‘OF’ in the argument list.  The
SAS system interprets this as the variable list
starting with CHOL1 and going through
CHOL3.   If the word ‘OF’ were not used in this
example,  the SAS system would interpret the
CHOL1 – CHOL3 as a subtraction equation.

Suppose your data was stored in a SAS data set
named CHOLESTEROL2 and has the
following structure.

   Pat_id        date     chol_reading
      1201        010600          211.1
      1201         070200          201.4
      1201         112100          191.1
      1212        010400          181.7
      1212        063000          188.0
      1212         120100          191.8
      1222        020100          194.8
      1222         071100          195.3
      1222         121100          196.0
       .  .  .

Suppose we are asked to develop an application
that can indicate whether a patient’s cholesterol
reading has gone up or down from the previous
reading. In order to get the desired results from
this data, it will have to be manipulated with the
LAG function as in the DATA step below:

data compare;
     set cholesterol2;
     by pat_id;
     last_reading = lag(chol_reading);
     if first.pat_id = 1 then last_reading = . ;
    difference = chol_reading - last_reading ;
 run;

At compile time, the LAG function creates a
buffer.  During the execution of the DATA step,
the value of  CHOL_READING is stored in this
buffer and then assigned to the variable



LAST_READING in  the next execution of the
DATA step.  But, if the first observation from a
PAT_ID is being processed, then there is no
previous value for CHOL_READING (for that
patient) so this DATA step sets the value of
LAST_READING to missing. The resulting data
set, COMPARE can be seen below:

Pat_id    date   chol_reading last_reading difference
  1201   010600       211.1            .               .    
  1201   070200       201.4            211.1             -9.7
  1201   112100       191.1      201.4           -10.3
  1212   010400       181.7            .                  .
  1212   063000       188.0            181.7              6.3
  1212   120100       191.8            188.0              3.8
  1224   020100       194.8              .               .
  1224   071100       195.3            194.8                .5
  1224   121100       196.0            195.3                .7
       .  .  .

You can generate random numbers from
various distributions using random number
functions.  One of the uses of this type of
function is found in applications that generate
random samples.

The PATIENTS data set contains thousands of
observations.  The first four observations are:

Pat_id    name          address     city     st
 1201    Welch, W. B.   21 East St.   Apex    NC
 1212    Coxe,  Jan S.    43 King Rd. Cary    NC
 1224    Dow,  Sue A.   19 Elm St.   Garner  NC
 1261    Moore, Ron     16 Oak Av.  Apex    NC
  .  .  .

You want to create a sample of 25 randomly
chosen  patients. You can do this with the
following DATA step which uses the CEIL and
RANUNI functions.

data sample_of_25;
     do i = 1 to 25;
           rn = ceil(ranuni(0) * total_obs);
           set patients point=rn nobs=total_obs;
           output;
     end;
     stop;
 run;

First, look at the NOBS= option on the SET
statement.  At compile time, it reads the
descriptor portion of the PATIENTS data set,
finds out the number of observations in the data
set, and stores that number in the variable
TOTAL_OBS.

 Both the CEIL and the RANUNI functions are
used to create the variable RN.  First, the
RANUNI function returns a randomly generated
number between 0 and 1.   Then, that randomly
generated number is multiplied by the value of
TOTAL_OBS.   The result is some number that
is between something less than 1 and the number
of observations in the PATIENTS data set.   This
number is then fed into the CEIL function that
rounds up to the next highest integer.   If the
previous number is already an integer, the CEIL
function has no effect.   The result of this is a
whole number whose value is between 1 and the
number of observations in the PATIENTS data
set.  This number is then assigned to the variable
called RN.

The POINT= option causes the SET statement to
read the RNth number in the PATIENTS data
set.    Then this observation is OUTPUT to the
SAMPLE_OF_25 data set.   As this process goes
through the DO LOOP 25 times, 25 observations
are created for the new data set.

The STOP statement is absolutely necessary to
prevent an endless loop.  ( The DATA step will
continue to loop because the end of file is never
encountered on PATIENTS data set).

Manipulating Character Variables:
The billing department of the clinic wants to use
the PATIENTS data set to create mailing labels
for patient bills. To do so, the values of the
NAME variable need to be manipulated as
follows:

 Pat_id     name          ����       fullname    
  1201     Welch, W. B.             Mr. W.B. Welch
  1212     Coxe,  Jan S.              Ms. Jan S. Coxe
  1222     Dow,  Sue A.             Ms. Sue A. Dow
  1261     Moore, Ron                Mr. Ron Moore
  .  .  .

In this data set, the PAT_ID ends in a 1 if the
gender of the patient is male, or ends in a 2 if the
patient is female.  PAT_ID is a character variable
with a length of 4.  Some of values contain four
digits, some contain three.  So, we need to
examine the last digit, if it is a 1, then the
courtesy title is Mr., else if the digit is a 2, then
the courtesy title is Ms.

The name field needs to be transformed from
lastname, firstname, and middle initial  to
courtesy title, firstname, middle initial, lastname.



The following data step uses the SUSTR,
LENGTH, SCAN, and TRIM functions and the
CONCATENATION operator to manipulate
character variables.

data mailing_list;
   set patients;
   if substr(pat_id, length(pat_id)) =’1’ then
                  title=’Mr. ’;
   else if substr(pat_id, length(pat_id)) = ‘2’ then
                  title=’Ms. ’;
    f_name_mi = scan(name, 2, ‘,’);
    last_name   = scan(name, 1, ‘,’);
    full_name = title!!trim(f_name_mi)!!’ ‘ !!
            last_name;
 run;

In this example,
� the LENGTH function finds the length of

the character string stored in the PAT_ID
variable.  It returns a number, in this case, a
three or a four.

� The SUBSTR function has three arguments
and creates a substring from its first
argument, in this case, PAT_ID.  The second
argument marks the beginning of the
substring that will be created from the first
argument.  In this case, the substring starts
on the last character of PAT_ID.  The third
argument is optional, and it indicates how
long the substring will be. The default is to
go to the end of argument 1. In other words,
the substring is going to start with the last
character of argument 1 and go for a length
of one.  It will pick the last character from
PAT_ID whether it has three or four digits.
The value returned by the SUBSTR function
is NOT assigned to any variable, but  is used
to compare with the quoted value, a ‘1’ or a
‘2’.  If it is a ‘1’ then the value of TITLE
will be ‘Mr. ’, if it is a ‘2’, then the value of
TITLE will be ‘Ms. ‘.

� The SCAN function scans a character string,
looking for the nth ‘word’ separated by a
delimiter. A word is a text string between
two delimiters. The SCAN function has
three arguments. The first is the text to be
scanned, the second is the word, and the
third specifies the delimiter. In this DATA
step the SCAN function is first used to
create the variable F_NAME_MI.  It scans
the variable NAME, looking for the second
word separated by a comma.  The SCAN
function is next used to create the variable
LAST_NAME.  It scans the variable NAME

looking for the first word separated by a
comma.

� The CONCATENATION operator ( !! ) is
used to create FULL_NAME.   It has the
effect of ‘gluing’ together character strings.
First, TITLE is glued to the TRIM of
F_NAME_MI. The TRIM function trims all
trailing blanks from the end of a string.
Next, a single blank is ‘glued’ to
FULL_NAME. This separates
F_NAME_MI from LAST_NAME by a
single blank. Finally, LAST_NAME is
joined to FULL_NAME.

Variable Conversion
In many applications we must convert one data
type to another.  The first example illustrates the
conversion form character values to numeric
values.  Recall the CHOLESTEROL data set.

Pat_id  date1  chol1  date2  chol2  date3  chol3
 1201    010600  211.1   070200  201.4  112100  191.1
 1212    010400  181.7   063000  188.0  120100  191.8
 1222    020100  194.8   071100  195.3  121100  196.0
 1261    011800  199.7   062800  201.1  120600  211.1
  .  .  .

One of the clinical physicians wants to examine
the length of time (in days) between testing.
When the PATIENTS data set was created, all
the date variables were created as character
variables.  They need to be converted to numeric
so that the number of days between DATE1 and
DATE2 can be calculated.  The INPUT function
is used to do such a conversion.

The INPUT function has 2 arguments. The first
is the variable to be converted, the second is an
informat that states HOW the variable will be
converted.

data numeric_dates;
     set cholesterol;
     drop chol1 – chol3 date3;
     num_date1=input(date1, mmddyy6.);
     num_date2=input(date2, mmddyy6.);
     span1 = num_date2 – num_date1;
 run;

In this example, the INPUT function first reads
the DATE1 variable with the MMDDYY6.
informat and stored the numeric results in the
variable NUM_DATE1. NUM_DATE2 is



created  in a similar manner.   View the
NUMERIC_DATES data set  below:

                                           num_   num_
Pat_id    date1      date2    date1   date2     span
  1201      010600     070200    14615    14793      178
  1212      010400     063000    14613    14791      178
  1222      020100     071100    14641    14802      161
  1261      011800     062800    14627    14789      162
  .  .  .

The next example illustrates numeric to character
conversion.  Recall the COLESTEROL2 data
set.

   Pat_id        date     chol_reading
      1201        010600          211.1
      1201         070200          201.4
      1201         112100          191.1
      1212        010400          181.7
      1212        063000          188.0
      1212         120100          191.8
      1222        020100          194.8
      1222         071100          195.3
      1222         121100          196.0
       .  .  .

When this data set was created, PAT_ID was
created as a numeric variable.  Remember its
values are either a 3 or 4 digit number.  As a
numeric variable in a SAS data set, it takes up
eight bytes of storage.   If we convert it to a
character variable, it takes up only four bytes of
storage.   The following DATA step illustrates
how to do this conversion.

data character_id(drop=x_id);
     set cholesterol2(rename=(pat_id=x_id));
     pat_id = put(x_id, $4.);
 run;

The PAT_ID variable in the CHOLESTEROL2
data set is renamed to X_ID.  The PUT function
reads the value of X_ID and then writes it to a
new  PAT_ID using the $4. format.  The PUT
function always creates a character variable. The
new data set, CHARACTER_ID looks just like
CHOLESTEROL2. The only difference is that
PAT_ID is a character variable in
CHARACTER_ID while  PAT_ID is a
numerical variable in COLESTEROL2.

Data Transformation
Sometimes the data that you are working with is
in the shape of the CHOLESTEROL data set
(one observation per PAT_ID).

Pat_id  date1  chol1  date2  chol2  date3  chol3
 1201    010600  211.1   070200  201.4  112100  191.1
 1212    010400  181.7   063000  188.0  120100  191.8
 1222    020100  194.8   071100  195.3  121100  196.0
 1261    011800  199.7   062800  201.1  120600  211.1
  .  .  .

The application that you are developing needs
data in the ‘shape’ of  the CHOLESTEROL2
data set ( one observation per cholesterol
reading).

   Pat_id        date     chol_reading
      1201        010600          211.1
      1201         070200          201.4
      1201         112100          191.1
      1212        010400          181.7
      1212        063000          188.0
      1212         120100          191.8
      1222        020100          194.8
      1222         071100          195.3
      1222         121100          196.0
       .  .  .

The following DATA step will transpose the
data from one observation per PAT_ID to one
observation per cholesterol reading.

data transpose1(keep=pat_id date chol_reading);
     set cholesterol;
     array dates {3} date1 date2 date3;
     array chols {3} chol1 chol2 chol3;
     do i = 1 to 3;
         date = dates{i};
         chol_reading = chols{i};
         output;
      end;
 run;

In this example, the array statements collect
three variables under each array. When the DO
loop iterates the first time, the value of the first
variable in the DATES array (the variable
DATE1) is assigned to the variable DATE. Next,
the value of the first variable in the CHOLS
array (the variable CHOL1) is assigned to the
variable CHOL_READING.  Then the output
statement writes out the first observation.



When the DO loop iterates the second time, the
value of the second  variable in the DATES array
(the variable DATE2) is assigned to the variable
DATE. Next, the value of the second variable in
the CHOLS array (the variable CHOL2) is
assigned to the variable CHOL_READING.
Then the output statement writes out the second
observation.

When the DO loop iterates the third time, the
value of the third variable in the DATES array
(the variable DATE3) is assigned to the variable
DATE. Next, the value of the third variable in
the CHOLS array (the variable CHOL3) is
assigned to the variable CHOL_READING.
Then the output statement writes out the third
observation.  Notice that the OUTPUT statement
executes three times for every single time the
SET statement executes.

To transpose the data from one observation per
cholesterol reading to one observation per
PAT_ID use the following DATA step.

data transpose2(keep=pat_id date chol_reading);
     array dates {3} $ date1 date2 date3;
     array chols {3} chol1 chol2 chol3;
     do i = 1 to 3;
         set cholesterol2;
         dates{i} = date;
         chols{i} = chol_reading;
     end;
     output;
 run;

First of all, notice in this example that the SET
statement executes three times for every single
time the OUTPUT statement executes.  In other
words, for every three observations read, only
one is written.

 Next, notice the ‘$’ in the ARRAY statement.
This is an example of an ARRAY statement  that
creates the variables DATE1, DATE2, and
DATE3.  In this DATA step, the ARRAY
statement appears before the SET statement,
meaning that without the ‘$’ on the ARRAY
statement, the date variables would be created as
numeric.  In the CHOLESTEROL2 data set, all
the date variables are character. The ‘$’ just
keeps SAS from doing an automatic numeric to
character conversion.

Conclusion

The SAS System is very robust and has well
over a hundred functions and other ways to
manipulate data.  Only a few of them are
presented in this paper.  For a full discussion of
all the functions available, a user would have to
consult the literature published by SAS Institute,
Inc. The best place to start would be the SAS
Language Reference Guide, or the on-line
documentation available for Version 8 of the
SAS System.

The author can be reached at the following
location:

Ben Cochran
The Bedford Group
3216 Bedford Avenue
Raleigh, NC 27607
919.831.1191

bedford.group@mindspring.com

The Bedford Group is a SAS Institute Quality
Partner and SAS Certified Professional for
Version 8.  They specialize in SAS consulting
and training.

Trademark Information
SAS is a registered trademark of SAS Institute
Inc. in the USA and other countries. The ®
indicates USA registration.



Changes and Enhancements to PROC MEANS
In Version 8 of the SAS® System

Andrew H. Karp
Sierra Information Services, Inc.

Sonoma, California USA

PROC MEANS (and is "sister," PROC
SUMMARY) have been BASE SAS Software
procedures for a long time.  Most SAS Software
users have found their ability to rapidly analyze
and summarize the values of numeric variables to
be essential tools in their programs and
applications.  A number of new features have
been added to PROC MEANS in The Nashville
Release (Version 8) of the SAS System which will
are discussed in this paper

Background

This paper assumes the reader is already familiar
with core PROC MEANS/SUMMARY capabilities.
As a reminder, with the release of Version 6 of the
SAS System in 1991 PROC MEANS and PROC
SUMMARY became identical procedures, with
just some very differences that are documented in
the BASE SAS Software documentation.  For the
purposes of this paper we can treat them as
identical procedures.  The core difference is that
by default PROC MEANS sends the results of its
"work" to our Output Window and that PROC
SUMMARY, by default, creates a SAS data set.
All of the examples in this paper show PROC
MEANS syntax, which you can easily switch to
PROC SUMMARY if you want.

The core function of these procedures is to
analyze the values of numeric variables in SAS
data sets (or SAS views to data stored in other
RDBMS products). For both PROCs, only numeric
variables can be placed in the VAR statement.
Variables places in the VAR statement are
considered analysis variables. If you put the
names of character variables in the VAR
statement, PROC MEANS/SUMMARY will not
execute and an error will be shown in your
SASLOG.

Variables placed in the CLASS or BY Statement
are considered classification variables, and may
be either character or numeric.  Starting in
Version 6, you could use the CLASS statement to
request analyses at the different levels of an
unsorted classification variable by using the
CLASS, instead of the BY Statement.  This

feature remains in Version 8, and enhancements
to it are discussed below.

New Statistics Available in Version 8

Prior to Version 8, the only BASE SAS procedure
that could calculate the values of quantile
statistics such as the median (50th percentile) was
PROC UNIVARIATE.  In Version 8, PROCs
MEANS and SUMMARY (as well as PROC
TABULATE) can also analyze and report the
values of quantile statistics.

Consider the following PROC MEANS task, which
analyzes a data set containing electric
consumption data from a public utility.

procprocprocproc MEANS NOPRINT
data=electric.elec_V8;
class rate_schedule;
var total_revenue;
output out=new2 sum=median_REV
mean=total_REV p50=mean_REV;
runrunrunrun;

The OUTPUT Statement directs the placement, in
a temporary SAS data set, of new variables
containing the results of the analylses requested
elsewhere in the PROC MEANS Task.  The
Statistics Keyword P50 requests the fiftieth
percentile or the median, of the analysis variable
be placed in a variable called mean_REV in
output data set new2.

This PROC MEANS task will run without errors.
Mean_REV is a valid SAS variable name, even
though what we are doing is storing the median in
a variable called "mean_REV."  If you look at the
OUTPUT Statement again you will see that the
sum will be stored in "Median_REV" and the
mean will be stored in "Total_REV," all valid SAS
variable names in Version 8.  (Remember, in V8
we can use up to 32 characters for variables
names,)

You would probably not notice your mistake until
sometime later in the project when you--or



perhaps your boss--realize that the values
associated with the variable names simply don't
"make sense."  A new Version 8 feature,
discussed below, will keep you from ever making
this mistake again.  It's called the AUTONAME
option.

The AUTONAME Option

This handy option goes in the OUTPUT
statement.  When you use it, PROC MEANS will
automatically give names to the variables in the
output SAS data sets.  Here is an example, again
using the electric consumption data set.

procprocprocproc means noprint
data=x.electricity;
class division serial;
var kwh1 rev1;
output out=new4 mean(kwh1) =

 sum(rev1) =/autoname;
runrunrunrun;

Output data set NEW4 contains the classification
variables DIVISION and SERIAL, the
automatically generated variables _TYPE_ and
_FREQ_ (about which more later), and the
variables KWH1_mean and REV1_mean.  The
AUTONAME option automatically appended the
statistics keyword to the name of the analysis
variable, with an underscore symbol between the
analysis variable and the statistics keyword.
Using this new option will prevent you from giving
variables in our output data sets the "wrong"
names!

The CHARTYPES Option

This V8 addition to PROC MEANS dramatically
simplifies creation of multiple output SAS data
sets in a single use of PROC MEANS.

Users can code multiple OUTPUT statements in a
single PROC MEANS task and then use a
WHERE clause data set option to limit the output
of observations to each data set.  This capability
reduces--and often eliminates--the need to run
PROC MEANS several times to create different
output data sets.  You can usually do everything
you need to do in one invocation of the procedure.

Here is an example.  A catalog retail firm has a
SAS data set containing order records and an
analyst wants to create several output SAS data
sets, using PROC MEANS, containing analyses at

different combinations of the values of four
classification variables.  Consider the following
PROC MEANS task:

proc means noprint
data=order.orderfile2;class mailcode
dept_nbr segment status;var itmprice
itm_qty;output out=new  sum=;run;With
four variables in the CLASS statement, the
temporary SAS data set, NEW, created by the
OUTPUT statement, will contain the sum of
analysis variables ITMPRICE and ITM_QTY at all
possible combinations of the classification
variables.  There will be sixteen values of the
SAS-generated variable _TYPE_ in output data
set NEW, representing what I like to call a
"complete" analysis of the numeric analysis
variables at all possible combinations of the
classification variables.

Suppose the analyst wanted to create three
separate output SAS data sets, containing the
sum of ITMPRICE and ITM_QTY.  The separate
data sets would contain the desired analyses

By MAILCODE and SEGMENT
By MAILCODE, SEGMENT and STATUS
By DEPT_NBR and SEGMENT

One approach would be to run PROC MEANS
three separate times, with different classification
variables in the CLASS Statement.  When working
with very large data sets, this approach, while
giving the desired results, wastes computing
resources as the source data set will be read
three separate times.

Another approach would be to create "one big
data set," containing the "complete" analysis, as
shown above, and then use a data step to read
each observation and output some of them to
various subset data sets.  Using the previous
example, the observations in temporary data set
NEW would be tested in a data step and those
meeting the condition of interest would be output
to new data sets.  While this approach still yields
the desired outcome, what the analyst would have
to do is create a big data set and then test each of
its observations to find the ones she wants to put
in the smaller data sets.  Here is an example:

Data A B C:
  SET NEW;
   IF _TYPE_ = '1001'B then OUTPUT A;
ELSE IF _TYPE_ = '1011'B



then OUTPUT B;
ELSE IF _TYPE_ = '0110'B then
OUTPUT 'C';
RUN;

This data step shows an underutilized feature of
the SAS Programming Language, which is called
the "bit-testing facility."  By using it, we don't have
to know the numeric value of _TYPE_, we just
need to know the position of the classification
variables in the CLASS statement.  In this context,
a number one means "I want this variable," and a
number zero means "I don't want this variable."
You can check for yourself that 1001 in base 2 is
equal to nine (9) in base 10.

A third approach would be to determine the
numeric values of the desired values of _TYPE_
and put them in the output statement as WHERE
clause conditions.

The new CHARTYPES option makes all of this
unnecessary.  This option, placed in the PROC
MEANS statement, converts the (default) numeric
values of _TYPE_ to a character variable
containing zeros and ones.  The length of this
variable is equal to the number of variables in the
CLASS (or BY) statement.  Keep in mind, that
even though this variable contains zeros and
ones, it is a character variable.

Using the CHARTYPES option makes it much
easier to create multiple output data sets in a
single application of PROC MEANS.  Our
marketing analyst could make the three data sets
she wants by submitting the following PROC
MEANS task:

proc means noprint data=order.orderfile2
chartypes;class mailcode dept_nbr segment
status;var itmprice itm_qty;output
out=one(where=(_type_ = '1001'))

sum=;output out=two(where=(_type_ =
'1011'))

sum=;output out=three(where=(_type_ =
'0110'))

sum = ;run;By using the CHARTYPES
option, the analyst easily creates the three desired
data sets in a single use of PROC MEANS.  As
with the previously-described bit-testing facility in
the SAS Programming Language, a one (1)
means "I want this variable" and a zero (0)
meams "I don't want this variable."  Again this is a
character, not a numeric variable, and in order to
use it effectively you need to know the ordering of
the variables in your CLASS statement.

The DESCENDTYPES Option

By default, observations in data sets created by
PROC MEANS are ordered in ascending values
of the variable _TYPE_.  So, _TYPE_ = 0 will be
first, followed by _TYPE_ = 1, and so forth, with
the highest value of _TYPE_ at the bottom.

The new DESCENDTYPES option, which is
placed in the PROC MEANS statement, instructs
the procedure to order observations in the output
data sets it creates in descending value of
_TYPE_.

This option is very handy if you want the
observation with _TYPE_ = 0 at the bottom of
your data set, rather than at the top.

The TYPES Statement

This Version 8 enhancement to PROC MEANS
should not be confused with the _TYPE_ variable
discussed previously.

By default, PROC MEANS will analyze the
numeric analysis variables at all possible
combinations of the values of the classification
variables.  With the TYPES statement, only the
analyses specified in it are carried out by PROC
MEANS.  This new feature can save you both
programming and processing time.

The next example shows how the TYPES
statement is used to restrict the operation of
PROC MEANS to analyzing the values of the
analysis variables to just the combination(s) of
classification variables in the CLASS or BY
Statement.  In PROC MEANS task that follows,
the marketing analyst working with the previous-
discussed order history file wants to create a
single output data set containing analyses of
ITMPRICE and ITM_QTY at the following
combinations of the CLASS variables

Overall (_TYPE_ = 0)
SEGMENT and STATUS
MAILCODE and SEGMENT
MAILCODE and DEPT_NBR and
SEGMENT

The TYPES Statement shown below limits the
execution of the PROC MEANS task to just the
combinations of the classification variables
specified in this statement.  Because only only
output data set is requested in this task,
temporary data set A will contain all of the
analyses requested by TYPES statement.



proc means noprint
data=order.orderfile2 ;class mailcode
dept_nbr segment status;types ()
segment * status      mailcode *
segment      mailcode * dept_nbr *
segment;var itmprice itm_qty;output
out=a sum = ;run;More complex
implementations of the TYPES statement are
documented in the PROC MEANS chapter in the
SAS Procedures documentation.

Multiple CLASS Statements

Multiple CLASS Statements are now permitted in
PROC MEANS.  In previous releases of SAS
System software the values of classification
variables were either portrayed in the Output
Window, or had their values stored in output data
sets, in "sort order."  New options in the CLASS
statement permit user control over how the levels
of the classification variables are portrayed.

When using multiple CLASS statements, how you
order them in the PROC MEANS task is very
important.  If you have two CLASS statements, for
example, the values of the classification variables
in the second CLASS statement will be nested
within the values of the variables in the first class
statement.

The next PROC MEANS task shows how two
CLASS statements were used to analyze some
electrical utility data stored in a SAS data set.
The first CLASS statement requests an analysis
by the values of REGION.  The DESCENDING
option to the right of the slash in the first CLASS
statement instructs PROC MEANS to analyze the
data in DESCENDING order of the values of
REGION.

The second CLASS statement requests that the
data be analyzed by the values of the
classification variable TRANSFORMER. Since no
options are specified in the second CLASS
statement, the values of TRANSFORMER will be
portrayed in "sort order," within the descending
values of REGION.

procprocprocproc means
data=electric.elec_v8 noprint nway;
class region/descending;
class transformer;
var total_revenue ;
output out=c sum= mean= /autoname;

runrunrunrun;
Additional CLASS Statement Options

There are several other useful options now
available in the CLASS Statement.  A complete
list is found on pages 636-638 of the Version 8
SAS Procedures Guide within Chapter 24 (The
Means Procedure).  Of these, we will discuss the
DESCENDING. EXCLUSIVE, GROUPINTERNAL,
MISSING, MLF, ORDER= and PRELOADFMT
options.

� The DESCENDING Option
This option, discussed above, orders the levels of
the CLASS variables in descending order.

� The EXCLUSIVE Option
This option, used in conjunction with the
PRELOADFMT option excludes from analysis all
the combinations of CLASS variables that are not
in the preloaded range of user-defined formats
(see the PRELOADFMT option, below

� The GROUPINTERNAL Option
This option, which saves computing resources
when your numeric classification variables contain
discrete values, tells PROC MEANS to NOT apply
formats to the class variables when it groups the
values to create combinations of CLASS
variables.

� The MISSING Option
This option instructs PROC MEANS to consider
as valued values missing values for variables in
the CLASS statement.  If you do not use the
MISSING option, PROC MEANS will exclude
observations with a missing CLASS variable value
from the analysis. A related PROC MEANS
option, COMPLETETYPES, is discussed later on
in this paper.

� The MLF Option
The new MLF option permits PROC MEANS to
use the primary and secondary format labels to
create subgroup combinations when a mulitlabel
format is assigned to variable(s) in the CLASS
statement.  For more information on the new
mutilabel formats now available in Version 8,
please consult the PROC FORMAT
documentation.

� The ORDER= Option
This option specifies the order PROC MEANS will
group the levels of the classification variables in
the output it generates.  (See above for a
discussion of the DESCENDING option in the
CLASS Statement.)  The arguments to the
ORDER= option are:  DATA, FORMATTED,
FREQ and UNFORMATTED.  Notice that
DESCENDING is not an argument to this option,



but is a "standalone" option within the CLASS
statement.

� The PRELOADFMT Option
This option instructs the SAS System to pre-load
formats in memory before executing the
statements in PROC MEANS.  In order to use it,
you must also specify either the
COMPLETETYPES, EXCLUSIVE or
ORDER=DATA options.  Using PRELOADFMT in
conjunction with, for example, the
COMPLETETYPES option creates and outputs all
combinations of class variables even if the
combination does not occur in the input data set.
By specifying both PRELOADFMT in the CLASS
statement and COMPLETETYPES option in the
PROC MEANS statement, your output will include
all combinations of the classification variables,
including those with no observations.

The COMPLETETYPES and EXCLUSIVE
Options

As discussed above, the COMPLETETYPES
option instructs the procedure to create all
possible combinations of the values of the
classification variables, even if that combination
does not exist in the data set.  It is most often
used with CLASS statement options such as
PRELOADFMT.  The EXCLUSIVE option is used
in conjunction with the CLASSDATA= option (also
new to Version 8, and discussed below) to include
any observations in the input data set whose
combination of classification variable values are
not in the CLASSDATA= data set.

The CLASSDATA= Option

Starting in Version 8 you can specify the name of
a data set (temporary or permanent) containing
the desired combinations of classification
variables that PROC MEANS is to use to filter or
to supplement in the input data set.  This option is
particularly useful if you have many classification
variables, and many values of the classification
variables, and you only want analyses for some of
these combinations.  See the PROC MEANS
documentation for additional details on how the
CLASSDATA= option is utilized.

The WAYS Statement

This new PROC MEANS statement specifies the
number of ways that the procedure is to create
unique combinations of the CLASS statement
variables.

We can see how the WAYS Statement with the
following example.  Returning to the customer
order file, suppose the marketing analyst wants to
create an output data set containing all two-day
analyses of the classification variables.  (That is,
at each unique combination of the CLASS
statement variables taken two at a time.)  The
following PROC MEANS task creates temporary
SAS data set B, which contains the desired
analysis.

proc means noprint
data=order.orderfile2 ;class mailcode
dept_nbr segment; types segment *
status      mailcode * segment
mailcode * dept_nbr;var itmprice
itm_qty;output out=b sum = ;run;
The same results would obtain if the analyst used
the WAYS statement rather than the TYPES
statement.  The following PROC MEANS task,
utilizing the TYPES statement, requests analyses
of the numeric analysis variables at all two-way
combinations of the CLASS statement variables.

proc means noprint
data=order.orderfile2 ;class mailcode
dept_nbr segment;
WAYS 2;var itmprice itm_qty;output
out=b sum = ;run;
Identifying Extreme Values of Analysis
Variables using the IDGROUP Option

This new OUTPUT statement option combines
and extends the features of the ID statement, the
IDMIN option in the PROC MEANS statement and
the MAXID and MINID options in the Output
statement so that you can create an output data
set containing variables identifying multiple
extreme values of the analysis variables,

Here is an example utilizing the IDGROUP option
on the electrical utility data set shown previously.

procprocprocproc means
data=electric.elec_v8 noprint nway;
class transformer;
var total_revenue ;
output out=c
  idgroup (max(total_revenue)
out[2] (total_revenue)=maxrev)
  idgroup (min(total_revenue)
out[2] (total_revenue)=minrev)



  sum= mean= /autoname;
In this example, output temporary data set C will
contain the SUM and MEAN of analysis variable
TOTAL_REVENUE.  Using the AUTONAME
option, discussed above, the names of these
variables in the output data set will be
TOTAL_REVENUE_SUM and
TOTAL_REVENUE_MEAN.  The IDGROUP
options instruct PROC MEANS to also determine
the two largest (MAX) and smallest (MIN) values
of analysis variable TOTAL_REVENUE, at each
value of the single classification variable in the
CLASS statement, and output those values in to
variables called MINREV_1, MINREV_2,
MAXREV_1 and MAXREV_2.  The OUT[2]
argument within each IDGROUP option specifies
the number of extreme values to output.  You can
use select from 1 to 100 extreme values to output.

Before using this new feature, you should
carefully read the PROC MEANS documentation
regarding the MAXID and MINID syntax.  If you
are not careful, you can create output variables
with the same name!  If that occurs, only the first
variable with the same name will appear in the
output data set.  You can avoid this potential
outcome by using the previously discussed
AUTONAME option.

Additional Changes and Enhancements to
PROC MEANS

There are a number of other changes and
enhancements to PROC MEANS.  This paper has
shown you what, in my experience, I feel the most
important and useful new features have been
added in Version 8.  You can obtain a list of all
enhancements to PROC MEANS from the SAS
Institute web site.  The complete URL for this topic
is:

http://www.sas.com/service/library/onlinedoc/v
8/whatsnew/tw5508/z1335349.htm
Acknowledgements

Thanks to Robert Ray of SAS Institute's BASE
Information Technology group for his insights in to
PROC MEANS and many of the enhancements added
to it in Version 8.  Also, thanks to the many people who
have attended my "Summarizing and Reporting Data
Using the SAS System" seminar who have made
comments or asked questions that challenged me to
learn more about PROC MEANS.

Author contact

Andrew H. Karp
President
Sierra Information Services, Inc.
19229 Sonoma Highway PMB 264
Sonoma, California  94115 USA
707 996 7380
SierraInfo@AOL.COM
www.SierraInformation.com

Copyright

SAS and all other SAS Institute Inc. product or service
names are registered trademarks or trademarks of SAS
Institute Inc. in the United States of America and other
countries. ® indicates USA registration.  Other brand or
product names are registered trademarks or trademarks
of their respective companies.



Anyone Can Learn PROC TABULATE

Lauren Haworth, Genentech, Inc., San Francisco

� ABSTRACT

SAS® Software provides hundreds of ways you can ana-
lyze your data. You can use the DATA step to slice and
dice your data, and there are dozens of procedures that
will process your data and produce all kinds of statistics.
But odds are that no matter how you organize and analyze
your data, you’ll end up producing a report in the form of
a table.

This is why every SAS user needs to know how to use
PROC TABULATE. While TABULATE doesn’t do
anything that you can’t do with other PROCs, the payoff
is in the output. TABULATE computes a variety of sta-
tistics, and it neatly packages the results in a single table.

Unfortunately, TABULATE has gotten a bad rap as being
a difficult procedure to learn. This paper will prove that if
you take things step by step, anyone can learn PROC
TABULATE.

This paper is based on Version 8, but all of the examples
save the last one will also work in Version 6.

� INTRODUCTION

This paper will start out with the most basic one-
dimensional table. We will then go on to two-dimensional
tables, tables with totals, and finally, three-dimensional
tables. By the end of this paper, you will be ready to build
most basic TABULATE tables.

� ONE-DIMENSIONAL TABLES

To really understand TABULATE, you have to start very
simply. The simplest possible table in TABULATE has to
have three things: a PROC TABULATE statement, a
TABLE statement, and a CLASS or VAR statement. In
this example, we will use a VAR statement. Later exam-
ples will show the CLASS statement.

The PROC TABULATE statement looks like this:

PROC TABULATE DATA=TEMP;
The second part of the procedure is the TABLE statement.
It describes which variables to use and how to arrange the
variables. This first table will have only one variable, so
you don’t have to tell TABULATE where to put it. All
you have to do is list it in the TABLE statement. When
there is only one variable, you get a one-dimensional ta-
ble.

PROC TABULATE DATA=TEMP;
TABLE RENT;

RUN;
If you run this code as is, you will get an error message
because TABULATE can’t figure out whether the vari-

able RENT is intended as an analysis variable, which is
used to compute statistics, or a classification variable,
which is used to define categories in the table.

In this case, we want to use rent as the analysis variable.
We will be using it to compute a statistic. To tell
TABULATE that RENT is an analysis variable, you use a
VAR statement. The syntax of a VAR statement is sim-
ple: you just list the variables that will be used for analy-
sis. So now the syntax for our PROC TABULATE is:

PROC TABULATE DATA=TEMP;
VAR RENT;
TABLE RENT;

RUN;
The result is the table shown below. It has a single col-
umn, with the header RENT to identify the variable, and
the header SUM to identify the statistic. There is just a
single table cell, which contains the value for the sum of
RENT for all of the observations in the dataset TEMP.

„ƒƒƒƒƒƒƒƒƒƒƒƒ†
‚    Rent    ‚
‡ƒƒƒƒƒƒƒƒƒƒƒƒ‰
‚    Sum     ‚
‡ƒƒƒƒƒƒƒƒƒƒƒƒ‰
‚   264514.00‚
ŠƒƒƒƒƒƒƒƒƒƒƒƒŒ

� ADDING A STATISTIC

The previous table shows what happens if you don’t tell
TABULATE which statistic to use. If the variable in your
table is an analysis variable, meaning that it is listed in a
VAR statement, then the statistic you will get by default
is the sum. Sometimes the sum will be the statistic that
you want. Most likely, sum isn’t the statistic that you
want.

To specify the statistic for a PROC TABULATE table,
you modify the TABLE statement. You list the statistic
right after the variable name. To tell TABULATE that the
statistic MEAN should be applied to the variable RENT,
you use an asterisk to link the variable name to the statis-
tic keyword. The asterisk is a TABULATE operator. Just
as you use an asterisk as an operator when you want to
multiply 2 by 3 (2*3), you use an asterisk when you want
to apply a statistic to a variable.

PROC TABULATE DATA=TEMP;
VAR RENT;
TABLE RENT*MEAN;

RUN;
The output with the new statistic is shown below. Note
that the variable name at the top of the column heading
has remained unchanged. However, the statistic name that
is shown in the second line of the heading now says



“Mean.” In addition, the value shown in the table cell has
changed from the sum to the mean.

„ƒƒƒƒƒƒƒƒƒƒƒƒ†
‚    Rent    ‚
‡ƒƒƒƒƒƒƒƒƒƒƒƒ‰
‚    Mean    ‚
‡ƒƒƒƒƒƒƒƒƒƒƒƒ‰
‚     1335.93‚
ŠƒƒƒƒƒƒƒƒƒƒƒƒŒ

� ADDING ANOTHER STATISTIC

Each of the tables shown so far was useful, but the power
of PROC TABULATE comes from being able to combine
several statistics and/or several variables in the same ta-
ble. TABULATE does this by letting you specify a series
of “tables” within a single large table. We’re going to add
a “table” showing the number of observations to our table
showing the mean rent.

The first part of our combined table is the code we used
before to compute mean rent.

PROC TABULATE DATA=TEMP;
VAR RENT;
TABLE RENT*MEAN;

RUN;
Next, we can add similar code to our TABLE statement to
get the number of observations. To add this statistic to the
first table, all you do is combine the code for the mean
(“RENT*MEAN”) with the code you would used to get
the number of observations (“RENT*N”). The code for
the two “tables” is combined by using a space between
the two statements. The space operator tells TABULATE
that you want to add another column to your table.

PROC TABULATE DATA=TEMP;
VAR RENT;
TABLE RENT*N RENT*MEAN;

RUN;
The resulting table is shown below.

„ƒƒƒƒƒƒƒƒƒƒƒƒ…ƒƒƒƒƒƒƒƒƒƒƒƒ†
‚    Rent    ‚    Rent    ‚
‡ƒƒƒƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒƒƒƒƒ‰
‚     N      ‚    Mean    ‚
‡ƒƒƒƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒƒƒƒƒ‰
‚      198.00‚     1335.93‚
Šƒƒƒƒƒƒƒƒƒƒƒƒ‹ƒƒƒƒƒƒƒƒƒƒƒƒŒ

Note that the additional statistic is shown as an additional
column in the table. When SAS is creating a one-
dimensional table, additional variables, statistics, and
categories are always added as new columns.

� USING PARENTHESES

While we’re just building a simple table, other tables can
get complex in a hurry. To keep your table code easy to
read, it’s helpful to simplify it as much as possible. One
thing you can do is use parentheses to avoid repeating
elements in row or column definitions.

For example, instead of defining the table statement like
this:

TABLE RENT*N RENT*MEAN;
It can be defined like this:

TABLE RENT*(N MEAN);

The resulting table is shown below.
„ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒ†
‚          Rent           ‚
‡ƒƒƒƒƒƒƒƒƒƒƒƒ…ƒƒƒƒƒƒƒƒƒƒƒƒ‰
‚     N      ‚    Mean    ‚
‡ƒƒƒƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒƒƒƒƒ‰
‚      198.00‚     1335.93‚
Šƒƒƒƒƒƒƒƒƒƒƒƒ‹ƒƒƒƒƒƒƒƒƒƒƒƒŒ

Note that not only is the table definition easier to read, but
the table headings have also been simplified. Now the
“Rent” label is not repeated over each column, but rather
is listed once as an overall heading. Using parentheses
will simplify both your table definitions and your output.

� ADDING A CLASSIFICATION VARIABLE

After seeing the tables we’ve built so far in this chapter,
you’re probably asking yourself, “Why use PROC
TABULATE? Everything I’ve seen so far could be done
with a PROC MEANS.”

One answer to this question is classification variables. By
specifying a variable to categorize your data, you can
produce a concise table that shows values for various
subgroups in your data. For example, wouldn’t it be more
interesting to look at mean rent if it were broken down by
city? 1

To break down rent by city, we will use city as a classifi-
cation variable. Just as we used a VAR statement to iden-
tify our analysis variable, we use a CLASS statement to
identify a classification variable. By putting the variable
CITY in a CLASS statement, we are telling TABULATE
that the variable will be used to identify categories of the
data.

The other thing we have to do to our code is tell
TABULATE where to put the classification variable
CITY in the table. We do this by again using the asterisk
operator. By adding another asterisk to the end of the
TABLE statement, and following it with the variable
name CITY, TABULATE knows that CITY will be used
to categorize the mean values of RENT.

PROC TABULATE DATA=TEMP;
CLASS CITY;
VAR RENT;
TABLE RENT*MEAN*CITY;

RUN;

                                                          
1 The sample data in this paper is from an informal survey
of apartment rents in three cities: Portland, Oregon, where
the author used to live; San Francisco, where the author
currently lives; and Long Beach, since that’s where the
paper will be presented.



The resulting table is shown below. Now the column
headings have changed. The variable name Rent and the
statistic name Mean are still there, but under the statistic
label there are now three columns. Each column is headed
by the variable label “City” and the category name Port-
land,” “San Francisco,” and “Long Beach.” The values
shown in the table cells now represent subgroup means.

„ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒ†
‚                 Rent                 ‚
‡ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒ‰
‚                 Mean                 ‚
‡ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒ‰
‚                 City                 ‚
‡ƒƒƒƒƒƒƒƒƒƒƒƒ…ƒƒƒƒƒƒƒƒƒƒƒƒ…ƒƒƒƒƒƒƒƒƒƒƒƒ‰
‚            ‚    San     ‚            ‚
‚  Portland  ‚ Francisco  ‚ Long Beach ‚
‡ƒƒƒƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒƒƒƒƒ‰
‚      931.44‚     2282.22‚     1116.00‚
Šƒƒƒƒƒƒƒƒƒƒƒƒ‹ƒƒƒƒƒƒƒƒƒƒƒƒ‹ƒƒƒƒƒƒƒƒƒƒƒƒŒ

� TWO-DIMENSIONAL TABLES

You probably noticed that our example table is not very
elegant in appearance. That’s because it only takes ad-
vantage of one dimension. It has multiple columns, but
only one row. It is much more efficient to build tables that
have both rows and columns. You can fit more informa-
tion on a page, and the table looks better, too.

The easiest way to build a two-dimensional table is to
build it one dimension at a time. First, we’ll build the col-
umns, and then we’ll add the rows.

For this first table, we’ll keep things simple. This is the
table we built in a previous example. It has two columns:
one showing the number of observations for RENT and
another showing the mean of RENT.

PROC TABULATE DATA=TEMP;
VAR RENT;
TABLE RENT*(N MEAN);

RUN;
This table is shown below.

„ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒ†
‚          Rent           ‚
‡ƒƒƒƒƒƒƒƒƒƒƒƒ…ƒƒƒƒƒƒƒƒƒƒƒƒ‰
‚     N      ‚    Mean    ‚
‡ƒƒƒƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒƒƒƒƒ‰
‚      198.00‚     1335.93‚
Šƒƒƒƒƒƒƒƒƒƒƒƒ‹ƒƒƒƒƒƒƒƒƒƒƒƒŒ

To turn this table into a two-dimensional table, we will
add another variable to the TABLE statement. In this
case, we want to add rows that show the N and MEAN of
RENT for different sizes of apartments.

To add another dimension to the table, you use a comma
as an operator. All you do is put a comma between the
row variable(s) and the column variable(s).

If a TABLE statement has no commas, then it is assumed
that the variables and statistics are to be created as col-
umns. If a TABLE statement has two parts, separated by a
comma, then TABULATE builds a two-dimensional table
using the first part of the TABLE statement as the rows

and the second part of the TABLE statement as the col-
umns.

So to get a table with rent as the columns and number of
bedrooms as the rows, we just need to add a comma and
the variable BEDROOMS. Since we want to add
BEDROOMS as a row, we list it before the rest of the
TABLE statement. If we wanted to add it as a column,
we’d add it to the end of the TABLE statement.

PROC TABULATE DATA=TEMP;
VAR RENT;
CLASS BEDROOMS;
TABLE BEDROOMS, RENT*N RENT*MEAN;

RUN;

This table is shown below.
„ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒ…ƒƒƒƒƒƒƒƒƒƒƒƒ…ƒƒƒƒƒƒƒƒƒƒƒƒ†
‚                 ‚    Rent    ‚    Rent    ‚
‚                 ‡ƒƒƒƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒƒƒƒƒ‰
‚                 ‚     N      ‚    Mean    ‚
‡ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒƒƒƒƒ‰
‚Bedrooms         ‚            ‚            ‚
‡ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒ‰            ‚            ‚
‚1 Bedroom        ‚       92.00‚     1180.35‚
‡ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒƒƒƒƒ‰
‚2 Bedrooms       ‚      106.00‚     1470.96‚
Šƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒ‹ƒƒƒƒƒƒƒƒƒƒƒƒ‹ƒƒƒƒƒƒƒƒƒƒƒƒŒ

By the way, there is a limitation on which variables you
can use in a two-dimensional table. You can’t have a
cross-tabulation of two analysis variables. A two-
dimensional table must have at least one classification
variable (i.e., you must have a CLASS statement). If you
think about it, this makes sense. A table of mean rent by
mean bedrooms would be meaningless, but a table of
mean rent by categories of bedrooms makes perfect sense.

� ADDING CLASSIFICATION VARIABLES ON BOTH
DIMENSIONS

The previous example showed how to reformat a table
from one to two dimensions, but it did not show the true
power of two-dimensional tables. With two dimensions,
you can classify your statistics by two different variables
at the same time.

To do this, you put one classification variable in the row
dimension and one classification in the column dimen-
sion. The previous example had bedrooms displayed in
rows, and rent as the column variable. In this new table,
we will add city as an additional column variable. Instead
of just displaying the mean rent for each number of bed-
rooms, we will display the statistic broken down city.

So in the following code, we leave BEDROOMS as the
row variable, and we leave RENT in the column dimen-
sion. The only change is to add CITY to the column di-
mension using the asterisk operator. This tells
TABULATE to break down each of the column elements
into categories by city.



PROC TABULATE DATA=TEMP;
VAR RENT;
CLASS BEDROOMS CITY;
TABLE BEDROOMS, RENT*CITY*MEAN;

RUN;
This table is shown below. Notice how the analysis vari-
able RENT remains as the column heading, and MEAN
remains as the statistic, but now there are additional col-
umn headings to show the three categories of CITY.
„ƒƒƒƒƒƒƒƒƒƒ…ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒ†
‚          ‚                 Rent                 ‚
‚          ‡ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒ‰
‚          ‚                 City                 ‚
‚          ‡ƒƒƒƒƒƒƒƒƒƒƒƒ…ƒƒƒƒƒƒƒƒƒƒƒƒ…ƒƒƒƒƒƒƒƒƒƒƒƒ‰
‚          ‚            ‚    San     ‚            ‚
‚          ‚  Portland  ‚ Francisco  ‚ Long Beach ‚
‚          ‡ƒƒƒƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒƒƒƒƒ‰
‚          ‚    Mean    ‚    Mean    ‚    Mean    ‚
‡ƒƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒƒƒƒƒ‰
‚Bedrooms  ‚            ‚            ‚            ‚
‡ƒƒƒƒƒƒƒƒƒƒ‰            ‚            ‚            ‚
‚1 Bedroom ‚      800.08‚     2063.83‚      955.23‚
‡ƒƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒƒƒƒƒ‰
‚2 Bedrooms‚     1050.29‚     2483.81‚     1242.92‚
Šƒƒƒƒƒƒƒƒƒƒ‹ƒƒƒƒƒƒƒƒƒƒƒƒ‹ƒƒƒƒƒƒƒƒƒƒƒƒ‹ƒƒƒƒƒƒƒƒƒƒƒƒŒ

� ADDING ANOTHER CLASSIFICATION VARIABLE

The previous example showed how to add a classification
variable to both the rows and columns of a two-
dimensional table. But you are not limited to just one
classification per dimension. This next example will show
how to display additional subgroups of the data.

In this case, we’re going to add availability of off-street
parking as an additional row classification. The variable is
added to the CLASS statement and to the row dimension
of the TABLE statement. It is added using a space as the
operator, so we will get rows for number of bedrooms
followed by rows for parking availability.

PROC TABULATE DATA=TEMP;
VAR RENT;
CLASS BEDROOMS CITY PARKING;
TABLE BEDROOMS PARKING,

RENT*CITY*MEAN;
RUN;

In the results shown below, you can see that we now have
two two-dimensional “mini-tables” within a single table.
First, we have a table of rent by number of bedrooms and
city, and then we have a table showing rent by parking
availability and city.

„ƒƒƒƒƒƒƒƒƒƒ…ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒ†
‚          ‚                 Rent                 ‚
‚          ‡ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒ‰
‚          ‚                 City                 ‚
‚          ‡ƒƒƒƒƒƒƒƒƒƒƒƒ…ƒƒƒƒƒƒƒƒƒƒƒƒ…ƒƒƒƒƒƒƒƒƒƒƒƒ‰
‚          ‚            ‚    San     ‚            ‚
‚          ‚  Portland  ‚ Francisco  ‚ Long Beach ‚
‚          ‡ƒƒƒƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒƒƒƒƒ‰
‚          ‚    Mean    ‚    Mean    ‚    Mean    ‚
‡ƒƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒƒƒƒƒ‰
‚Bedrooms  ‚            ‚            ‚            ‚
‡ƒƒƒƒƒƒƒƒƒƒ‰            ‚            ‚            ‚
‚1 Bedroom ‚      800.08‚     2063.83‚      955.23‚
‡ƒƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒƒƒƒƒ‰
‚2 Bedrooms‚     1050.29‚     2483.81‚     1242.92‚
‡ƒƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒƒƒƒƒ‰
‚Parking   ‚            ‚            ‚            ‚
‡ƒƒƒƒƒƒƒƒƒƒ‰            ‚            ‚            ‚
‚No        ‚      781.75‚     1785.30‚     1060.54‚
‡ƒƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒƒƒƒƒ‰
‚Yes       ‚      995.59‚     2613.50‚     1154.83‚
Šƒƒƒƒƒƒƒƒƒƒ‹ƒƒƒƒƒƒƒƒƒƒƒƒ‹ƒƒƒƒƒƒƒƒƒƒƒƒ‹ƒƒƒƒƒƒƒƒƒƒƒƒŒ

This ability to stack multiple mini-tables within a single
table can be a powerful tool for delivering large quantities
of information in a user-friendly format.

� NESTING THE CLASSIFICATION VARIABLES

So far, all we have done is added additional “tables” to
the bottom of our first table. We used the space operator
between each of the row variables to produce stacked
tables.

By using a series of row variables, we can explore a vari-
ety of relationships between the variables. In previous
table, we could see how rent varies by number of bed-
rooms and city, and we could see how rent varies by
parking availability and city, but we could not see how
the number of bedrooms and parking availability inter-
acted to affect rent for each city.

The power of TABULATE comes from being able to look
at combinations of categories within a single table. In the
following example, we will build a table to look at rent by
city for combinations of number of bedrooms and parking
availability.

This code is the same as we used for the last example.
The only change is that in the row definition, the asterisk
operator is used to show that we want to nest the two row
variables. In other words, we want to see the breakdown
of rents by parking availability within each category of
number of bedrooms.

PROC TABULATE DATA=TEMP;
VAR RENT;
CLASS BEDROOMS CITY PARKING;
TABLE BEDROOMS*PARKING,

RENT*CITY*MEAN;
RUN;

As you can see in the table below, this code produces
nested categories within the row headings. The row
headings are now split into two columns. The first column
shows number of bedrooms and the second shows parking
availability. It is now easier to interpret the interaction of
the two variables.



„ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒ…ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒ†
‚                      ‚                 Rent                 ‚
‚                      ‡ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒ‰
‚                      ‚                 City                 ‚
‚                      ‡ƒƒƒƒƒƒƒƒƒƒƒƒ…ƒƒƒƒƒƒƒƒƒƒƒƒ…ƒƒƒƒƒƒƒƒƒƒƒƒ‰
‚                      ‚            ‚    San     ‚            ‚
‚                      ‚  Portland  ‚ Francisco  ‚ Long Beach ‚
‚                      ‡ƒƒƒƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒƒƒƒƒ‰
‚                      ‚    Mean    ‚    Mean    ‚    Mean    ‚
‡ƒƒƒƒƒƒƒƒƒƒ…ƒƒƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒƒƒƒƒ‰
‚Bedrooms  ‚Parking    ‚            ‚            ‚            ‚
‡ƒƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒƒƒƒ‰            ‚            ‚            ‚
‚1 Bedroom ‚No         ‚      707.00‚     1586.10‚      896.00‚
‚          ‡ƒƒƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒƒƒƒƒ‰
‚          ‚Yes        ‚      843.04‚     2405.07‚      984.85‚
‡ƒƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒƒƒƒƒ‰
‚2 Bedrooms‚No         ‚      856.50‚     1984.50‚     1151.94‚
‚          ‡ƒƒƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒƒƒƒƒ‰
‚          ‚Yes        ‚     1127.80‚     2795.88‚     1324.80‚
Šƒƒƒƒƒƒƒƒƒƒ‹ƒƒƒƒƒƒƒƒƒƒƒ‹ƒƒƒƒƒƒƒƒƒƒƒƒ‹ƒƒƒƒƒƒƒƒƒƒƒƒ‹ƒƒƒƒƒƒƒƒƒƒƒƒŒ

You can also reverse the order of the row variables to
look at number of bedrooms by parking availability, in-
stead of parking availability by number of bedrooms. All
you do is move PARKING so that it comes before
BEDROOMS. TABULATE always produces the nested
rows in the order the variables are listed on the TABLE
statement.

� ADDING TOTALS TO THE ROWS AND COLUMNS

As your tables get more complex, you can help make your
tables more readable by adding row and column totals.
Totals are quite easy to generate in TABULATE because
you can use the ALL variable. This is a built in classifica-
tion variable supplied by TABULATE that stands for “all
observations.”  You do not have to list it in the CLASS
statement because it is a classification variable by defini-
tion.

The following code produces a table similar to the previ-
ous example, but with the addition of row totals. The sta-
tistic is changed to N so that you can see how the totals
work.

PROC TABULATE DATA=TEMP;
CLASS BEDROOMS CITY;
TABLE BEDROOMS, (CITY ALL)*N;

RUN;
As you can see from the table below, the table now has
row totals.
„ƒƒƒƒƒƒƒƒƒƒ…ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒ…ƒƒƒƒƒƒƒƒƒƒƒƒ†
‚          ‚                 City                 ‚            ‚
‚          ‡ƒƒƒƒƒƒƒƒƒƒƒƒ…ƒƒƒƒƒƒƒƒƒƒƒƒ…ƒƒƒƒƒƒƒƒƒƒƒƒ‰            ‚
‚          ‚            ‚    San     ‚            ‚            ‚
‚          ‚  Portland  ‚ Francisco  ‚ Long Beach ‚    All     ‚
‚          ‡ƒƒƒƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒƒƒƒƒ‰
‚          ‚     N      ‚     N      ‚     N      ‚     N      ‚
‡ƒƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒƒƒƒƒ‰
‚Bedrooms  ‚            ‚            ‚            ‚            ‚
‡ƒƒƒƒƒƒƒƒƒƒ‰            ‚            ‚            ‚            ‚
‚1 Bedroom ‚       38.00‚       24.00‚       30.00‚       92.00‚
‡ƒƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒƒƒƒƒ‰
‚2 Bedrooms‚       42.00‚       26.00‚       38.00‚      106.00‚
Šƒƒƒƒƒƒƒƒƒƒ‹ƒƒƒƒƒƒƒƒƒƒƒƒ‹ƒƒƒƒƒƒƒƒƒƒƒƒ‹ƒƒƒƒƒƒƒƒƒƒƒƒ‹ƒƒƒƒƒƒƒƒƒƒƒƒŒ

Not only can you use ALL to add row totals, but you can
also use ALL to produce column totals. What you do is
list ALL as an additional variable in the row definition of
the TABLE statement. No asterisk is needed because we
just want to add a total at the bottom of the table.

PROC TABULATE DATA=TEMP;
CLASS BEDROOMS CITY;
TABLE BEDROOMS ALL, CITY*N;

RUN;
The resulting table is shown below. Now there are overall
totals for each city.
„ƒƒƒƒƒƒƒƒƒƒ…ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒ†
‚          ‚                 City                 ‚
‚          ‡ƒƒƒƒƒƒƒƒƒƒƒƒ…ƒƒƒƒƒƒƒƒƒƒƒƒ…ƒƒƒƒƒƒƒƒƒƒƒƒ‰
‚          ‚            ‚    San     ‚            ‚
‚          ‚  Portland  ‚ Francisco  ‚ Long Beach ‚
‚          ‡ƒƒƒƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒƒƒƒƒ‰
‚          ‚     N      ‚     N      ‚     N      ‚
‡ƒƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒƒƒƒƒ‰
‚Bedrooms  ‚            ‚            ‚            ‚
‡ƒƒƒƒƒƒƒƒƒƒ‰            ‚            ‚            ‚
‚1 Bedroom ‚       38.00‚       24.00‚       30.00‚
‡ƒƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒƒƒƒƒ‰
‚2 Bedrooms‚       42.00‚       26.00‚       38.00‚
‡ƒƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒƒƒƒƒ‰
‚All       ‚       80.00‚       50.00‚       68.00‚
Šƒƒƒƒƒƒƒƒƒƒ‹ƒƒƒƒƒƒƒƒƒƒƒƒ‹ƒƒƒƒƒƒƒƒƒƒƒƒ‹ƒƒƒƒƒƒƒƒƒƒƒƒŒ

� THREE-DIMENSIONAL TABLES

Now that you have mastered two-dimensional tables, let’s
add a third dimension. You may be asking yourself: Three
dimensions? How do you print a table shaped like a cube?

Actually, a three-dimensional table is not shaped like a
cube. It looks like a two-dimensional table, except that it
spans multiple pages. A one-dimensional table just has
columns. A two-dimensional table has both columns and
rows. A three-dimensional table is just a two-dimensional
table that is repeated across multiple pages. You print a
new page for each value of the page variable.

The hardest part about three-dimensional tables is making
sense of the TABLE statement. So the best way to start is
with the first two dimensions: the rows and columns.
Once you’ve got that set up correctly, it’s relatively easy
to add the page variable to expand the table to multiple
pages.

For our example, we’re going to build another table of
rent by city and number of bedrooms, and then we’re go-
ing to add parking availability as the page variable. We’ll
end up with two pages of output, the first page will be for
apartments without off-street parking, and the second
page will be for apartments with off-street parking.

Ignoring the third dimension for now, let’s build the basic
table. This table has rows showing the number of bed-
rooms, and columns showing rent by city. The code is as
follows:

PROC TABULATE DATA=TEMP;
CLASS BEDROOMS CITY;
VAR RENT;
TABLE BEDROOMS,

(CITY ALL)*RENT*MEAN;
RUN;

At this point you should run the code and look the table
over carefully to be sure you’ve got exactly what you
want to see in your final table.



„ƒƒƒƒƒƒƒƒƒƒ…ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒ…ƒƒƒƒƒƒƒƒƒƒƒƒ†
‚          ‚                 City                 ‚            ‚
‚          ‡ƒƒƒƒƒƒƒƒƒƒƒƒ…ƒƒƒƒƒƒƒƒƒƒƒƒ…ƒƒƒƒƒƒƒƒƒƒƒƒ‰            ‚
‚          ‚            ‚    San     ‚            ‚            ‚
‚          ‚  Portland  ‚ Francisco  ‚ Long Beach ‚    All     ‚
‚          ‡ƒƒƒƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒƒƒƒƒ‰
‚          ‚    Rent    ‚    Rent    ‚    Rent    ‚    Rent    ‚
‚          ‡ƒƒƒƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒƒƒƒƒ‰
‚          ‚    Mean    ‚    Mean    ‚    Mean    ‚    Mean    ‚
‡ƒƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒƒƒƒƒ‰
‚Bedrooms  ‚            ‚            ‚            ‚            ‚
‡ƒƒƒƒƒƒƒƒƒƒ‰            ‚            ‚            ‚            ‚
‚1 Bedroom ‚      800.08‚     2063.83‚      955.23‚     1180.35‚
‡ƒƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒƒƒƒƒ‰
‚2 Bedrooms‚     1050.29‚     2483.81‚     1242.92‚     1470.96‚
Šƒƒƒƒƒƒƒƒƒƒ‹ƒƒƒƒƒƒƒƒƒƒƒƒ‹ƒƒƒƒƒƒƒƒƒƒƒƒ‹ƒƒƒƒƒƒƒƒƒƒƒƒ‹ƒƒƒƒƒƒƒƒƒƒƒƒŒ

The only difference between this table and our final three-
dimensional table is that right now, the table is showing
results for both categories of parking availability com-
bined. In the final tables, each page will have the results
for just one of the two categories.

Assuming the two-dimensional table looks correct, we’ll
go on to adding the third dimension. When we converted
a one-dimensional table to a two-dimensional table, we
added the new dimension with a comma operator in the
TABLE statement. To change a two-dimensional table to
a three-dimensional table, we just add the new variable
PARKING to the existing TABLE statement with a
comma to separate it from the row and column defini-
tions.

You might think that the following code is the correct
way to add the third dimension to the table statement:

TABLE BEDROOMS,
(CITY ALL)*RENT*MEAN, PARKING;

However, what this would generate is a table with CITY
as the rows, PARKING as the columns, and BEDROOMS
as the pages. In order to add the third dimension to a ta-
ble, you add it at the beginning of the table statements.
Remember that this was also true when we added the sec-
ond dimension to the table. We added rows to the col-
umns by adding a row definition before the column defi-
nition.

The correct code for our table is:

PROC TABULATE DATA=TEMP;
CLASS BEDROOMS CITY PARKING;
VAR RENT;
TABLE PARKING, BEDROOMS,

(CITY ALL)*RENT*MEAN;
RUN;

The resulting tables are shown below. To save space, both
tables are shown on a single page. In reality, TABULATE
puts a page break between each of the tables, and the table
for apartments without off-street parking would appear on
a second page. Notice that each table was automatically
given a title that defines the category it represents.

Parking No
„ƒƒƒƒƒƒƒƒƒƒ…ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒ…ƒƒƒƒƒƒƒƒƒƒƒƒ†
‚          ‚                 City                 ‚            ‚
‚          ‡ƒƒƒƒƒƒƒƒƒƒƒƒ…ƒƒƒƒƒƒƒƒƒƒƒƒ…ƒƒƒƒƒƒƒƒƒƒƒƒ‰            ‚
‚          ‚            ‚    San     ‚            ‚            ‚
‚          ‚  Portland  ‚ Francisco  ‚ Long Beach ‚    All     ‚
‚          ‡ƒƒƒƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒƒƒƒƒ‰
‚          ‚    Rent    ‚    Rent    ‚    Rent    ‚    Rent    ‚
‚          ‡ƒƒƒƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒƒƒƒƒ‰
‚          ‚    Mean    ‚    Mean    ‚    Mean    ‚    Mean    ‚
‡ƒƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒƒƒƒƒ‰
‚Bedrooms  ‚            ‚            ‚            ‚            ‚
‡ƒƒƒƒƒƒƒƒƒƒ‰            ‚            ‚            ‚            ‚
‚1 Bedroom ‚      707.00‚     1586.10‚      896.00‚     1040.78‚
‡ƒƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒƒƒƒƒ‰
‚2 Bedrooms‚      856.50‚     1984.50‚     1151.94‚     1271.45‚
Šƒƒƒƒƒƒƒƒƒƒ‹ƒƒƒƒƒƒƒƒƒƒƒƒ‹ƒƒƒƒƒƒƒƒƒƒƒƒ‹ƒƒƒƒƒƒƒƒƒƒƒƒ‹ƒƒƒƒƒƒƒƒƒƒƒƒŒ

Parking Yes
„ƒƒƒƒƒƒƒƒƒƒ…ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒ…ƒƒƒƒƒƒƒƒƒƒƒƒ†
‚          ‚                 City                 ‚            ‚
‚          ‡ƒƒƒƒƒƒƒƒƒƒƒƒ…ƒƒƒƒƒƒƒƒƒƒƒƒ…ƒƒƒƒƒƒƒƒƒƒƒƒ‰            ‚
‚          ‚            ‚    San     ‚            ‚            ‚
‚          ‚  Portland  ‚ Francisco  ‚ Long Beach ‚    All     ‚
‚          ‡ƒƒƒƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒƒƒƒƒ‰
‚          ‚    Rent    ‚    Rent    ‚    Rent    ‚    Rent    ‚
‚          ‡ƒƒƒƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒƒƒƒƒ‰
‚          ‚    Mean    ‚    Mean    ‚    Mean    ‚    Mean    ‚
‡ƒƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒƒƒƒƒ‰
‚Bedrooms  ‚            ‚            ‚            ‚            ‚
‡ƒƒƒƒƒƒƒƒƒƒ‰            ‚            ‚            ‚            ‚
‚1 Bedroom ‚      843.04‚     2405.07‚      984.85‚     1254.78‚
‡ƒƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒƒƒƒƒ‰
‚2 Bedrooms‚     1127.80‚     2795.88‚     1324.80‚     1591.88‚
Šƒƒƒƒƒƒƒƒƒƒ‹ƒƒƒƒƒƒƒƒƒƒƒƒ‹ƒƒƒƒƒƒƒƒƒƒƒƒ‹ƒƒƒƒƒƒƒƒƒƒƒƒ‹ƒƒƒƒƒƒƒƒƒƒƒƒŒ

� MAKING THE TABLE PRETTY

The preceding examples have shown how to create basic
tables. They contained all of the needed information, but
they were pretty ugly. The next thing you need to learn is
a few tricks to clean up your tables.

For example, look at the following code and table:

PROC TABULATE DATA=TEMP;
CLASS BEDROOMS CITY;
VAR RENT;
TABLE BEDROOMS,

(CITY ALL)*RENT*MEAN;
RUN;

„ƒƒƒƒƒƒƒƒƒƒ…ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒ…ƒƒƒƒƒƒƒƒƒƒƒƒ†
‚          ‚                 City                 ‚            ‚
‚          ‡ƒƒƒƒƒƒƒƒƒƒƒƒ…ƒƒƒƒƒƒƒƒƒƒƒƒ…ƒƒƒƒƒƒƒƒƒƒƒƒ‰            ‚
‚          ‚            ‚    San     ‚            ‚            ‚
‚          ‚  Portland  ‚ Francisco  ‚ Long Beach ‚    All     ‚
‚          ‡ƒƒƒƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒƒƒƒƒ‰
‚          ‚    Rent    ‚    Rent    ‚    Rent    ‚    Rent    ‚
‚          ‡ƒƒƒƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒƒƒƒƒ‰
‚          ‚    Mean    ‚    Mean    ‚    Mean    ‚    Mean    ‚
‡ƒƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒƒƒƒƒ‰
‚Bedrooms  ‚            ‚            ‚            ‚            ‚
‡ƒƒƒƒƒƒƒƒƒƒ‰            ‚            ‚            ‚            ‚
‚1 Bedroom ‚      800.08‚     2063.83‚      955.23‚     1180.35‚
‡ƒƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒƒƒƒƒ‰
‚2 Bedrooms‚     1050.29‚     2483.81‚     1242.92‚     1470.96‚
Šƒƒƒƒƒƒƒƒƒƒ‹ƒƒƒƒƒƒƒƒƒƒƒƒ‹ƒƒƒƒƒƒƒƒƒƒƒƒ‹ƒƒƒƒƒƒƒƒƒƒƒƒ‹ƒƒƒƒƒƒƒƒƒƒƒƒŒ

Notice how the totals column is titled “All.” We can make
this table more readable by changing that title to “Over-
all.”

To do this, we just attach the label to the keyword in the
TABLE statement with an equal sign operator. This op-
erator is used to apply labels to variables and statistics.
The new code reads as follows:



PROC TABULATE DATA=TEMP;
CLASS BEDROOMS CITY;
VAR RENT;
TABLE BEDROOMS,

(CITY ALL=’Overall’)*RENT*MEAN;
RUN;

This code produces the following output:
„ƒƒƒƒƒƒƒƒƒƒ…ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒ…ƒƒƒƒƒƒƒƒƒƒƒƒ†
‚          ‚                 City                 ‚            ‚
‚          ‡ƒƒƒƒƒƒƒƒƒƒƒƒ…ƒƒƒƒƒƒƒƒƒƒƒƒ…ƒƒƒƒƒƒƒƒƒƒƒƒ‰            ‚
‚          ‚            ‚    San     ‚            ‚            ‚
‚          ‚  Portland  ‚ Francisco  ‚ Long Beach ‚  Overall   ‚
‚          ‡ƒƒƒƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒƒƒƒƒ‰
‚          ‚    Rent    ‚    Rent    ‚    Rent    ‚    Rent    ‚
‚          ‡ƒƒƒƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒƒƒƒƒ‰
‚          ‚    Mean    ‚    Mean    ‚    Mean    ‚    Mean    ‚
‡ƒƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒƒƒƒƒ‰
‚Bedrooms  ‚            ‚            ‚            ‚            ‚
‡ƒƒƒƒƒƒƒƒƒƒ‰            ‚            ‚            ‚            ‚
‚1 Bedroom ‚      800.08‚     2063.83‚      955.23‚     1180.35‚
‡ƒƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒƒƒƒƒ‰
‚2 Bedrooms‚     1050.29‚     2483.81‚     1242.92‚     1470.96‚
Šƒƒƒƒƒƒƒƒƒƒ‹ƒƒƒƒƒƒƒƒƒƒƒƒ‹ƒƒƒƒƒƒƒƒƒƒƒƒ‹ƒƒƒƒƒƒƒƒƒƒƒƒ‹ƒƒƒƒƒƒƒƒƒƒƒƒŒ

Another thing that could be improved about this table is
getting rid of the excessive column headings. This table is
four lines deep in headings. For starters, we can get rid of
the label “City.” With values like “San Francisco,”
“Portland,” and “Long Beach,” it’s obvious that this table
is referring to cities. We don’t need the extra label.

To get rid of it, we attach a blank label. A blank label is
two quotes with a single blank space in between. The
blank label is added the same way we added the “Overall”
label in the last example. The blank label is attached to
the variable using an equal sign.

PROC TABULATE DATA=TEMP;
CLASS BEDROOMS CITY;
VAR RENT;
TABLE BEDROOMS,

(CITY=’ ‘ ALL=’Overall’)*
RENT*MEAN;

RUN;
The revised output is shown below.
„ƒƒƒƒƒƒƒƒƒƒ…ƒƒƒƒƒƒƒƒƒƒƒƒ…ƒƒƒƒƒƒƒƒƒƒƒƒ…ƒƒƒƒƒƒƒƒƒƒƒƒ…ƒƒƒƒƒƒƒƒƒƒƒƒ†
‚          ‚            ‚    San     ‚            ‚            ‚
‚          ‚  Portland  ‚ Francisco  ‚ Long Beach ‚  Overall   ‚
‚          ‡ƒƒƒƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒƒƒƒƒ‰
‚          ‚    Rent    ‚    Rent    ‚    Rent    ‚    Rent    ‚
‚          ‡ƒƒƒƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒƒƒƒƒ‰
‚          ‚    Mean    ‚    Mean    ‚    Mean    ‚    Mean    ‚
‡ƒƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒƒƒƒƒ‰
‚Bedrooms  ‚            ‚            ‚            ‚            ‚
‡ƒƒƒƒƒƒƒƒƒƒ‰            ‚            ‚            ‚            ‚
‚1 Bedroom ‚      800.08‚     2063.83‚      955.23‚     1180.35‚
‡ƒƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒƒƒƒƒ‰
‚2 Bedrooms‚     1050.29‚     2483.81‚     1242.92‚     1470.96‚
Šƒƒƒƒƒƒƒƒƒƒ‹ƒƒƒƒƒƒƒƒƒƒƒƒ‹ƒƒƒƒƒƒƒƒƒƒƒƒ‹ƒƒƒƒƒƒƒƒƒƒƒƒ‹ƒƒƒƒƒƒƒƒƒƒƒƒŒ

This looks much better, but there are still too many col-
umn headings. We can get rid of two more. Notice how
each column is headed by “RENT” and “MEAN.”

We can make these labels go away by setting them to a
blank label as in the previous example. Also, the row
heading “Number of Bedrooms” is not needed, since the
categories of “1 Bedroom” and “2 Bedrooms” are self-
explanatory. So the variable BEDROOMS is also as-
signed a blank label. The revised code is shown below.

PROC TABULATE DATA=TEMP;
CLASS BEDROOMS CITY;
VAR RENT;
TABLE BEDROOMS=’ ‘,

(CITY=’ ‘ ALL=’Overall’)*
RENT=’ ‘*MEAN=’ ‘;

RUN;
Now we have a nice simple table, which is shown below.
„ƒƒƒƒƒƒƒƒƒƒ…ƒƒƒƒƒƒƒƒƒƒƒƒ…ƒƒƒƒƒƒƒƒƒƒƒƒ…ƒƒƒƒƒƒƒƒƒƒƒƒ…ƒƒƒƒƒƒƒƒƒƒƒƒ†
‚          ‚            ‚    San     ‚            ‚            ‚
‚          ‚  Portland  ‚ Francisco  ‚ Long Beach ‚  Overall   ‚
‡ƒƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒƒƒƒƒ‰
‚1 Bedroom ‚      800.08‚     2063.83‚      955.23‚     1180.35‚
‡ƒƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒƒƒƒƒ‰
‚2 Bedrooms‚     1050.29‚     2483.81‚     1242.92‚     1470.96‚
Šƒƒƒƒƒƒƒƒƒƒ‹ƒƒƒƒƒƒƒƒƒƒƒƒ‹ƒƒƒƒƒƒƒƒƒƒƒƒ‹ƒƒƒƒƒƒƒƒƒƒƒƒ‹ƒƒƒƒƒƒƒƒƒƒƒƒŒ

However, we also have a problem. If we take the Rent
and Mean labels away, then there is no label in the table
to describe the analysis variable or statistic.

We could add a title above the table to hold this informa-
tion, but there’s a better way. Notice how in all of our
tables there’s a big empty box above the rows and to the
left of the column headings. This space is available to us.
The following code uses the BOX= option to hold a label
describing our table.

PROC TABULATE DATA=TEMP;
CLASS BEDROOMS CITY;
VAR RENT;
TABLE BEDROOMS,

(CITY=’ ‘ ALL=’Overall’)*
RENT=’ ‘*MEAN=’ ‘
/ BOX='Average Rent';

RUN;
The output is shown below:
„ƒƒƒƒƒƒƒƒƒƒ…ƒƒƒƒƒƒƒƒƒƒƒƒ…ƒƒƒƒƒƒƒƒƒƒƒƒ…ƒƒƒƒƒƒƒƒƒƒƒƒ…ƒƒƒƒƒƒƒƒƒƒƒƒ†
‚Average   ‚            ‚    San     ‚            ‚            ‚
‚Rent      ‚  Portland  ‚ Francisco  ‚ Long Beach ‚  Overall   ‚
‡ƒƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒƒƒƒƒ‰
‚Bedrooms  ‚            ‚            ‚            ‚            ‚
‡ƒƒƒƒƒƒƒƒƒƒ‰            ‚            ‚            ‚            ‚
‚1 Bedroom ‚      800.08‚     2063.83‚      955.23‚     1180.35‚
‡ƒƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒƒƒƒƒ‰
‚2 Bedrooms‚     1050.29‚     2483.81‚     1242.92‚     1470.96‚
Šƒƒƒƒƒƒƒƒƒƒ‹ƒƒƒƒƒƒƒƒƒƒƒƒ‹ƒƒƒƒƒƒƒƒƒƒƒƒ‹ƒƒƒƒƒƒƒƒƒƒƒƒ‹ƒƒƒƒƒƒƒƒƒƒƒƒŒ

At this point the table is looking pretty good. There’s just
one more thing we should do to the table. Since the num-
bers being reported in the table are rents, it would make
the table easier to read if they were formatted with dollar
signs. Also, we can round these off to even dollars, that’s
enough precision for this table.

To change the format of the table cells, we use the
FORMAT= option on the TABLE statement. You can use
this to apply any valid SAS format. The revised code calls
for values to be formatted with dollar signs and commas,
and eliminates the display of decimal spaces. The width
of 12 was chosen because the widest column label ("Long
Beach") is 10 characters wide, and we want an extra space
on either side of the label. When you specify a format for
the table values, you are also specifying the width of the
column that holds that value.



PROC TABULATE DATA=TEMP
FORMAT=DOLLAR12.;

CLASS BEDROOMS CITY;
VAR RENT;
TABLE BEDROOMS=’ ‘,

(CITY=’ ‘ ALL=’Overall’)*
RENT=’ ‘*MEAN=’ ‘
/ BOX='Average Rent';

RUN;
The revised output is shown below:
„ƒƒƒƒƒƒƒƒƒƒ…ƒƒƒƒƒƒƒƒƒƒƒƒ…ƒƒƒƒƒƒƒƒƒƒƒƒ…ƒƒƒƒƒƒƒƒƒƒƒƒ…ƒƒƒƒƒƒƒƒƒƒƒƒ†
‚Average   ‚            ‚    San     ‚            ‚            ‚
‚Rent      ‚  Portland  ‚ Francisco  ‚ Long Beach ‚  Overall   ‚
‡ƒƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒƒƒƒƒ‰
‚1 Bedroom ‚        $800‚      $2,064‚        $955‚      $1,180‚
‡ƒƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒƒƒƒƒ‰
‚2 Bedrooms‚      $1,050‚      $2,484‚      $1,243‚      $1,471‚
Šƒƒƒƒƒƒƒƒƒƒ‹ƒƒƒƒƒƒƒƒƒƒƒƒ‹ƒƒƒƒƒƒƒƒƒƒƒƒ‹ƒƒƒƒƒƒƒƒƒƒƒƒ‹ƒƒƒƒƒƒƒƒƒƒƒƒŒ

� CREATING HTML OUTPUT

Once you know how to create TABULATE tables, it is a
simple matter to turn them into HTML pages that can be
posted on your web site.

Using Version 6, all you have to do is the HTML conver-
sion macros that come with your SAS software. Then,
you just add a macro call before and after your
TABULATE code and SAS will generate the HTML out-
put for you.

The Version 6 code is as follows:

%TAB2HTM (CAPTURE=ON, RUNMODE=B);
OPTIONS FORMCHAR='82838485868788898A8B8C'X;
PROC TABULATE DATA=TEMP

FORMAT=DOLLAR12.;
CLASS BEDROOMS CITY;
VAR RENT;
TABLE BEDROOMS=’ ‘,

(CITY=’ ‘ ALL=’Overall’)*
RENT=’ ‘*MEAN=’ ‘
/ BOX='Average Rent';

RUN;
%TAB2HTM(CAPTURE=OFF, RUNMODE=B,
OPENMODE=REPLACE, HTMLFILE=SAMPLE.HTML);

The output is shown below:

Under Version 8, the process of outputting a TABULATE
table to HTML is nearly identical. Instead of calling the
macro before and after your code, you call on the Output
Delivery System (ODS).

ODS HTML BODY='SAMPLE.HTML';
PROC TABULATE DATA=TEMP

FORMAT=DOLLAR12.;
CLASS BEDROOMS CITY;
VAR RENT;
TABLE BEDROOMS=’ ‘,

(CITY=’ ‘ ALL=’Overall’)*
RENT=’ ‘*MEAN=’ ‘
/ BOX='Average Rent';

RUN;
ODS HTML CLOSE;

The output is shown below:

You can see that the result is similar to the Version 6 ta-
ble, but it uses more colors, and is more stylish.

� CHANGING THE STYLE

If you’re using Version 8, you also have the option of
changing the look of your results. By adding a STYLE=
option to your ODS statement, you can change from the
default style (shown above) to one of the following styles.
The resulting output is shown below the code for each
style

ODS HTML BODY='SAMPLE.HTML'
STYLE=XXX;

The following examples show a few of the styles that ship
with Version 8.

STYLE=BARRETTSBLUE

STYLE=BRICK

STYLE=BROWN



STYLE=D3D

STYLE=MINIMAL

STYLE=STATDOC

� CONCLUSIONS

At this point, you should be comfortable with the basics
of producing a table using PROC TABULATE. You
should be able to produce a simple table with totals, be
able to clean it up a bit, and be able to create HTML out-
put.

This should be enough to get you going producing tables
with your own data. And now that you’re more comfort-
able with the procedure, you should be able to use the
TABULATE manual and other books and papers to learn
more advanced techniques.

� ACKNOWLEDGEMENTS

SAS is a registered trademark or trademark of SAS Insti-
tute Inc. in the USA and other countries. ® indicates USA
registration.

� CONTACTING THE AUTHOR

Please direct any questions or feedback to the author at:
info@laurenhaworth.com



The Utter “Simplicity?” of the TABULATE Procedure - The Final Chapter?
Dan Bruns, Tennessee Valley Authority, Chattanooga, TN

IN THE BEGINNING
Well, here we are again TABULATE fans. I believe I have
exhausted this topic (to DEATH some folks say), so I thought I
would put it to rest in this FINAL CHAPTER with a paper on the
truly advanced features of the TABULATE procedure.  The
problem is these advanced features are anything but simple.  In
this tutorial we look at some simpler advanced features, like
FORMCHAR, column and row titling, and formatting, and then
the one that is really a bear to understand – percentages (PCTN
and PCTSUM).  Some of the new Version 8 features will also be
covered.

The output from a CONTENTS procedure below is just so you
know a little about the dataset we will be working with.

                           CONTENTS PROCEDURE

 Data Set Name: SASDATA.CLASS           Observations:         27
 Member Type:   DATA                    Variables:            5
 Engine:        V60x                    Indexes:              0
 Created:       9:14 Wednesday, Sep 19  Observation Length:   48
 Last Modified: 11:40 Tuesday, Feb 5    Deleted Observations: 0
 Data Set Type:                         Compressed:           NO
                                        Reuse Space:          NO

    -----Alphabetic List of Variables and Attributes-----
 #   Variable   Type   Len   Pos   Format    Label
 ------------------------------------------------------------
 4   DATE       Num      8    32   DATE5.    Class Date
 2   LOC        Char     1    25             Location
 1   NAME       Char    25     0
 3   ORG        Char     6    26             Org
 5   SCORE      Num      8    40   5.1       Final Exam Score

SOME BASICS
Here are few basic examples and their totally different looking
outputs by simply changing where and how the variables are
coded.  If these are beyond your current proficiency with
TABULATE, see my Beginning Tutorial paper in the SUGI 16
and 20 proceedings and my Advanced Tutorial paper in the
SUGI 21 proceedings and hang on to your hat because I'm
starting from here and assuming you understand this much.

PROC TABULATE  DATA=CLASS ;
    CLASS ORG LOC DATE;
    VAR   SCORE;
    TABLE  ORG, LOC*SCORE*(N MEAN)*F=5.1;

         -----------------------------------------------------
         |               |             Location              | | | | | |
         |               |-----------------------------------|
         |               |     A     |     B     |     C     |
         |               |-----------+-----------+-----------|
         |               |Final Exam |Final Exam |Final Exam |
         |               |   Score   |   Score   |   Score   |
         |               |-----------+-----------+-----------|
         |               |  N  |MEAN |  N  |MEAN |  N  |MEAN |
         |---------------+-----+-----+-----+-----+-----+-----|
         |Org            |     |     |     |     |     |     |
         |---------------|     |     |     |     |     |     |
         |Energy         |  4.0| 84.4|  2.0| 96.4|    .|    .|
         |---------------+-----+-----+-----+-----+-----+-----|
         |Mgt S          |  2.0| 73.4|  1.0| 85.4|  7.0| 84.8|
         |---------------+-----+-----+-----+-----+-----+-----|
         |Power          |  4.0| 89.0|  2.0| 70.7|  3.0| 79.8|
         -----------------------------------------------------

Here you see a column for the count (N) and mean of SCORE
for each location.

 TABLE  ORG*LOC,
          SCORE*(N MEAN MAX PCTN)*F=5.1;

               -----------------------------------------
               |               |   Final Exam Score    | | | |
               |               |-----------------------|
               |               |  N  |MEAN | MAX |PCTN |
               |---------------+-----+-----+-----+-----|
               |Org    |Locati-|     |     |     |     |
               |-------|on     |     |     |     |     |
               |Energy |-------|     |     |     |     |
               |       |A      |  4.0| 84.4| 93.0| 16.0|
               |       |-------+-----+-----+-----+-----|
               |       |B      |  2.0| 96.4|100.0|  8.0|
               |-------+-------+-----+-----+-----+-----|
               |Mgt S  |A      |  2.0| 73.4| 99.4|  8.0|
               |       |-------+-----+-----+-----+-----|
               |       |B      |  1.0| 85.4| 85.4|  4.0|
               |       |-------+-----+-----+-----+-----|
               |       |C      |  7.0| 84.8| 98.3| 28.0|
               |-------+-------+-----+-----+-----+-----|
               |Power  |A      |  4.0| 89.0| 99.1| 16.0|
               |       |-------+-----+-----+-----+-----|
               |       |B      |  2.0| 70.7| 90.0|  8.0|
               |       |-------+-----+-----+-----+-----|
               |       |C      |  3.0| 79.8| 93.6| 12.0|
               -----------------------------------------

Here are the same numbers from the previous output. Location
was simply moved from the column expression to the row
expression.

TABLE  ORG LOC,
          SCORE*(N MEAN MAX PCTN)*F=5.1;

               -----------------------------------------
               |               |   Final Exam Score    | | | |
               |               |-----------------------|
               |               |  N  |MEAN | MAX |PCTN |
               |---------------+-----+-----+-----+-----|
               |Org            |     |     |     |     |
               |---------------|     |     |     |     |
               |Energy         |    6| 88.4|100.0| 24.0|
               |---------------+-----+-----+-----+-----|
               |Mgt S          |   10| 82.6| 99.4| 40.0|
               |---------------+-----+-----+-----+-----|
               |Power          |    9| 81.9| 99.1| 36.0|
               |---------------+-----+-----+-----+-----|
               |Location       |     |     |     |     |
               |---------------|     |     |     |     |
               |A              |   10| 84.0| 99.4| 40.0|
               |---------------+-----+-----+-----+-----|
               |B              |    5| 83.9|100.0| 20.0|
               |---------------+-----+-----+-----+-----|
               |C              |   10| 83.3| 98.3| 40.0|
               -----------------------------------------

Here are two tables in one:  the N, MEAN, MAX, and PCTN
statistics in the column expression allows you to use the row
expression to see a summary by two different variables (ORG
and LOC) in one table.

TABLE  ORG ALL,
          (LOC ALL)*SCORE*(N MEAN)*F=5.1;

  ------------------------------------------------------------------
  |                |             Location              |           | | | | | | |
  |                |-----------------------------------|           |
  |                |     A     |     B     |     C     |    ALL    |
  |                |-----------+-----------+-----------+-----------|
  |                |Final Exam |Final Exam |Final Exam |Final Exam |
  |                |   Score   |   Score   |   Score   |   Score   |
  |                |-----------+-----------+-----------+-----------|
  |                |  N  |MEAN |  N  |MEAN |  N  |MEAN |  N  |MEAN |
  |----------------+-----+-----+-----+-----+-----+-----+-----+-----|
  |Org             |     |     |     |     |     |     |     |     |
  |----------------|     |     |     |     |     |     |     |     |
  |Energy          |    4| 84.4|    2| 96.4|    .|    .|    6| 88.4|
  |----------------+-----+-----+-----+-----+-----+-----+-----+-----|
  |Mgt S           |    2| 73.4|    1| 85.4|    7| 84.8|   10| 82.6|
  |----------------+-----+-----+-----+-----+-----+-----+-----+-----|
  |Power           |    4| 89.0|    2| 70.7|    3| 79.8|    9| 81.9|
  |----------------+-----+-----+-----+-----+-----+-----+-----+-----|
  |ALL             |   10| 84.0|    5| 83.9|   10| 83.3|   25| 83.7|
  ------------------------------------------------------------------

What in the world happened in this last example?
There's no variable named ALL in the dataset?



That's right, but ALL is kind of like a built-in class variable that
can be specified accumulate totals for the entire row and/or
column.   In the above example it was used in the row expression
to produce a set of totals after the ORG rows.  If you placed it
before the ORG variable (i.e. ALL ORG) you would get the totals
as the first row of the table.  The use of ALL in the column
expression caused it to produce a column after the LOC
columns.  Also notice since it was grouped with LOC and then
nested, the column contains the totals for all locations using the
same statistics.

You may not be able to tell from this example, but TABULATE
computes true statistics (i.e. MEAN above). That means it DOES
NOT add-up the means from the tables and then divide by the
number of table entries; it accumulates each observations value
and divides by the number of observations.

TITLES AND LABELS
You can see that to have TABULATE put descriptive titles or
labels for the variables you simply need to assign meaningful
labels to them.  You can either do this in earlier steps that create
the dataset or with a LABEL statement in the PROC step. But
what about the statistics and ALL?  Simply attach a descriptive
label to ANY variable or statistic right in the TABLE statement.
Follow it with an equals sign (=) and a quoted label ('This is a
Label') just like you do in a LABEL statement.  Or if you want to
use a certain label for every use of the statistic, use the
KEYLABEL statement which looks exactly like the LABEL
statement except you use the statistic's name instead of a
variable name.  Here is an example of doing both.

 TABLE
        ORG ALL,
        (LOC ALL='Row Totals')
            *SCORE*(N MEAN)*F=5.1
        / BOX='SESUG 2K';
 KEYLABEL
        N='Count'
        MEAN='Mean'
        ALL='Total' ;

      ------------------------------------------------------------
      |SESUG 2K   |       Location                    |           | | | | | | |
      |          |-----------------------------------|           |
      |          |     A     |     B     |     C     |Row Totals |
      |          |-----------+-----------+-----------+-----------|
      |          |Final Exam |Final Exam |Final Exam |Final Exam |
      |          |   Score   |   Score   |   Score   |   Score   |
      |          |-----------+-----------+-----------+-----------|
      |          |Count| Avg |Count| Avg |Count| Avg |Count| Avg |
      |----------+-----+-----+-----+-----+-----+-----+-----+-----|
      |Department|     |     |     |     |     |     |     |     |
      |----------|     |     |     |     |     |     |     |     |
      |Energy    |    4| 84.4|    2| 96.4|    .|    .|    6| 88.4|
      |----------+-----+-----+-----+-----+-----+-----+-----+-----|
      |Mgt S     |    2| 73.4|    1| 85.4|    7| 84.8|   10| 82.6|
      |----------+-----+-----+-----+-----+-----+-----+-----+-----|
      |Power     |    4| 89.0|    2| 70.7|    3| 79.8|    9| 81.9|
      |----------+-----+-----+-----+-----+-----+-----+-----+-----|
      |Total     |   10| 84.0|    5| 83.9|   10| 83.3|   25| 83.7|
      ------------------------------------------------------------

The above example has another tables option specified (BOX=)
that specifies what to put in the upper-left corner box of the table.

In the following example we added the MISSING and NOSEPS
options to the PROC statement to have TABULATE treat missing
values as a valid category (which it does not do by default) and
remove the separation lines between the rows. I also specified
some table options: BOX=SCORE to label the upper-left box with
the SCORE variable's label; and MISSTEXT='None' to label
missing values in the tables with the text 'None' instead of the
standard period.

PROC TABULATE  DATA=CLASS
            MISSING  NOSEPS ;
    CLASS ORG LOC DATE;
    VAR   SCORE;
/*   TITLES & LABELS */
TABLE
    ORG ALL='--- Totals ---',
    (LOC ALL='Row Totals')
         *(SCORE*MEAN=' '*F=5.1)
    / BOX=SCORE  ROW=FLOAT
            MISSTEXT='None';

             ------------------------------------------------
             |Final Exam      |       Location        | Row | | | |
             |Averages        |-----------------------|Tota-|
             |                |     |  A  |  B  |  C  | ls  |
             |                |-----+-----+-----+-----+-----|
             |                |Final|Final|Final|Final|Final|
             |                |Exam |Exam |Exam |Exam |Exam |
             |                |Aver-|Aver-|Aver-|Aver-|Aver-|
             |                |ages |ages |ages |ages |ages |
             |----------------+-----+-----+-----+-----+-----|
             |Department      |     |     |     |     |     |
             |                | None| None| None| None| None|
             |Energy          | None| 84.4| 96.4| None| 88.4|
             |Mgt S           | None| 73.4| 85.4| 84.8| 82.6|
             |Power           | None| 89.0| 70.7| 79.8| 81.9|
             |--- Totals ---  | None| 84.0| 83.9| 83.3| 83.7|
             ------------------------------------------------

Notice that since the MEAN label was blank and the
ROW=FLOAT was specified, that no space was wasted for it.
Now as one final farewell to labeling, a table that doesn't look like
a table.

PROC TABULATE  DATA=CLASS
          MISSING  NOSEPS
          FORMCHAR='               ';
    CLASS ORG LOC DATE;
    VAR   SCORE;
    TABLE
        ORG ALL='--- Totals ---',
        (LOC ALL='Row Totals')
            *(SCORE=' '*MEAN=' '*F=6.1)
        / BOX=SCORE  ROW=FLOAT
               MISSTEXT='None';

           Final Exam                Location
           Averages                                      Dept
                                     A      B      C    Totals

           Department
                              None   None   None   None   None
           Energy             None   84.4   96.4   None   88.4
           Mgt S              None   73.4   85.4   84.8   82.6
           Power              None   89.0   70.7   79.8   81.9
           --- Totals ---     None   84.0   83.9   83.3   83.7

By simply adding the FORMCHAR= option to the PROC
statement and specifying 16 blanks, you remove all the lines
from around the table.  If you have access to a laser printer you
can also use characters that form "solid" lines around your table.
This example is the specification needed on an OS/390
mainframe (MVS).

PROC TABULATE  DATA=CLASS
    MISSING  NOSEPS

FORMCHAR='FABFACCCBCEB8FECABCB
              BB4E7E4F60AFE04C6E40'X ;
    CLASS ORG LOC DATE;
    VAR   SCORE;
    TABLE
        ORG ALL='--- Totals ---',
        (LOC ALL='Row Totals')
            *(SCORE=' '*MEAN=' '*F=6.1)
        / BOX=SCORE  ROW=FLOAT
               MISSTEXT='None';



SUBTOTALING
The only real trick to doing subtotaling is the nesting of ALL in
the row expression.

TABLE
   ORG*(LOC ALL='Loc Subtotal') ALL='Org Total',

SCORE='Average Final Exam Score'
*MEAN=' '*F=6.1

/RTS=25 BOX=SCORE
        ROW=FLOAT MISSTEXT='None';

                     --------------------------------
                     |Final Exam Averages    | Avg  |
                     |-----------------------+------|
                     |Department |Location   |      |
                     |           |-----------|      |
                     |           |A          |  None|
                     |           |-----------+------|
                     |           |**Subtotal |  None|
                     |-----------+-----------+------|
                     |Energy     |Location   |      |
                     |           |-----------|      |
                     |           |           |  None|
                     |           |-----------+------|
                     |           |A          |  84.4|
                     |           |-----------+------|
                     |           |B          |  96.4|
                     |           |-----------+------|
                     |           |**Subtotal |  88.4|
                     |-----------+-----------+------|
                     |Mgt S      |Location   |      |
                     |           |-----------|      |
                     |           |A          |  73.4|
                     |           |-----------+------|
                     |           |B          |  85.4|
                     |           |-----------+------|
                     |           |C          |  84.8|
                     |           |-----------+------|
                     |           |**Subtotal |  82.6|
                     |-----------+-----------+------|
                     |Power      |Location   |      |
                     |           |-----------|      |
                     |           |A          |  89.0|
                     |           |-----------+------|
                     |           |B          |  70.7|
                     |           |-----------+------|
                     |           |C          |  79.8|
                     |           |-----------+------|
                     |           |**Subtotal |  81.9|
                     |-----------------------+------|
                     |Dept Total             |  83.7|
                     --------------------------------

Above we see the nesting of (LOC ALL) in ORG.  That tells
TABULATE to concatenate an ALL row after all the LOC rows for
each ORG value.

PERCENTAGES
In its simplest form the PCTN or PCTSUM is just another
statistic like N or MEAN you can request.

PROC TABULATE  DATA=CLASS   FORMAT=6.1 ;
    CLASS ORG LOC DATE;
    VAR   SCORE;
    TABLE  ORG, (LOC ALL)*(N*F=3.0 PCTN);

     -------------------------------------------------------------
     |               |            Location            |          | | | | | | |
     |               |--------------------------------|          |
     |               |    A     |    B     |    C     |   ALL    |
     |               |----------+----------+----------+----------|
     |               | N | PCTN | N | PCTN | N | PCTN | N | PCTN |
     |---------------+---+------+---+------+---+------+---+------|
     |Org            |   |      |   |      |   |      |   |      |
     |---------------|   |      |   |      |   |      |   |      |
     |Energy         |  6|  22.2|  2|   7.4|  .|     .|  8|  29.6|
     |---------------+---+------+---+------+---+------+---+------|
     |Mgt S          |  2|   7.4|  1|   3.7|  7|  25.9| 10|  37.0|
     |---------------+---+------+---+------+---+------+---+------|
     |Power          |  4|  14.8|  2|   7.4|  3|  11.1|  9|  33.3|
     -------------------------------------------------------------

Unless specified, the percentage is computed based on all the
observations in the dataset.  Notice that the PCTN under the ALL
column does not add up to 100 due to rounding.

To specify how the percentage is computed you simply attach a

denominator specification to PCTN or PCTSUM using the
inequality signs less-than (<) and greater-than (>). The real trick
to understanding how the denominator specification works
is to remember you are telling TABULATE what the
denominator is to divide into the N or SUM value, or what
you are dividing by.

 TABLE  ORG, (LOC ALL)*(N*F=3.0 PCTN<ORG>);
     -------------------------------------------------------------
     |               |            Location            |          | | | | | | |
     |               |--------------------------------|          |
     |               |    A     |    B     |    C     |   ALL    |
     |               |----------+----------+----------+----------|
     |               | N | PCTN | N | PCTN | N | PCTN | N | PCTN |
     |---------------+---+------+---+------+---+------+---+------|
     |Org            |   |      |   |      |   |      |   |      |
     |---------------|   |      |   |      |   |      |   |      |
     |Energy         |  6|  50.0|  2|  40.0|  .|     .|  8|  29.6|
     |---------------+---+------+---+------+---+------+---+------|
     |Mgt S          |  2|  16.7|  1|  20.0|  7|  70.0| 10|  37.0|
     |---------------+---+------+---+------+---+------+---+------|
     |Power          |  4|  33.3|  2|  40.0|  3|  30.0|  9|  33.3|
     -------------------------------------------------------------

The above example shows the row expression in the
denominator specification.  Notice that none of the counts (N)
have changed but the PCTN values have because the
denominator has changed from the entire dataset (27
observations) to all the observations for ORG within that columns
(LOC) value.  Observe that since PCTN is nested in LOC that the
denominator specification is saying to divide each cell under that
location by the total number of observations that are in that
location.  So why do you specify the row expression?  Because
that is simply telling TABULATE which number of observations to
total.  So, in the above example, we see that location A cells are
divided by 12, the total of all the ORG observations in that
location.  For location B, we see each cell is divided by 5, the
total of all the ORG observations in that location.  And for
location C, we see each cell is divided by 10, the total of all the
ORG observations in that location.  And for the ALL column we
see each cell is divided by the total of all the ORG observations
in all the locations.

Here is a handy rule-of-thumb:

  To get percentages by column, use the row expression;
  to get percentages by row, use the column expression.

 TABLE  ORG,
       (LOC ALL)*(N*F=3.0 PCTN<LOC ALL>);

     -------------------------------------------------------------
     |               |            Location            |          | | | | | | |
     |               |--------------------------------|          |
     |               |    A     |    B     |    C     |   ALL    |
     |               |----------+----------+----------+----------|
     |               | N | PCTN | N | PCTN | N | PCTN | N | PCTN |
     |---------------+---+------+---+------+---+------+---+------|
     |Org            |   |      |   |      |   |      |   |      |
     |---------------|   |      |   |      |   |      |   |      |
     |Energy         |  6|  75.0|  2|  25.0|  .|     .|  8| 100.0|
     |---------------+---+------+---+------+---+------+---+------|
     |Mgt S          |  2|  20.0|  1|  10.0|  7|  70.0| 10| 100.0|
     |---------------+---+------+---+------+---+------+---+------|
     |Power          |  4|  44.4|  2|  22.2|  3|  33.3|  9| 100.0|
     -------------------------------------------------------------

Notice in the above example that the entire column expression is
coded as the denominator specification.  If you don't, strange
results or even errors can occur.  As before, you are simply
telling TABULATE which number of observations to total.  So, in
the above example, we see that organization 'Energy' cells are
divided by 8, the total of all the LOC observations in that
organization.   For organization 'Mgt S' we see each cell is
divided by 10, the total of all the LOC observations in that
organization.  For organization 'Power' we see each cell is
divided by 9, the total of all the LOC observations in that
organization.  And for the ALL column we see each cell is
divided by the total of all the LOC observations in that
organization, thus the 100 percent.



 TABLE  ORG,
      (LOC ALL)*SCORE*
          (SUM*F=5.1 PCTSUM<LOC ALL>);

---------------------------------------------------------------------
 |               |               Location               |            | | | | | | |
 |               |--------------------------------------|            |
 |               |     A      |     B      |     C      |    ALL     |
 |               |------------+------------+------------+------------|
 |               | Final Exam | Final Exam | Final Exam | Final Exam |
 |               |   Score    |   Score    |   Score    |   Score    |
 |               |------------+------------+------------+------------|
 |               | SUM |PCTSUM| SUM |PCTSUM| SUM |PCTSUM| SUM |PCTSUM|
 |---------------+-----+------+-----+------+-----+------+-----+------|
 |Org            |     |      |     |      |     |      |     |      |
 |---------------|     |      |     |      |     |      |     |      |
 |Energy         |337.6|  63.7|192.8|  36.3|    .|     .|530.4| 100.0|
 |---------------+-----+------+-----+------+-----+------+-----+------|
 |Mgt S          |146.7|  17.8| 85.4|  10.3|593.5|  71.9|825.6| 100.0|
 |---------------+-----+------+-----+------+-----+------+-----+------|
 |Power          |356.2|  48.3|141.3|  19.2|239.4|  32.5|736.9| 100.0|
 ---------------------------------------------------------------------

This example is just to show that the PCTSUM works in the
same way. (The summing of exams scores doesn't seem to
make much sense, but it is the only numeric variable in the
dataset.)

The following examples show that the same rules apply for
nesting variables and using ALL.

PROC TABULATE  DATA=CLASS
           FORMAT=6.1 NOSEPS;
    CLASS ORG LOC DATE;
    VAR   SCORE;
    TABLE  ORG*DATE,
         (LOC ALL)*(N*F=3.0 PCTN<ORG*DATE>);

     -------------------------------------------------------------
     |               |            Location            |          | | | | | | |
     |               |--------------------------------|          |
     |               |    A     |    B     |    C     |   ALL    |
     |               |----------+----------+----------+----------|
     |               | N | PCTN | N | PCTN | N | PCTN | N | PCTN |
     |---------------+---+------+---+------+---+------+---+------|
     |Org     Class  |   |      |   |      |   |      |   |      |
     |Energy  Date   |   |      |   |      |   |      |   |      |
     |        07APR  |  1|   8.3|  .|     .|  .|     .|  1|   3.7|
     |        03MAY  |  1|   8.3|  1|  20.0|  .|     .|  2|   7.4|
     |        22JUN  |  1|   8.3|  .|     .|  .|     .|  1|   3.7|
     |        12OCT  |  3|  25.0|  1|  20.0|  .|     .|  4|  14.8|
     |Mgt S   07APR  |  1|   8.3|  .|     .|  .|     .|  1|   3.7|
     |        03MAY  |  .|     .|  1|  20.0|  .|     .|  1|   3.7|
     |        22JUN  |  .|     .|  .|     .|  4|  40.0|  4|  14.8|
     |        12OCT  |  1|   8.3|  .|     .|  3|  30.0|  4|  14.8|
     |Power   07APR  |  1|   8.3|  2|  40.0|  .|     .|  3|  11.1|
     |        03MAY  |  1|   8.3|  .|     .|  .|     .|  1|   3.7|
     |        22JUN  |  1|   8.3|  .|     .|  3|  30.0|  4|  14.8|
     |        12OCT  |  1|   8.3|  .|     .|  .|     .|  1|   3.7|
     -------------------------------------------------------------

 TABLE  ORG*DATE,
        (LOC ALL)*(N*F=3.0 PCTN<LOC ALL>);

     -------------------------------------------------------------
     |               |            Location            |          | | | | | | |
     |               |--------------------------------|          |
     |               |    A     |    B     |    C     |   ALL    |
     |               |----------+----------+----------+----------|
     |               | N | PCTN | N | PCTN | N | PCTN | N | PCTN |
     |---------------+---+------+---+------+---+------+---+------|
     |Org     Class  |   |      |   |      |   |      |   |      |
     |Energy  Date   |   |      |   |      |   |      |   |      |
     |        07APR  |  1| 100.0|  .|     .|  .|     .|  1| 100.0|
     |        03MAY  |  1|  50.0|  1|  50.0|  .|     .|  2| 100.0|
     |        22JUN  |  1| 100.0|  .|     .|  .|     .|  1| 100.0|
     |        12OCT  |  3|  75.0|  1|  25.0|  .|     .|  4| 100.0|
     |Mgt S   07APR  |  1| 100.0|  .|     .|  .|     .|  1| 100.0|
     |        03MAY  |  .|     .|  1| 100.0|  .|     .|  1| 100.0|
     |        22JUN  |  .|     .|  .|     .|  4| 100.0|  4| 100.0|
     |        12OCT  |  1|  25.0|  .|     .|  3|  75.0|  4| 100.0|
     |Power   07APR  |  1|  33.3|  2|  66.7|  .|     .|  3| 100.0|
     |        03MAY  |  1| 100.0|  .|     .|  .|     .|  1| 100.0|
     |        22JUN  |  1|  25.0|  .|     .|  3|  75.0|  4| 100.0|
     |        12OCT  |  1| 100.0|  .|     .|  .|     .|  1| 100.0|
     -------------------------------------------------------------

 TABLE  ORG*DATE ALL,
      (LOC ALL)*
           *(N*F=3.0 PCTN<ORG*DATE ALL>);

     -------------------------------------------------------------
     |               |            Location            |          | | | | | | |
     |               |--------------------------------|          |
     |               |    A     |    B     |    C     |   ALL    |
     |               |----------+----------+----------+----------|
     |               | N | PCTN | N | PCTN | N | PCTN | N | PCTN |
     |---------------+---+------+---+------+---+------+---+------|
     |Org     Class  |   |      |   |      |   |      |   |      |
     |Energy  Date   |   |      |   |      |   |      |   |      |
     |        07APR  |  1|   8.3|  .|     .|  .|     .|  1|   3.7|
     |        03MAY  |  1|   8.3|  1|  20.0|  .|     .|  2|   7.4|
     |        22JUN  |  1|   8.3|  .|     .|  .|     .|  1|   3.7|
     |        12OCT  |  3|  25.0|  1|  20.0|  .|     .|  4|  14.8|
     |Mgt S   07APR  |  1|   8.3|  .|     .|  .|     .|  1|   3.7|
     |        03MAY  |  .|     .|  1|  20.0|  .|     .|  1|   3.7|
     |        22JUN  |  .|     .|  .|     .|  4|  40.0|  4|  14.8|
     |        12OCT  |  1|   8.3|  .|     .|  3|  30.0|  4|  14.8|
     |Power   07APR  |  1|   8.3|  2|  40.0|  .|     .|  3|  11.1|
     |        03MAY  |  1|   8.3|  .|     .|  .|     .|  1|   3.7|
     |        22JUN  |  1|   8.3|  .|     .|  3|  30.0|  4|  14.8|
     |        12OCT  |  1|   8.3|  .|     .|  .|     .|  1|   3.7|
     |ALL            | 12| 100.0|  5| 100.0| 10| 100.0| 27| 100.0|
     -------------------------------------------------------------

The same rules apply for denominator specifications that are
NOT the entire expression.

 TABLE  ORG*DATE,
        (LOC ALL)*(N*F=3.0 PCTN<DATE>);

     -------------------------------------------------------------
     |               |            Location            |          | | | | | | |
     |               |--------------------------------|          |
     |               |    A     |    B     |    C     |   ALL    |
     |               |----------+----------+----------+----------|
     |               | N | PCTN | N | PCTN | N | PCTN | N | PCTN |
     |---------------+---+------+---+------+---+------+---+------|
     |Org     Class  |   |      |   |      |   |      |   |      |
     |Energy  Date   |   |      |   |      |   |      |   |      |
     |        07APR  |  1|  16.7|  .|     .|  .|     .|  1|  12.5|
     |        03MAY  |  1|  16.7|  1|  50.0|  .|     .|  2|  25.0|
     |        22JUN  |  1|  16.7|  .|     .|  .|     .|  1|  12.5|
     |        12OCT  |  3|  50.0|  1|  50.0|  .|     .|  4|  50.0|
     |Mgt S   07APR  |  1|  50.0|  .|     .|  .|     .|  1|  10.0|
     |        03MAY  |  .|     .|  1| 100.0|  .|     .|  1|  10.0|
     |        22JUN  |  .|     .|  .|     .|  4|  57.1|  4|  40.0|
     |        12OCT  |  1|  50.0|  .|     .|  3|  42.9|  4|  40.0|
     |Power   07APR  |  1|  25.0|  2| 100.0|  .|     .|  3|  33.3|
     |        03MAY  |  1|  25.0|  .|     .|  .|     .|  1|  11.1|
     |        22JUN  |  1|  25.0|  .|     .|  3| 100.0|  4|  44.4|
     |        12OCT  |  1|  25.0|  .|     .|  .|     .|  1|  11.1|
     -------------------------------------------------------------

With the denominator specification of DATE, TABULATE will use
the total number of observations for all dates in that column as
the denominator.  But since DATE is nested within ORG, it will
only use those observations that belong to that ORG. So, in the
above example the total number of observations for location A in
ORG Energy is 6, which becomes the denominator for computing
PCTN for all those dates. You can also see the total number of
observations for location B in ORG 'Mgt S' is 1, which becomes
the denominator for computing PCTN for all those dates, thus
the 100 percent on 03MAY.  The total number of observations
for the ALL column in ORG 'Power' is 9, which becomes the
denominator for computing PCTN for all those dates.

TABLE  ORG*DATE,
        (LOC ALL)*(N*F=3.0 PCTN<ORG>);

     -------------------------------------------------------------
     |               |            Location            |          | | | | | | |
     |               |--------------------------------|          |
     |               |    A     |    B     |    C     |   ALL    |
     |               |----------+----------+----------+----------|
     |               | N | PCTN | N | PCTN | N | PCTN | N | PCTN |
     |---------------+---+------+---+------+---+------+---+------|
     |Org     Class  |   |      |   |      |   |      |   |      |
     |Energy  Date   |   |      |   |      |   |      |   |      |
     |        07APR  |  1|  33.3|  .|     .|  .|     .|  1|  20.0|
     |        03MAY  |  1|  50.0|  1|  50.0|  .|     .|  2|  50.0|
     |        22JUN  |  1|  50.0|  .|     .|  .|     .|  1|  11.1|
     |        12OCT  |  3|  60.0|  1| 100.0|  .|     .|  4|  44.4|
     |Mgt S   07APR  |  1|  33.3|  .|     .|  .|     .|  1|  20.0|
     |        03MAY  |  .|     .|  1|  50.0|  .|     .|  1|  25.0|
     |        22JUN  |  .|     .|  .|     .|  4|  57.1|  4|  44.4|
     |        12OCT  |  1|  20.0|  .|     .|  3| 100.0|  4|  44.4|
     |Power   07APR  |  1|  33.3|  2| 100.0|  .|     .|  3|  60.0|
     |        03MAY  |  1|  50.0|  .|     .|  .|     .|  1|  25.0|
     |        22JUN  |  1|  50.0|  .|     .|  3|  42.9|  4|  44.4|
     |        12OCT  |  1|  20.0|  .|     .|  .|     .|  1|  11.1|
     -------------------------------------------------------------

With the denominator specification of ORG, TABULATE will use



the total number of observations for all organizations in that
column as the denominator.  But since ORG is nested with
DATE, it will only use those observations that belong to that
DATE. So, in the above example the total number of
observations for location A with a date of 07APR is 3, which
becomes the denominator for computing PCTN for that date in
every ORG in that location, thus the 33.3 percent for each one
with a count of 1.  The total number of observations for location
A with a date of 12OCT is 5, which becomes the     denominator
for computing PCTN for that date in every ORG in that location,
thus the 20 percent for each one with a count of 1.  The total
number of observations for location B with a date of 03MAY is 2,
which becomes the denominator for computing PCTN for that
date in every ORG in that location, thus the 50 percent for each
one with a count of 1.  The total number of observations for the
ALL column with a date of 03MAY is 4, which becomes the
denominator for computing PCTN for that date in every ORG,
thus the 25 percent for each one with a count of 1.

The ALL in the denominator specification gave me a real hard
time at first until I discovered it is really only needed to satisfy
the table expression expansion.  Typically ALL is used to do
some sort of totaling and is thus concatenated not nested.  So,
all (ha! ha!) you have to do is include it in your denominator as
shown below.

 TABLE  ORG*DATE ALL,
        (LOC ALL)*(N*F=3.0 PCTN<ORG ALL>);

     -------------------------------------------------------------
     |               |            Location            |          | | | | | | |
     |               |--------------------------------|          |
     |               |    A     |    B     |    C     |   ALL    |
     |               |----------+----------+----------+----------|
     |               | N | PCTN | N | PCTN | N | PCTN | N | PCTN |
     |---------------+---+------+---+------+---+------+---+------|
     |Org     Class  |   |      |   |      |   |      |   |      |
     |Energy  Date   |   |      |   |      |   |      |   |      |
     |        07APR  |  1|  33.3|  .|     .|  .|     .|  1|  20.0|
     |        03MAY  |  1|  50.0|  1|  50.0|  .|     .|  2|  50.0|
     |        22JUN  |  1|  50.0|  .|     .|  .|     .|  1|  11.1|
     |        12OCT  |  3|  60.0|  1| 100.0|  .|     .|  4|  44.4|
     |Mgt S   07APR  |  1|  33.3|  .|     .|  .|     .|  1|  20.0|
     |        03MAY  |  .|     .|  1|  50.0|  .|     .|  1|  25.0|
     |        22JUN  |  .|     .|  .|     .|  4|  57.1|  4|  44.4|
     |        12OCT  |  1|  20.0|  .|     .|  3| 100.0|  4|  44.4|
     |Power   07APR  |  1|  33.3|  2| 100.0|  .|     .|  3|  60.0|
     |        03MAY  |  1|  50.0|  .|     .|  .|     .|  1|  25.0|
     |        22JUN  |  1|  50.0|  .|     .|  3|  42.9|  4|  44.4|
     |        12OCT  |  1|  20.0|  .|     .|  .|     .|  1|  11.1|
     |ALL            | 12| 100.0|  5| 100.0| 10| 100.0| 27| 100.0|
     -------------------------------------------------------------

If you leave it out of the denominator specification, you will get
the messages:

    ERROR: PCTN base is not in table.
    ERROR: A PCTN crossing has no denominator.

Where the ALL gets real complicated is when you nest the ALLs
in groupings, then you will need to expand the "crossings" as the
SAS manuals indicate to be sure you get the proper
denominator.

To get a better feel for the use of percentages, let's use the
subtotaling example from earlier and add a subtotal percentage.

TABLE
   ORG*(LOC ALL='Loc Subtotal') ALL='Org Total',
   SCORE*(SUM*F=6.1 PCTSUM<LOC ALL>)
   / RTS=25 BOX=SCORE
     ROW=FLOAT MISSTEXT='None';

                ---------------------------------------
                |Final Exam Score       | Final Exam  | |
                |                       |    Score    |
                |                       |-------------|
                |                       | SUM  |PCTSUM|
                |-----------------------+------+------|
                |Org         Location   |      |      |
                |Energy      A          | 337.6|  63.7|
                |            B          | 192.8|  36.3|
                |            Loc        |      |      |
                |            Subtotal   | 530.4| 100.0|
                |Mgt S       Location   |      |      |
                |            A          | 146.7|  17.8|
                |            B          |  85.4|  10.3|
                |            C          | 593.5|  71.9|
                |            Loc        |      |      |
                |            Subtotal   | 825.6| 100.0|
                |Power       Location   |      |      |
                |            A          | 356.2|  48.3|
                |            B          | 141.3|  19.2|
                |            C          | 239.4|  32.5|
                |            Loc        |      |      |
                |            Subtotal   | 736.9| 100.0|
                |Org Total              |2092.9| 100.0|
                ---------------------------------------

VERSION 8 FEATURES
Until I can fully understand (and try!) all the new features of
TABULATE in version 8, I will only discuss some of the more
interesting ones here.  Following are most of the new features.
Many of them are in response to the SASware Ballot.

The PROC TABULATE statement supports these new options:

� CLASSDATA= - specifies a data set that contains the
combinations of class variable values to include in analysis.

� CONTENTS= - allows you to name the link in the HTML
table of contents that points to the ODS output of the first
table produced.

� EXCLNPWGT - excludes observations with nonpositive
weights from the analysis.

� EXCLUSIVE - excludes from the analysis all class variable
combinations that are not in the CLASSDATA= data set.

� NOTRAP - disables trapping mathematical errors due to
overflow.

� OUT= - names the output data set.
� QMARKERS= - specifies the default number of markers to

use for the P2 (fixed space) quantile estimation method.
� QMETHOD - specifies the method to process the input data

to compute quantiles.
� QNTLDEF= - specifies the mathematical definition used to

compute quantiles.
� TRAP - enables trapping mathematical errors due to

overflow.

TABULATE now supports multiple CLASS statements and the
following new options:

� ASCENDING - specifies to sort the class variable levels in
ascending order.

� DESCENDING - specifies to sort the class variable levels in
descending order.

� EXCLUSIVE - excludes from the analysis all class variable
values that are not found in the preloaded range of user-
defined formats.

� GROUPINTERNAL - specifies not to apply formats to the
class variables when TABULATE sorts the values to create
combinations of class variables.

� MISSING - considers missing values as valid class variable
levels.

� MLF - enables TABULATE to use the primary and
secondary format labels for a given range or overlapping
ranges to create the subgroup combinations when a
multilabel format is assigned to a class variable.

� ORDER= - specifies the sort order for the levels of the class
variables in the output.

� PRELOADFMT - specifies to preload all the formats for the



class variables.
� MLF - allows you to make use of multiple labels when a

multilabel format is assigned to a class variable in PROC
FORMAT.

TABULATE also supports multiple VAR statements.

In the TABLE statement, the following options have been
enhanced:

� CONDENSE - prints multiple logical pages on a physical
page.

� CONTENTS= - allows you to name the link in the HTML
table of contents that points to the ODS output of the table
produced using the TABLE statement.

� NOCONTINUED - suppresses the printing of the
"(Continued)" continuation message for tables that span
physical pages.

PROC TABULATE supports these new statistics that PROC
MEANS and SUMMARY also now supports:
� COLPCNT
� COLPCTSUM
� MEDIAN
� P1
� P5
� P10
� P90
� P95
� P99
� PAGEPCTN
� PAGEPCTSUM
� Q1
� Q3
� QRANGE
� REPPCTN
� REPPCTSUM
� ROWPCTN
� ROWPCTSUM

The first thing I had to try was some of the new statistics.

PROC TABULATE  DATA=CLASS   OUT=CLASSOUT
           FORMAT=5.1 NOSEPS;
    CLASS ORG LOC DATE;
    VAR   SCORE;

 TABLE  ORG*DATE all,
 SCORE*(LOC ALL)*(N*F=2. MEDIAN*F=5.1

 COLPCTN*F=3. REPPCTN*F=3. )
    / RTS=15 CONDENSE NOCONTINUED ;
    RUN;

---------------------------------------------------------------------------
|             |                     Final Exam Score                      | | | | | | | | | | | | | |
|             |-----------------------------------------------------------|
|             |                     Location                     |        |
|             |--------------------------------------------------|        |
|             |       A        |       B        |       C        |        |
|             |----------------+----------------+----------------|  All   |
|             |  |     |Co-|Re-|  |     |Co-|Re-|  |     |Co-|Re-|--------|
|             |  |Medi-|lP-|pP-|  |Medi-|lP-|pP-|  |Medi-|lP-|pP-|  |Medi-|
|             |N | an  |ctN|ctN|N | an  |ctN|ctN|N | an  |ctN|ctN|N | an  |
|-------------+--+-----+---+---+--+-----+---+---+--+-----+---+---+--+-----|
|Org    Class |  |     |   |   |  |     |   |   |  |     |   |   |  |     |
|Energy Date  |  |     |   |   |  |     |   |   |  |     |   |   |  |     |
|       03MAY | 1| 88.9| 10|  4| 1| 92.8| 20|  4| .|    .|  .|  .| 2| 90.9|
|       22JUN | 1| 69.9| 10|  4| .|    .|  .|  .| .|    .|  .|  .| 1| 69.9|
|       12OCT | 2| 89.4| 20|  8| 1|100.0| 20|  4| .|    .|  .|  .| 3| 93.0|
|Mgt S  07APR | 1| 99.4| 10|  4| .|    .|  .|  .| .|    .|  .|  .| 1| 99.4|
|       03MAY | .|    .|  .|  .| 1| 85.4| 20|  4| .|    .|  .|  .| 1| 85.4|
|       22JUN | .|    .|  .|  .| .|    .|  .|  .| 4| 87.7| 40| 16| 4| 87.7|
|       12OCT | 1| 47.3| 10|  4| .|    .|  .|  .| 3| 86.8| 30| 12| 4| 76.7|
|Power  07APR | 1| 99.1| 10|  4| 2| 70.7| 40|  8| .|    .|  .|  .| 3| 90.0|
|       03MAY | 1| 93.5| 10|  4| .|    .|  .|  .| .|    .|  .|  .| 1| 93.5|
|       22JUN | 1| 70.1| 10|  4| .|    .|  .|  .| 3| 81.2| 30| 12| 4| 75.7|
|       12OCT | 1| 93.5| 10|  4| .|    .|  .|  .| .|    .|  .|  .| 1| 93.5|
|All          |10| 91.0|100| 40| 5| 90.0|100| 20|10| 84.0|100| 40|25| 88.9|
---------------------------------------------------------------------------

                         -----------------------
                         |             | Final | |
                         |             | Exam  |
                         |             | Score |
                         |             |-------|
                         |             |  All  |
                         |             |-------|
                         |             |Co-|Re-|
                         |             |lP-|pP-|
                         |             |ctN|ctN|
                         |-------------+---+---|
                         |Org    Class |   |   |
                         |Energy Date  |   |   |
                         |       03MAY |  8|  8|
                         |       22JUN |  4|  4|
                         |       12OCT | 12| 12|
                         |Mgt S  07APR |  4|  4|
                         |       03MAY |  4|  4|
                         |       22JUN | 16| 16|
                         |       12OCT | 16| 16|
                         |Power  07APR | 12| 12|
                         |       03MAY |  4|  4|
                         |       22JUN | 16| 16|
                         |       12OCT |  4|  4|
                         |All          |100|100|
                         -----------------------

It is amazing that after all these years of SAS programmers
trying….and trying….and trying to figure out how to make the
@!#$%^**& TABULATE denominator specification work right,
they make a statistic to do it for you!

Let’s see what the output dataset looks like.

PROC CONTENTS  DATA=CLASSOUT;
RUN;

                            The CONTENTS Procedure

Data Set Name: SASUSER.CLASSOUT                    Observations:         31
Member Type:   DATA                                Variables:            10
Engine:        V8                                  Indexes:              0
Created:       8:53 Friday, October 13, 2000       Observation Length:   72
Last Modified: 8:53 Friday, October 13, 2000       Deleted Observations: 0
Protection:                                        Compressed:           NO
Data Set Type:                                     Sorted:               NO
Label:

             -----Alphabetic List of Variables and Attributes-----

   #   Variable         Type   Len   Pos   Format   Label
  -----------------------------------------------------------------------
   5   _PAGE_           Num      8     8            Page for Observation
   6   _TABLE_          Num      8    16            Table for Observation
   4   _TYPE_           Char     3    63            Type of Observation
   3   DATE             Num      8     0   DATE.    Class Date
   2   LOC              Char     1    62            Location
   1   ORG              Char     6    56            Org
   8   SCORE_Median     Num      8    32
   7   SCORE_N          Num      8    24
  10   SCORE_PctN_000   Num      8    48
   9   SCORE_PctN_010   Num      8    40



PROC PRINT  DATA=CLASSOUT;
RUN;

                                                                  S       S
                                                                  C       C
                                                          S       O       O
                                                          C       R       R
                                                          O       E       E
                                                          R       _       _
                                                          E       P       P
                                            _     S       _       c       c
                                 _     _    T     C       M       t       t
                                 T     P    A     O       e       N       N
                           D     Y     A    B     R       d       _       _
 O      O       L          A     P     G    L     E       i       0       0
 b      R       O          T     E     E    E     _       a       1       0
 s      G       C          E     _     _    _     N       n       0       0

 1    Energy    A    03MAY80    111    1    1     1     88.90     10      4
 2    Energy    B    03MAY80    111    1    1     1     92.80     20      4
 3    Energy    A    22JUN80    111    1    1     1     69.90     10      4
 4    Energy    A    12OCT80    111    1    1     2     89.40     20      8
 5    Energy    B    12OCT80    111    1    1     1    100.00     20      4
 6    Mgt S     A    07APR80    111    1    1     1     99.40     10      4
 7    Mgt S     B    03MAY80    111    1    1     1     85.40     20      4
 8    Mgt S     C    22JUN80    111    1    1     4     87.65     40     16
 9    Mgt S     A    12OCT80    111    1    1     1     47.30     10      4
10    Mgt S     C    12OCT80    111    1    1     3     86.80     30     12
11    Power     A    07APR80    111    1    1     1     99.10     10      4
12    Power     B    07APR80    111    1    1     2     70.65     40      8
13    Power     A    03MAY80    111    1    1     1     93.50     10      4
14    Power     A    22JUN80    111    1    1     1     70.10     10      4
15    Power     C    22JUN80    111    1    1     3     81.20     30     12
16    Power     A    12OCT80    111    1    1     1     93.50     10      4
17    Energy         03MAY80    101    1    1     2     90.85      .      8
18    Energy         22JUN80    101    1    1     1     69.90      .      4
19    Energy         12OCT80    101    1    1     3     93.00      .     12
20    Mgt S          07APR80    101    1    1     1     99.40      .      4
21    Mgt S          03MAY80    101    1    1     1     85.40      .      4
22    Mgt S          22JUN80    101    1    1     4     87.65      .     16
23    Mgt S          12OCT80    101    1    1     4     76.65      .     16
24    Power          07APR80    101    1    1     3     90.00      .     12
25    Power          03MAY80    101    1    1     1     93.50      .      4
26    Power          22JUN80    101    1    1     4     75.65      .     16
27    Power          12OCT80    101    1    1     1     93.50      .      4
28              A          .    010    1    1    10     90.95    100     40
29              B          .    010    1    1     5     90.00    100     20
30              C          .    010    1    1    10     84.00    100     40
31                         .    000    1    1    25     88.90      .    100

Multiple CLASS statements give you the ability to specify
different options to different variables.

PROC TABULATE  DATA=CLASS  FORMAT=7.1 NOSEPS;
    CLASS  LOC  / DESCENDING ;
    CLASS  DATE / MISSING ;
    CLASS  ORG  / MISSING;
    VAR   SCORE;
    TABLE  ORG*DATE ALL,
         (LOC ALL)*(N*F=3.0 COLPCTN);

 RUN;
-------------------------------------------------------------------
|                 |             Location              |           | | | | | | |
|                 |-----------------------------------|           |
|                 |     C     |     B     |     A     |    All    |
|                 |-----------+-----------+-----------+-----------|
|                 | N |ColPctN| N |ColPctN| N |ColPctN| N |ColPctN|
|-----------------+---+-------+---+-------+---+-------+---+-------|
|Org      Class   |   |       |   |       |   |       |   |       |
|         Date    |   |       |   |       |   |       |   |       |
|         .       |  .|      .|  .|      .|  1|    9.1|  1|    3.8|
|Energy   03MAY   |  .|      .|  1|   20.0|  1|    9.1|  2|    7.7|
|         22JUN   |  .|      .|  .|      .|  1|    9.1|  1|    3.8|
|         12OCT   |  .|      .|  1|   20.0|  2|   18.2|  3|   11.5|
|Mgt S    07APR   |  .|      .|  .|      .|  1|    9.1|  1|    3.8|
|         03MAY   |  .|      .|  1|   20.0|  .|      .|  1|    3.8|
|         22JUN   |  4|   40.0|  .|      .|  .|      .|  4|   15.4|
|         12OCT   |  3|   30.0|  .|      .|  1|    9.1|  4|   15.4|
|Power    07APR   |  .|      .|  2|   40.0|  1|    9.1|  3|   11.5|
|         03MAY   |  .|      .|  .|      .|  1|    9.1|  1|    3.8|
|         22JUN   |  3|   30.0|  .|      .|  1|    9.1|  4|   15.4|
|         12OCT   |  .|      .|  .|      .|  1|    9.1|  1|    3.8|
|All              | 10|  100.0|  5|  100.0| 11|  100.0| 26|  100.0|
-------------------------------------------------------------------

PROC FORMAT ;
    VALUE $LOCFMT

‘A’=’Knoxville’
‘B’=’Chattanooga’
‘C’=’Nashville’
‘D’=’Memphis’;
RUN;

PROC TABULATE  DATA=CLASS  FORMAT=7.1 NOSEPS;
    CLASS  LOC  / DESCENDING PRELOADFMT;
    CLASS  DATE / MISSING ;
    CLASS  ORG  / MISSING;
    Format loc  $locfmt. ;
    VAR   SCORE;
    TABLE  ORG*DATE ALL,
         (LOC)*(N*F=3.0 COLPCTN)
    / PRINTMISS ;

 RUN;

-------------------------------------------------------------------
|                 |                   Location                    | | | | | | | |
|                 |-----------------------------------------------|
|                 |  Memphis  | Nashville |Chattanooga| Knoxville |
|                 |-----------+-----------+-----------+-----------|
|                 | N |ColPctN| N |ColPctN| N |ColPctN| N |ColPctN|
|-----------------+---+-------+---+-------+---+-------+---+-------|
|Org      Class   |   |       |   |       |   |       |   |       |
|         Date    |   |       |   |       |   |       |   |       |
|         .       |  .|      .|  .|    0.0|  .|    0.0|  1|    9.1|
|         07APR   |  .|      .|  .|    0.0|  .|    0.0|  .|    0.0|
|         03MAY   |  .|      .|  .|    0.0|  .|    0.0|  .|    0.0|
|         22JUN   |  .|      .|  .|    0.0|  .|    0.0|  .|    0.0|
|         12OCT   |  .|      .|  .|    0.0|  .|    0.0|  .|    0.0|
|Energy   .       |  .|      .|  .|    0.0|  .|    0.0|  .|    0.0|
|         07APR   |  .|      .|  .|    0.0|  .|    0.0|  .|    0.0|
|         03MAY   |  .|      .|  .|    0.0|  1|   20.0|  1|    9.1|
|         22JUN   |  .|      .|  .|    0.0|  .|    0.0|  1|    9.1|
|         12OCT   |  .|      .|  .|    0.0|  1|   20.0|  2|   18.2|
|Mgt S    .       |  .|      .|  .|    0.0|  .|    0.0|  .|    0.0|
|         07APR   |  .|      .|  .|    0.0|  .|    0.0|  1|    9.1|
|         03MAY   |  .|      .|  .|    0.0|  1|   20.0|  .|    0.0|
|         22JUN   |  .|      .|  4|   40.0|  .|    0.0|  .|    0.0|
|         12OCT   |  .|      .|  3|   30.0|  .|    0.0|  1|    9.1|
|Power    .       |  .|      .|  .|    0.0|  .|    0.0|  .|    0.0|
|         07APR   |  .|      .|  .|    0.0|  2|   40.0|  1|    9.1|
|         03MAY   |  .|      .|  .|    0.0|  .|    0.0|  1|    9.1|
|         22JUN   |  .|      .|  3|   30.0|  .|    0.0|  1|    9.1|
|         12OCT   |  .|      .|  .|    0.0|  .|    0.0|  1|    9.1|
|All              |  .|      .| 10|  100.0|  5|  100.0| 11|  100.0|
-------------------------------------------------------------------

But what I think is one of the most useful new features of version
8 is ODS.  If you get a chance, attend one of Ray Pass’s
workshops or papers on ODS; they are very well done and very
informative.  Actually any class or paper on ODS would be
useful.  Virtually any output SAS can generate can use ODS.

ODS  html  body=”e:\sugi\advtab1.html”;
PROC TABULATE  DATA=CLASS  FORMAT=7.1 NOSEPS;
    CLASS  LOC  / DESCENDING ;
    CLASS  DATE / MISSING ;
    CLASS  ORG  / MISSING;
    VAR   SCORE;
    TABLE  ORG*DATE ALL,
         (LOC ALL)*(N*F=3.0 COLPCTN);
 RUN;
 ODS  html close;

Location
C B A All

 
N ColPct

N N ColPct
N N ColPct

N N ColPct
N

Org Class
Date

      . . . . . 1 9.1 1 3.8
03MAY . . 1 20.0 1 9.1 2 7.7
22JUN . . . . 1 9.1 1 3.8

Energy

12OCT . . 1 20.0 2 18.2 3 11.5
07APR . . . . 1 9.1 1 3.8
03MAY . . 1 20.0 . . 1 3.8
22JUN 4 40.0 . . . . 4 15.4

Mgt S

12OCT 3 30.0 . . 1 9.1 4 15.4
07APR . . 2 40.0 1 9.1 3 11.5
03MAY . . . . 1 9.1 1 3.8
22JUN 3 30.0 . . 1 9.1 4 15.4

Power

12OCT . . . . 1 9.1 1 3.8
All 10 100.0 5 100.0 11 100.0 26 100.0

IN SUMMARY



I never thought when I first wrote the first version of this in 1992,
that it would survive until the next version.  Well, it has and
versions 7 and 8 have introduced some new features…So is
this really the FINAL CHAPTER?!?!  Only time will tell!

The one thing SAS has done over the years is virtually guarantee
code written in prior versions will continue to work in later ones
… upward compatibility.  TABULATE is no different; even though
some of the new features make old techniques obsolete; it is still
good to know them.

This paper is not intended to be a cure for all your TABULATE
problems.  Every use of TABULATE is unique in some ways.  All
I have attempted to do is give you a good starting point or
foundation to better understand how to get TABULATE to give
you what you want.   The more complicated your "crossings", as
the SAS manuals refer to them, the tougher it is going to be to
determine the denominator specification.  Most everything else
about TABULATE is very straight forward.

So good luck and happy tabulating!!!

ACKNOWLEDGEMENTS
For a complete discussion of TABULATE and its uses see the
"SAS Guide to TABULATE Processing, Second Edition" and the
"SAS Language and Procedures, Usage, Version 6, First
Edition", chapter 25, "Creating Summary Tables".  There is a
very good article in the first issue of "Observations, The
Technical Journal for SAS Software Users", vol. 1, no. 1, entitled
"Computing Percentages with PROC TABULATE" by Tina
Keene.

Lauren Haworth has written a book entitled "PROC TABULATE
By Example" that is full of all kinds of examples for all kinds of
applications and well worth the money.

SAS is a registered trademark of the SAS Institute, Inc., Cary,
NC.

AUTHOR
If you have any questions or comments, please write or call:

Dan Bruns
Tennessee Valley Authority
1101 Market Street (MP 2B)
Chattanooga, TN  37402
423/751-6430     Fax 423/751-3163
Email:  debruns@tva.gov



ODS for PRINT, REPORT and TABULATE

Lauren Haworth, Genentech, Inc., San Francisco

� ABSTRACT

For most procedures in the SAS system, the only
way to change the appearance of the output is to
change or modify the ODS style definition. There
are three exceptions: REPORT, TABULATE, and
PRINT. These procedures allow you to change the
output style attributes on the fly when the output is
generated.

With these three procedures, you can create almost
any type of tabular report. Add in the extra control
over style attributes, and you have a reporting pow-
erhouse.

This paper will show how to change the fonts, col-
ors, and alignment of your output. You will also
learn how to use formats to highlight key results in
special colors and use images in table headings.

For convenience, all of the examples are shown as
HTML output. Except where noted, the examples all
work for RTF or printer output as well.

The examples in this paper are based on SAS ver-
sion 8.2. The PRINT examples will only work with
version 8.2 or later. Most of the REPORT and
TABULATE examples will also work with versions
8.0 and 8.1.

� INTRODUCTION

This first series of examples will show how you can
use style attributes to modify the appearance of the
result table headings. Later examples will show
techniques for rows and table values.

The STYLE= option is a new option available for
just the PRINT, REPORT, and TABULATE proce-
dures. What it allows you to do is to specify a num-
ber of different style attributes for specific parts of
your output. These style attributes control things
like typefaces, foreground and background colors,
text alignment, and table borders.

� EXAMPLE #1: CHANGING TABLE HEADING
STYLES FOR PROC PRINT

Applying style attributes to PROC PRINT output is
very simple. All you have to do is add STYLE=
options to whichever part of the output you wish to
change.

There are a number of ways you can use STYLE= in
the PRINT procedure. To keep things simple, we’ll
just look at one technique: adding a STYLE= option
to the PROC PRINT statement. We’ll start with the
following code. It produces a listing of three vari-
ables.

ODS HTML FILE='tables.htm';
proc print data=tables noobs label;
   var Type Material Price;
run;
ODS HTML CLOSE;

This code produces the output shown below. It’s a
basic table in the Default style definition (only the
first few rows of the table are shown).

The typeface used in the headings and table body is
Arial. As an example, we will change this typeface
to Arial Narrow, which will make the headings nar-
rower. This is useful if you have a table that is too
wide.

We do this by adding a STYLE= option to the
PROC PRINT statement. The STYLE keyword is
followed by the name of the style element we wish
to modify. In this case, the element is called Header.
A list of the elements you can modify is in the On-
line Documentation for the PRINT procedure.

The style element is listed in parentheses. Following
the name of the style element, we use an equal sign
and then list the attribute we wish to change. De-
tailed documentation on these attributes and their
settings can be found in the “Guide to the Output
Delivery System” in the Online Documentation.

The attribute must be contained between square
brackets “[ ]” or curly brackets “{ }”. The code be-
low changes the font typeface to Arial Narrow. No-



tice the use of quotes around the typeface name.
Because ‘Arial Narrow’ contains spaces, these quote
marks are necessary.

ODS HTML BODY='tables.htm';
proc print data=tables noobs label
   STYLE(Header)=[FONT_FACE=’Arial Narrow’];
   var Type Material Price;
run;
ODS HTML CLOSE;

The results are shown below. Now each of the table
headings takes up less width. This makes the overall
table narrower, allowing you to fit more information
on the page (or screen). This technique can be used
to change any of the column heading attributes.

� EXAMPLE #2: CHANGING TABLE HEADING
STYLES FOR PROC REPORT

Next, we’ll run through the same column heading
modification for PROC REPORT output. We’ll start
with a table similar to the previous example.

ODS HTML BODY='tables.htm';
proc report data=tables nowd;
   column Type Material Price;
   define Type / group;
   define Material / group;
   define Price / analysis mean;
run;
ODS HTML CLOSE;

This code produces the output shown in below. It’s
a basic table using the Default style definition, and
is very similar to the PROC PRINT table we modi-
fied earlier.

Once again, we’re going to change the heading font.
We do this with the exact same technique as we
used for PROC PRINT. We add a STYLE(Header)=
option to the PROC REPORT statement.

ODS HTML BODY='tables.htm';
proc report data=tables nowd
   STYLE(Header)=[FONT_FACE=’Arial Narrow’];
   column Type Material Price;
   define Type / group;
   define Material / group;
   define Price / analysis mean;
run;
ODS HTML CLOSE;

The new results are shown below. Again, we get a
table with narrower headings. This technique can be
used to change any of the column heading attributes.

� EXAMPLE #3: CHANGING TABLE HEADING
STYLES FOR PROC TABULATE

To round out these examples, we’ll run through
making the same change for a table produced by
PROC TABULATE.



Once again, we will add a STYLE= option to the
part of the output we wish to change. We’ll start
with a table similar to the previous examples.

ODS HTML BODY='tables.htm';
proc tabulate data=tables f=dollar8.;
   class Type Material;
   var Price;
   table Type*Material,
         Price*Mean=" ";
run;
ODS HTML CLOSE;

This code produces the output shown below. It’s a
basic table using the Default style definition, and is
very similar to the previous tables created with
PRINT and REPORT.

This time, instead of adding a STYLE(Header)=
option to the main procedure call, we need to do
things variable by variable. With TABULATE, you
specify styles for the row and column headings in
the VAR and CLASS statements that identify the
variables.

ODS HTML BODY='tables.htm';
proc tabulate data=tables f=dollar8.;
   class Type Material /
      STYLE=[FONT_FACE="Arial Narrow"];
   var Price /
      STYLE=[FONT_FACE="Arial Narrow"];
   table Type*Material,
         Price*Mean=" ";
run;
ODS HTML CLOSE;

The results are shown below. Notice how the three
top headings now show the new narrower font.
However, the row headings do not show the same

change. This is because these are the class level
value headings, not the class variable headings.

To make all of the headings match, we need to add
one more statement to our code. The CLASSLEV
statement is used to apply options to class level val-
ues. You can use the STYLE= option on the
CLASSLEV statement to change the fonts to match
the top headings.

ODS HTML BODY='tables.htm';
proc tabulate data=tables f=dollar8.;
   class Type Material /
      STYLE=[FONT_FACE="Arial Narrow"];
   classlev Type Material /
      STYLE=[FONT_FACE="Arial Narrow"];
   var Price /
      STYLE=[FONT_FACE="Arial Narrow"];
   table Type*Material,
         Price*Mean=" ";
run;
ODS HTML CLOSE;



The new results are shown below.

This technique can be used to change any of the row
or column headings. You can also use different style
attributes for each classification variable, by creat-
ing multiple CLASS and CLASSLEV statements,
one set for “Type” and one set for “Material”. Then
you could use a different STYLE= option for each
variable. The same technique also works when you
have two analysis variables, you can use two VAR
statements with two different STYLE= options.

� EXAMPLE #4: APPLYING TRAFFIC LIGHTING TO
PROC PRINT RESULTS

What do traffic lights have to do with SAS Output?
The answer is that the familiar red, yellow, and
green lights can be used to highlight results in your
output. You use red for bad results, yellow for neu-
tral results, and green for good results. If you’re
creating a large table, this technique is great for fo-
cusing the reader’s attention on the key results.

In this example, we will take our familiar table and
use traffic lighting to mark low prices in green, high
prices in red, and prices in between in yellow.

The first step is to set up a format with the colors
we’d like to use. The three color settings are RGB
values for red, yellow, and green.

proc format;
   value traffic low-100='cx006600'
                 100<-300='cxFF9900'
                 300<-high='cxCC0000';
run;

The next step is to set up the code for the table, and
then apply the format. The code is shown below.

ODS HTML FILE='tables.htm';
proc print data=tables noobs label;
   var Type Material;
   var Price /
      STYLE=[BACKGROUND=traffic.];
run;
ODS HTML CLOSE;

It’s the same code from our previous example. The
only difference is that the VAR statement has been
split into two statements. That’s so the STYLE=
option can be applied to just the variable Price. The
style attribute we are modifying is
BACKGROUND, which controls the background
color.

You could just specify a single background color
here, such as “Red” or  “cxCC0000”, which would
make the entire column of results red. Instead, we
will use our format. This allows us to have a condi-
tional background color. Depending on the value of
each table cell, the background will be set as green,
yellow or red. The results are shown below.

Now the low prices show up in green, the high
prices in red, and the ones in between are in yellow.
However, with these dark backgrounds, the price
values get a bit hard to read. The default font weight
is a bit light for these intense backgrounds. To fix
that, we’ll make the fonts bold, as shown in the code
below.

ODS HTML FILE='tables.htm';
proc print data=tables noobs label;
   var Type Material /
      STYLE=[FONT_WEIGHT=BOLD];
   var Price /
      STYLE=[BACKGROUND=traffic.
             FONT_WEIGHT=BOLD];
run;
ODS HTML CLOSE;



The font is changed to bold in both VAR statements
so that the table will look consistent. The new out-
put is shown below.

By the way, you can also do traffic lighting by
changing the foreground values. Instead of making
the cell background red, yellow, or green, you can
make the cell text red, yellow, or green. The code is
the same, except instead of using BACKGROUND=
in the STYLE= option, you use FOREGROUND=.

One additional note regarding this example: you
may have noticed that the price amounts were not
formatted as dollar amounts. That is because there is
a bug in version 8.2 that prevents the use of a format
in this way on a variable that is already formatted.
The problem affects only the PRINT procedure, and
not the REPORT or TABULATE procedures.

� EXAMPLE #5: APPLYING TRAFFIC LIGHTING TO
PROC REPORT RESULTS

For PROC REPORT, the technique for doing traffic
lighting is almost the same.

You add the STYLE= options to the DEFINE
statements that set up each table column. For the
Price column, the background color is set to the
format we defined previously. For all of the col-
umns, the font weights are set to bold to increase
readability. The code is shown below.

ODS HTML BODY='tables.htm';
proc report data=tables nowd;
   column Type Material Price;
   define Type / group
      STYLE=[FONT_WEIGHT=BOLD];
   define Material / group
      STYLE=[FONT_WEIGHT=BOLD];
   define Price / analysis mean
      STYLE=[BACKGROUND=traffic.
             FONT_WEIGHT=BOLD];
run;
ODS HTML CLOSE;

The resulting table is shown below. It looks much
like the PROC PRINT results.

� EXAMPLE #6: APPLYING TRAFFIC LIGHTING TO
PROC TABULATE RESULTS

For PROC TABULATE, the technique for doing
traffic lighting is a bit different. The STYLE= op-
tion settings are the same as the previous two exam-
ples, but the way to apply the STYLE= option is
different.

You might thing that to apply a style to the values of
Price, you would add the STYLE= option to the
VAR statement for Price. However, that would only
affect the heading for Price.

To change the appearance of values within a table,
you need to apply the STYLE= option in the
TABLE statement. The following code shows how
this is done.

ODS HTML BODY='tables.htm';
proc tabulate data=tables f=dollar8.;
   class Type Material;
   var Price;
   table Type*Material,
         Price*Mean=" "*
         [STYLE=[BACKGROUND=traffic.
                FONT_WEIGHT=BOLD]];
run;
ODS HTML CLOSE;

The STYLE= option is added to the TABLE state-
ment by using an asterisk operator. Notice that it is
added to specification for the variable Price in the
column dimension. This can be a little confusing to
see, because the statistic MEAN is also applied to
the variable Price. Another thing to notice is that
this time the STYLE= option uses two sets of brack-
ets. The additional brackets surround the entire
STYLE= option. These are required when adding
STYLE= options within a TABLE statement.



The resulting table is shown below.

� EXAMPLE #7: CREATING ALTERNATE ROW
SHADING FOR PROC REPORT RESULTS

While most everything you can do in PRINT and
TABULATE can be done in REPORT, a few tricks
work best in PROC REPORT. This is because you
can use a COMPUTE block to calculate the output
formatting.

A good example of this is creating a table with al-
ternate row shading. This means that the rows of
data alternate light and dark colors, making them
easier to read. The code for doing this is shown be-
low.

ODS HTML BODY='tables.htm';
proc report data=tables nowd;
   column Type Material Price;
   define Type / group;
   define Material / group;
   define Price / analysis mean;
   compute Material;
      count+1;
      if (mod(count,2)) then do;
         CALL DEFINE(_ROW_, "STYLE",
         "STYLE=[BACKGROUND=cxFFFFFF]");
      end;
   endcomp;
run;
ODS HTML CLOSE;

What this code does is figure out whether each row
is an even or odd number. For odd numbered rows,
the background color is assigned to white (the de-
fault color is gray).

Instead of using STYLE=, we will use a CALL
DEFINE statement. This allows us to call up the
row style element, and modify its attributes. The
CALL DEFINE has three parameters: the name of
the element being modified (_ROW_), the descrip-
tion of what is being modified (STYLE), and the
STYLE= code to make the change.

The resulting table is shown below.

� EXAMPLE #8: ADDING A LOGO TO A PROC
REPORT TABLE

Changing fonts and colors goes a long way to li-
vening up your output, but adding graphics takes
your results to a new level. This example will show
how to add a heading with a logo to your PROC
REPORT results.

The first thing you need to do is set up the heading.
This is done with a COMPUTE BEFORE _PAGE_
statement and a LINE statement.

ODS HTML BODY='tables.htm';
proc report data=tables nowd;
   column Type Material Price;
   define Type / group;
   define Material / group;
   define Price / analysis mean;
   compute before _page_ / LEFT;
      LINE "Totally Tables, Inc.";
   endcomp;
run;
ODS HTML CLOSE;

The result is that a new row is added to the top of
the table, and it contains the text given in the LINE
statement, as shown in the output below. Unfortu-
nately, the row is created using the default table cell
style attributes, which makes it rather faint in ap-
pearance.



To fix the appearance of the title and add a graphic,
we can use the STYLE= option on the COMPUTE
statement. First, we’ll add the graphic using the
PREIMAGE attribute. This example assumes that
the graphic is stored in the same file location as the
HTML page we are creating. The second fix we
need to make is to make the font bolder, bigger, and
in a brown color that coordinates with the graphic.

compute before _page_ / LEFT
   STYLE=[PREIMAGE='table.gif'
          FONT_WEIGHT=BOLD
          FONT_SIZE=5
          FOREGROUND=cx993300];
   LINE "Totally Tables, Inc.";
endcomp;

The new results are shown below.

Note: This example is set up for HTML output, and
gives the font size using a number which represents
an HTML font size. If you are creating RTF or
printer output, list the font size in points (for exam-
ple, “14pt”).

� EXAMPLE #8: ADDING A LOGO TO A PROC
TABULATE TABLE

Adding a logo is even easier using PROC
TABULATE. You can easily place a graphic image
in the top left corner of the table using the BOX=
option.

The style attribute information is added with a
STYLE= suboption on the BOX= option. The
PREIMAGE style attribute allows you to name an
image that precedes the text in the cell.

In this example, the title is added using a LABEL=
option, and then is followed by the STYLE= option.
Note the unusual syntax. In order to have both a
LABEL= and a STYLE= suboption, both need to be
enclosed in brackets following the BOX= option.

ODS HTML BODY='tables.htm';
proc tabulate data=tables f=dollar8.;
   class Type Material;
   var Price;
   table Type*Material,
      Price*Mean=" "
      / BOX=[LABEL='Totally Tables, Inc.'
        STYLE=[PREIMAGE='dining.gif']];
run;
ODS HTML CLOSE;

This code produces the following table.



Now our table contains the logo and title in the top
left corner. However, the headings look funny be-
cause the title is sitting at the bottom of the table
cell, but the heading “Average Price” is in the mid-
dle of the cell. We can use another STYLE= option
to fix this.

ODS HTML BODY='tables.htm';
proc tabulate data=tables f=dollar8.;
   class Type Material;
   var Price / STYLE=[VJUST=B];
   table Type*Material,
      Price*Mean=" "
      / BOX=[LABEL='Totally Tables, Inc.'
        STYLE=[PREIMAGE='dining.gif']];
run;
ODS HTML CLOSE;

The VJUST=B style attribute added to the VAR
statement for Price causes the heading for this vari-
able to be vertically justified to the bottom of the
table cell. The new results are shown below.

� OTHER STYLE ATTRIBUTES YOU CAN MODIFY

These few examples have only scratched the surface
as far as what you can do with ODS and the PRINT,
REPORT, and TABULATE procedures. There are
dozens of style attributes you can modify, and many
places to use them within each procedure’s output.

In general, the same style attributes are available for
use with the STYLE= options for these three proce-
dures. The table in Appendix A lists the attributes
and what they do.

The examples in this chapter have shown how to
modify individual cells, rows, columns, or headings.
More examples of this type of modification are in-

cluded in the “Guide to the SAS Output Delivery
System” in the Online Documentation.

This paper has not covered how to apply a style at-
tribute to the entire table or report. The syntax is
actually quite simple. For PROC REPORT, use the
following code:

PROC REPORT DATA=dataset
   STYLE=[style-attribute(s)];

For PROC PRINT, the syntax is very similar:

PROC PRINT DATA=dataset
   STYLE=[style-attribute(s)];

For PROC TABULATE, the syntax is different.
You use a STYLE= option at the end of the TABLE
statement:

TABLE <<page-definition,>
   row-definition,>
   column-definition
   / STYLE=[style-attribute(s)];

� CONCLUSION

I hope this paper has encouraged you to start ex-
perimenting with the new STYLE= options avail-
able for the PRINT, REPORT, and TABULATE
procedures. The possibilities for output enhance-
ment are endless. Have fun with these techniques.

� ACKNOWLEDGEMENTS

SAS is a registered trademark of SAS Institute Inc.
in the USA and other countries. � indicates USA
registration.

Other brand and product names are registered
trademarks or trademarks of their respective compa-
nies.

� CONTACTING THE AUTHOR

Please direct any questions or feedback to the author
at: info@laurenhaworth.com



APPENDIX: ODS STYLE ATTRIBUTES

Attribute What it affects

Can be used for
individual cells,
columns, rows,

headings?

Can be used
for entire

table?
ASIS leading/trailing spaces and line breaks � �

BACKGROUND= background color � �

BACKGROUNDIMAGE= background image � �

BORDERCOLOR= border color � �

BORDERCOLORDARK= dark border color for 3-D borders � �

BORDERCOLORLIGHT= light border color for 3-D borders � �

BORDERWIDTH= width of border � �

CELLHEIGHT= height of table cell �

CELLWIDTH= width of table cell �

CELLPADDING= space between cell text and borders �

CELLSPACING= space between cells �

FLYOVER text to display for mouse over (HTML) �

FONT= font definition (face, size, weight/style) � �*
FONT_FACE= font typeface � �*
FONT_SIZE= font size � �*
FONT_STYLE= font style � �*
FONT_WEIGHT= font weight � �*
FONT_WIDTH= font width � �*
FOREGROUND= text color � �*
FRAME= table frame type �

HREFTARGET= window or frame to open for link �

HTMLCLASS= name of stylesheet to use � �

JUST= horizontal justification � �

NOBREAKSPACE= handling of spaces at line breaks �

OUTPUTWIDTH= width of table �

POSTHTML= HTML code to add at end of item � �

POSTIMAGE= image to display at end of item � �

POSTTEXT= text to display at end of item � �

PREHTML= HTML code to add at beginning of item � �

PREIMAGE= image to display at beginning of item � �

PRETEXT= text to display at beginning of item � �

PROTECTSPECIALCHARS= handling of <, >, and & characters �

RULES= lines between table cells �

TAGATTR= string to insert in HTML tag for the item �

URL= URL to link to when item is clicked �

VJUST= vertical justification �



Paper P829
PROC SQL - Is it a Required Tool for Good SAS���� Programming?

Ian Whitlock, Westat

Abstract

No one SAS tool can be the answer to all problems.
However, it should be hard to consider a SAS
programmer well versed in SAS, who does not use DATA
steps.  SQL should be classified with the DATA step
rather than procedures because it is really a programming
language in itself.

In the past many good SAS programmers have resisted
learning PROC SQL on the basis that it is a database tool
and that they can get along without it.  It is time (or past
time) to reconsider the question and change that belief.

SQL has dramatically changed the nature of what good
SAS macro code looks like.  It can simplify and
standardize a number of common SAS programming
patterns involving combinations of the DATA step, PROC
SUMMARY, PROC SORT, and PROC PRINT.

This tutorial will focus on problem examples with code
where PROC SQL has a distinct advantage in terms of
code simplicity over use of the more traditional SAS tools
mentioned above.

Introduction

The typical SAS programmer needs PROC SQL because:

1. It is superb at accessing data stored in
multiple data sets at different levels.

2. It can easily produce a Cartesian product.

3. It can perform matching where the condition of
a match is not equality.

4. It is good at summarization.

5. With the introduction of 6.11, it can make
arrays of macro variables or do away with the
need for these arrays by assigning a whole
column of values to one macro variable.

6. Macro - SQL interaction enhances both macro
and SQL.

In addition to the direct values listed above, one should
not underestimate the value of SQL training in teaching
one data organization.  An example of how SQL can teach

data organization is given at the end of the summarizing
section.

Matching multiple data sets at different levels

PROC SQL provides a powerful tool when extracting data
from different data sets at several different levels.  It not
only provides simpler code, it provides a new way of
looking at these problems.

Suppose we have data at the state, county and city level
stored in three data sets.

State (state, region,...)
county (cntyid, state, cnty, area,
...)
city (city, cntyid, area, pop,...)

Prepare a report of all cities in the midwest with
populations over 100,000 with the ratio of the city area to
the enclosing county area.

A SAS procedural solution demands that we decide
whether to start with states or cities, specify all sorts
needed for the various DATA step merges, and specify
those merges in detail ending up with a PROC PRINT.

In contrast, SQL asks the fundamental questions:

1. What are the data sets?
2. What are the subsetting conditions?
3. What are the linking conditions?
4. What columns should appear?

proc sql ;
   select st.state ,
          cn.cnty ,
          ct.city ,
          ct.area / cn.area as
arearato
      from state as st ,
           county as cn ,
           city as ct
     where ct.pop > 100000 and
           st.region = 'MW' and
           st.state = cn.state and
           cn.cntyid = ct.cntyid
   ;



quit ;

In all the remaining example code the PROC statement
and the QUIT will be omitted.

Cartesian Product

Cartesian product matches are far more common than
one-to-one matches, but the MERGE statement assumes
one-to-one within BY-groups.  To find a Cartesian product
match, let's look at a codebook example.  I have three
data sets:

specs ( variable , format )
freq ( variable, format, value,
       count )
fmts ( format, value, label )

The report might look something like this.

first variable using fmt1name
format

   value label count
     1   first  500
     2   sec      0
     3   rem    300

second variable using fmt2name
format

   etc.

Before tackling the problem let's look at the code for
joining SPECS and FMTS.  The problem involves a
Cartesian product because a format may be associated
with more than one variable in SPECS, and formats
typically have more than one value.  Thus FORMAT does
not determine a single record in either data set; hence a
merge by FORMAT will not work.  Note that accomplishing
this sort of combining records in a DATA step involves
using sophisticated SAS techniques when SQL is not
used.

create view sfm as
select s.variable ,
       s.format ,
       fm.value ,
       fm.label
   from specs as s , fmts as fm
   where s.format = fm.format
;

It is easy to see how to produce the report with a DATA
_NULL_ step when the right information is in a data set (
VARIABLE, FORMAT, VALUE, LABEL, and COUNT ).
Here is the SQL code to produce the file.

create table report as
select
   coalesce (sfm.variable,
             fq.variable)
       as variable ,
   coalesce (sfm.format,
             fq.format)
       as format ,
   coalesce (sfm.value, fq.value)
       as value ,
   sfm.label ,
   coalesce ( fq.count , 0 ) as
count

   from sfm full join freq as fq
   on sfm.variable = fq.variable
      and sfm.format = fq.format
      and sfm.value = fq.value
   order by variable, format,
            value
;

Note that in two SQL statements we have done a lot of the
work toward creating a codebook.  If one could produce
SPECS, FREQ, and FMTS easily, then one could produce
a codebook for any properly formatted SAS data set.  The
FMTS file is trivially produced with the FMTLIB option of
PROC FORMAT.  The FREQ file requires some macro
code.  We will postpone discussion of the SPECS file to a
later section.

Fuzzy Matching

Fuzzy matching comes in two varieties.  In date (or time)
line matches one file holds a specific date (or time) and
one wants the corresponding record which holds a range
of dates (or time).  For SAS dates DATE, BEGDATE, and
ENDDATE the WHERE clause might be

where date is
   between begdate and enddate

For efficiency reasons it is important to add an equi-
condition whenever possible.  In date (or time) matches
one often has an ID that must also match, hence the equi-
join condition becomes

where a.id = b.id and
   date is between begdate and
enddate

In the other kind of fuzzy matching one cannot trust the
identifying variables.  Suppose we want to match on social
security numbers, SSN, but expect transposition errors



and single digit mutations.  Now the WHERE clause might
be

where sum ( substr(a.SSN,1,1) =
              substr(b.SSN,1,1) ,
            substr(a.SSN,2,1) =
              substr(b.SSN,2,1) ,
            ....
            substr(a.SSN,9,1) =
              substr(b.SSN,9,1)
           ) >= 7

To make this an equi-join we might add

      and substr(a.zip,1,3) =
            substr(b.zip,1,3)

or some other relatively safe blocking variable.

Summarizing

One PROC SQL step can do the job of a PROC
SUMMARY followed by merging of the results with the
original data.  For example, suppose we have a weighted
student sample including many different schools.  We
want the percentage weight of each student in a school.
Then we might have:

select school , student , wght ,
         100*wght/sum(wght) as
pctwt
    from studsamp
    group by school
;

In this case one gets a message that summary data was
remerged with the original data, but that is precisely what
we wanted.

Now suppose we want to look at all the students from any
school which has some student contributing more than
20% of the weight.  The code might be

select stu.*
   from studsamp as stu ,
     ( select distinct school
         from studsamp
         group by school
        having wght/sum(wght) > .2
     ) as want
   where stu.school = want.school
order by stu.school, stu.wght desc
;

The technique is important because there are many times
one wants to view every one in a group if anyone in the

group has some property.  SQL provides a natural idiom
for producing the report.

Knowing SQL should make one more sensitive to bad
patterns of storing data.  For example, a common
question on SAS-L is how to array data.  Given the data

ID DATE COUNT
1 5jun1993 50
1 16oct1993 25
1 21dec1993 8
2 14may1990 16
2 27jan1991 3

how do you produce one record per ID with as many date
and count fields as needed, say ID, DATE1 - DATE32 and
COUNT1 - COUNT32?  Another common question is how
to work with the arrayed data.  For example, how can you
compute the rate of decrease in count per month and per
year for each ID.  The answer is a trivial SQL problem,
when the data are stored as they were originally given.

select id ,
     (max(count)-min(count))/
intck('month',min(date),max(date))
        as decpmon,
     calculated decpmon * 12
        as decpyr
   from origdata
   group by id
;

After arraying it becomes a harder problem.  Perhaps if
SAS programmers learned SQL, and how to solve
problems without arrays, then they would also learn the
advantages of storing data in a non-arrayed form.  With
SQL training, one comes to realize the importance of
putting the information into the data instead of the variable
names.  Of course, this also means that the usefulness of
SQL is highly dependent on how well the data are stored,
but it would be wrong to conclude that one might as well
avoid learning SQL because of bad data management
practices.

Macro Lists Via PROC SQL

PROC SQL's ability to assign a whole column of values to
a macro variable has drastically changed how one writes
macro code.  Consider the splitting problem.  Given a data
set ALL with a variable SPLIT naming a member,  split
ALL by the variable SPLIT.  Before version 6.11 one had
to use CALL SYMPUT to create an array of data set
names and values and then write a monster SELECT
statement.  The whole thing had to be in a macro in order



to repetitively process the array.  Now one might view it as
a problem to produce two lists

1. The names of data sets
2. WHEN / OUTPUT statements for a SELECT

block

The first case is easily handled by

select distinct 'lib.'||split
        into :datalist separated
by ' '
  from all ;

The second is more of the same, only harder.

select distinct
        'when ('
     || split
     || ') output lib.'
     || split
   into :whenlist
             separated by ';'
   from all
;

Now the code to produce the split is trivial and need not
even be housed in a macro.

data &datalist ;
   set all ;
   select ( split ) ;
      &whenlist ;
      otherwise ;
   end ;
run ;

In the section on the Cartesian product, we postponed
discussion of the data set SPECS.  It could be generated
from one of the "dictionary" files documented in the
Technical Report P-222.  Suppose we are interested in
making a codebook for the data set LIB.MYDATA, then
the following code could generate SPECS.

create specs as
select name as variable
     , case
         when format=''
              and type='char'
            then $char
         when format=''
              and type= 'num'
            then best
         else  format
       end as format
   from  dictionary.columns
   where libname = 'LIB' and

         memname = 'MYDATA'
;

To prepare for doing the frequencies needed to make the
data set FREQ we could use the array form of generating
variables from a column.

select variable ,
       format ,
       into :var1 - var9999 ,
            :fmt1 - fmt9999
   from specs
;
%let nvar = &sqlobs ;

The frequency data sets can then be generated in a
PROC FORMAT with the macro code

proc freq data = lib.mydata ;
   %do i = 1 %to &nvar ;
      table &&var&i /out=&&var&i ;
      format &&var&i &&fmt&i... ;
   %end ;
run ;

We still have not combined the frequency data sets into
one data set, but that task can be left to a competent
macro programmer, even one who doesn't know SQL
(assuming that that is not a contradiction in terms).

Macro - SQL Interaction

The previous section showed how the making of lists has
had a dramatic effect on the way one codes macro
problems involving lists.  Now we consider a more
complex interaction between PROC SQL and macro,
where macro code is used to write the SQL code in a loop
and the whole problem is much easier, precisely because
it is SQL code.

Suppose we have a data set, W, containing the variables
NAME and GROUP.

NAME GROUP
A 1
B 1
B 2
C 2
D 2
D 3
E 3
F 4
G 4
G 5
H 5



We want to collapse groups to the lowest level.  For
example, since A and B belong to group 1, and B and C
belong to group 2, then all members of group 2 are part of
group 1 because the groups have the common member
B.  Once this is seen one can add group 3 to the new
group 1 because of the common member D.  Thus group
1 covers A, B, C, D and E.  Similarly F, G, and H
ultimately belong to group 4.  More formally, two groups
are in the same chain if there is a sequence of groups
containing the given groups such that each consecutive
pair of groups contains a common name.  Using this
definition the data set consists of disjoint chains.  The
problem is to write a program identifying each chain by
the minimum group number in the chain.

The intuitive argument given in the previous paragraph
uses two kinds of minimization.

1. Find the minimum group (call it MINGROUP)
for all names having the same value (e.g.
NAME = 'B' has MINGROUP = 1).

2. Find the minimum of all MINGROUP values for
all names in a common group (e.g. GROUP =
2 has MINGROUP = 1).

PROC SQL is very suitable to both types of minimization.
In the first case we might have

create table t as
select name, group,
       min (group) as mingroup
   from dataset
   group by name ;

In the second case we might have

create table t as
select name, group,
       min (mingroup) as mingroup
   from t
   group by group ;

These two operations must be repeated over and over
until no new minimums are found, since each new
extension of a group may mean further collapsing.  To
express the iteration of this code to an arbitrary level, we
need a macro %DO-loop.  This time we will present the
complete macro, %GROUPIT.

For generality, we make parameters to name the input
and output data sets, and the variables represented by
NAME, GROUP, and MINGROUP.  The parameter MAX is
added to insure that the macro does not execute for an
excessively long time.  (Since the algorithm does

converge one could do away with this parameter or set it
to the number of observations.)

%macro groupit
   ( data=&syslast,/*input data */
     out=_DATA_,   /*output data*/
     name=name,    /* name var  */
     group=group,  /* group var */
     mingroup=mingroup,
                  /* minimum var*/
     max=20  /*limit #iterations*/
   ) ;

/* -------------------------------
  minimize group on name and
  then group repeat until max
  iterations or done
------------------------------- */
%local i done ;

proc sql ;
   /* -------------------------
      initial set up - get first
      minimums, start numbered
      sequence of data sets
      ------------------------- */

      create table __t0 as
        select &name
             , &group
             , min (&group)
                  as &mingroup
          from &data
          group by &name
      ;

      create table __t0 as
        select &name
             , &group
             , min (&mingroup)
               as &mingroup
          from __t0
          group by &group
      ;

   /* ----------------------------
      iterate until done or too
      many iterations
      ------------------------- */

      %do %until (&done
                  or &i > &max) ;
         %let i = %eval (&i + 1) ;

         create table __t&i as
         select &name
              , &group



              , min (&mingroup)
                  as &mingroup
          from __t%eval(&i-1)
          group by &name
         ;
        create table __t&i as
          select &name
               , &group
               , min (&mingroup)
                   as &mingroup
            from __t&i
            group by &group
         ;

         /* are we finished? */
         reset noprint ;
         select w1.&name
            from __t%eval(&i-1)
                    as w1
               , __t&i as w2
           where w1.&name=w2.&name
             and &group=w2.&group
             and w1.&mingroup
                   ^= w2.&mingroup
         ;

         %let done =
           %eval ( not &sqlobs ) ;
         reset print ;
        drop table __t%eval(&i-1);
      %end ;/*end iterative loop*/

      %if not &done %then
%put WARNING(GROUPIT):Process
    stopped by condition MAX=&max;
      %else
      %do ;
          create table &out as
          select &name
               , &group
               , &mingroup
             from __t&i
             order by &name
                    , &group
          ;
          drop table __t&i ;
      %end ;

   quit ;
%mend  groupit ;

%groupit ( data = w
         , name = name1
         , group = group1
         , out = w2 )

proc print data = w2 ;

run ;

Conclusion

I have pointed out six areas where SQL code excels.  My
conclusion is that a good SAS programmer can no longer
ignore PROC SQL and remain good.

The author can be contacted by mail at:

Westat Inc.
1650 Research Boulevard
Rockville, MD 20850-3129

or by e-mail at:

whitloi1@westat.com

SAS and all other SAS Institute Inc. product or service
names are registered trademarks or trademarks of SAS
Institute Inc. in the USA and other countries. ® indicates
USA registration.



To Annotate or Not to Annotate, There Should Be No Question!

Keith Cranford, Marquee Associates, LLC

Abstract
The Annotate Facility within SAS/GRAPH is a

powerful tool for enhancing your graphs.  This is one of
the tools that distinquishes SAS/GRAPH from other
graphing software. This tutorial outlines the basic concepts
of the Annotate Facility. Annotate macros, which are
provided with SAS/GRAPH software and facilitate the use
of annotation, are also discussed.

Introduction
The Annotate Facility within SAS/Graph provides

a tool for enhancing graphics in data-driven form. Some of
these enhancements include adding values to points on a
line graph or histogram, providing custom labelling, or
producing custom graphics from scratch. The Annotate
Facility may be used in conjunction with other SAS/Graph
procedures, or it can be used with PROC GANNO or
PROC GSLIDE to control all the graphics.

Annotate Data Set
The Annotate Facility is comprised of a data set

which contains graphic instructions. This data set consists
of specially named variables, which define these
instructions. By assigning values to these variables for
each observation, you control

� Coordinate system that is used
� Task that is to be performed
� Position of the graphic objects
� Definition and position of graphic text

The coordinate system is controlled by three
variables, XSYS, YSYS and HSYS. Each of these
variables is a 1-byte character field. The XSYS variable
indicates the horizontal axis coordinate system, the YSYS
variable the vertical axis, and the HSYS variable the
coordinate system used by the SIZE variable. There are
three different coordinate systems:

� Data: uses the same coordinate system as the
graphics

� Procedure: includes all the graphics output area
between the titles and footnotes

� Display: includes the entire graphics output area

Table 1 gives some of the possible values of the
coordinate system variables in terms of the different
coordinate systems. Generally, it is easiest to work with
the percentage values, since cell values can vary based
on device.

Table 1: Coordinate System Values

XSYS/YSYS/
HSYS value

Coordinate
System Range

‘1’ Data % 0% to 100% of Axis
‘2’ Data value Axis Min to Axis Max
‘3’ Display % 0% to 100% of Display
‘4’ Display value

 (in cells)
0 to Edge of Display

‘5’ Procedure % 0% to 100% of
Procedure

‘6’ Procedure value
(in cells)

0 to Edge of Procedure

The position of the graphics or text within the
specified coordinate system is controlled by the X and Y
variables. These variables control the horizontal and
vertical axis locations, respectively. They are numeric
variables with the range of values indicated in the table
above.

The FUNCTION variable indicates the action to
be taken, i.e., what you want to do. This is an  8-byte
character variable with a default value of LABEL. Some of
the possible values are

� LABEL: draws text at the specified location
� MOVE: moves the positional pointer to a

specified location
� DRAW: draws a line from the current location to a

specified location
� BAR: draws and, optionally, fills a rectangle
� POINT: draws a point
� POLY: begins drawing a polygon
� POLYCONT: continues drawing polygon
� SYMBOL: draws a symbol

The values of additional variables control other
attributes of the Annotate instruction. These variables
have fixed names, types and lengths, control different
aspects of the graphics element depending on the value of
FUNCTION, and are assigned default values if not
included in the data set. These variables, along with their
characteristics and default values, are given in Table 2.

Table 2: Descriptions of Annotate Variables

Variable Type (length) Default
ANGLE Num 0
COLOR Char (8) First in device list
LINE Num 1
POSITION Char (1) ‘5’
ROTATE Num 0
SIZE Num 1
STYLE Char (8) Depends on FUNCTION
TEXT Char (<= 200) Blank
WHEN Char (1) ‘B’ (before)



Use of these attribute variables and the other
Annotate variables can best be illustrated with the LABEL
function. To place text at a specific location, assign
FUNCTION the value ‘LABEL’ and assign values to the
attribute variables to control the look of the text. Table 3
gives the possible and default values for these variables.

Table 3: Possible Values of Annotate Variables

Variable Possible Values Default Value
X,Y Depends on

coordinate system
Last values of X,Y

XSYS,YSYS,
ZSYS

‘1’ to ‘C’ ‘4’

POSITION ‘1’ to ‘F’ ‘5’
SIZE > 0 1
STYLE Valid font name ‘NONE’
COLOR Valid color name First in device list
ANGLE -90 to 90 0
ROTATE 0 to 360 0
TEXT Any text Blank
WHEN ‘A’ or ‘B’ ‘B’

The POSITION variable is coded to align the text.
Table 4 provides possible values and alignments for this
variable.

Table 4: POSITION Values

Vertical Pos Right Align Center Left Align
One cell above ‘1’ ‘2’ ‘3’
Half cell above ‘A’ ‘B’ ‘C’
Centered ‘4’ ‘5’ ‘6’
Half cell below ‘D’ ‘E’ ‘F’
One cell below ‘7’ ‘8’ ‘9’

The ANGLE variable specifies an angle of
rotation of the entire text from horizontal. For example,
ANGLE=-90 would print the text vertically (reading the text
by tilting your head to the right). The ROTATE variable
specifies an angle of rotation for each character in the text
starting from the orientation after the text has been angled.
Thus, ROTATE=90 would rotate each letter in the
ANGLE=-90 example back to horizontal, so the text can
be read down the page.

The WHEN variable specified when the text is
printed, either before (‘B’) or after (‘A’) the graph is
displayed. This determines what is displayed when there
is an overlap between the text and graphics. The STYLE
variable for the LABEL function specifies the font to be
used. These can be SAS-supplied fonts, such as Swiss,
Duplex and Simplex, or  True type fonts, which are
specified in quotes.

Annotate Macros
Annotate variables can be populated either

through assignment statements, or by using annotate
macros that are available through SAS/GRAPH. Each
macro is controlled by a set of parameters, which
determine the values assigned to the Annotate variables.
The macros are accessible upon issuing the macro
%annomac, which activates these macros. Some of the
common macros listed below are more fully documented

in the SAS/GRAPH Software: Reference, Volume 1, or in
the online documentation.

� %LABEL: draws text
� %MOVE: moves without drawing
� %DRAW: draws a line from the previous point
� %LINE: draws a line between to points
� %BAR: draws a bar
� %CIRCLE: draws a circle
� %SYSTEM: sets the coordinate system
� %SEQUENCE: specifies when to draw

Each of these macros are controlled by a set of
parameters. These parameters determine the values of
the Annotate variables needed to produce the desired
effect. Since a single macro call can produce multiple
observations in the Annotate data set, this also makes for
succint code.

Use with SAS/Graph Procedures
Annotate data sets can be used with SAS/Graph

procedures to enhance the standard output of these
procedures. Some simple uses are to add data values to
line plots or bar charts and to add custom text to any
graph. A more complex example is to use Annotate to
overlay a line plot on a bar chart, or add a data table to a
graph. In these cases, the data set that is used as input to
the SAS/GRAPH procedure is also used to create the
Annotate data set.

For example, you may want to label the points on
a line plot. To do this, you need to indicate what function
you want to perform (FUNCTION = ‘LABEL’), where you
want to place the label (X = horizontal-axis variable value,
Y = vertical-axis variable value, and POSITION = centered
above the point), and what you want to label (TEXT =
vertical-axis variable value). The following code would
accomplish this.

data data ;
   input X Y @@ ;
   datalines ;
5 8  6 10  7 11  8 14
;
run ;

data anno ;
   set data ;
   length function $ 8 text $ 15 ;
   retain xsys ysys ‘2’  when ‘a’ ;
   function = ‘LABEL’ ;
   x = x ;
   y = y ;
   text = left(put(y, best.)) ;
   style = ‘swissb’ ;
   size = 2 ;
   position = ‘2’ ;
run ;

goptions htext=2 ftext=swissb ;
axis1 order=6 to 15 by 3 minor=none ;



axis2 order=5 to 8 minor=none
      offset=(5 pct,) ;
proc gplot data=data anno=anno ;
   plot y*x / vaxis=axis1
              haxis=axis2 ;
   title ‘Figure 1’ ;
   symbol i=join value=star ;
run ;
quit ;

This code would produce the graph in Figure 1.

Figure 1: PROC GPLOT with Annotate

In the previous example, the assignment
statements could be replaced by Annotate macros.

%annomac ;
data anno ;
   set data ;
   length function $ 8 text $ 15 ;
   retain xsys ysys ‘2’  when ‘a’ ;
   %label(x,y,left(put(y,best.)),black,
          0,0,2,swissb,2) ;
run ;

Also, the retain statement could be replaced by

%system(2,2,4) ;
%sequence(A) ;

Instead of labelling the data within the graph, you
might include a table below the graph. In this case, you
would use the display coordinate system and fix the
position of the axes. This will allow you to know where to
place the table in relation to the graph and the horizontal
axis values. The following code would produce the graph
in Figure 2.

%annomac ;
data anno ;
   set data(rename=(y=y1)) ;
   length function $ 8 text $ 15 ;
   retain xsys ysys '3'  when 'a' ;

   if _n_=1 then do ;
     %label(5,4,'X',black,0,0,2,swissb,B) ;

  %line(10,10,90,10,black,1,.5) ;
  %line(90,10,90,3,black,1,.5) ;
  %line(90,3,10,3,black,1,.5) ;
  %line(10,3,10,10,black,1,.5) ;
  do i=1 to 4 ;
    %line(10+i*20,3,10+i*20,10,

                  black,1,.5) ;
  end ;

   end ;
   j+1 ;
   %label(j*20,4,left(put(y1,best.)),
          black,0,0,2,swissb,B) ;
run ;

goptions htext=2 ftext=swissb;
axis1 order=6 to 15 by 3 minor=none ;
axis2 order=5 to 8 by 1 minor=none
      offset=(10pct,) origin=(10pct,20pct)
      length=80 label=none;
proc gplot data=data anno=anno ;
   plot y * x / vaxis=axis1 haxis=axis2 ;
   title 'Figure 2' ;
   symbol i=join value=star;
run ;
quit ;

Figure 2: PROC GPLOT with Table

Use with GANNO or GSLIDE Prodecures
The Annotate Facility can also be used to

produce custom graphics using the GANNO or GSLIDE
procedures. In this case the Annotate data set will be used
to issue all the instructions to produce a graphic. This may
be in the form of a more traditional graphic output such as
a line plot, bar chart or pie chart, or it may be a custom
graphics table.



For example, the Annotate Facility could be used
to produce an invoice containing a customers address
information as well as purchase detail. Suppose customer
data was stored in a data set called CUSTOMER and the
invoice detail in a data set called INVOICE. These two
data sets are then linked by the customer_id variable. The
following code would produce the invoice graphic output in
Figure 2.

proc sql ;
   create table detail as
   select *
   from customer as a, invoice as b
   where a.customer_id=b.customer_id and
         invoice_no=1 ;
quit ;

%annomac ;
data anno ;
   set detail end=last ;
   length text $ 30 ;
   retain xsys ysys '2' when 'a' ;
   if _n_=1 then do ;
     %label(5,95,name,black,0,0,2,'Arial',C) ;
     %label(94,95,'Inv #'||put(invoice_no,3.),
            black,0,0,2,'Arial',A) ;

     %label(5,90,address,black,0,0,2,
            'Arial',C) ;
     %label(5,85,city_st_zip,black,
            0,0,2,'Arial',C) ;
     %line(5,80,95,80,black,1,.5) ;
     %line(5,72,95,72,black,1,.5) ;
     %line(5,28,95,28,black,1,.5) ;
     %line(95,80,95,20,black,1,.5) ;
     %line(95,20,5,20,black,1,.5) ;
     %line(5,20,5,80,black,1,.5) ;
     %label(6,74,'Item',black,0,0,2,
            'Arial',C) ;
     %label(30,74,'Quantity',black,0,0,2,
           'Arial',C) ;
     %label(70,74,'Unit $',black,0,0,2,
            'Arial',A) ;
     %label(94,74,'Total $',black,0,0,2,
            'Arial',A) ;
     %label(6,30,'Tax',black,0,0,2,'Arial',C) ;
     %label(6,21,'Total',black,0,0,2,
            'Arial',C) ;
     y1=70 ;
   end ;
   y1+(-5) ;

   %label(6,y1,item,black,0,0,2,'Arial',C) ;
   %label(40,y1,put(quantity,8.0),black,0,0,2,
          'Arial',A) ;
   %label(70,y1,put(unitcost,8.2),black,0,0,2,
          'Arial',A) ;
   %label(94,y1,put(quantity*unitcost,8.2),

          black,0,0,2,'Arial',A) ;
   totcost+(quantity*unitcost) ;
   if last then do ;
      tax=round(totcost*.08,.01) ;
      %label(94,30,put(tax,8.2),black,0,0,2,
             'Arial',A) ;
      totcost + tax ;
      %label(94,21,put(totcost,8.2),black,0,0,2,
             'Arial',A) ;
      %label(5,12,'Balance Due Upon Receipt',
             black,0,0,2,'Arial',C) ;
   end ;
run ;

proc ganno anno=anno ;
run ;
quit ;

Figure 3: PROC GANNO Example

Some Helpful Suggestions
The following suggestions or guidelines can help

make using the Annotate facility easier and more useful.

� Let SAS/GRAPH procedures do as much as possible
� Break the annotation into groups
� Use the ORIGIN= option to anchor the graph

The first suggestion is a time saver. The
SAS/GRAPH procedures provide a lot of flexibility and
features. Take advantage of this functionality. Before
adding any annotation the basic graph should first be
refined. In most cases, this is enough and no annotation is



needed; however, when enhancements are needed the
amount of annotation is kept to a minimum.

This leads to the second suggestion. It is best to
work in pieces by defining groups of annotation, such as a
table, title or labeling, and then add one annotation at
time. Doing this will allow you to concentrate development
in one area and will also help in debugging.

A helpful hint is using the ORIGIN= option on the
AXIS statement. This allows you to anchor your graph,
which helps in placing annotation outside the graph, such
as tables.

Conclusion
The Annotate Facility in SAS/Graph is a very

powerful tool that can transform your ordinary SAS/Graph
output into something extraordinary. Its use hinges on an
understanding of the Annotate data set, which has a
definite structure. Once this is accomplished, there really
should be no question as to whether it should be used.

Keith Cranford
Marquee Associates, LLC
2101 Wychwood Dr.
Austin, TX 78746
kcranford@marquee-assoc.com
www.marquee-assoc.com



How Fast Can You Type
or

Go Ahead and Get Snippety
John Charles Gober

U.S. Department of Commerce, Bureau of the Census

Introduction

When this paper was first envisioned, a
number of titles were considered: Creating a
Better Toolbox, Its OK to Plagiarize,
Programming for Power, etc.  However after
discussing the concept with my fellow
technical experts they all said the same thing.
It all comes down to one thing. Time is
money, and how fast can your people come up
with the necessary code and type in those
needed statements is the critical factor.  Can
you do the application in three weeks, three
days, or three hours?

Whether the office you work in employs a
single programmer or hundreds of
programmers containing the complete
spectrum of experience levels it always helps
to have pre written code you can draw upon.
Code a junior programmer can learn from.
Code the experience programmer can easily
adapt to suit their needs. Little pieces of code
or snippets that can be copied, modified, or
used as a learning tool. Code already located
in a common area so you don’t have to
reinvent the wheel.

Scenario

It is 9:00 Friday morning on a Holiday
weekend. You have been tasked with the
following assignment which needs to be
completed by Monday morning: Create a
series data steps or SAS� procedures that will
read a control file containing Fips State and
Fips County codes for the entire United
States.  Using this control file, do a check for
each State to see if that State has a full

complement of County files with a name
pattern of ssu{ssccc} where ss represents the
state and ccc represents the county. If yes,
rollup the County files to a State file called
ssu_{ss} and upload the original County files
and the rolled up State level files to a remote
platform.  If not, e-mail your supervisor that
there are some States with missing county
files and that those State files containing the
missing Counties could not be created.  All
files are SAS Version 8. The control file will
have two variables call FIPST and FCNTY
and the program will execute individually for
each State.

None of this code is very difficult. Read a file,
read a directory, a few if then else statements,
and email, and an upload program.  However,
if you have never done an application similar
to this it may take a few minutes to just come
up with the ideas let alone the code.
Fortunately examples of almost all of the code
you need for this task has already been placed
in a toolbox. You will be done by noon.
Details to follow.

Input Snippets

Here are examples of several input snippets
that might be useful for our scenario.  The
first one reads the files in a directory using
Unix commands invoked by shelling out to
operating system by use of the SAS 'X'
command.  This is used more for reading the
names of non-SAS files but I thought I would
throw it in. The second snippet is very similar
to the first but uses the SAS filename
statement and the pipe engine. The third
snippet uses PROC SQL to create a view table



containing the SAS dataset names. All SAS
dataset are assumed to be in the pre assigned
library mylib.  All data is stored in the
directory /ssu/.

*Getting file list using x command;
*In Unix, 7th word from ls command;
*contains filename.;
*Best for non-SAS files.;
   x 'ls -lR /ssu/*.sas7bdat >
flist';
   data read1;
      infile 'flist' lrecl=100 pad
         missover;
      input (v1 - v7) ($);
      fipst = substr(v7,1,2);
      fcnty = substr(v7,3,3);
   run;

*Getting file list using pipe;
*In Unix, 7th word from ls command;
*contains the filename.;
*However may be flavor dependent.;
*Best for non-SAS files.;
   filename flist pipe

'ls -lR /mylib/*.sas7bdat';
   data read1;
      length v1 - v7 $20;
      infile flist lrecl=100 pad
         missover;
      input (v1 - v7) ($);
      fipst = substr(v7,1,2);
      fcnty = substr(v7,3,5);
   run;

*Getting filelist using the;
*SASHELP.VTABLE;
  data read1;
     set sashelp.vtable;
     if libname='mylib' and
     substr(memname,1,4) = 'SSU' and
     memname ^= 'SSU_04';*arizona;
     fipst = substr(v7,1,2);
     fcnty = substr(v7,3,3);
   run;

The last method is my preferred method since
you are using one of SAS's many behind the
scene administrative files. It also gives a
chance for less experienced programmers to
see what SAS has hidden away in other
administrative that they might not have found
out otherwise.

An Email Snippet

In a production environment, in my opinion,
there is not a better way of notifying people of
a job status. This is especially true when you
have hundreds of jobs a day executing.
Messages that range from 'MR. Smith, Your
weekly status reports are ready.' to
'Warning!!! Job xyx123 has possible data
anomalies and has been halted '.  Below is an
email snippet from our system, which is easily
modifiable to suit our needs.  Just break out
the code you need and insert.

   *Email to two recipients;
   *with attachment;
   filename pgmmail email
         "recipient.one@yourworkplace
         recipient.two@yourworkplace"
          subject="SAS email test"
          attach="/ssu/attach.txt";
   data _null_;
      file pgmmail;
      put "this is a test.";
      put "more lines, etc.";
   run;

   *email info can also be placed on;
   *the file statement.;
   file pgmmail
   to=("recipient.one@your.workplace"
      "recipient.two@your.workplace")
   subject="SAS email test"
   attach="/ssu/attach.txt";

An item to note that with mail, depending on
your mail application, messages can also be
sent to group addresses. This is a very nice
feature for contacting support teams and help
desks.

A Snippet to Create a String of Datasets

According to the SAS Map viewtable there
are 3,143 Counties in the United States.  Since
these Counties at to be 'rolled up' to the State
level this means the possibility that someone
will have to manually type in those thousands
of County datasets into their programs.   Two
ideas on how to accomplish this task come to



mind.  The first idea uses a data step routine
to read a view containing the State and
County variables for all the Counties in a
State. These two variables are concatenated
together along with a prefix representing a
library name. This new variable is then
retained and added together with the same
variable from the next dataset read. This
creates the extremely long variable
representing all of the state county
combinations found in the input view. Note
the length of the variable ‘filestring’ which
means that this snippet can only be executed
in SAS Version 8.

data temp;
   length filestring $32000;
   retain filestring ' ';
   set sashelp.vtable end=last;
   where lowcase(libname) = 'mylib'
     and substr(memname,1,4) = "ssu_"
     and memname ^= 'ssu_us';
   x='mylib.ssu' || put(memname,$8.);
   filestring = x||' ' ||
      left(filestring);
   if last then call
symput('filestring',filestring);
run;

The second snippet does the exact same thing
as the snippet above except that it uses PROC
SQL and the ability to automatically create a
macro variable containing all of the
state/county combinations in a view.

proc sql noprint;
   select distinct "mylib." ||
      trim(memname)
    into: filestring separated by ' '
    from sashelp.vtable
    where lowcase(libname) = 'mylib'

 substr(memname,1,4) = "ssu_"
          and memname ^= 'ssu_us';
quit;

Notice the use of the colon to create a macro
string in the PROC SQL example. Both sets
of codes above should also have their records
subset by State to make the scenario run
correctly.

An Upload Snippet

Using proc upload is relatively easy to use.
You can upload text files, SAS datasets, or
even entire SAS libraries.  I am including it
here just to show a relatively unknown feature
of PROC UPLOAD and PROC
DOWNLOAD. The ability to group and
upload/download SAS datasets by prefix. The
following example will upload all datasets
with the prefixes of 'ssu_'. This is a great
advantage for uploading multiple files
however one must be very conscious of
dataset naming patterns.

   *libname for local;
    libname one '/mylib';
    signon;
    rsubmit;
      *libname for
      libname two '/mylib/';
      proc upload in=one out=two;
         select temp: txp: ;
      run;
    endrsubmit;
    signoff;

A Snippet to Subset a SAS Dataset

This snippet is not needed for our scenario but
might be useful for other applications so I
thought I would also include it in this paper. It
is not very efficient and can definitely be
improved but the general concept is one  I
thought might be useful. Actually it is more of
an entire program than a snippet but still
warrants some attention. However since it is
also rather long I will include the code at the
end of the paper after we piece together all the
other snippets.

Conclusion

It does not matter if you are an experienced
programmer or one who just dabbles.  It also
does not matter if you are the only SAS
programmer in your office or one of a
hundred. Having a centralized location where
you can access ideas, techniques and code has



great benefits. Foremost it saves time and
effort when coding. Secondly it is a good
learning tool. A toolbox can contain small
pieces of adaptable code, macro routines,
example of functions, and redundant code. It
is something every office needs to create and
to serve its full potential it must be dynamic.

 Credits and Acknowledgments

This paper contains programming code and
techniques other than those developed by the
author.  Many people from the U.S. Bureau of
the Census have contributed and
acknowledgement is duly given to all.

Information has also been collected and
modified from SAS OnlineDoc®, Version 8.

SAS Institute Inc., SAS OnlineDoc®, Version
8, Cary, NC: SAS Institute Inc., 1999.

SAS® and all other SAS Institute Inc. product
or service names are registered trademarks or
trademarks of SAS Institute Inc. in the USA
and other countries. ® indicates USA
registration.

Other brand and product names are
trademarks of their respective companies.

 ***
*PROGRAM TO DEMONSTRATE SNIPPETS;
*THAT CAN BE USED TO ROLL UP    ;
*DATASETS.;
*ARIZONA IS THE TEST STATE. BE  ;
*CAREFULL ABOUT LEADING ZEROS   ;
*AND NAMING CONVENTIONS WHEN    ;
*WRITING YOUR OWN.;
*GET STATE NUMBER FROM SCRIPT FILE;
%let state = %sysget(STATE);
*OR HARDCODE THE VALUE;
*%let state = 4;
*ADD LEADING ZERO TO STATE;
*WOULD NOT NEED IF BETTER NAMEING;

*CONVENTION IS USED;
data null;
   call
symput('ST',put("&STATE",z2.);
   stop;
run;
*GET LIST OF ALL COUNTIES IN STATE;
data allctys(keep=state county);
   set
maps.cntyname(where=(state=&STATE));
run;
*GET LIST OF ALL FILE IN DIRECTORY;
data allfiles(keep=state county);
   set sashelp.vtable;
   if upcase(libname) = 'MYLIB' and
      upcase(substr(memname,1,4)) =
'SSU_' and
      upcase(memname) ^= "SSU_&ST";
   state =
input(substr(memname,5,2),2.);
   county =
input(substr(memname,7,3),3.);
run;
*DETERMINE IF ALL FILES ARE PRESENT
IN DIRECTORY;
data _null_;
   length found $2;
   retain found ' ';
   merge allctys(in=base)
         allfiles(in=trans)
            end=last;
   by state county;
   if base and not trans then found =
'no';
  *if last and found = 'no' then
abort abend 123;
run;
*CREATE STRING OF ALL FILE IN
DIRECTORY;
proc sql noprint;
   select distinct "mylib.ssu_&ST" ||
trim(put(county,z3.))
    into : filelist separated by ' '
    from maps.cntyname
    where state = &STATE;
quit;
*THIS SQL WILL CREATE THE MACRO
VARIABLE '&FILELIST';
*WHICH CONTAINTS THE VALUE
'mylib.ssu_04001 mylib.ssu_04003
  mylib.ssu_04005 mylib.ssu_04007
mylib.ssu_04009 mylib.ssu_04011
  mylib.ssu_04012 mylib.ssu_04013
mylib.ssu_04015 mylib.ssu_04017
  mylib.ssu_04019 mylib.ssu_04021
mylib.ssu_04023 mylib.ssu_04025
  mylib.ssu_04027';



*PERFORM ROLLUP IF ABEND DID NOT
OCCURR;
data mylib.ssu_&STATE;
   set &FILELIST;
run;

***
*PROGRAM TO SEPARATE DATASET INTO ;
*COMPONENTS;
*GET STRING OF ALL FILE IN DIRECTORY;
libname in1 '/acsw';
libname out1 '/hm/gober001';
*MASTER FILE IS ON THE US LEVEL;
*MUST SUBSET INTO SEPARATE STATE
FILES;
*MASTER FILE IS CALLED CO2000 AND ;
*HAS VARIABLE CALLED Fipst.        ;
*STATE LEVEL FILE WILL BE CALLED
ST_{STATE};
*create list of output datasets;
proc sql noprint;

   select distinct "out1.ssu_" ||
trim(fipst)
    into : filelist separated by ' '
    from in1.co2000;
quit;
%put &filelist;
*CREATE CODE TO OUTPUT RECORDS;
proc sql noprint;
   select distinct "if fipst = '" ||
trim(fipst) || "' then output
out1.ssu_" || trim(fipst) ||" ;else"
    into : pgmcode separated by ' '
    from in1.co2000;
quit;
data &filelist;
   set in1.co2000;
   &pgmcode;;
run;



A
U

T
H

O
R

 I
N

D
E

X

AUTHOR INDEX





AUTHOR INDEX

937

AUTHOR INDEX

A

Akridge, Fran 17
Anderson, Mark G. 637

B

Bahler, Caroline  502, 837
Barnes Nelson, Greg  59, 721
Bentley, John  3, 216
Bischoff, George 32
Boone, Bryan 202
Brainard, Andre 303
Bramblett, Larry 18
Brauer, Bob 27
Brinsfield, Eric 258
Brooks, Ellen R. 679
Brooks, Lisa 489
Brown, Dorothy 566
Bruns, Dan 902
Bryant, Lara 699

C

Campbell, Howard 455
Cassidy, Deb  571, 763
Castelloe, John 609
Cochran, Ben 881
Cody, Ron 322
Cohen, Robert 601
Copeland, John 292
Cox, Christine S. 442
Cranford, Keith 925
Curnutt, Randy  86, 287

D

Davidson, Kevin 204
Davis, Lisa 801
DeFoor, Jimmy 383
DeJarnatt, Kimberly 650
DelGobbo, Vincent 481
Denby, Richard 81
DiIorio, Frank C. 351
Dickstein, Craig 741
Donaghy, Sandra B.  644, 811
Doninger, Cheryl 731
Dorfman, Paul  332, 553,

853, 855
Duncan, Dean 277
Dunn, James E. 650
Dymond, Anthony 69

E

Eason, Jenine 531
Eberhardt, Peter 873

F

Fehd, Ronald  754, 773
First, Steve 784
Fleischer, Roy 76
Foley, Malachy 843
Fowler, Karen B. 447
Frederick, Rebecca 679

G

Gagliano, Tammy 264
Gangarosa, Paul C. 292
Gard, Charlotte 693



AUTHOR INDEX

938

Garner, Glenda 389
Gillespie, Michelle 469
Go, Imelda  391, 394
Gober, John 930
Guido, Lori 81
Gutin, Bernard 674

H

Hartley, Joyce 472
Haworth, Lauren  193, 513,

893, 910
Heaton, Ed  543, 792
Henderson, Don 221
Henderson, Greg 435
Herbert, Pat 202
Hermansen, Sigurd 819
Hughes, Ed 451
Humphrey, Jeanette 455

J

Jackson, Clarence Wm.                398
Jacobs, Sheri 665
James, Steve 404
Johnson, Maribeth 602
Jones, Gretchen 442

K

Karp, Andrew 887
Karp, Andrew H. 645
Kelley, David 709
Kelley, Francis J. 527
King, David W. 292
Kneipp, Shawn J. 684
Kuligowski, Andrew T.  342, 863

L

LaBore, John  86, 287
LaChapelle, Carl 488

Lafler, Kirk  359, 562
Langston, Rick  241, 242
Leveille, John 481
Levine, Fred 36
Liang, Xiaoming 409
Lieble, Frank 277
Lindquist, Jennifer Hoff 829
Litaker, Mark 674
Litzsinger, Michael 489

M

Maitland, Robert 32
Malcom, Elizabeth 477
Mannigel, Tom 4
March, Dr. Richard 20
Marinshaw, Ruth 716
Martell, Carol 231, 277, 716
Mittl, Ralph 221
Mixon, Emily 447
Moser, E. Barry  409, 679
Muha, Sharon 477
Muller, Sally  277, 699

Mc

McAllaster, LTC Douglas              627
McBee, Janice 465
McGown, Patrick  522, 535
McNeill, Sandy 709
McQuown, Gary 566

N

Nousak, Phil 8

O

Olsen, Diane 54
O’Brien, Ralph G. 609



AUTHOR INDEX

939

P

Pacas, Douglas A. 469
Parker, Peter 47
Pass, Ray 699
Pell, Michael J.  86, 287
Penny, Jim 622, 654, 660
Phelps, Robert 8
Poisson, Bernard 249
Prier, Tony 264

R

Ratcliffe, Andrew  497, 591
Ray, Robert 54
Rodgman, Eric A. 716
Rothwell, Sandra T. 442

S

Scerbo, Marge 741
Schlegelmilch, Gary 577
Smith, Curtis 413
Smith, Joy Munk 644, 811
Steves, David 298
Stewart, Robert 689
Stokes, Maura 673

T

Tobias, Randy 643

V

Villalobos, Hermes 418

W

Waller, Jennifer 637
Walsh, Brian 455
Ward, David 308, 463, 528
Weber, Tom 32
Whitehorn, Jaclyn 423
Whitlock, Ian  369, 919
Whitney, C. Michael 583
Williams, Tim 211
Winn, Thomas J.  319, 378,

428, 750
Wludyka, Peter 665

X

Xiang, Dong 601

Y

Yarandi, Hossein 684



940



K
E

Y
W

O
R

D
 I

N
D

E
X

KEYWORD INDEX





KEYWORD INDEX

943

KEYWORD INDEX

A

abstract data table 853
ACCESS 418
ACCESSents 502
AF  497, 528
analysis  413, 741
ancova  654, 660
Annotate  535, 925
Anomalies 413
AppDev Studio  126, 488
Appendicular 679
artificial intelligence  47, 69
Assembler 543

B

bar-chart 404
Base SAS 242
Benford's Law  413, 428
binomial process 665
Biplot 409
bitmapping  853, 855
Bone Mineral Density                        679
Bootstrap 409
bulk load 32
business rules 69
BY statement 342

C

CALL routines 351
Canonical Correlations                     679
Case Report Forms 447
cc:Mail 76
CERP 20
character 837

Character functions 763
Chart  97, 172
click-stream analysis                           59
Clinical Trials 447
College 455
combinations 553
comp.soft-sys.sas 527
conditional execution                        332
confidence interval 637
confidence intervals                          622
contents 801
control chart 665
control flow 332
Convert 369
CPU Saving 418
CRM 645
Cross-platform communication         292
cross-tabulation 902
Cubes 383

D

DATA 322
data dictionary  3, 3, 754
Data Ferret 20
data listings 843
Data Management 447
Data Manipulation  332, 881
data mining  645, 819
Data Quality 8
data review 773
DATA step  332, 351
data summarization 887
Data Warehousing 20
databases 819
Datasets 801
datetime 837
DB2 ACCESS Engine                         32
DDE  136, 863



KEYWORD INDEX

944

debug 591
debugging 591
delete 801
descriptive statistics                          843
design  528, 741
development 583
differential item
functioning

 654, 660

Digital 413
digital analysis 428
direct addressing  853, 855
discrete 627
Dispatcher 716
DQP 8
Drill-down 571
DSNUTILS 32
Dynamic 308
dynamic HTML  59, 721

E

e-intelligence 221
e-mail  76, 469
Economic Analysis 20
Economics 20
efficiency 553
EG 811
eIntelligence 59
EIS 81
electronic surveys 660
email 527
enhancements 47
Enterprise Guide  18, 97, 811
Environmental
Justice

20

Evaluation 442
excel  136, 472, 873
expert system 69
expression 332

F

facility location 627
FILE 322

FILENAME 322
fmtlib 773
Form Viewer 442
FORMAT  369, 531, 773
Formats 242
Frame 528
FREQ  359, 673
function  351, 566, 837
Functions  242, 543, 881
fuzzy 819

G

GAM 601
gender bias 654
gene chip 637
global macro variables                      754
goodness of fit 645
Graph  172, 522, 535, 925

H

hashing  853, 855
Heel Ultrasound 679
HOLAP  81, 435
homogeneous 689
HTML  109, 122, 193,

211, 242, 308, 404,
423, 481, 643

htmSQL 716
hypelinks 383

I

I/O 54
IDE 488
IML 650
index  801, 819
indexes 562
Individual growth model                    602
INFILE 322
Informat 369
input  322, 389



KEYWORD INDEX

945

input/output 837
integer
programming

627

integration 873
internet  204, 231, 242,

249, 716
Intranet  122, 211, 249
IntrNet  204, 308
introduction 103
invalid 773

J

Java  86, 126, 264, 287,
477, 488

JavaScript 59
JDBC 477
JOIN 117
joins 562
JSP  202, 264, 488

K

key linkage 819
key-indexing  853, 855
knapsack problem 553
knowledge
management

69

L

Levene 689
LIBNAME statement                         342
Linear models 609
linear programming 627
List processing 919
Listserver 527
local macro variables                        754
LOESS 601
LOGISTIC 673
logistic regression  645, 654, 660
logit 650
Longitudinal data 602

lookup 553

M

Macro  103, 543, 689,
750, 792, 919

macro usage 754
macro variable  378, 750
macro windows 47
macros  378, 784
management 4
many-to-many merges                      391
MAPI 76
Maps 571
matching data 394
MDDB 81
MEANS 359
Medians 689
Merge  531, 829
MERGE statement 342
Metadata 3
MFILE 489
migration 258
Mining 413
MODIFY statement 342
MP CONNECT 731
MPRINT 489
multi-threaded 47
multinomial 650
Multiprocessing 731
multistream 665
MVS 469

N

newbies 930
newsgroups 527
Nonconstant 689
Nonparametric
analysis

601

NPAR1WAY 673



KEYWORD INDEX

946

O

object 497
ODBC 863
odds ratio 645
ODS  109, 193, 423,

643, 644, 693, 699,
709, 721, 910

OLAP  264, 435
OLE DB 863
OO 497
OOP 497
optimization  553, 627
Oracle 502
oriented 497
OS/390 303
other= 773
out2htm 298
outlier 773
output 109
output SAS data
sets

887

P

parameterized
program

754

Patterns 413
PC 418
PDF 522
percentages 902
permutation tests 674
personalization  59, 721
PHREG 673
planning 258
PLOT 359
Point and Click 481
Power 609
power analysis 622
Preference
Analysis

409

PRINT  359, 910
PROC 359
PROC DBF 863
proc lp 627

PROC MIXED 602
PROC REPORT  142, 693, 843
PROC SQL 391
Proc Summary 383
PROC TEMPLATE 423
Profiles 465
program control 332
project 4
Project  Management                        216
project design 754
Project Proposals 216
PUT 322

Q

Quality 27
quantile statistics 887
queries 562
QUERY 117

R

Recode 369
Recursion 463
REMOTE 418
repeated measures 674
REPORT  97, 142, 910
Reporting 455
reports 843
RESERVEDB1 489
RTF 643
run-time 47
RUNSTATS 32

S

Sample size 609
SAS  319, 398
SAS Dataset Model 442
SAS Engines 721
SAS Import Wizard 863
SAS System 319
SAS V8e 442



KEYWORD INDEX

947

sas-l  527, 553
SAS/ACCESS  36, 863
SAS/AF  258, 447, 477, 497
SAS/Connect  86, 287
SAS/IML 601
SAS/IntrNet  81, 204,258, 292,

298, 308, 404, 481
SAS/SQL 36
SAS/Warehouse
Administrator

18

SCL 463
Scorecard 8
search 819
Servlets 202
Set 829
SET statement 342
simulation 674
SLEEP Function 241
small samples 622
SMP  54, 731
SMTP 469
snippits 930
Socket Access
Method

241

software 4
SORT 359
spreadsheet 472
SQL  117, 378, 391,

502, 562, 919
SSA 54
standards 583
STAT 643
statement 389
statistical reports 843
statistics 674
statistics,
descriptive

843

Stepwise
Regressions

679

structure 577
Structured  543, 792
Student 455
Style 709
SUDAAN 693
Supplier Performance                       451
   Rating

Supplier Portfolio
Optimizer

451

Supply Chain 451
survey  249, 684
SURVEYREG 673
sweep 650
systems 4

T

table look-up  853, 855
tables 902
TABULATE  513, 893, 902, 910
technique 577
TEMPLATE  423, 644, 709
testing 398
thin client 122
thin-client 258
tolerance interval 428
toolbox 930
Top-Down 792
Tracking 455
tricks 930
triplet 136
TSPLINE 601

U

UNIX 418
UPDATE statement 342

V

Variance  684, 689
vba 873
Version 9 54
views 562

W

Wald statistics 650
Warehousing 27



KEYWORD INDEX

948

web 59, 122, 204, 211,
231,249, 258, 264,

308, 423, 477, 481,
716, 721

Web EIS 126
web logs 221
Web Traffic Analysis                         277
Web-based analysis                         292
web-intelligence 221
WebHound  221, 277
WebSphere 303
widget 528

wizard 47

X

XML 721

Z

z-statistic 428


	Foreward
	Conference Leaders
	Table of Contents
	Paper Sections
	Data Warehousing
	Producing Multipurpose Metadata for Data Quality, Trending, and a Data Dictionary 
	Simplified Software Project Management for the Rest of Us Or a Twelve Step Program for the Chronically Overworked Programmer, Project Leader or Manager 
	A Scorecard Approach to Improving Data Quality 
	Data Warehousing - Lessons Learned 
	Biotech Warehouse - Stretching the Limit of Columns 
	Use of SAS/ETS and the BLS-Census Data Ferret for the Comprehensive Everglades Restoration Program 
	Data Quality -- Spinning Straw into Gold 
	Using the SAS ACCESS Engine for DB2 OS/390 to Bulk Load Tables 
	Using the SAS/Access Libname Technology to Get Improvements in Performance and Optimizations in SAS/SQL Queries 

	Emerging Technologies
	All I Really Want...  A Wish List for New SAS Software Enhancements 
	Version 9: Scaling the Future 
	Avoiding eOverload: Personalizing Web Content through Security, eIntelligence and Data Mining 
	Knowledge Management Using an Expert System Written in SAS 
	SAS and Electronic Mail:  Send e-mail Faster, and DEFINITELY More Efficiently 
	Advantages and Disadvantages of Using MDDBs, HOLAP, EIS, and SAS/IntrNet in the Development of an Interactive System 
	Integrating SAS/Connect with Java 

	Hands On Workshops
	Who Needs To Know Program Syntax When You Have Enterprise Guide
	Basic Macro Processing 
	Version 8 ODS (Output Delivery System) 
	SQL Processing 
	Running SAS Applications on the Web 
	Creating Java Based Applications 
	Reading and Writing Data from Microsoft Excel/Word Using DDE 
	Interactive PROC Report 
	Graphing in SAS Software 

	Internet, Intranet & the Web
	HTML for the SAS Programmer 
	Delivering Information Everywhere using JSP and SAS 
	Using SAS/INTRNET Software 
	Building a SAS Intranet Site 
	Sounds Like a Good Idea, But What’s the ROI? 
	Web-Intelligence: A Primer 
	Case Studies in Data Management on the Web 
	Using the SOCKET Access Method to Invoke SAS Programs 
	Obtaining and Using Euro Currency Rates in SAS Programs 
	A SAS-Based Approach to WEB-Based Surveys 
	Avoiding Entanglements - Migrating Applications to the Web 
	Delivering OLAP Solutions to the Web 
	WebHound: Your Best Friend for Web Traffic Analysis 
	Energizing End Users with a Slice of SAS and a Cup of Java 
	The Role of SAS/Intrnet in a Web-Enabled Database System 
	The Beauty of OUT2HTM with Proc Report 
	Web Based Report Ordering Combined with Base/SASMainframe Batch Processing 
	A Generic Solution to Running the SAS System on the Web without SAS/Intrnet 

	Introduction to SAS
	Introduction to the SAS Programming Language 
	The INPUT Statement: Where It's @ 
	Manipulating Data: Elements of the DATA Step Language 
	Passing Along SAS Data – SET, MERGE, and UPDATE 
	Understanding and Using Functions 
	Basic SAS PROCedures for Generating Quick Results 
	Formats, Informats and How to Program with Them 
	What's Next? 

	Posters
	Cubes on the Cheap 
	Transforming Single Record Spreadsheet Data into Multiple Observations 
	Generating Matched Case Data Using PROC SQL 
	Overcoming the Challenges of Longitudinal Data Collection 
	Defining Test Data Using Population Analysis 
	Web-Application Bar Charts without SAS/GRAPH® 
	Bootstrapping a Multidimensional Preference Analysis 
	Detecting Anomalies in Your Data Using Benford’s Law 
	How American Express Saved $1M in CPU charges 
	Avoiding a (Graphic) Identity Crisis with ODS HTML Styles 
	Implementing Digital Analysis Using SAS 

	SAS Solutions & Vertical Products
	OLAP Best Practices: What You Need to Consider When Building and Deploying an OLAP Application 
	Use of SAS/AF V8e to Compare Death Certificate Data with Health Survey Data from the National Center for Health Statistics 
	Creating Visit Specific CRF Checklists for a Longitudinal Study Using a SAS/AF Application 
	Supplier Management with SAS Supply Chain Solutions 
	Florida Community College System - Putting Minds to Work
	Using Recursion in the SAS System 
	Creating Student Academic Profiles 
	Sending E-mail From a Mainframe Using SAS in an MVS Environment 
	Using SAS to Create Presentation Quality Spreadsheets in Excel 
	V6 to V8 Applications: To Web or Not to Web? 
	Point and Click Web Pages with Design-Time Controls and SAS/IntrNet Software 
	AppDev Studio Release 2.0 
	A Modular Approach to Portable Programming 
	OOP Needs OOA and OOD 
	Optimizing Data Extraction from Oracle Tables 

	Serendipity
	Elegant Tables: Dressing up your TABULATE Results 
	Creating Adobe PDF Files From SAS Graph Output 
	Behind the Scenes at SAS-L 
	Dynamically Instantiating Widgets on SAS Frames – Why, How, and When 
	Proc Format, a Speedy Alternative to Sort/Merge 
	Using the SAS Annotate Facility for Creating Custom Graph
	An Assembler Written in SAS 
	A Couple of Tasty SAS Programming Tunes 
	Problem Solving Techniques with SQL 
	Functional Functions 
	Creating Regional Maps with Drill-Down Capabilities 
	Structuring Base SAS for Easy Maintenance 
	Taming the Chaos: Managing Large SAS/AF Applications Using Programming Standards and the Source Control Manager of Version 8 of the SAS System 
	Debugging Made Easy 

	Statistics & Data Analysis
	Modeling Data with Nonparametric Methods Using SAS Software 
	Individual Growth Analysis Using PROC MIXED 
	Power and Sample Size Determination for Linear Models 
	Using the SAS System to Estimate Sample Size Requirements for Small Sample Confidence Intervals 
	Optimal Solution of Discrete Resource Allocation Problems with SAS/OR Software 
	A Confidence Interval Approach to Gene Chip Analysis 
	The Output Delivery System for Data Analysis 
	Customizing Statistical Reports Using ODS and Proc Template 
	Getting Started with PROC LOGISTIC 
	Ideas on Variable Selection and Alternative Links in Procedure CATMOD 
	Using the SAS System to Study the Gender and Level Measurement Equivalence of a Multi-rater Survey 
	Using the SAS System to Demonstrate the Equivalence of On-line and On-paper Survey Administration across Levels of Raters 
	Using SAS to Control Multistream Binomial Pocesses 
	2001: A SAS/STAT Odyssey 
	A Simulation Study to Compare the Performance of Permutation Tests for Time by Group Interaction in an Unbalanced Repeated-Measures Design, Using Two Permutation Schemes 
	Heel Ultrasound As A Predictor of Appendicular Bone Mineral Density 
	Survey Estimates and Variance Estimation Using the SURVEYMEANS Procedure 
	Bootstrapping the Levene Test for Equality of Variances 

	Tutorials
	Conversion of SUDAAN Output into Publication-Quality Tables--A Simplified Approach 
	ODS, YES!  Odious, NO!  -  An Intro to the SAS Output Delivery System
	Changes & Enhancements for ODS by Example (through Version 8.2) 
	SAS on the Web: How do I get There from Here? 
	XML and SAS: An Advanced Tutorial 
	Multiprocessing with Version 8 of the SAS System 
	The Metamorphosis of a Study Design 
	Introduction to the SAS Macro Language 
	A Beginners Tour of a Project using SAS® Macros Led by SAS-L's Macro Maven 
	Are Strings Tying You in Knots? 
	INVALID: a Data Review Macro Using Proc FORMAT Option Other=INVALID to Identify and List Outliers 
	Advanced Macro Topics 
	Top-Down Programming with SAS Macros 
	The Power of PROC DATASETS 
	Evaluating the Use of Enterprise Guide in Introductory Statistics Classes 
	Fuzzy Key Linkage: Robust Data Mining Methods for Real Databases 
	Point, Set, Match (Merge) - A Beginners Lesson 
	Data Cleaning and Base SAS Functions 
	PROC REPORT: How to Get Started 
	Direct Addressing Techniques of Table Look-Up 
	Advanced Methods to Introduce External Data into the SAS System 
	Rev Up Your Spreadsheets With Some V8 Power 
	Using Functions and Arrays in the SAS System to Manage and Manipulate Data 
	Changes and Enhancements to PROC MEANS in Version 8 of the SAS System 
	Anyone Can Learn PROC TABULATE 
	The Utter Simplicity? of the TABULATE Procedure - The Final Chapter?
	ODS for PRINT, REPORT, and TABULATE 
	PROC SQL - Is it a Required Tool for Good SAS Programming? 
	To Annotate or Not to Annotate, There Should Be No Question! 
	How Fast Can You Type *or* Go Ahead and Get Snippity 


	Author Index
	Keyword Index

	trademark 1: 
	trademark 2: 
	trademark 3: 
	trademark 4: 
	trademark 7: SAS is a registered trademark or trademark of  SAS Institute Inc. in the USA and other countries.  ® indicates USA registration.
	trademark 5: 
	110-26: SAS is a registered trademark or trademark of  SAS Institute Inc. in the USA and other countries.  ® indicates USA registration.
	pat1: 
	pat2: 
	trademark178: SAS is a registered trademark or trademark of  SAS Institute Inc. in the USA and other countries.  ® indicates USA registration.
	Greg1: 
	greg2: 
	greg3: 
	greg4: 
	greg5: 
	greg6: 
	greg8: SAS is a registered trademark or trademark of  SAS Institute Inc. in the USA and other countries.  ® indicates USA registration.
	greg7: 
	carl2: Presented By Scott Leslie
	carl1: 
	trademark21: SAS is a registered trademark or trademark of  SAS Institute Inc. in the USA and other countries.  ® indicates USA registration.


