
Reordering Variables in a SAS® Data Set

Imelda C. Go, Lexington County School District One, Lexington, SC

ABSTRACT

A programmer may have a number of reasons to want to
reorder variables in a data set. One reason is to take
advantage of PROC PRINT output that prints variables
according to their order on the data set when the VAR
statement is not used. Another reason is to logically order
the variables prior to exporting the data into a
spreadsheet. This would eliminate the need to reorder the
columns in the spreadsheet since reordering is done prior
to exporting. Whatever the reasons are, there are a
number of ways to reorder the variables in a data set. The
DATA step may be used to reorder the variables by using
one of the ATTRIB, ARRAY, FORMAT, INFORMAT,
LENGTH, or RETAIN statements. PROC SQL can also be
used to reorder the variables.

INTRODUCTION

In general, the order of variables in a data set is based on
the order in which the variables were created. As
programmers manipulate their data sets, they hardly ever
keep track of the order of variables on the data set. After
all, the order of the variables can be changed later through
a number of different ways.

Why is there a need to reorder the variables in a data set?
The answer may not be obvious to those who have not
had the need to reorder variables in a data set before.
Here are a few reasons:

When procedures are used without a VAR statement, the
procedure is applied to all usable variables according to the
order of variables on the data set. Not all variables may be
usable because certain procedures only work with certain types
of data. For example, PROC MEANS cannot be applied to
character variables. The effect of not using a VAR statement
would be similar to using special SAS name lists with the VAR
statement:

*specify all variables
var _all_;

*specify all numeric variables
var _numeric_;

*specify all character variables
var _character_;

Name range lists are processed depending on the position of
the variables in a data set. Such lists may be used with several
types of statements as a convenience. In the examples below,
variables A and Z are the first and last variables in the name
range list. A and Z are considered for processing. Any other
variable created after variable A and before variable Z are also
considered for processing. If a specific variable type is
specified, then only variables of the same type are considered.

*specify all variables
keep A--Z;

*specify all numeric variables
keep A-numeric-Z;

*specify all character variables
keep A-character-Z;

Data sets may need to be exported (e.g., into a spreadsheet).
Instead of rearranging the columns of data in the spreadsheet,
the order of the variables is changed prior to exporting the data
into the spreadsheet. Having the columns of data in their
preferred or logical order also make it easier to view data sets
within SAS.

The following examples were contrived for the purpose of
illustrating the different methods for reordering variables.
Consider the following sample data set.

data sample;
input d c b a;
cards;
4 3 2 1
;

The order of the variables based on the INPUT statement
is d, c, b, and a. An excerpt from the PROC CONTENTS
output confirms the order indicated by the value in the #
column.

-----Alphabetic List of Variables and Attributes-----

Variable Type Len Pos

4 a Num 8 24
3 b Num 8 16
2 c Num 8 8
1 d Num 8 0

The same order appears when PROC PRINT is used
without the VAR statement.

proc print;

Obs d c b a
1 4 3 2 1

Using a name range list of c--b in the VAR statement
produces the following results.

proc print;
var c--b;

Obs c b
1 3 2

The name range list of b--c in the VAR statement is
invalid. The following error will appear.

87 proc print;
88 var b--c;
ERROR: Starting variable after ending
variable in data set.

One obvious way of controlling the order of the variables is
to rewrite the INPUT statement.

data sample;
input a 7 b 5 c 3 d 1;
cards;
4 3 2 1
;

proc print;

Obs a b c d
1 1 2 3 4

This is not worth the trouble and is not possible for data
sets that result when no INPUT statement is involved.

SAS NOTES FOR REORDERING VARIABLES

The following are SAS Notes that were obtained from
www.sas.com.

V6-SYS.DATA-8946
How to reorder variables in a SAS data set

Any of the following statements may be used to
change the order of variables in the program data
vector:

ATTRIB, ARRAY, FORMAT, INFORMAT,
LENGTH, and RETAIN.

Note that only the variables whose positions are
relevant need to be listed in the above statements.
Variables not listed in these statements will retain
their same positional order following the listed
variables.

For any of these statements to have the desired
effect, they must be placed prior to the SET statement in
the DATA step.

Products: BASE

Component: SYS.DATA

Priority: N/A

Status: Usage Issue

Date: Mon, 27 Jun 1994

System Release Reported Release Fixed

Solaris 6.09 TS027

IBM OS/2 6.08 TS404

VSE/ESA (VSE) 6.08 TS404

Windows 3.11 6.08 TS404

VM/ESA (CMS) 6.08 TS404

OS/390 (MVS) 6.08 TS404

OpenVMS VAX 6.08 TS404

AIX/6000 6.09 TS027

ConvexOS 6.09 TS027

HP-UX Operating Systems 6.09 TS027

OpenVMS Alpha 6.09 TS027

Windows NT 6.09 TS027

DEC Ultrix 6.09 TS027

No Fixes Available

DATA STEP EXAMPLES

The following shows SAS code for changing the order in
six different ways using the DATA step.

ATTRIB Statement

The ATTRIB statement associates a format, informat,
label, and/or length with one or more variables.

**example for associating a format;
data attrib_method;
attrib a b c d format=1.;
set sample;

**example for associating an informat;
data attrib_method;
attrib a b c d informat=1.;
set sample;

**example for associating a label;
data attrib_method;
attrib a b c d label=’example’;
set sample;

**example for associating a length;
data attrib_method;
attrib a b c d length=3.;
set sample;

ARRAY Statement

The ARRAY statement defines elements of an array.

data array_method;
array fixorder a b c d;
set sample;

FORMAT Statement

The FORMAT statement associates formats with
variables.

data format_method;
format a b c d 1.;
set sample;

INFORMAT Statement

The INFORMAT statement associates informats with
variables.

data informat_method;
informat a b c d 1.;
set sample;

LENGTH Statement

The LENGTH statement specifies the number of bytes for
storing variables.

data length_method;
length a b c d 3.;
set sample;

/* Be careful to specify the correct length.
851 length a b c d 1.;

--
352

ERROR 352-185: The length of numeric variables is 3-8.*/

RETAIN Statement

In contrast to the other DATA step statements, the
RETAIN statement only requires the variables to be listed
in the desired order.

data retain_method;
retain a b c d;
set sample;

USING PROC SQL

PROC SQL also provides a way to reorder variables in a
SAS data set that already exists.

data sample;
input d c b a;
cards;
4 3 2 1
;

The PROC SQL example uses the CREATE TABLE
statement to store the results of the query into a table. The
resulting table is named reordered and will have the
variables in the order in which the variables are listed in
the SELECT statement. Only source data set variables
that are listed will be included in the resulting table.

proc sql;
create table reordered as
select a, b, c, d
from sample;

proc print data=reordered;

Obs a b c d
1 1 2 3 4

COMMENTS

The DATA step and PROC SQL statements have their
advantages and disadvantages. Using PROC SQL is
straightforward in that all required variables are listed in
the SELECT statement. However, there is more to list
when a large number of variables is involved. Variable
attributes are not required as they are for most of the
DATA step statements.

Except for the RETAIN statement, the DATA step
statements require information about the variables, such
as an attribute (format, informat, length, label). Compatible
attributes must be carefully specified so that no data loss
occurs. For example, when the variable has a length of 20
characters, using a length of 15 characters may result in
the loss of data.

One approach with the DATA step statements is to use
whatever attribute the variable already has as shown by
PROC CONTENTS output.

Each ARRAY statement may only involve all numeric or all
character variables. When two types of variables are
involved, a series of ARRAY statements can be used to
reorder the variables. The series is written until all the
variables are enumerated. An example is shown below.

data sample;
input d c b a;
f=’6’;
e=’5’;
cards;
4 3 2 1
;

data array_method;
array fixorder a b c d;
array fix $ e f;
set sample;

proc print data=array_method;

Obs a b c d e f
1 1 2 3 4 5 6

The SAS Notes about the DATA step statements say,
“Variables not listed in these statements will retain their
same positional order following the listed variables.”
Hence, the RETAIN statement does not require that all of
the variables be listed. That is an advantage the RETAIN
statement has over PROC SQL. However, there may be
situations where it might be better to list all the variables to
make it very clear what the final result will be.

CONCLUSION

PROC SQL and the DATA step’s RETAIN statement
provide a way to reorder data set variables by listing
variable names according to the new order. In contrast,
the other DATA step statements are not as straightforward
and have a potential for human error in specifying
attributes.

REFERENCES

SAS Institute Inc., SAS Language Reference, Version 8,
Cary, NC: SAS Institute Inc., 1999. 1256 pp.

SAS Institute Inc., SAS OnLineDoc, Version 8, Cary, NC:
SAS Institute Inc., 1999.

TRADEMARK NOTICE

SAS is a registered trademark or trademark of the SAS

Institute Inc. in the USA and other countries.
  indicates

USA registration.

Imelda C. Go (icgo@juno.com)
Lexington County School District One
Lexington, SC

