

Automated Testing and Real-time Event Management Greg Barnes Nelson, Danny Grasse & Deborah Pine

Automated Testing and Real-time Event Management: An Enterprise Notification System
Greg Barnes Nelson, Danny Grasse &

Deborah Pine
ThotWave Technologies, LLC. – Cary, NC

ABSTRACT

Data manipulation is a delicate activity, particularly when complex
operations are performed on massive amounts of information.
Accuracy of results—the forte of the SAS System—is critical for
interpreting, forecasting, and decision-making. In addition, when
iterative steps are required before data can be utilized, the
opportunity for lost or incorrect data, including the possibility of
premature processes halting, increases. As time and technology
advance, the less likely we will possess prescient knowledge of
myriad variables that can affect the algorithms in an enterprise-
wide system. However, we can be prepared to manage problems
in a timely manner. Event management is a proactive way to
identify, track, and resolve these issues.
This paper discusses a specific design to monitor the conditions
SAS programs encounter. It explores the concepts of automated
tests through assertions, events and their attributes, event status
management, and automatic notification of events to interested
parties. These concepts are presented from the perspective of
the SAS programmer and the systems analyst.

BACKGROUND

This paper provides some background explanation of a system
we created to help provide a layer of robustness and
manageability for SAS applications. We built the system
described in this paper with the purpose of supporting some
fundamental business issues discovered while developing and
deploying enterprise SAS applications. Specifically, it was our
desire to:

• Have a convenient way to see what was happening in
SAS jobs without parsing the logs to look for strings of
“stuff”.

• Find out about issues before the SAS job was finished.
This was particularly important because in large,
enterprise applications, a data warehouse/ analytic
process may take several hours. When errors occurred,
we wanted to know about them in real-time.

• Provide a controlled way to start, stop and restart SAS
jobs, even though this method could mean starting a
job mid-stream (i.e., after several of its predecessors
had run successfully) and not have to rerun everything
from scratch.

• Develop an API allowing us to add our own user
defined events (in addition to WARNINGS and
ERRORS) that could be utilized to define test cases
and/or business rules, which could be attached or
associated with an event.

• Generate events that could be stored in a database,
sent out on a message queue, written to an audit trail
and/or emailed (along with attachments) to a list of
interested parties.

• Provide a method for viewing events for a particular
system “run” and drill down into event levels (ERRORS,
WARNINGS, INFO, etc.), event categories (a
user/system defined method to follow the lineage of a
program – similar to a tree), and event types
(descriptive information that categorizes the problem
into one of several user-defined buckets.)

While our goals were fairly ambitious, we knew if we could
accomplish them, significant value would be added to the
applications we build for clients. In addition, we knew that much of
the time and energy developers put into creating automated test
scripts and error handling routines could be reduced, since most
of the work would be rolled into this framework. An overall system
diagram of how events are captured (from SAS programs),
monitored and displayed is shown here to give you an idea of
what we will be discussing in this paper.

The fundamental value proposition of this paper and the Thinking
Data™ Toolkit for Event Management is this:

Implementing event management into your enterprise
applications provides you with a robust facility to
proactively measure and monitor system and business
related events for analysis and reporting. We think this
helps provide better service and higher quality to the
users of the application.

The system is valuable because a collection of events can be
captured from any number of data touch points. For example, we
have implemented this by using information from the host system
(UNIX or NT schedulers and shell script return codes), log files,
web server and application servers, operational systems (real
time), SAS programs, and user-written events. Thus, the need for
dedicating resources to monitor or "baby-sit" batch applications or
parse the logs manually after each run is eliminated. Instead,
real-time notification enables resources to handle events in
proactive manner – even before the SAS jobs are finished! In
addition, developers and administrative personnel can spend time
fine-tuning and enhancing data quality and supporting
infrastructure to further streamline the enterprise application.
Surfacing responses to events in multiple ways helps ensure that
the data warehouse has been loaded in the time span available,
and that the enterprise application is up and available to the users
with current information.

THE NEED FOR TESTING IN SAS PROGRAMS

To ensure application and system availability, developers need to
detect or avert problems in their applications proactively. SAS
does not have a facility built into the Data Step or Procs to
manage the automated handing of errors. Much of this
responsibility falls on the developer to write code, ensuring that if
something is supposed to happen (a dataset should have more

than 0 observations, for example), it does so without problems.
Typically, in large-team development environments, there is little
code reuse across teams and within large organizations as the
developer tends to write unique “utility” functions to accomplish
his or her goal. Rather, it is the developer’s responsibility to test
for conditions and capture return codes that can result in errors.
This method is subjective, confusing, usually results in extra
coding; further, it may return non-standard results.
Having experienced how other languages provide a method to
introduce automated test cases within the code base itself, we
perceived an opportunity that required good, solid design. The
imperative was to create a built-in facility (or API) allowing the
developer to “assert” events when something was or wasn’t true.
For example, when ensuring that a dataset has more than 0
observations, we want to be able to test the conditions that:

(a) the dataset exists;
(b) the dataset is “readable” by the current program
(c) and the dataset has 1 or more observations

Instead of letting each and every programmer figure out how to
test these conditions—and spend costly coding time—we
developed a standard interface that allows us to manage the
automated testing, error handling and event notification. In
addition, this interface gives the user an opportunity to report a
fatal error, produce a warning or generate an informational note
about the condition. Furthermore, auxiliary information such as
the dataset or output (from ODS or other methods) can be
attached to the event so that it can be used later to review the
information more fully without spending time in search for the root
cause. Of course the power of these interfaces lies in their
support of any number of tests. Common types of event-
generating assertions include:

• Is equal and not equal – tests the condition of value
equality. The values that can be tested often include
testing if two datasets have the same number of
observations, two variables, macro values, etc.

• Is zero and not zero – tests the condition for a value of
zero (or not zero). This is useful in evaluating if a
dataset has zero observations or the expected value of
something is or is not zero (such as return codes,
observations).

• Is null and not null – tests whether a variable contains
a value.

• Is empty and not empty – tests whether or not a
dataset is empty.

Creating Events in SAS

By merely applying the Event System to a SAS application, a
complete event trail for all WARNINGS and ERRORS is
generated by SAS. Of course, the real power is being able to
trigger your own messages and events. To do this, we have
developed an assertion-based API for creating events. This not
only produces an audit trail, but also provides for a robust testing
framework for SAS programs.
To provide automatic unit tests each time a program is executed
was an important criterion, but we also wanted to be able to
ascertain the context of the program. In other words, we needed
to be able to both run individual programs and test the various
conditions, as well as “trace” the flow of the program from step to
step. By fulfilling these objectives, we knew we could provide
much more descriptive information about which program called
subsequent programs or macros during the entire job sequence.
We now find this information extremely helpful in debugging
problems that might have been caused by an upstream data issue
or dependency upon something else (results from previous steps,
intermediate datasets, macro values, etc.
The event context includes the category for the current program
and the SAS call stack, reflecting the chain of programs that were

called leading up to and including the current program. To
establish a valid event context, we developed a methodology that
allows the event system to know where the event occurred and in
what context. This is particularly useful for debugging programs
and macros that may be called by any number of other programs.
Most of this methodology is hidden from the programmer, given
one of our goals was ease of use for developers to add to existing
legacy applications.

Furthermore, as assertions are executed, messages can be sent
to SAS indicating whether or not the error is severe enough to
warrant complete stoppage of the program and the program
stream. This information can be used as a return code in shell
scripts, run management systems and schedulers (such as the
UNIX cron facility or LSF Scheduler).

EVENT MANAGEMENT: GETTING TO ISSUES BEFORE
USERS DO
Traditional techniques for getting at the log are useful if you have
a single driver program or simple set of things to look for in your
logs. Some techniques use tools like perl, awk and sed to post-
process the log and parse out the ERRORS and WARNINGS.
These have two fundamental problems that we sought to
overcome:

(a) Occasionally the SAS program would take several
hours to complete – we wanted to know about it much
sooner if a problem existed.

(b) Although an indication of an individual log with errors is
convenient, this didn’t provide enough information
about (a) their context and (b) other types of events –
such as informational or business rule violations.

In the next section, we will introduce you to the concept of the
SAS Program Agent. This agent is responsible for listening to
SAS “events,” then passing them onto a collector through one of
several defined adaptors. These events are captured as each
program executes, without waiting for the batch to complete.

RUN CONTROL: A FRAMEWORK FOR
ENTERPRISE SAS APPLICATIONS

One of the characteristics that makes the SAS Program Agent
work so well is the ability to integrate with an existing scheduling
facility or to use an on-demand script that can be run at any time.
Recall the requirements that we wanted to fulfill – to be able to
start, stop and restart jobs. The technology that makes this
perform so well is the modeling of the dependencies of the job(s)
using XML. Think of this model as a hierarchy of jobs – some of
which can be run in parallel and some requiring specific
sequencing (explicit dependencies). When we assert an event
(through a SAS macro call), we indicate what should happen if the
assertion is not true – i.e., if it fails, should we stop it. By
modeling the complexity in XML, we can visualize the context of
the programs and our restart points. To restart, we simply run the
SAS Program Agent via command line (or launched from a web
browser) and execution continues, assuming that your problems
that caused the fatal error have been fixed.

This real-time event management system is comprised of multiple
steps – each fulfilling a necessary and distinct purpose. The
italicized words are those that will be discussed in more detail
below. The first step is the start script that initiates the entire
batch. This script wraps, and in turn calls, the batch scheduler at
the desired start point. Next is the SAS Program Agent, which
uses an execution monitor to collect events and record the SAS
program return code. Any output that conforms to the Event
Management SAS Event API is converted into events, which are
then processed by a notification adaptor. We detail the features
of the ThotWave Adaptor and its corresponding Event Console,
both of which are discussed below.

RUNNING AND CONTROLLING SAS JOBS

Start Script

This script is merely a high-level wrapper that affords easy batch
initiation using the shell or cron jobs. The start script takes the
sequence target as its principal argument for where to start.
Other arguments include which environment to run against
(development, integration, production, etc.); which specific batch
to run; whether or not to create real-time events, and an
alternative job sequence file.

Batch Scheduler

Apache Ant is a Java-based build tool. It is typically used in the
development world to describe tasks such as compiling, testing,
source-control handling, build error notification, etc. However, its
use of XML and its sequencing features make it ideal for our run
control system. These desirable features include:

1. named start points, or sequence targets, from where to
start individual runs

2. parallel threading support to allow for mutually
exclusive SAS programs to be run concurrently

3. external process execution used to call the SAS
Program Agent

4. return code checking to allow aborting of the entire run
if appropriate

5. expression language support to allow for conditional
logic

Using Ant XML syntax, we describe the order in which the batch is
to run. Additionally, we use its expression language support to
define discreet sections of the batch sequence to be run as a
logical unit. That is, at times, it is useful to define both start points
and stop points. When this happens, one needs the capability to
restart the process at any of the logical units after the application
has failed. For testing purposes, running one or more sections in
the process without running to completion is desirable.

The Ant XML document utilized is based on the environment in
which the batch is run. This flexibility allows us to effectively use
source control management across many environments. For
example, we can postpone pushing SAS program changes from
the development server to the integration test server until the
sequence description has been appropriately updated and
committed.
Also, as stated above, one of the optional arguments we allow in
the run system is use of a sequence file. This allows unit test
updates to the XML before committing them to source control.
We simply tell the start script to use our local version of a
sequence instead of using the default.
The example below shows just a piece of the XML that is used to
manage the dependencies among code “tasks”. In this example,
we have an extract that is not dependent on anyting else except
the “init” program. This program is then launched immediately
along with any other programs that do not have dependencies.

<target name='100T_PsoftExtract'
depends='init'

 description=''

 >

…..

 </target>

In this second snipet, we see there is a job that has multiple
“children” that can all be run in parallel. This flexible modeling
technique allows us to shave off hours from the run times by
thinking about the problem as a set of dependencies.

<target name='treas_setup2' depends='init'

 description='Runs secondary Treasury
Setup jobs'

 >

 <parallel>

 <antcall target='000T_holiday_schedule'/>

 <antcall target='000T_issuer'/>

 <antcall target='000T_instrument'/>

 <antcall target='000T_psoftsammapkeys'/>

 <antcall target='000T_psoftinterest'/>

 </parallel>

</target>

The Ant documentation expressly states that it is not meant as a
process flow control tool, and this is certainly true for highly
complex needs. However, it was perfectly suited for our
purposes, given that our developers already understood it; further,
Ant was easily configured by others who were familiar with XML
structure.
Ant is available for download at http://ant.apache.org.

SAS Program Agent

The Ant file invokes this agent and passes in, among other
arguments, which SAS program to run. Internal logic handles
where to write the logged SAS output, whether or not to record
events, and checks the SAS return code against a defined
maximum.
The output is sent to a directory / file structure whose naming
convention is based on the SAS program name and run time /
date stamp. This proves very useful in quickly locating the
specific log in an environment where many runs may have been

started (read: development and test).
To allow for the batch to continue running in certain non-error-free
situations, a maximum allowable return code is set. For example,
the SAS return code is ‘1’ when there are specific WARNING
messages. Unless the maximum bound is breached, the program
agent returns ‘0’ to the job sequence. Otherwise, it returns the
actual return code, at which time the batch aborts. Once
appropriate fixes are made, the job sequence target facility allows
for re-starting the run at this target, instead of re-running the entire
batch from the top again. Additionally, if the SAS program that
failed is part of a group of concurrently-running programs which all
terminate successfully, the one offending program can be run
alone to ensure correct behavior. At this point, the batch can then
be restarted at the target following the one defining the parallel
processes.

Event System SAS Event API

Explicit calls to the assert macros that make up the Event API are
passed to the Execution Monitor. The Execution Monitor gathers
all of the details of the event context and records the event by
passing it along to whatever adaptors have been configured for
use. We discuss this powerful feature below in the Automated
Testing section.
The Execution Monitor also detects when SAS errors and
warnings occur, without a specific call to the Event API. For
example, SAS generates a warning when duplicate values
prevent a format from being uniquely resolved. With the Event
System, this results in creation of an implicit event.

AUTOMATED TESTING

Automated testing can be accomplished via predefined rules or
checks that test for specific conditions such as: is equal and not
equal, is zero and not zero, is null and not null, is empty and not
empty. This set of automated tests saves the developer time from
coding mundane and repetitive tests and provides valuable
information for troubleshooting. An event is created when the test
condition is met. The event should contain relevant message
content, the call stack, the level of ERROR, and optionally
attached data for debugging support. Based on the level
specified, the run message can be sent to SAS indicating what
action needs to be taken in regard to the job stream. These
assert macros add information to the SAS output, which is read by
the SAS Program Agent and converted into events. This facility
allows for the creation of customized events in addition to the
standard events generated by SAS ERROR and WARNING
messages. They also attach relevant files to the event objects for
closer human scrutiny. The attached files are in HTML table
format with the data in question. These files can be HTML, RTF,
CSV or any other output that can be programmatically created by
SAS. These attachments can provide quick insight to the problem
by exposing a pattern or missing values in the data that assist in
resolution of the event.
As stated earlier, the start script allows for an optional argument
switch that tells the run control system to either process events or
not. We find that using the run control in this manner is very
useful at times. Typically the SAS programs have been properly
unit tested and are being put through integration testing. In this
case, we are not as interested in reporting data issues as much
as we are focused on debugging the batch as a whole.

EVENT HANDLING AND EXCEPTION REPORTING

Proper event handling and exception reporting supplies users with
the time-sensitive information they need to take action. For
example, imagine that a company has an 8-hour window to load a
data warehouse with data from several operational systems. If
the load from one of these systems fails, it is imperative that the
proper person is notified with the correct level of urgency, stack
trace, message, time of failure, and attachments. Armed with this

information, the user can then take the necessary action to get
the data warehouse loaded within the window. The user may
choose to bypass the load from that particular operational system
or opt to get the operational system on-line and restart the load.

REAL-TIME NOTIFICATION

Increasingly, windows for processing data have grown smaller
and real-time notification can maximize the effectiveness of the
time available. Using event management allows the job stream to
be stopped when a fatal error is encountered. This allows the
problem to be corrected up-front without having to wait for the
entire job stream to complete.

Because of the tremendous volume of data we encounter, one of
our biggest challenges is obtaining and delivering useful
information to the right people in real time. The Thinking Data
Toolkit for Event Management captures a variety of data and is
able to parse proprietary logs from different vendors. In addition to
getting the specific content from triggered events, we can also
route system events to any number of places. The most obvious
is email (and other wireless devices), but we also support
message queues, databases and our own Thinking Data
Business Intelligence platform. Combined with real-time tickers for
alerts, our dashboard can provide the details for reporting and
analytics appropriate for problem determination and resolution.

Subscriptions to Notification

One of the keys to successful real-time notification is not to
overwhelm the users with frivolous events or data. The users
need to have personalized information pushed to them. This is
accomplished by giving them the ability to subscribe to the
notifications at whatever level and category they need. A
manager may just want notification that the data warehouse load
has completed but a database administrator may subscribe to all
errors and warnings pertaining to source system extracts.

The subscription notification feature allows users to subscribe
both themselves and other users to events triggered by the

system. As events are captured in the database, a separate
process sends out email notifications according to the rules
defined in the subscription table. The subscribed users then
receive the email. The users see that the email will contain
important metadata about the event that was triggered, such as
the program where the error occurred. The stack trace (the
context in which the event occurred), the event message
describing the error and attachments may also be included in the
email, which will usually consist of datasets, HTML output or other
files that may be of help to resolve an error.

We created this feature by using several, configurable, pluggable
modules of our Event Console, which is fed by our ThotWave
Adaptor. Other adaptors may send the event data using other
protocols and environments. The basic components are the
Collector and Monitors. The Collector is the central location for
receiving events and knows how to store event data and
attachments. Monitors either poll or receive pushed events. We
concentrate on the polling aspect in this document.

COLLECTOR

This module acts as a central receiving and
staging location. It controls details such as
persisting the event data and attachments, as
well as providing real-time event notification to
subscribed recipients.
Once Monitors successfully retrieve new events,
they are flagged in the persistent store as
‘Acknowledged’ and are not available for further
notification. They are of course, accessible via a
Historical Reporting module that surfaces all
persisted events.
Once events are properly resolved, if necessary,
they may be flagged as ‘Resolved’. This status
change allows for easy query ‘where’ constraints.

MONITORS

The Email Monitor receives new events from the
Collector and sends any requests available to appropriately
subscribed recipients. We allow subscriptions to be based on 3
orthogonal attributes of the events; namely the error level, the
category, and the type.

Error Level
This is a simple concept denoting the magnitude of the event’s
urgency. We use graduated levels typical to loggers: ERROR,
WARNING, INFO, DEBUG, etc. Our subscription logic is such
that recipients are automatically subscribed to all levels equal-to-
or-greater-than their subscribed level. For example, if you are
subscribed to the level WARNING, you receive both WARNING
and ERROR event notifications
Category
This field describes the process context of the offending program.
This is accomplished by adding calls to auxiliary macros at the
beginning and the end of every program (or, in the next release,
at the SAS Program Agent Level for legacy code). As programs
and macros are invoked, both from the SAS Program Agent and
from each other, the system understands the context in which
these programs operate. The Event System SAS Event API then
maintains this category stack for use. When an event is triggered,
the Event System SAS Event API adds this category info to the
event.
Since we separate each category fragrment with a delimiter, it is
easy to provide ‘scoped’ category subscriptions. That is, if the
offending code was in the process phase ‘analytics_load’, which
was part of ‘analytics_init’, which was in turn part of ‘run_init’, the
category would be ‘run_init.analytics_init.analytics_load’.
Recipients may subscribe to whatever level of category they
desire. If one is subscribed to
‘run_init.analytics_init.analytics_load’, or ‘run_init.analytics_init’, or
simply ‘run_init’, then this example event would be sent. The
subscription model provides a very flexible way to manage how
people are notified if an event occurs. This is what we call
‘scoped’ or ‘hierarchical’ category subscription.
Type
This field describes the type of event that took place. The type is
additional, user-defined metadata about the event to aid in quick
event resolution. For example: the event type might distinguish
between UNIX command failure, create file failure, and update
table failure.
All subscriptions are resolved using a logical AND across
constraints and all subscriptions may be wild-carded. That is, if
one is subscribed to the Error Level = *, then he or she would not
be constrained on Error Level at all.

CONCLUSION

The Thinking Data Toolkit for Event Management is a powerful
tool designed to help organizations monitor mission critical
systems. Designed on a framework for full life-cycle application
and business rules monitoring, the Event System enables
developers and business users alike to monitor, manage and
subscribe to enterprise application events from a central location.
The Event System appears as a web page on your Intranet,
integrating seamlessly with various APIs (application
programming interfaces) such as SAS, shell scripts (UNIX) and
Java. As a result, the Event System is easy to deploy, since users
access the events without having to download special software.
The Event System allows all parts of the enterprise to report
events that can be recorded and monitored from a common
interface. As events are generated from various programming
environments (SAS, Java) and operating system shell
environments, they are pushed to collectors that serve as
conduits to the Event System. Here, the events are collected,
added to the system and stored in the database. After the events
are stored, a separate process scans the event database and
sends out email notifications according to the rules defined in the
subscription table.

ACKNOWLEDGMENTS

The authors would like to sincerely thank Jeff Wright, Dave
Hamilton and Jodi Barnes Nelson for their guidance and
thoughtful review of this manuscript.

CONTACT INFORMATION

Your comments and questions are valued and encouraged.
Please feel free to contact the author at:

Greg Barnes Nelson
greg@thotwave.com
2054 Kildaire Farm Rd, #322
Cary, NC 27511
800.584-2819 – Phone/ Fax

