
1

Paper IN06

(In)Formats (In)Decently Exposed

Harry Droogendyk, Stratia Consulting Inc., Lynden, ON

ABSTRACT
If you’ve pulled data into SAS or pushed it out the other end you have used SAS informats and formats, really. Didn’t
hurt a bit did it? There’s nothing to be afraid of, formats are really quite helpful little beasts.

If you’ve been intimidated or confused by SAS formats, come along for a revealing ride as the shadowy side of data
formatting is decently exposed. Learn how many data conversion and presentation issues are easily handled,
whether the data be dates, times, numbers or strings. Don’t avert your eyes, discover the power, efficiency and
freedom of SAS formats, you’ll never be the same.

INTRODUCTION
If you've been in the programming business for any length of time, you're well aware that your data is not necessarily
stored as you enter it or as it is displayed when presented for your viewing. For example, open up an editor on your
ASCII machine and type the word SUGI in the first record and save the file. If we display the file in hexadecimal
representation, we do not see 'SUGI', rather, the four bytes appear as '53 55 47 49'. However, the hexadecimal
representation is really only a more readable form of the binary format a computer ultimately stores and uses. How
does an ASCII machine store the word SUGI? Each of the four bytes contains eight bits, a total of 32 bits,
01010011010101010100011101001001. That's just plain ugly!

Without getting too techical, matters become even more complicated when we consider numbers, especially those
stored in a SAS dataset. To enable SAS to store numbers of large magnitude and perform calculations that require
many digits of precision to the right of the decimal point, SAS stores all numbers using floating-point represent-
ation. You may know this format as scientific notation. Values are represented as numbers between 0 and 1 times a
power of 10. e.g. the number 1 in scientific notation is .1 x 101

We can look at this and do the math and come up with an answer of 1. But, just to confuse the matter even further,
SAS stores numbers in scientific notation, not in base 10 (like we humans count), but in base 2. In hexadecimal
format the numeral 1 appears as 3F F0 00 00 00 00 00 00. Certainly doesn't look like 1 to me! Ahhh, aren't you glad
you don't have to work with the internals?

It's evident that something happens to our data after we enter it, something else before it's displayed to us. The stuff
we can easily read is modified by SAS to a format it can understand, massage and store. In order to make the data
meaningful to us, SAS must re-format the data for our reading pleasure when pumping it back out. Thankfully we're
not limited to SAS' idea of how things ought to be - we can use informats and formats to direct SAS how to input and
display our data.

This paper is an attempt to introduce you to SAS-supplied formats and informats and how to use them to effectively
and efficiently deal with data conversion and presentation issues.

Let's begin with some definitions and examples. An informat is an instruction used to read data values into a SAS
variable. In addition, if a variable has not yet been defined, SAS uses the informat to determine whether the variable
ought to be numeric or character. The informat is also used to determine the length of character variables. A
format is defined as an instruction that SAS uses to write data values. Formats are used to control the written
appearance of data values. Both informats and formats are of the form: <$> name <w> . <d>

 $ required prefix for character (in)formats
 format up to 7 characters long for character, 8 for numeric, may not end in a number!

v9 format names may be 31 / 32 characters long
 w width of value to be read / written, includes commas, decimal places, dollar signs etc…
 . a period, every format must have a period, distinguishes formats from variable names
 d decimal places, optional, only for numeric (in)formats

For example: $char20. - 20 byte character format
 dollar12.2 - 12 byte numeric format, with 2 decimal places

2

HAVE YOU EVER USED FORMATS OR INFORMATS?
"Are you kidding?!", you say, "I haven't been using SAS that long, formats are confusing!". Well, I can say with
certainty you have used formats, even if SAS was doing it behind the scenes on your behalf. Consider the following
simple data step and PRINT procedure:

data weather;
 input date city $ degrees_celsius ;
cards;
20040117 Montreal -134.3456
20040204 Toronto -2.5
20040328 Calgary 7.1
20040413 Ottawa 12.64
20040510 Lynden 17.2
run;

proc print data=weather;
run;

 degrees_
Obs date city celsius

 1 20040117 Montreal -134.346
 2 20040204 Toronto -2.500
 3 20040328 Calgary 7.100
 4 20040413 Ottawa 12.640
 5 20040510 Lynden 17.200

Since neither the data step or PRINT procedure specified input or output formats, SAS has used default formats. How
did this default behavior affect what SAS did with the weather data?

SAS read the input data and converted them to its internal format. As we discovered in the introduction, the internal
representation will not look anything like the characters in our data. Rather, the value will be stored internally in a
format that allows SAS to easily store and manipulate data efficiently. The PRINT procedure takes the internal
values and produces output using default format specifications. It seems as though SAS did a pretty good job - the
default formatted output generated by the PRINT procedure looks pretty good, with one exception. We lost the fourth
decimal place in Montreal's January temperature. PRINT defaulted to the best. format and decided that all we
needed was three decimal places. Maybe defaults aren't good enough.

The use of default informats is only possible if the data is what SAS calls " standard numeric or character format." In
other words, while numeric data may contain negative signs and decimal points, it may not contain commas or
currency signs. Character data cannot contain embedded blanks. There's going to be a time when you must input
and report non-standard data. What happens if we allow SAS to default in those cases?

Note the data error in the example below when the default behavior couldn't deal with the special characters in
accum_parking_revenue. From the output created by the PUT statement, we can see that two variables were
created, but accum_parking_revenue contains a missing value.

data parking;
 input city $ accum_parking_revenue ;
 put city= accum_parking_revenue=;
cards;
Montreal $145,234.72
run;

Log Output:

NOTE: Invalid data for accum_parking_revenue in line 11 10-20.
city=Montreal accum_parking_revenue=.
RULE: ----+----1----+----2----+----3----+----4----+----5----+----6----+----7----+----8--
11 Montreal $145,234.72
city=Montreal accum_parking_revenue=. _ERROR_=1 _N_=1
NOTE: The data set WORK.PARKING has 1 observations and 2 variables.

SPECIFYING (IN)FORMATS
INFORMATS
Why couldn't we simply read the non-standard numeric accum_parking_revenue data as character data? Doing so
will preserve the currency signs and the commas so it'll still look purty on the way out. But… we cannot use
character data in calculations! If we even suspect that we'll ever need the data for any type of calculation (the correct
answer is YES!!!) , informats must be explicitly specified to properly INPUT the values.

data parking;

3

 input city $ accum_parking_revenue dollar12.2 ;
cards;
Montreal $145,234.72
Ottawa $221,691.00
Toronto $275,876.54
Lynden $397,112.23
Hamilton $226,432.02
run;

As a bonus, consider the space savings in treating accum_parking_revenue as a number rather than a character: 8
numeric bytes vs. at least 11 bytes in character mode.

Variable Type Len Pos
ƒƒ
2 accum_parking_revenue Num 8 0
1 city Char 8 8

While the following PRINT output displays the same values as the input data, the accum_parking_revenue values
are not formatted as we'd expect for currency data. The informats specified on the INPUT statement ensured SAS
read the data correctly, but nothing we've done so far has resulted in anything other than default output formats.

proc print data=parking;
run;
 accum_
 parking_
Obs city revenue

 1 Montreal 145234.72
 2 Ottawa 221691.00
 3 Toronto 275876.54
 4 Lynden 397112.23
 5 Hamilton 226432.02

FORMATS
Just as it's possible to explicitly specify informats when reading raw data, temporary or permanent formats can also
be defined to the columns for output. Utilizing the FORMAT statement in the PRINT procedure is an example of a
temporary format assignment.

proc print data=parking;
 format accum_parking_revenue dollar12.2; /* Temporary format */
run;

 accum_
 parking_
Obs city revenue

 1 Montreal $145,234.72
 2 Ottawa $221,691.00
 3 Toronto $275,876.54
 4 Lynden $397,112.23
 5 Hamilton $226,432.02

PERMANENT (IN)FORMATS
Temporary formats are only in force for the life of the step in which they are defined. For persistent output format
definitions, the format must be stored by SAS in the descriptor portion of the data set. Most often, this is done at
dataset creation time via the (IN)FORMAT or ATTRIB statements. When informats are defined in this manner, it is
not necessary to specify them again on the INPUT statement.

data parking;
 attrib date label = 'Accum Date';

4

 informat accum_parking_revenue dollar12.2;
 format accum_parking_revenue dollar12.2;
 label accum_parking_revenue = 'Accum. Parking Revenue';
 input date city : $12. accum_parking_revenue ;
cards;
20040117 Montreal $145,234.72
20040204 Montreal $221,691.00
20040328 Montreal $375,876.54
20040413 Montreal $597,112.23
20040510 Montreal $726,432.02
run;

Notice the much more interesting CONTENTS listing, now showing permanent formats, informats and labels for two
fields:

Variable Type Len Pos Format Informat Label
ƒƒ
1 date Num 8 0 Accum Date
2 accum_parking_revenue Num 8 8 DOLLAR12.2 DOLLAR12.2 Accum. Parking Revenue
3 city Char 12 16

Since permanent output formats have been defined for the accum_parking_revenue column, there' s no need to use
the (temporary) FORMAT statement in the PRINT procedure:

proc print data=parking label;
run;
 Accum.
 Accum Parking
Obs Date Revenue city

 1 20040117 $145,234.72 Montreal
 2 20040204 $221,691.00 Montreal
 3 20040328 $375,876.54 Montreal
 4 20040413 $597,112.23 Montreal
 5 20040510 $726,432.02 Montreal

SAS DATE / TIME VALUES
We've talked about converting data values, particularly numeric items, into SAS' internal format, a format more suited
for storage and computation. There's one more very important class of values that must be highlighted: those relating
to date and time.

If we were to take the data from the previous example, and calculate the average parking revenue per day, based on
the date field values, we'd first have to calculate how many days had elapsed between observations. The year,
month and day values could be parsed out of the date value and the appropriate arithmetic gymnastics performed to
subtract the chunks, paying special attention to number of days / month, year rollovers, leap years etc… Of course
there's a better way or it wouldn't be mentioned in a tutorial paper!

SAS has the ability to store dates in a numeric field as the number of elapsed days since January 1, 1960. In other
words, Jan 2, 1960 has a SAS date value of 1, Dec 31, 1960 is 365, May 10, 2004 is 16,201. If the appropriate
informats are used on INPUT, SAS will convert our readable date values to a SAS date value. Once our dates are in
SAS date format, the number of days between observations is a simple subtraction between the two date values. In
addition, it allows us to use a plethora of date functions and output formats to effectively process and present date
values.

In an analogous fashion, SAS time formats store times as the number of seconds since midnight. 1:00 am. is stored
as 3600, 1:30 as 5400, 2:00 as 7200 etc… Again, making time calculations much simpler.

Note the date informat and output format specifications:

data parking;
 attrib date informat = yymmdd10. format = mmddyyd10. label = 'Accum Date';

5

 informat accum_parking_revenue dollar12.2;
 format accum_parking_revenue
 avg_daily_parking_revenue dollar12.2;
 label accum_parking_revenue = 'Accum. Parking Revenue';
 label avg_daily_parking_revenue = 'Avg. Daily Parking Revenue';
 input date city : $12. accum_parking_revenue ;

 avg_daily_parking_revenue =
 (accum_parking_revenue - lag(accum_parking_revenue)) /
 (date - lag(date)) ;

cards;
20040117 Montreal $145,234.72
20040204 Montreal $221,691.00
20040328 Montreal $375,876.54
20040413 Montreal $597,112.23
20040510 Montreal $726,432.02
run;

 Accum. Avg. Daily
 Parking Parking
Obs Accum Date Revenue Revenue city

 1 01-17-2004 $145,234.72 . Montreal
 2 02-04-2004 $221,691.00 $4,247.57 Montreal
 3 03-28-2004 $375,876.54 $2,909.16 Montreal
 4 04-13-2004 $597,112.23 $13,827.23 Montreal
 5 05-10-2004 $726,432.02 $4,789.62 Montreal

ADDITIONAL WAYS TO SPECIFY (IN)FORMATS
Thus far, we've seen a couple methods of applying input and output formats to our data:

 INPUT / PUT statements temporary
 FORMAT (in data step), INFORMAT, ATTRIB statement permanent

There are occasions when the data will already be in a SAS dataset, in a format not suited for our purposes. Perhaps
a date field has been read and stored in its external format, e.g. 20040510, or numeric data must be presented in a
different format than the permanent format defines. In those cases, it's often necessary to format the data "on the fly"
or create additional variables in the format we require using INPUT and PUT functions.

Consider an observation containing the data below.

data bad_data;
 date = '20040510';
 amt = '$123,456.78';
 time = '08:34';
 postal_code = 'l0r 1t0';
run;

 postal_
Obs date amt time code

 1 20040510 $123,456.78 08:34 l0r 1t0

To convert the existing SAS data, we can use the INPUT function to manipulate the data. The PUT statement
displays both, new informatted values and the new formatted values, in formats different than the original data.

data good_data (keep = new:);
 set bad_data;
 new_date = input(date,yymmdd8.);
 new_amt = input(amt,dollar14.2);
 new_time = input(time,time5.);
 new_pc = input(postal_code,$upcase.);

6

 put new_date @30 new_date yymmdds10. /
 new_amt @30 new_amt dollar13.2 /
 new_time @30 new_time tod12.2 /
 new_pc ;
run;

Informated: Formatted:
16201 2004/05/10
123456.78 $123,456.78
30840 08:34:00.00
L0R 1T0

INPUT and PUT statements may also be used in PROC SQL sentences to convert / reformat bad_data on the fly:

proc sql;
 select input(date,yymmdd8.) as date format=yymmdds10.
 ,input(amt,comma12.2) as amt format=dollarx12.2
 ,input(time,time5.) as time format=hour4.1
 ,put(upcase(postal_code),$20.-r) as postal_code
 from bad_data
 ;
quit;

date amt time postal_code
ƒƒ
2004/05/10 $123.456,78 8.6 L0R 1T0

POTENTIAL PITFALLS WITH PHORMATS, err… FORMATS
How easy is it to have problems with SAS supplied formats? It's pretty difficult, but there are a few gotchas to watch
for.

INCORRECTLY SPECIFIED FORMATS
We've seen the difference between character and numeric formats. Character formats must start with a dollar sign,
numeric formats may not, e.g. $12. vs 12.2 What happens if we get confused and attempt to use a numeric format
in the place of a character format or vice versa? Not surprising, SAS is quite forgiving. Consider the following:

a = 'SUGI';
put a binar32.;

96 what = 'SUGI';
97 put what binar32.;

 48
ERROR 48-59: The format $BINAR was not found or could not be loaded.
NOTE: The SAS System stopped processing this step because of errors.

There's a couple problems with this PUT statement. First there's no $ at the beginning of the format like we'd expect
in conjunction with the character field what. In addition, the binary32. format was misspelled as binar32. But did
you notice what SAS did? SAS realized the incorrect type of format was specified and added the dollar sign for us.
That was a bit of a wasted effort since $binar. doesn't exist either, but it's the thought that counts right?

Our data step has a real problem. The incorrect format has caused a real error and aborted processing. If all we're
using is SAS-supplied formats, such an error should be a show-stopper and the data step should abort because it
really is a syntax error. However, in we are really attached to the non-existent $binar. format and don't want to take it
out and it's our earnest desire that the data step continue, SAS does supply the NOFMTERR option to enable us to
ignore format errors. The NOFMTERR option is more important when using user-created formats, but that's a
discussion for another paper.

options nofmterr;

7

As the errors in the previous data step proved, the default behaviour is fmterr. Let's see what the log produced now
that we've specified nofmterr.

161 options nofmterr;
162 data _null_;
163 what = 'SUGI';
164 put 'Invalid format';
165 put '--------------';
166 put what binar32. /;

 484
NOTE 484-185: Format $BINAR was not found or could not be loaded.

167 put 'Correct format';
168 put '--------------';
169 put what binary32.;

Invalid format

SUGI

Correct format

01010011010101010100011101001001

The format error no longer causes the data step to abort. However, the first PUT statement displays SUGI, the value
of what as it is, unaffected by what we had hoped was a valid format. Under "Correct format" we can see the results
we really expected. Notice that SAS quietly substituted $binary. for the erroneously specified binary. without any
gloating at all, not even a NOTE: in the log.

INCORRECT FORMAT WIDTH
Way back in the introduction, when we were talking about the components of a format, we found out that the number
before the period was the total width we were allowing. For example, the format dollar12.2 allows 12 positions for
everything, dollar sign, digits, commas, decimal point and, if we're talking the balances in government books, a
negative sign.

balance = -1234567.89;
put balance dollar10.2;

214 balance = -1234567.89;
215 put balance dollar10.2;
-1234567.9
NOTE: At least one W.D format was too small for the number to be printed. The decimal may be
 shifted by the "BEST" format.

SAS has figured things out and has concluded you can't put 10lbs of stuff in a 5lb bag. Rather than ensuring balance
was displayed replete with dollar signs and commas, SAS defaulted to the best. format and pumped out as many
significant digits as it could into the allotted 10 bytes.

Sometimes, despite SAS' best. efforts, there just isn't room. In those cases a string of asterisks is output along the "
ain't gonna fit " log message. You've seen this same type of behavior in Microsoft Excel which displays # signs when
the cell width is not adequate to contain the value in it.

widgets = 123;
put widgets z2.;

218 data _null_;
219 widgets = 123;
220 put widgets z2.;
221 run;

8

**
NOTE: At least one W.D format was too small for the number to be printed. The decimal may be
 shifted by the "BEST" format.

INFORMAT WITH DECIMALS
Many of the numbers we deal with are not integers. The fact that we have to account for decimals leaves us open for
another pitfall. Consider the following data step where various amounts are read. We've specified an informat with a
maximum length of 7 (including decimal point) and two decimal digits. In actual fact, only one item in the input data
fits exactly with the informat.

data all_amts;
 format amt 7.2;
 input amt 7.2;
cards;
123.45
3.7
567.88787
67
11.

 run;

Obs amt

 1 123.45
 2 3.70
 3 567.89
 4 0.67
 5 11.00

From the PRINT output, we can see that our disparate data has been handled quite nicely for the most part. It is
readily apparent that SAS took the decimal point supplied in the input data at face value and truncated or added
zeroes to flesh out the 7.2 format. But, there's problem with 67. Note that this line of input data did not contain a
decimal point. When using a W.D numeric informat, SAS divides the input data by 10D (i.e. 10 ** D) unless the input
data contains a decimal point. Be consistent or your data values may end up smaller by magnitudes!

EASY LIVING VIA FORMATS
In addition to allowing us to store data items correctly, convert dates and times to internal format for ease of
manipulation and present data in a meaningful way, formats can also deliver us from some of the drudgery in our SAS
life. Let's look at a few time savers available via the means of SAS formats.

JUSTIFICATION
Typically, character data are left-justified, numeric data right-justified. There's times when you might want to left-
justify a numeric value. Perhaps you're ticked at the chief accountant, so why not left-justify all the columns of
numbers on that daily report? A more realistic application, creating labels for report lines. Note how the line value of
9 is snuggled up to the hyphen when the -L format modifier is added:

data _null_;
 do line = 9 to 10;
 left = 'Line-' || put(line,2.-L);
 right = 'Line-' || put(line,2.);
 put @2 left= / right=;
 end;

run;

 left=Line-9
 right=Line- 9

 left=Line-10
 right=Line-10

RETENTION OF LEADING ZEROES
In most numeric data, the high-order, leading zeroes are not required on output. If we have an amount field with
values ranging from 4 to 2000, we wouldn't want the lower values to be displayed with leading zeroes, e.g. 0004.
However, there are times when leading zeroes are important. Consider part numbers, invoice and cheque numbers
and the like:

a = 4;
put a @10 a z4.;

4 0004

PRESERVATION OF LEADING SPACES

9

By default, SAS ignores leading spaces. Well, worse than that, it'll get rid of them if it can. If leading spaces are
important, you must explicitly tell SAS to keep 'em via the $CHAR. informat at INPUT time:

data a;
 input @1 fruit1 $10. @11 where1 $10.
 @1 fruit2 $char10. @11 where2 $char10.; /* Read line again */
cards;
12345678901234567890
 Apple Orchard
 Orange Grove
 Grape Store
run;

Note the fruit2 and where2 retained the leading spaces while fruit1 and where1 are left-justified:

Obs fruit1 where1 fruit2 where2

 1 1234567890 1234567890 1234567890 1234567890
 2 Apple Orchard Apple Orchard
 3 Orange Grove Orange Grove
 4 Grape Store Grape Store

INTERNATIONAL DATE FORMATS
No longer are SAS programmers restricted to displaying dates only in the English language. With the advent of v8
many other languages are now available, e.g. Dutch, Italian, German etc.. See the International Date and Datetime
Formats section in SAS OnlineDocs for a complete list of languages available.

To use international date formats, the system option dflang must be set to one of the available languages:

options dflang=dutch;

Standard
Format

Standard Output International
Format

International (Dutch)
Output

DATE9. 10MAY2004 EURDFDE9. 10mei2004
DATETIME. 10MAY04:10:30:00 EURDFDT. 10mei04:10:30:00
DDMMYY10. 10/05/2004 EURDFDD10. 10-05-2004
DOWNAME. Monday EURDFDWN. maandag
MONNAME. May EURDFMN. mei
MONYY. MAY04 EURDFMY. mei04
WEEKDATX. Monday, 10 May 2004 EURDFWKX. maandag, 10 mei 2004
WORDDATX. 10 May 2004 EURDFWKX. maandag, 10 mei 2004
WEEKDAY. 2 EURDFDN 1

THOUSANDS SEPARATORS, DECIMALS AND CURRENCY SIGNS
Within the US and most of Canada, numeric data is generally displayed with commas as thousands separators and a
period denoting the decimal portion of the number, e.g. 123,456.78. However, right here in Quebec and much of
Europe, the roles of the comma and period are reversed, e.g.123.456,78 SAS has provided a format for this notation.
Rather than specifying comma10.2, use commax10.2.

a = 123456.78;
put a comma10.2 / a commax10.2;
put a dollar11.2 / a dollarx11.2;

123,456.78
123.456,78
$123,456.78
$123.456,78

While dollarx. flips the commas and periods in the same fashion as commax. it doesn't quite satisfy Quebec or some
European countries. In these locales, the currency sign is placed following the number. In v9 new currency

10

functionality has been introduced to provide much more flexibility in currency formats. (examples provided in
presentation)

SUMMARIZE DETAIL USING FORMATTED VALUES
Base SAS comes with many useful procedures designed to make common computing requirements more efficient;
more efficient both in terms of coding and processing effort. As a rule, if SAS has provided a procedure to deal with a
data manipulation task, it really ought to be used over a home-grown solution. For example, the TABULATE
procedure displays descriptive statistics (e.g. mean, sum) in tabular format with very little coding effort. Consider a
small data set containing sales figures by date:

data analysis ;
 format date yymmddd10.
 sales dollar12.2;
 do date = '01jan2003'd to '31dec2003'd by 11;
 sales = ranuni(1) * 20000;
 output;
 end;
run;

Date field literals defined as 'date value'd are automatically stored in internal SAS format (i.e. limits of the do loop).
That being the case, the benefit of SAS date formats can be brought to bear on the field. The simplest way to
summarize the sales figures by month and quarter is using the simple TABULATEs below. Note that no pre-
processing of the data was required and the only differences between the TABULATE steps is the format specified
for the date variable.

proc tabulate data=analysis;
 class date;
 var sales ;
 table date='Month / Year',sales='Sales' *
sum=' ' *f=dollar12.2;
 format date monyy5.;
run;

Note that the monyy5. format has been applied to the date field,
thus summarizing the sales data by month and year.

„ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒ…ƒƒƒƒƒƒƒƒƒƒƒƒ†
‚ ‚ Sales ‚
‡ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒƒƒƒƒ‰
‚Month / Year ‚ ‚
‡ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒ‰ ‚
‚JAN03 ‚ $31,097.51‚
‡ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒƒƒƒƒ‰
‚FEB03 ‚ $43,005.57‚
‡ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒƒƒƒƒ‰
‚MAR03 ‚ $22,489.30‚
‡ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒƒƒƒƒ‰

etc…
‡ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒƒƒƒƒ‰
‚OCT03 ‚ $41,397.52‚
‡ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒƒƒƒƒ‰
‚NOV03 ‚ $33,759.13‚
‡ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒƒƒƒƒ‰
‚DEC03 ‚ $47,338.74‚
Šƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒ‹ƒƒƒƒƒƒƒƒƒƒƒƒŒ

proc tabulate data=analysis;
 class date;
 var sales ;
 table date='Quarter',sales='Sales' *
sum=' ' *f=dollar12.2;
 format date yyq6.;
run;

Note that the yyq6. format has been applied to the date field, thus
summarizing the sales data by year and quarter. Same dataset,
same field, same data, but different results via altered format
specifications.

„ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒ…ƒƒƒƒƒƒƒƒƒƒƒƒ†
‚ ‚ Sales ‚
‡ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒƒƒƒƒ‰
‚Quarter ‚ ‚
‡ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒ‰ ‚
‚2003Q1 ‚ $96,592.38‚
‡ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒƒƒƒƒ‰
‚2003Q2 ‚ $77,143.28‚
‡ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒƒƒƒƒ‰
‚2003Q3 ‚ $86,315.43‚
‡ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒƒƒƒƒ‰
‚2003Q4 ‚ $122,495.39‚
Šƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒ‹ƒƒƒƒƒƒƒƒƒƒƒƒŒ

11

TABLE OF (SOME) INTERESTING (IN)FORMATS
Raw Data Informat Result
43414E414441 $HEX12. CANADA
78.4% PERCENT5. .784
(25%) PERCENT5. -.25
2004131 JULIAN7. 16201
10May2004:13:30:00.00 DATETIME18. 1399815000
'3100320033'x $CHARZB5. 1 2 3
"Quoted Value" $QUOTE. Quoted Value
2004Q3 YYQ6. 16253
 SAS Data Format (note different lengths) Result
16201 YYMMDDS10. 2004/05/10
16201 MMDDYYD10. 05-10-2004
16201 MMDDYYD8 05-02-04
16201 DOWNAME. Monday
16100 MONNAME10. January
16100 MONNAME3. Jan
16100 WORDDATE. January 30, 2004
16100 WORDDATE3. Jan
-10.4 NEGPAREN6.1 (10.4)
1300008 E7. 1.3E+06
1998 ROMAN10. MCMXCVIII
-15 WORDS20. minus fifteen
123 BINARY. 01111011
ACDC $HEX8. 41434443
ONTARIO $2. ON
SAS $REVERS. SAS :-)

$CONCLUSION.
Sometimes it seems our working life consists of nothing but data, mountains of it. SAS is our favorite tool for scaling
that mountain, reading and massaging data, slicing, dicing, summarizing, storing and finally presenting it again in a
meaningful manner. SAS informats and formats, powerful instructions in and of themselves, are very helpful in all
those activities.

Informats allow us to more easily convert the most mundane or the strangest raw data into SAS usable form. With
each release of SAS, more formats are being added to allow data presentation in an ever-increasing myriad of output
choices. But formats are not only for the start and end of our data journey, there's many applications along the way.
There's power in those innocuous little guys with that mysterious dot!

Processing_Power = input(raw_data, informats.);
Presentation_Flexibility = put(SAS_data,$formats.);
Programmer_Efficiency = Processing_Power + Presentation_Flexibility

12

REFERENCES
SAS-L, many posts over many years. (If you don't know what SAS-L is, run, don't walk, to your computer and enter
www.sas-l.com in your browser address bar. Subscribe, browse or search the archives, learn.)

SAS Online Documentation, Version 8, SAS Institute.

ACKNOWLEDGMENTS
Thanks to Section Chair Marje Fecht for inviting me to present this paper.

CONTACT INFORMATION
Comments and questions are encouraged. The author may be contacted at:

Harry Droogendyk
Stratia Consulting Inc.
PO Box 145
Lynden, ON L0R 1T0
519-647-2472
sesug_04@stratia.ca

LEGAL STUFF
SAS and all other SAS Institute Inc. product or service names are registered trademarks or trademarks of SAS
Institute Inc. in the USA and other countries. ® indicates USA registration.

Other brand and product names are trademarks of their respective companies.

