
1

Paper TU-12
Proc Transpose or How to Turn It Around

Janet Stuelpner, Left Hand Computing, Inc.

ABSTRACT
So many times we need to take our data and turn it around. One of the reasons that this is done is that it
is more efficient to store your data in a vertical format and processing the data is easier in a horizontal
format. That means that we need to change the format of the data before we process or analyze it.
There are many ways to accomplish this in a DATA step. Another way to change the data is to use a
PROC TRANSPOSE. This paper will show you, step by step, how to change the format of the data. You
will be taken from the easiest way of doing without any options to a more complex manner using a whole
host of options.

INTRODUCTION
The transpose procedure restructures the data by changing the variables into observations. How this is
done and what variables are chosen to transform are determined by the options that are chosen when
running the procedure. The TRANSPOSE procedure can eliminate the need to write a complex DATA
step that requires the use of one or more PROC SORT. The output from the procedure is a data set that
contains the transposed data or reformatted data. The output data set can be used for analysis, reporting
or further manipulation of the data. The output from the procedure can be used in other reporting
procedures such as PROC PRINT or PROC REPORT

VERTICAL VS HORIZONTAL DATA
We classify data as either vertical or horizontal. The format in which we store data is very different from
the format that we need to analyze the data. There are very good reasons why we need to be able to
change the layout of the data based on what we need to do with the data. The best method of data
storage is to keep it in a vertical format. This is also called stacked data that has a few variables and
many rows. There is an identifier on each record with a little bit of information. If there is a piece of
information that is missing, there will not be a row in the data. Take a look at the example below. You will
see that there are only records for a student if they took a class. There aren’t any rows that are blank.

STUDENT CLASS GRADE CREDIT
Ann Math101 A 4
Ann English101 B+ 4
Ann Biology101 B+ 4
Ann French111 A 4
Ann Biolab A- 2
Bob Math101 A 4
Bob Chemisty101 A- 4
Bob Chemlab B 2

Carol Spanish101 B 4
Carol French101 B 4
Carol History102 C 4
Carol PoliSci111 B 4
David Italian C 4
David Math210 C 4
David Lit200 B 4
Fred Chem101 B 4
Fred Chemlab B 2
Fred Anthro111 C 4
Fred Math110 A 4

Table 1: Vertical Data Example

The other format for our data is called horizontal. With this type of data layout, we can easily analyze the
data because all of the variables that are needed for analysis are on the same record. Horizontal data
has many variables with few rows. There will be empty cells in the data if there are any missing values.
In the example above, we would have one record for each student with a variable for each class and a

2

variable for each grade. If the data were formatted in a horizontal manner, it would be easy to calculate
the grade point average for each student.

STUDENT CLASS1 GRADE1 CLASS2 GRADE2 CLASS3 GRADE3 CLASS4 GRADE4
Ann Math A English B+ Biology B+ French A
Bob Math A Chemistry A-

Carol Spanish B French B History C PoliSci B
David Italian C

Table 2: Horizontal Data Example

Note in the example above, there are empty cells for Bob and David because they are not taking a full
load of courses. Carol and Ann are taking 4 classes each and have every cell filled in.

So we can see through the examples above that the format for data storage is very different than the
format for data analysis. We need a mechanism to transform the data back and forth, depending on our
goal of either data storage or data manipulation and analysis.

DATA STEP MANIPULATION
How do we create many observations from one observation? In other words, how do we take data that is
in a horizontal format and create a dataset that is in a vertical format. This is not too difficult, but you
need to understand the FIRST. and LAST. processing in a DATA step. The data must be sorted first so
that this type of processing can be used. Along with this, you must understand how the OUTPUT
statement works. This is very easy to do with Proc Transpose.

How do we create one observation from many observations? In other words, how do we take data that is
in a vertical format and create a dataset that is in a horizontal format? We can do this with a DATA step
and array processing. This is not a simple task as it has to be done with multidimensional arrays and
nested DO loops. Because of the type of arrays that must be used, this can be extremely complicated.
This is very easy to do with Proc Transpose.

PROC TRANSPOSE
Let’s start with the simplest process and work up to something more complex. We will use this simple
vital statistics dataset in our examples.

PROTOCOL INV PAT VISIT VSDT SBP DBP PULSE WEIGHT
DRG2005 227 27001 1 6-Jan-04 122 80 65 119.1
DRG2005 227 27001 2 13-Jan-04 118 82 60 119.1
DRG2005 227 27001 3 16-Jan-04 120 72 66 119.1
DRG2005 227 27001 4 3-Feb-04 114 82 60 119.1
DRG2005 227 27001 9 4-May-04 104 70 60 119.1
DRG2005 227 27001 10 10-May-04 118 76 66 119.1
DRG2005 227 27001 11 1-Jun-04 113 81 62 119.1
DRG2005 227 27001 12 29-Jun-04 122 76 66 119.1
DRG2005 227 27001 13 27-Jul-04 110 76 72 119.1
DRG2005 227 27001 14 23-Aug-04 124 82 60 119.1
DRG2005 227 27001 15 28-Sep-04 116 76 66 119.1
DRG2005 227 27002 1 26-Jan-04 136 86 72 110.4
DRG2005 227 27002 2 2-Feb-04 136 80 84 110.4
DRG2005 227 27002 3 5-Feb-04 136 84 84 110.4
DRG2005 227 27002 4 19-Feb-04 138 76 82 110.4
DRG2005 227 27002 9 5-Apr-04 112 80 72 110.4

Table 3: Vital Statistics Vertical Dataset

3

We will now explore some of the important options and statements in the transpose procedure. The
simplest case is to use Proc Transpose without any options at all. What happens when we do this?

This data is stored in a vertical format and we need to transform it into a horizontal format. Notice that
each subject has multiple records and that the identifier information is the protocol number, investigator
number and patient identifier. There is one record per subject per visit. If a subject has 5 visits, there will
be 5 records for that subject. Take a look at the code below. The first use of the transpose procedure will
not use any options.

proc transpose data=vitals; run;
proc print; run;

Since Proc Transpose always produces an output dataset, we need to run a Proc Print to see the data. If
you do not specify a name with the OUT= option, SAS will give it a default name. So which variables in
the original dataset are transposed? Without any additional statements, the procedure will transpose only
numeric variables. In this example all of the variables other than the identifiers are transposed because
they are all numeric variables. There is one row in the output dataset for each numeric variable in the
original dataset. So we have one row for the visit, one for the visit date, one for the systolic blood
pressure, one for the diastolic blood pressure, one for the pulse and one for the weight. Take notice of
the variable VSDT. This is a date variable that is stored with the DATE9. format attached to it. As you
can see in the sample above, when the data is printed, the date is formatted to read ddmmmyy.
However, in the print out below, the date is the original value of the number of days since January 1,
1960. The formatting is lost after the procedure is invoked, in other words, the date is now unformatted.
We can try to change it to a character variable, however, the default for the transposition is to transpose
only numeric variables. There must be a better way! SAS includes some default variables in the output
dataset. The first is _NAME_ which is the name of the variables that were transposed. The next default
variable is _LABEL_ which takes the label of the variables and puts them in a variable itself. The last
thing to note is the variable names. Each variable was given a default name beginning with the
characters COL and a number (in reality, this dataset has 775 columns and the printout is only a subset
of the output dataset). We have lost the variables and associated values of the protocol, investigator and
patient. The new dataset has one column for each visit of each patient. The only way to tell where one
patient ends and the next patient begins is that the visit number (which is the first row of data) starts again
at one after all of the data is displayed for a patient. This makes the evaluation of the data very
confusing. So, what do we do to fix this? We need to add some options to our program so that the data
in the output dataset is very clear.

NAME _LABEL_ COL1 COL2 COL3 COL4 COL5 COL6 COL7 COL8 COL9 COL10 COL11

VISIT Visit Number 1 2 3 4 9 10 1 2 3 4 9

VSDT Date of Vital Signs 16076 16083 16086 16104 16195 16201 16223 16251 16279 16306 16342

SBP Systolic BP 122 118 120 114 104 118 113 122 110 124 116

DBP Diastolic BP 80 82 72 82 70 76 81 76 76 82 76

PULSE Pulse Rate 65 60 66 60 60 66 62 66 72 60 66

WEIGHT Weight 119.1 119.1 119.1 119.1 119.1 119.1 110.4 110.4 110.4 110.4 110.4

Output: Proc Transpose Without Using Options

ADDING OPTIONS
There are a number of options that you can add to the statements in a Proc Transpose in order to
achieve results that are clear and data that is ready for analysis. At first, it will seem like a great deal of
trial and error to get your output dataset in the format that you need. The Proc Transpose statement has
a number of options. Then there are other statements with options of their own that dictate how the data
is to be transformed. Let take a look at a few of the most important ones.

4

PROC TRANSPOSE statement
The result of adding some options on the PROC statement is to change the output dataset a bit. These
options give you the ability to use more meaningful names for your variables. You can control how your
output dataset is defined with the extra options on the Proc Transpose statement. There are several
options that can be added here. The options that we are going to discuss here are the LABEL, NAME and
PREFIX options.

Below is a sample of code that we are going to use in our discussion. It is a simple Proc Transpose
statement. We are going to refer to the data in the vital signs data set.

proc transpose data=vitals
label=DESC
name=VAR
prefix=VAL;

run;

Remember, you can always use the data set options the DATA= and OUT= options. These tell you what
data to use and what the name of the output dataset will be. If you omit these options, the default dataset
that is used will be the last one that is created. The default output dataset name will be DATA1. As noted
above, the default variables (_NAME_, _LABEL_ and the COL1, COL2, COL3, etc.) are a part of the
output dataset. Of course, you can drop any variables that you don’t want with a simple DROP option or
keep specific variables by using the KEEP option on the DATA= option or you can rename them to
something that is more meaningful (the RENAME=(oldname=newname) works as well). Remember that
you cannot use both the DROP and KEEP option in the same step. In the example below, the _NAME_ is
renamed to VAR and the _LABEL_ is renamed to DESC. The last option on the Proc Transpose
statement below is called PREFIX. This option specifies a prefix to use in constructing the names of the
variables in the output dataset. So, we are going to change COL1, COL2, COL3, COL4 to VAL1, VAL2,
VAL3, VAL4.

VAR DESC VAL1 VAL2 VAL3 VAL4 VAL5 VAL6 VAL7 VAL8 VAL9 VAL10 VAL11

VISIT Visit Number 1 2 3 4 9 10 11 12 13 14 15

VSDT Date of Vital Signs 16076 16083 16086 16104 16195 16201 16223 16251 16279 16306 16342

SBP Systolic BP 122 118 120 114 104 118 113 122 110 124 116

DBP Diastolic BP 80 82 72 82 70 76 81 76 76 82 76

PULSE Pulse Rate 65 60 66 60 60 66 62 66 72 60 66

WEIGHT Weight 119.1 119.1 119.1 119.1 119.1 119.1 119.1 119.1 119.1 119.1 119.1

Output: Proc Transpose statement Using Options

Again, remember that this is a subset of the original data. The output will still have 775 columns. We
haven’t yet worked with any options that will change the number of columns in the output dataset.

BY Statement
This example shows how we can use the BY statement to change how the data is processed. Suppose
that we want to have a record for each subject for each vital sign. How would we accomplish this? We
introduce the BY statement into the code. As with any SAS procedure that uses a BY statement, the data
must be sorted before the procedure is invoked. The BY statement that we will use can be seen in the
sample code below. Proc Transpose does not transpose the BY group. So, the end result is exactly
what we want. Now the data is beginning to look more believable and be easier to analyze.

proc transpose data=vitals
 label=DESC

name=VAR
prefix=VAL;

 by protocol inv pat; run;

5

Notice in the data below, there are missing values for the VAL6 and VAL7 columns. This is because this
patient only had 5 visits. As we have seen with any horizontal data structure, there can be missing data
from some cells. However, this makes it easier to perform an analysis of the data. For example, it we
want to calculate the minimum and maximum diastolic blood pressure, it can be done very easily with a
function or a line of code.

PROTOCOL INV PAT VAR DESC VAL1 VAL2 VAL3 VAL4 VAL5 VAL6 VAL7

drg2005 227 27001 VISIT Visit Number 1 2 3 4 9 10 11

drg2005 227 27001 VSDT Date of Vital Signs 16076 16083 16086 16104 16195 16201 16223

drg2005 227 27001 SBP Systolic BP 122 118 120 114 104 118 113

drg2005 227 27001 DBP Diastolic BP 80 82 72 82 70 76 81

drg2005 227 27001 PULSE Pulse Rate 65 60 66 60 60 66 62

drg2005 227 27001 WEIGHT Weight 119.1 119.1 119.1 119.1 119.1 119.1 119.1

drg2005 227 27002 VISIT Visit Number 1 2 3 4 9 . .

drg2005 227 27002 VSDT Date of Vital Signs 16096 16103 16106 16120 16166 . .

drg2005 227 27002 SBP Systolic BP 136 136 136 138 112 . .

drg2005 227 27002 DBP Diastolic BP 86 80 84 76 80 . .

drg2005 227 27002 PULSE Pulse Rate 72 84 84 82 72 . .

drg2005 227 27002 WEIGHT Weight 110.4 110.4 110.4 110.4 110.4

Output: Use of the BY statement

VAR Statement
The VAR statement is the one that is needed to list the variables that need to be transposed. As we
noted previously, the default for Proc Transpose is to transpose only numeric variables. The VAR
statement is needed to transpose character variables. So, if you have character variables that you want
to be transposed, you must list them here.

proc transpose data=student
out=s1
prefix=info;

by name;
var class grade credit;

run;

If we take a look at the student data, the transpose statement specifies that we are create an output
dataset called S1 and all of the variables that are created will have a prefix of INFO. The new statement
that we have added is the VAR statement. In the VAR statement, we are stating that we want CALSS,
GRADE and CREDIT to be transposed. If you look at the data, you will see that the CLASS variable
(which is the name of the class in which the student was enrolled) and the GRADE variable (which is the
letter grade that the student received as a score) are character variables. The credit variable is a numeric
variable that represents the number of credits for a course. With these three variables, we have all the
information that we need to calculate a grade point average for a student once we transpose the data. If
we didn’t use the VAR statement, the only variable that would be transposed would be the variable
CREDIT because it is the only numeric variable. Remember, the default is to only transpose the numeric
data unless we use the VAR statement.

Notice in the output below, there is a mixture of character and numeric variables in the new variables
INFO1 – INFO6. The interesting thing to notice is the way that SAS justifies the data within the variable.
The numeric variables are right justified and the character variables are left justified. Remember, however
that because there is a mixture of data types, SAS will create the variables as a character field. The fact
that some data is right justified and some data is left justified could make the analysis difficult. We can

6

overcome this problem by using the LEFT function whenever we want to reference the value of the
variable.

Name _NAME_ INFO1 INFO2 INFO3 INFO4 INFO5 INFO6

Ann Adams Class CHEM101 MATH110 LIT100 PHY101 FREN102 CHEMLAB

Ann Adams Grade A A B A B B

Ann Adams Credit 4 4 4 4 4 2

Bob Benz Class CHEM101 BIO110 PSY101 ANT100 CHEMLAB

Bob Benz Grade B C B A B

Bob Benz Credit 4 4 4 4 2

Carl Jones Class SPAN101

Carl Jones Grade A

Carl Jones Credit 4

Dave Fine Class BIO200 MATH210 LIT200

Dave Fine Grade C C C

Dave Fine Credit 4 4 4

Edna James Class ART220

Edna James Grade A

Edna James Credit 4

Fred Fame Class CHEM101 MATH110 ANT111 CHEMLAB

Fred Fame Grade B A C B

Fred Fame Credit 4 4 4 2

Greg Gain Class PSY211 ITAL101

Greg Gain Grade A A

Greg Gain Credit 4 4

Hanna Hand Class CHEM212 BIO203 PSY101 HIST325 SPAN202

Hanna Hand Grade B A B B A

Hanna Hand Credit 4 4 4 4 4

Output: Use of the VAR statement

ID Statement
Suppose you want to use the value of a variable as the variable name in the output dataset. Using the ID
statement is the method to accomplish this. The ID statement specifies a variable in the input dataset
whose value is used to name a variable in the output dataset. If I had data for each season and wanted
the variables to be named WINTER, SPRING, SUMMER and FALL, I would use the variable SEASON in
the ID statement of the Proc Transpose to accomplish this.

proc transpose data=student
 by name;
 var grade;
 id class;
run;

This code above shows us how we can use the ID statement with our student dataset to create variables
for each class. The values of the variables are used to name the columns. In this example, the classes
that have been taken by the students are the variable and the grade that they each received are the
values of the variables. I can calculate the grade point average of each student very easily.

7

So far, we have talked about the values of a character variable. What happens if the variable that you
want to have as the name of the transposed variable is a numeric value? SAS will change the name to a
valid SAS name by affixing an underscore as the first character. If there are any missing values in your
data, SAS will not transpose the data and issue a warning message in the log. If the value in the data is
longer than 32 characters, SAS will truncate the value to 32 characters. If you have the system option
VALIDVARNAME set to V6 where the variable names can not be any longer than 8 characters, SAS will
truncate the value to 8 characters.

If you have duplicate values in the input dataset or in a BY group, Proc Transpose will issue a warning
message in the log. It will stop processing and you will not get the results that you expect in the output
dataset.

Name CHEM101 MATH110 LIT100 PHY101 FREN100 LAB SPAN200

Ann Adams Grade A A B A B B

Bob Benz Grade B A A C B B C

Carl Jones Grade B A C C A

Dave Fine Grade B A B A A A B

Edna James Grade B B A B B

Fred Fame Grade B A B A

Greg Gain Grade C C B D B C

Hanna Hand Grade C A B A A

Output: Use of the ID statement

CONCLUSION
We have explored some of the features and options that can be used in a Proc Transpose. From its
simplest invocation without any options to some of the most used ones, this procedure can be very
powerful and helpful when analyzing data. With a minimal amount of code, the data can be manipulated
so that the analysis is simple and easy. Because the procedure creates an output dataset and not a
report, you can use any type of printing procedure to report on the output dataset. This is a very powerful
tool in the base SAS product.

SAS and all other SAS Institute Inc. product or service names are registered trademarks or trademarks of
SAS Institute Inc. in the USA and other countries. ® indicates USA registration.

REFERENCES
SAS Procedures Guide, Version 8, SAS Publishing, 1999
Cody, Ron, Longitudinal Data and SAS, SAS Publishing, 2001

ACKNOWLEDGMENTS
I would like to thank my husband Bob for his unending support and tireless proof-reading comments.
Without his encouragement, I could not have completed my paper.

AUTHOR CONTACT

Janet Stuelpner
Left Hand Computing, Inc
326 Old Norwalk Road
New Canaan, CT 06840
(203) 966-7520 voice
(203) 966-8027 fax
jstuelpner@usa.net

